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Greg Landweber and Stefan Méndez-Diez

The problem of classifying off-shell representations of the N -
extended one-dimensional super Poincaré algebra is closely related
to the study of a class of decorated N -regular, N -edge colored
bipartite graphs known as Adinkras. In this paper we canonically
realize these graphs as Grothendieck “dessins d’enfants,” or Belyi
curves uniformized by certain normal torsion-free subgroups of the
(N,N, 2)-triangle group. We exhibit an explicit algebraic model
over Q(ζ2N ), as a complete intersection of quadrics in projective
space, and use Galois descent to prove that the curves are, in fact,
definable over Q itself. The stage is thereby set for the geometric
interpretation of the remaining Adinkra decorations in Part II.
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1. Introduction

In mathematics, the term supersymmetry is used to describe algebraic struc-
tures which possess a Z/2Z-grading and obey standard sign conventions
related to that grading. These algebraic structures can be attached to other
mathematical objects which are, say, topological or geometric in nature.
As a result, many standard mathematical objects have well-studied “super”
variants, e.g., manifolds → super manifolds or Riemann surfaces → super
Riemann surfaces.

In physics, supersymmetry has a much more specific meaning, refer-
ring to structures which are equivariant with respect to extensions of the
super Poincaré algebra. The Lorentz group is the Lie group of isometries
of Minkowski space, or more precisely its double cover, replacing SO(1, d−
1) with Spin(1, d− 1). The Poincaré group is the Lorentz group together
with translations, Spin (1, d)× R1,d−1. The super Poincaré group is the Lie
supergroup obtained by extending the Poincaré group by infinitesimal odd
elements, called supersymmetry generators, whose squares are spacetime
derivatives, the infinitesimal generators of translations. At the Lie algebra
level, the supersymmetry generators span the odd component of the super
Poincaré algebra. While supersymmetry algebras can refer to extensions of
the super Poincaré algebra, here we will be dealing with only the super
Poincaré algebra.

The physical representations of the super Poincaré group and super
Poincaré algebra come in two forms. Both are representations on spaces of
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fields, i.e., maps from Minkowski space to a finite-dimensional Z/2Z-graded
representation of Spin(1, d− 1). The Z/2Z-grading decomposes the fields
into bosons and fermions, and the Lorentz action decomposes the fields into
irreducible components, each corresponding to a different type of particle.
The assembly of several such particles into a representation of supersym-
metry is called a supermultiplet. The Poincaré group acts naturally on such
spaces of fields, and the question which remains is how the supersymmetry
generators in the super Poincaré algebra will act.

In off-shell representations, the super Poincaré algebra acts on dynam-
ically unconstrained spaces of fields, while on-shell representations restrict
the action to fields which satisfy the equations of motion, usually coming
from a Lagrangian via the Euler-Lagrange equations. Although on-shell rep-
resentations are more complicated physically, they are more natural from
the point of view of representation theory. On the other hand, in off-shell
representations the supersymmetry is manifest from the description of the
particles in the supermultiplet, allowing us to separate the representation
theory from the physics, i.e., the Lagrangian, and facilitating quantization.

Graphs known as Adinkras were proposed by Faux and Gates in [9] as
a fruitful way to investigate off-shell representations of the super Poincaré
algebra. These combinatorial objects were rigorously defined, and their con-
nections to Clifford algebras and coding theory explored, in a long series of
works by the DFGHILM collaboration [5, 6, 13]. Adinkras are graphs whose
vertices represent the particles in a supermultiplet and whose edges corre-
spond to the supersymmetry generators. In combinatorial terms, Adinkras
are N -regular, edge N -colored bipartite graphs with signs assigned to the
edges and heights assigned to the vertices, subject to certain conditions.
Details can be found in Section 2 below.

It is useful to think of an Adinkra as consisting of a chromotopology,
which captures the underlying bipartite graph with its N -coloring, together
with two more compatible structures: an odd dashing, which marks each edge
with a sign, and a height assignment, which labels each of the vertices with
an integer. A complete characterization of chromotopologies was achieved
in [6]. For each N , there is a natural chromotopology on the Hamming cube
[0, 1]N , with vertices labeled by elements of FN

2 . The one-skeleton of the
Hamming cube serves as a “universal cover” for arbitrary chromotopologies,
the covering map being realized by taking cosets with respect to doubly even
binary linear error correcting codes C ⊆ FN

2 .
The purpose of this paper is to show how to canonically associate a

Riemann surface to a given chromotopology. TheN -regular, edgeN -coloring
gives us a cyclic ordering of the edges at each vertex of the graph based on
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their color. We call such an ordering a rainbow. As described in Section 3, this
provides the structure of a ribbon graph, and, following Grothendieck, we are
led through the Belyi curve construction to a presentation of the associated
Riemann surface as a covering space over P1(C), branched over {0, 1,∞},
with the graph embedded as the inverse image of the line segment [0, 1].
One consequence of arriving at a Riemann surface from a chromotopology
in this way is that the 2-faces of this surface are precisely those bounded by
4-edge cycles with edges colored by two adjacent colors from the rainbow
(opposite edges having the same color). Although a change in the order of
the colors in our rainbow will a priori yield a different Riemann surface, we
show that in fact it results in a global conjugation of the monodromy group
of the covering space, and hence in isomorphic Riemann surfaces. This fits
well with the expectation from physics, as equivalence under permutation
of the colors is a consequence of R-symmetry. We also reinterpret a purely
combinatorial operation — the exterior tensor product of Adinkras — in
geometric terms as a multi-point connected sum of the associated Riemann
surfaces.

In Section 4 we go on to give an algebraic presentation of the Riemann
surface associated to a chromotopology. This leads us to a canonical Fuch-
sian uniformization of the curves by normal torsion-free subgroups of the
(N,N, 2)-triangle group. The observation that the 2-faces are 4-edge cycles
drawn from adjacent rainbow colors is reinterpretted as saying that the uni-
formization factors through a particular orbicurve corresponding to an index
N subgroup of the triangle group. Using this, and a Galois descent, we show
further that the Riemann surfaces associated to Adinkra chromotopologies
are very special points in moduli, even among Belyi curves. A priori, Belyi
curves are defined over some number field; those associated to Adinkras are
defined over Q.

Constructions involving Belyi curves have played an important role in
several areas of supersymmetric physics in recent years. These include gauge-
theoretic applications of dimer models (aka brane tilings) [17], bipartite field
theories and scattering amplitudes [12], and gauge-string duality [16], to
name just a few. Although dimer models will play an important role in
part II of this paper [8], specifically through the application of the work of
Cimasoni and Reshetikhin [3], we make no direct connection here between
the geometrization of N -extended supersymmetry algebras and these other
appearances of Belyi curves in the recent literature.

While not the focus of this paper, we note that the chromotopology
ignores two additional structures an Adinkra possesses: an odd dashing and
height assignment. In a subsequent paper, [8], we show that the odd dashing
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defines a spin structure on the associated Riemann surface, which allows us
to define a canonical super Riemann surface structure with Ramond punc-
tures following work by Donagi and Witten [4]. We also show in [8] that the
Adinkra height assignments define a discrete Morse function on the super
Riemann surface in the sense of both Banchoff [1] and Forman [10, 11]. The
height assignment can also be viewed as a divisor on the (super) Riemann
surface. The purpose of this current paper is to give a complete and thorough
description of the Riemann surfaces associated to Adinkra chromotopologies,
leaving the additional structure these surfaces have to part II.

2. Review of Adinkras

As noted in the introduction, the first step in describing irreducible off-shell
representations of theN -extended 1-dimensional super Poincaré algebra is to
present them as graphs called Adinkras. We are interested in the elementary
N -extended Poincaré superalgebra in 1-dimensional Minkowski space, also
known as the (1|N) superalgebra. Here elementary means a classical Lie
algebra with no central extensions and no other additional internal bosonic
symmetries. We begin this section by reviewing the (1|N) superalgebra. We
will then review what an Adinkra is, as well as outlining the main features
that will be needed later.

In 1-dimensional Minkowski space, there is a single time-like direction τ .
Translations in this direction are generated by ∂τ . Therefore (1|N) superal-
gebras are generated by ∂τ and N real supersymmetry generators QI . The
supersymmetry generators commute with ∂τ and satisfy the anticommuta-
tion relations

(1) {QI , QJ} = 2iδIJ∂τ ,

where δIJ is the Kronecker delta.
In the physics literature, this relation is often written in terms of

parameter-dependent operators

(2) δQ(ε) ≡ −iεIQI ,

where εI is a set of N Grassmann variables and Einstein’s summation con-
vention is being used. With this identification, Equation (1) takes the equiv-
alent form

(3) [δQ(ε1), δQ(ε2)] = 2iεI1ε
I
2∂τ .
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Every representation of the (1|N) superalgebra decomposes as a col-
lection of irreducible representations of the (1|1) superalgebra. The (1|1)
superalgebra has two irreducible representations, the scalar and spinor mul-
tiplets. The scalar multiplet consists of a real commuting bosonic field φ and
a real anticommuting fermionic field ψ with supersymmetry transformations

Qφ = ±ψ,
Qψ = ±iφ̇.(4)

The spinor representation also consists of a real commuting field B and a
real anticommuting field η, but with different transformation rules:

Qη = ±iB,

QB = ±η̇.(5)

Real, finite-dimensional linear representations of the (1|N) superalgebra
are spanned by a basis of real bosonic component fields φ1(τ), . . . , φm(τ)
and real fermionic component fields ψ1(τ), . . . , ψl(τ). The super supersym-
metry generators Q1, . . . , QN act linearly on the representation and satisfy
Equation (1). Such representations are called real supermultiplets, which is
why we referred to the scalar and spinor representations of the (1|1) super-
algebra as the real and spinor multiplets earlier. We will be interested in
off-shell supermultiplets, i.e., supermultiplets whose fields do not satisfy any
differential equations other than Equation (1). We will assume all supermul-
tiplets are off-shell unless otherwise stated. An off-shell supermultiplet has
as many bosonic component fields as it does fermionic ones.

For off-shell supermultiplets, the supersymmetry transformation rules
are

QI φA(τ) = c∂λ
τ ψB(τ),

QI ψB(τ) =
i

c
∂1−λ
τ φA(τ),(6)

where c = ±1 and λ = 0 or 1.
Note that the time derivative has engineering dimension [∂τ ] = 1. It can

be seen from Equation (1) that [QI ] =
1
2 . Note that c, λ, and B occurring in

Equation (6) generally depend on A and I. For example, c clearly differen-
tiates between the ± options in Equations (4) and (5). On the other hand,
λ differentiates between the scalar and spinor multiplet transformations. In
order for the component fields to have definite engineering weight, we must
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Action of QI Adinkra Action of QI Adinkra

QI

[
ψB

φA

]
=

[
iφ̇A

ψB

]
B

A

I QI

[
ψB

φA

]
=

[ −iφ̇A

−ψB

]
B

A

I

QI

[
φA

ψB

]
=

[
iψ̇B

φA

]
A

B

I QI

[
φA

ψB

]
=

[ −iψ̇B

−φA

]
A

B

I

Table 1: The correspondence between Adinkras and the action of the super-
symmetry generators on the component fields. Each white vertex of an
Adinkra corresponds to a bosonic component field and its time derivatives.
Similarly, each black vertex corresponds to a fermionic component field and
its time derivatives. The edges will be colored by color I corresponding to
the index of the supersymmetry generator.

have

(7) λ = [φA]− [ψB] +
1

2
,

assuming the coefficients of Equation (6) are dimensionless.
An Adinkra is a graphical representation of a supermultiplet and its

supersymmetry transformations, originally proposed in [9]. As noted in the
introduction, there is a wealth of literature further studying Adinkras and
establishing their precise mathematical formulation; see [5, 6, 13], for exam-
ple. A good overview of their mathematical aspects can be found in [26].
An Adinkra is a special bipartite N -regular colored graph. The edges have
a dashing and an orientation, which defines a height assignment on the ver-
tices.

Consider a (1|N) supermultiplet M spanned by component fields φ1,
. . . , φm, ψ1, . . . , ψm. The supermultipletM can be represented as an Adinkra
if all of the supersymmetry generators send each component field to a single
component field. The corresponding Adinkra has a white vertex for each
bosonic field φA and a black vertex for each fermionic field ψA, 1 ≤ A ≤
m. The white vertex corresponding to φA is connected to the black vertex
corresponding to ψB by an edge of color I if QI sends φA to ψB (or its time
derivative) by Equation 6. The edge is oriented from the white vertex to the
black vertex if λ = 0 and the other way if λ = 1. It is dashed if c = −1 and
solid if c = 1. This correspondence is depicted in Table 1.
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We now review some important features of Adinkras that we will need
later. First note that every vertex has exactly one edge of each color adjacent
to it. This is because each supercharge acts on each component field, taking
it to exactly one other component field (or its time derivative). For any
component field f(τ), ±f(τ) and all of its time derivatives are represented
by the same vertex in the corresponding Adinkra. By Equation 1, QIQJ =
−QJQI for I �= J , so QIQJf and −QJQIf are represented by the same
vertex in an Adinkra. Thus, traveling along an edge of color I and then an
edge of color J �= I is the same as traveling first along an edge of color J
and then along one of color I. Another way to say this is that starting at
any vertex and taking an edge of color I, then one of color J �= I, then I
again, and finally J returns us to the same vertex [9]. We refer to such a
closed loop as a 2-colored loop.

As we travel around each 2-colored loop, there must be an odd number of
dashed edges [9]. This follows from the anticommutativity of the supersym-
metry generators and the fact that the dashedness of an edge corresponds
to the sign of the supersymmetry tranformation; see Table 1.

Furthermore, as we travel along a 2-colored loop counter-clockwise, we
will travel along an even number of edges in agreement with their orien-
tations and and even number of edges against their orientations. Indeed,
if we start at a fixed vertex and travel along an edge of color I and then
along an edge of color J , whether or not you go with the orientations of the
edges determines how many factors of ∂τ are picked up. Since we must have
the same number of time derivatives if we had instead went clockwise (for
the engineering dimension to match), we must have travelled with or against
the orientations of the same number of edges. Therefore the number of edges
we travelled that agreed with the orientations, and the number of edges we
travelled against the orientations as we travel along the entire 2-colored loop
must both be even.

The orientation of the edges defines a height function on the vertices of
the Adinkra that corresponds to the engineering dimension of the component
fields [5]. If V is the set of vertices of an Adinkra, a height function is a
function h : V → Z such that h(b) = h(a) + 1 if there is an edge going from a
to b. Adding a constant to any height function gives another height function.
This allows us to choose a height function so that the heights of the bosons
are even and the heights of the fermions are odd, which can be normalized
so that the height of each vertex is twice the engineering dimension of the
corresponding component field. The height of a vertex should be viewed as
a minimum engineering dimension of the objects represented by the vertex,
since the vertices of an Adinkra represent not only the component fields
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Figure 1: An example of two different N = 2 Adinkras with the heights of
their vertices labeled.

but also their time derivatives, and every application of ∂τ increases the
engineering dimension by 1. See Figure 1 for an example of two different
N = 2 Adinkras with their height functions shown.

Forgetting the dashing, orientation, and coloring of all of the edges in
an Adinkra leaves what is called the topology of the Adinkra. The topology
of an Adinkra together with its edge coloring is called its chromotopology.
One of the most important Adinkra topologies is the topology of the N -
cube, [0, 1]N . This is the Adinkra topology consisting of the vertices and
edges of the N -cube. The two Adinkra topologies depicted in Figure 1 are
those of the 2-cube. In fact, they have the same chromotopologies. More
generally, every N -cube has a unique chromotopology [6]. Even though the
Adinkras in Figure 1 have the same chromotopologies, they are not the same
Adinkras, since they have different orientations (hence height assignments)
and dashings. For the remainder of the paper we will ignore Adinkra height
assignments and odd dashings and focus on chromotopologies.

The colored N -cube, [0, 1]N , has 2N vertices and 2N−1N edges. We can
embed the colored N -cube in RN so that the vertices are located at all 2N

possible points (x1, . . . , xN ) with xi = 0 or 1. In this way, we may associate
the vertices of the colored N -cube with the elements of FN

2 , where F2 is the
field of two elements. The weight of a vertex is the number of nonzero entries
in (x1, . . . , xN ). The vertices with even weight are declared white, while the
vertices with odd weight are declared black. Two vertices (x1, . . . , xN ) and
(y1, . . . , yN ) are connected by an edge of color I if they differ only in the
I-th component, i.e., if xi = yi for i �= I and xI = 1− yI .

It was shown in [6] that the set of Adinkra chromotopologies is equivalent
to the set of colored N -cubes mod doubly even codes. A code is a linear
subspace of FN

2 . A code C is doubly even if every codeword (element of
the code) has weight divisible by 4. Every code has a basis since it is a
linear subspace of FN

2 , and any basis for C is called a generating set. The
dimension of the code is its dimension as F2-vector space. For a doubly
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even code C, F2/C means that we identify vertices of the N -cube if they
differ by codewords as elements of FN

2 . Furthermore, if the vertex v and the
vertex w are identified then, for all I, the edge of color I incident to v is
identified with the edge of color I incident to w. That is, the vertices of
an Adinkra can be viewed as cosets of a doubly even code in FN

2 . In this
way, the colored N -cube can be thought of as a universal cover for general
Adinkra chromotopologies. It is in general quite difficult to find doubly even
codes for a given N ; see [24] for an extensive list.

An R-symmetry is a symmetry that transforms the supercharges QI . For
real N -extended supersymmetry, the group of R-symmetries is O(N). Per-
mutation matrices in O(N) permute the QI . We interpret the action of the
permutation subgroup as a permutation action on the colors corresponding
to the QI . As noted in [6], it is not clear that for physical significance it is
enough to only consider permutation equivalence. In the following section
we will show that Adinkra chromotopologies describe Riemann surfaces and
that these surfaces are invariant under the action of the permutation sub-
group. The same issues of extending to the entire R-symmetry group still
exist, but working in a higher-dimensional space may provide new methods
for approaching the problem.

3. The Belyi curve associated to an Adinkra
chromotopology

In the previous section we reviewed how irreducible off-shell representations
of (1|N) superalgebras can be presented as graphs called Adinkras. In this
section we will see how an Adinkra chromotopology canonically defines a
Riemann surface as a covering space of P1(C). We do this by first showing
that an Adinkra chromotopology has the structure of a ribbon graph and
then using the Grothendieck correspondence to associate a Riemann surface
to the ribbon graph. We will show that all of the surfaces we will consider
factor through a fixed orbifold, allowing us to study these surfaces in a
uniform fashion. After explaining the construction of the Riemann surface,
via Grothendieck’s theory of “dessins d’enfants”, we will show that if two
Adinkras are related by the permutation subgroup of R-symmetry then their
corresponding Riemann surfaces are equivalent. Lastly, we will use the result
on R-symmetric Adinkras to describe how the tensor product of Adinkras
can be extended to a well-defined operation on the associated surfaces.
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3.1. From chromotopologies to Riemann surfaces

Definition 1. A ribbon graph (also known as a fat graph) is a connected
graph that assigns to each vertex of the graph a cyclic permutation of the
half edges adjacent to the vertex.

A rainbow is a choice of a cyclic ordering of the colors of a colored graph.

As we saw in the previous section, the chromotopology of an Adinkra
is a connected, colored, N -regular bipartite graph. An Adinkra naturally
determines a rainbow given by the order of the supersymmetry generators
the colors represent. A chromotopology, together with a rainbow, therefore
defines a ribbon graph. The ribbon structure is defined as follows: Given any
vertex, the rainbow provides a cyclic permutation of the half-edges incident
to that vertex, since there is exactly one half-edge of each color adjacent to
it. To each white vertex, we assign precisely this cyclic permutation; to each
black vertex, we assign the permutation of the half-edges adjacent to it in
the opposite order of the rainbow1.

Definition 2. A dessin d’enfant (or just dessin) is a pair (X,D) where
X is an oriented, compact topological surface and D is a finite, connected,
bipartite graph forming the 1-skeleton of X, i.e., X −D is the union of
finitely many topological discs, called the faces of X.

The Grothendieck correspondence states that a ribbon graph is equiva-
lent to a dessin d’enfant. We will briefly explain the equivalence here, but
the reader is encouraged to consult [22] or [18] for a more rigorous intro-
duction. As described in [22], the Riemann surface X is built by using the
ribbon graph as a 1-skeleton for X and then “filling in” X by attaching
2-cells corresponding to certain closed loops in the graph. Which loops we
attach 2-cells to is determined by the ribbon structure as follows. Suppose
we work with a rainbow (C1, . . . , CN ), and fix a white vertex w1 and a color
Ci. If we leave this vertex along the half-edge of color Ci, we will reach a
black vertex b1. Since the ordering at black vertices is opposite to that of
the rainbow, we will leave along the half-edge of color Ci−1 and end up at
a white vertex w2 that must be different than w1, since an Adinkra does
not have any double edges. At this point, we leave w2 along the half-edge
of color Ci to end up at a black vertex b2 �= b1. Finally, we leave along the

1We could have let the elements of S2d at each black vertex have the same order
as the rainbow instead, as discussed in [18, 22], but this would not take into account
the bipartite structure.



1054 C. Doran, et al.

half-edge of color Ci−1 and end up back at w1, since we have now completed
a Ci−1/Ci-colored loop. Varying the initial white vertex w1 and color Ci, we
see that we are attaching 2-cells to every Ci/Ci+1 colored loop. In this way,
we obtain a Riemann surface with the Adinkra as its 1-skeleton. Note that
the faces in this case will be 4-gons. If we had chosen the order of the colors
at the white and black vertices to be the same, then the faces would have
been 2N -gons [22].

In the other direction, if we have a dessin (X,D) then D is a ribbon graph
if we take the cyclic ordering of the half-edges at the white vertices to be the
order given by moving counter-clockwise around the white vertex relative to
the orientation, and we take the opposite order at the black vertices.

In turn, a dessin d’enfant is equivalent to a Belyi pair, which we now
define precisely.

Definition 3. A Belyi pair (X, β) is a closed Riemann surface X equipped
with a Belyi map, β : X → P1(C) that is ramified at most over {0, 1,∞}.
We refer to P1(C) as the Belyi base.

A dessin naturally defines a Belyi map, namely the map that sends the
white vertices to 0, the black vertices to 1, the edges to the interval (0, 1),
and each face to CP1 − [0, 1], with the center of each face being mapped to
∞. In the other direction, given a Belyi pair, we obtain a dessin by taking
for the embedded graph D the pre-image of [0, 1]. The white vertices are
given by the fiber over 0, the black vertices are given by the fiber over 1,
and the edges are given by the pre-images of the open interval (0, 1). This
shows that every chromotopology with a rainbow determines a Belyi pair.
For more details, the reader is encouraged to consult [15].

Using the classification of Adinkra chromotopologies, given in [6] and
discussed in Section 2, we refer to an an Adinkra chromotopology obtained
from quotienting the colored N -cube by a k-dimensional doubly even code
as an (N, k) Adinkra chromotopology. We denote the set of all such chro-
motopolgies by A(N,k). Note that for a given N and k there may be more
than one chromotopology. In particular, two elements of A(N,k) will not be
equivalent as chromotopologies if they are quotients of the N -cube by per-
mutationally inequivalent codes [6].

Definition 4. If A ∈ A(N,k) is an Adinkra chromotopology, then XA de-
notes the Riemann surface built from A as described above. The set of all
Riemann surfaces constructed in this manner will be denoted by X(N,k).
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Let A ∈ A(N,k) and X = XA. The Grothendieck correspondence shows
that all of the data of the Belyi pair (X,β) can be encoded by its mon-
odromy action. This data is completely determined by two elements σ0, σ1 ∈
Sd, where d is the degree of β. To define these elements, one chooses an
unbranched value z on the Belyi base CP1 and considers the action of the fun-
damental group π1(C− {0, 1}) on the fiber β−1(z); σ0 describes the action
of a simple loop around 0, while σ1 describes the action of a simple loop
around 1, both loops being followed counter-clockwise. We will describe the
elements σ0 and σ1 as permutations of the edges of the embedded graph in
X since the Belyi map β is unramified over the edges.

Since A has 2N−k−1 white vertices, there are d = 2N−k−1N edges in
total, as there is a unique edge of a given color coming out of every white
vertex. Since β is unramified over the edges, it follows that β has degree d.

Now let us describe σ0 and σ1. Assume that we have labeled the edges of

A in some way. At each white vertex w, define an N -cycle σ
(w)
0 by listing the

N edges incident to w in the order of the rainbow. Similarly, for each black

vertex b, let σ
(b)
1 be the N -cycle obtained by listing the N edges incident to

b in the opposite order of the rainbow. Then we have

σ0 =
∏
w

σ
(w)
0 , σ1 =

∏
b

σ
(b)
0 ,

the products being taken over the 2N−k−1 white and black vertices, respec-
tively.

Definition 5. The pair of elements (σ0, σ1) constructed above is called the
permutation representation pair for the Belyi curve (X(N,k), β).

We will now demonstrate how these elements describe the monodromy
action. Let Σ0 ⊆ CP1 denote the graph consisting of the closed interval [0, 1],
and let 0 and 1 be the white vertex and black vertex respectively. By con-
struction of β, we have β(A) = Σ0. Consider a small loop γ that travels
counter-clockwise around 0 ∈ P1(C), taking the base point to be where γ
intersects the single edge Σ0. There are 2N−k−1N lifts of the base point,
each lying on a unique edge. By construction, the lift of γ with initial point
lying on the edge of color Ci incident to the white vertex w has terminal
point lying on the edge of color Ci+1 incident to the same white vertex.
Therefore, the monodromy action at 0 is described by sending the edge of
color Ci incident to w to the edge of color Ci+1 incident to w. Such a lift has
order N , which is why σ0 is the disjoint product of N -cycles when presented
as an element of Sd; a similar argument applies to σ1.
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Note that the order of the map β is d. This can be determined from
σi ∈ Sd, i ∈ {0, 1}. Since σi contains 2N−k−1 disjoint N -cycles, the order
of β is the number of disjoint cycles in σi times the length of the cycles
themselves. Further, the fact that σi is the product of disjoint N -cycles
corresponds to X having order N ramification over the Belyi base at each
vertex. This could have also been seen directly, since the degree of β is
2N−k−1N , but there are only 2N−k−1 vertices of each color.

The monodromy over ∞ is given by

(8) σ∞ = σ1σ0.

Note that it is common to see σ∞ defined as (σ0σ1)
−1. This gives an equiv-

alent description of the faces, as in [15]. The element σ∞ is the product of
2N−k−2N disjoint 2-cycles, with each transposition consisting of two of the
edges of the same color that make up a 2-colored face. Note that these two
edges uniquely determine the face. To see how σ∞ describes the monodromy,
we consider a loop γ that travels clockwise around ∞ ∈ P1(C), relative to
the orientation of P1(C) with base point lying on the edge Σ0. By construc-
tion, the lift of γ with initial point lying on the edge of color Ci has terminal
point lying on the edge of color Ci that makes up the other edge in the
Ci/Ci+1 2-colored face. This is exactly the data encoded in σ∞.

We could also view σ∞ as listing the two edges that are incoming to the
two white vertices that make up the face (or the two edges that are outgoing
from the two black vertices in the face). Here, incoming and outgoing refer
to movement along a lift of γ in the clockwise direction relative to the
orientation thatX inerhits from β : X → P1(C). We have chosen “clockwise”
here so that the notion of “incoming” and “outgoing matches” the rainbow
at the white vertices. If we instead chose “counter-clockwise”, we would just
need to exchange “outgoing” and “incoming”. This is a result of choosing
counter-clockwise as the orientation of the rainbow at the white vertices.

The fact that σ∞ is a product of disjoint 2-cycles corresponds to X(N,k)

having order 2 ramification over ∞, which can again be seen directly by
noting that there are precisely 2N−k−2N faces.

While σ∞ completely determines the 2-cells of the Belyi pair, it is not
always as convenient since the four edges making up each face cannot be
determined at a glance. It is therefore sometimes convenient to look at the
element π∞ that consists of 2N−k−2N disjoint 4-cycles, each cycle listing the
edges that make up each face as we move around the face clockwise relative
to the orientation. We obtain σ∞ from π∞ by dropping the edges incoming
at the black vertices.
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Proposition 1. For N≥2, the genus of X∈X(N,k) is g=1+2N−k−3(N−4).
Furthermore, for 1 ≤ N ≤ 3 there are no doubly even codes and any X ∈
X(N,0) has genus 0.

Proof. According to [15, Prop 4.10], we have that

2− 2g = (#{cycles of σ0}+#{cycles of σ1})
−#{cycles of σ∞}.

Since there are 2N−k−1 cycles in σ0 and σ1, and since there are 2N−k−2N
cycles in σ∞, we conclude that

2− 2g = 2N−k − 2N−k−2N.

Note that this is just the Euler characteristic coming from the cellular
decomposition of X as a dessin. Solving for g yields the formula.

The maximum weight of an element of FN
2 is N . Therefore, for N ≤ 3

the weight of a codeword cannot be divisible by 4, so there can be no doubly
even codes. For N = 2, 3, the formula for the genus with k = 0 shows the
genus is 0. For N = 1, the associated surface is the Belyi base, whose genus
is 0. �

Since all the information about X ∈ X(N,k) is encoded in its monodromy
representation, we will generally use the monodromy representation to de-
scribe the Belyi pair (X, β).

3.2. Covering space theory for Adinkras

Consider the Belyi pair (BN , β̃), defined in [22], given by CP1 with a single
white vertex at 0, a single black vertex at ∞, and N edges joining the two
points given by lines with argument equal to 2πj

N for j = 1, . . . , N . The Belyi
map for BN is given by2

β̃(x) =
xN

xN + 1
.

Note that (BN , β̃) is indeed a Belyi pair: β̃ is a degree N covering that
has order N ramification over 0 and 1 (at 0 and∞ in BN ), and is unramified

2There is a typo in [22] that incorrectly states β̃ =
(

x
x−1

)n

. This error is carried

through to the computation of β̃−1.
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everywhere else. In this section, we will first show that all of the Belyi pairs
(X, β) for X ∈ X(N,k) factor through BN . After establishing this fact, we will
show if X ∈ X(N,0) corresponds to the hypercube Adinkra A and X ′ ∈ X(N,k)

corresponds to the Adinkra obtained by quotienting A by a doubly even code
Ck, then the map X → BN factors through X ′ → BN .

In order to proceed, we will need to describe the monodromy elements σ0
and σ1 more explicitly. We now fix a doubly even code Ck ⊆ CN , where CN

is the maximal even code inside FN
2 , and consider the associated Adinkra A

with rainbow (1, 2, . . . , N); let (X, β) be the Belyi pair associated to A. As
described above, everything is determined once we fix a labeling of the edges.
The white vertices of AA are the elements of the orbit space C/Ck, while the
black vertices are the elements of D/Ck, where D is the set of odd elements
in FN

2 . Each edge of color i is incident to a unique white vertex c; let us
call this edge ic. Let I = {ic | i = 1, . . . , N, c ∈ C/Ck}. We will describe the
monodromies as elements of SI . Since the rainbow is given by (1, 2, . . . , N),
the way we have labeled the edges in this case makes writing down σ0 quite
simple. We see at once that

σ
(c)
0 = (1c, . . . , Nc),

and therefore

σ0 =
∏

c∈C/Ck
(1c, . . . , Nc).

We need to do a little more work to describe σ1. The edge of color i
incident to a black vertex indexed by d ∈ D/Ck is incident to the white vertex
d+ ei ∈ C/Ck, where ei is the i-th standard basis vector of FN

2 . Note that
throughout we are working with equivalence classes of elements in FN

2 /Ck.
It follows that

σ
(d)
1 = (Nd+eN , . . . , 1d+e1),

and therefore

σ1 =
∏

d∈D/Ck
(Nd+eN , . . . , 1d+e1).

Before computing the product, let us introduce some notation. For each
i = 1, . . . , N − 1, let ci be the element of C that is zero everywhere except
for the i-th and (i+ 1)-th positions. Note that {ci} is a generating set for C.
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Let

cN =

N−1∑
i=1

ci.

The element cN has zero entries everywhere except for the first entry and
last entry.

We can compute σ∞ = σ1σ0 explicitly from the above description. If we
start with an edge ic, then σ0 takes ic to (i+ 1)c with the convention that
we compute i+ 1 modulo N using {1, . . . , N} as a set of representatives.
Applying σ1, we obtain the element ic+ci ;thus, σ1σ0 takes ic to ic+ci . There-
fore, if we let Hi be a set of orbit representatives for the action of 〈ci〉 on
C/Ck, we can write

σ∞ =

N∏
i=1

∏
c∈Hi

(ic, ic+ci).

Choosing a different set of orbit representative amounts to possibly changing
the order of the two elements in each transposition, which does not change
the group element. Therefore, it does not matter how we choose such a set
of representatives. The white vertex c+ ci is obtained from c by traveling
along the edge of color i and then the edge of color i+ 1, so that we could
have predicted how σ∞ would look from our earlier description. Using this
labeling, we remark that

π∞ =

N∏
i=1

∏
c∈Hi

(ic, (i+ 1)c, ic+ci , (i+ 1)c+ci).

Theorem 1. The Belyi pair (X, β) with rainbow (1, 2, . . . , N) factors through
the Belyi pair (BN , β̃) with rainbow (1, 2, . . . , N) with the edge of color j
being given by ray having argument 2πj/N .

Proof. Jones proved the result in [22] for the Riemann surface associated
to the N -cube Adinkra, and we will now extend this result the Riemann
surfaces in X(N,k) for any k. First, we will recall the proof given in [22]
for the N -cube. Let AN denote the N -cube Adinkra and let XN denote
the associated Riemann surface. The Belyi pair for (XN , β) factors through
(BN , β̃) because the automorphism group of the N -cube contains a normal
subgroup isomorphic to the direct sum of 2N−1 copies of Z/2Z generated
by half-turns of faces. Note that the generating set equates the two white
vertices that make up a face with each other, as well as equating the two
black vertices that are incident to the face with each other.
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In the language of [6], the quotient fXN
: XN → BN is the quotient of the

cube by the maximal even subcode CN ⊆ FN
2 . The quotient of AN by C is

clearly the embedded graph of BN ; let us call it ΣN . All of the white vertices
are in CN , while all of the black vertices lie outside of CN . Following [6],
we equate edges of the same color incident to equivalent points. Therefore
all of the edges of a given color are equated, so that fXN

(AN ) = ΣN . Note
that the generators of CN connect the two white vertices incident to the
2-colored faces, so the generators of CN are equivalent to the generators of
the subgroup Aut(AN ).

The desired factorization follows from the compatibility of the mon-
odromy actions. Therefore, we have a commutative diagram

π1(C− {0, 1})× β−1(e) ��

id×fXN

��

β−1(e)

fXN

��
π1(C− {0, 1})× β̃−1(e) �� β̃−1(e)

where e denotes the single edge in the Belyi base and the horizontal arrows
are given by the monodromy actions.

The monodromy of β̃ is given by σ̃0 = (1, 2, . . . , N) and σ̃1 = (N, . . . , 1),
where we label the edge of color i by i. If we start with an edge ic on the
top-left and follow the diagram clockwise, we reach the edge

fXN
(σ0(ic)) = fXN

((i+ 1)c) = i+ 1

by the construction of fXN
. On the other hand, following the diagram

counter-clockwise produces the edge

σ̃0(fXN
(ic)) = σ̃0(i) = i+ 1.

A similar argument applies to σ1, showing that the monodromies are
indeed compatible. It now follows from covering space theory that β = β̃ ◦
fXN

, see [23] for example.
Let us now consider the general case of X ∈ X(N,k) for a doubly even

code Ck and let A denote the Adinkra out of which X is constructed. Since
Ck ⊆ CN , the quotient of A by CN is well-defined and we have

A/CN
∼= AN/CN .

This induces a well-defined map fX : X → BN . The map fX sends all
the white vertices to 0, sends all the black vertices to ∞, and identifies all
edges of a given color i with the edge of color i in ΣN .



Geometrization of supersymmetry algebras, I 1061

We can argue exactly as we did earlier to show that the monodromy
actions are compatible. The factorization of β follows. �

It would be nice to explicitly see the action of fX on the faces of X. The
monodromy σ∞ is what describes this action. However, under the projec-
tion induced by fX , all of the disjoint 2-cycles in σ∞ are sent to the identity
element since all edges of the same color are identified via fX . Despite the
appearance of losing information about the faces, this is actually an impor-
tant observation. We remarked earlier that β has order N ramification over
0 and 1 and order 2 ramification over ∞, while β̃ has order N ramification
over 0 and 1 and is unramified elsewhere. That β̃ is unramified over ∞ is
seen from the fact that σ∞ projects trivially. Furthermore, we see that all of
the ramification of X over the Belyi basis is split, so that all of the order N
ramification (over 0 and 1) occurs in β̃ : BN → CP1 and all of the order 2
ramification occurs in the map fX : X → BN at the centers of the 2-colored
faces.

The data of the faces of BN is better represented by a certain element
π̃∞ that lists the edges of the faces going clockwise. For BN with rainbow
(1, 2, . . . , N), we can label the edges with the numbers 1 through N in the
obvious manner. Then

π̃∞ =

N∏
i=1

(i, i+ 1).

All of the faces of BN are 2-gons, and the transpositions in π̃∞ simply
list the edges that make up each bi-gon. Recall from the paragraph before
Proposition 1 that the element π∞ ∈ SI describe the faces of X, and that
each 4-cycle in π∞ lists the edges of the faces as we move around clockwise.
The map fX identifies edges of the same color in π∞. Therefore, forgetting
about the last two entries and applying the natural map SI → SN induced
by ic �→ i, we obtain π̃∞ from π∞. Therefore, we can view the action of fX on
the faces in two parts. First, each 2-colored 4-gon in X is mapped to a face
with two sides by identifying the points opposite to each other (accounting
for the order 2 ramification); then all of the 2-gons with the same 2-color
boundary are identified.

Note that from this point of view, we see that the information of the
rainbow is completely contained in BN . The rainbow is what determines
which 2-colored loops of A are filled in to create X, but the faces can be
viewed as the pre-images of the faces of BN . Fixing the rainbow for BN fixes
which 2-colored 2-gons of ΣN are filled in, and this determines which faces
in A are filled in. Lastly, BN is the first possible place the rainbow can be
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seen, since it is where the edge in the Belyi base first splits into N colored
edges.

If we consider the Riemann surfaces XN and X ∈ X(N,k) with rainbow
(1, 2, . . . , N), we have shown the existence of maps fXN

: XN → BN and
fX : X → BN that fit into the following commutative diagram:

XN

βXN

��

fXN

��

X
fX

��
βX

��

BN

β̃
��

CP1

We will now show that the map fXN
: XN → BN factors through fX .

In order to accomplish this, we will argue similarly as was done for the
factorization through BN . We will work with the monodromy groups of these
Riemann surfaces over BN and show that they are compatible. In order to
do this, we will first need to describe the monodromy groups of each of the
maps fX . Note that since the maps fX are unramified over the vertices,
we can describe the monodromies as permutations of the white vertices; we
could not define the monodromies of the Belyi map in terms of the vertices
because the Belyi map was ramified there.

Theorem 2. The monodromy group of (X, fX) is described by the elements

ρi =
∏
c∈Hi

(c, c+ ci)

of SC/Ck , 1 ≤ i ≤ N , where Hi is a set of orbit representatives for the action
of 〈ci〉 on C/Ck.

The monodromy group can be generated by N − k − 1 elements.

Proof. The analysis above shows that fX : X → BN is an order 2N−k−1 cov-
ering map with order 2 ramification at the centers of the 2-faces. Note that
the ramification is over the roots of −1 in BN . Therefore, we can describe the
monodromy group of fX by giving the generators that are the monodromies
over the centers of the N faces of BN . Assign the label ifX to the center of
the i/(i+ 1) 2-colored face and consider the loop based at the white vertex
that travels along the edge of color i and returns along the edge of color
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i+ 1. This loop lifts via fX to a path starting at a white vertex c and end-
ing at the white vertex c+ ci. The lift of the loop with starting point c+ ci
returns us to c, whence the result.

If we look only at the monodromy group of f : XN → BN , then we find
that

N∏
i=1

ρi = 1

since c1 + · · ·+ cN = 0. Therefore, the monodromy group for f can be gen-
erated by N − 1 elements. This can also be seen from the fact that the
path obtained by traveling along all of the i/(i+ 1) loops in succession is
null-homotopic in BN punctured at the centers of the N faces.

In the general case, let v1, . . . , vk be generators of Ck. Writing each of
the vi as a linear combination of the elements c1, . . . , cN−1 in C, we obtain
k + 1 relations among the ρi, showing that the monodromy group can be
generated by N − k − 1 elements. �

Theorem 3. The pair (XN , fXN
) factors through (X, fX) for any X ∈

X(N,k).

Proof. Let p : XN → X be the natural projection induced by the map AN →
A = AN/Ck for a doubly even code Ck. We will argue that the monodromy
actions are compatible, from which the desired factorization follows. We need
to show that the following diagram commutes, where w is a white vertex
and B∗N denotes BN with the centers of the faces removed:

π1(B
∗
N )× f−1XN

(w) ��

id×p
��

f−1XN
(w)

p

��
π1(B

∗
N )× f−1X (w) �� f−1X (w)

If we start with a white vertex c and a monodromy generator ρi and
follow the diagram clockwise, we are left with

p(ρi(c)) = p(c+ ci) = [c+ ci]

where [·] is being used to emphasize the fact that the right-hand side is now
an equivalence class in C/Ck. Similarly, if we follow the diagram counter-
clockwise, we are left with

ρi(p(c)) = ρi([c]) = [c] + [ci] = [c+ ci],

where ρi is the i-th monodromy generator for X(N,k). �
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Note that in the above proof we see a new reason we must quotient the
N -cube by a doubly even code to get an Adinkra, instead of an arbitrary
code. The code has to be even to preserve the bipartite structure. However, if
the code is not doubly even, then it is possible that the faces would not map
to faces of the correct form. For example, quotienting by the maximal even
code produces bi-gon faces instead of 4-gon faces. That p maps the faces
in the desired fashion above is seen from the fact that the two elements
appearing in each 2-cycle, c and c+ ci, are distinct as elements of C/Ck. In
summary, evenness ensures the preservation of the bipartite structure, and
the double evenness ensures the proper action on the faces of the induced
Riemann surfaces.

Corollary 1. The Belyi pair (XN , β) factors through the Belyi pair (X,βX)
for X ∈ X(N,k).

We now have the following diagram of morphisms:

XN

p

��
X

fX
��

BN

β̃
��

P1(C)

The significance of Theorem 1 is that it now makes sense to study the
Riemann surfaces in X(N,k) as branched covers of BN rather than covers of
CP1. One reason we would prefer this situation is that there is less ram-
ification to worry about if we are working over BN . In turn, Theorem 3
asserts that the curves X are intermediate covers of XN → BN . Therefore,
the study of the curves lying in X(N,k) is closely related to the study of the
cover XN → BN , with the elements of X(N,k) corresponding to subgroups of
the deck transformation group.

We conclude this section by observing that one can build the monodromy
of βX with the monodromies of fX and the rainbow. Indeed, σ0(X) can be
built from the rainbow alone by indexing the white vertices by elements
c ∈ C/Ck and labeling the edge of color i at that vertex with ic. On the
other hand, σ∞ is completely determined by the ρi(X). Recall that σ∞ is
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the product of the transpositions that list the two edges opposite to each
other in each face in X. The element ρi is the product of the transpositions
that list the two white vertices that are opposite each other in each face.
Therefore, if we simply associate to each 2-cycle in ρi the two edges of the
same color incident to the two white vertices, we recover σ∞. That is, if we
make the association

ρi =
∏
c∈Hi

(c, c+ ci) �→
∏
c∈Ci

(ic, ic+ci),

then taking the product over all the ρi will gives us σ∞. This determines σ1.

3.3. Invariance under R-symmetry

In this section we will show that Adinkras related by the permutation sub-
group of R-symmetry give rise to equivalent Belyi curves. As discussed in
Section 2, the permutation subgroup of the full R-symmetry group O(N)
is the largest subgroup whose action on an Adinkra is well defined. There-
fore, abusing terminology, we will refer to the permutation subgroup as an
R-symmetry. Let us now recall what it means for Belyi curves to be equiv-
alent.

Definition 6. Two Belyi pairs (X1, β1) and (X2, β2) are equivalent if there
is an isomorphism X1 → X2 that commutes with the Belyi maps, that is,
they are equivalent as branched covers.

Branched covers are equivalent when their monodromy groups are con-
jugate; see for example [15]. We will use this fact to show that the Riemann
surfaces obtained from R-symmetric Adinkras are equivalent.

In Section 3.2 we described the monodromy generators as elements of SI ,
where I = {ic | i = 1, . . . , N, c ∈ C/Ck}. This was particularly useful because
the focus was on quotients and which vertices (expressed as elements of FN

2 )
were identified. For many computational applications it necessary to view
the monodromy generators as elements of S2N−k−1N . The Belyi map has
degree 2N−k−1N . It is unramified on the edges of the Adinkra. Further-
more, R-symmetry affects the edges of an Adinkra while leaving the vertices
unchanged, making it useful to describe the monodromy generators as per-
mutations of the 2N−k−1N edges. To that end, we will first describe an
isomorphism from SI to S2N−k−1N .
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Let us start with the N -cube. Consider the map γ : FN
2 → N defined by

(9) (a1, . . . , aN ) �→ 1 + a22
0 + a32

1 + · · ·+ aN2N−2.

If we view the elements of FN
2 as binary numbers, the map γ is almost

exactly the standard map of the binary numbers into the natural numbers.
The differences are the removal of the dependence on a1 and the translation
by 1. We have chosen to remove the dependence on a1 so that we can number
the white vertices (even elements of FN

2 ) and black vertices (odd elements
of FN

2 ) such that two vertices have the same label if they are connected by
an edge of color 1. We have shifted by 1, so no vertex is labeled 0. Following
the above discussion, it is easy to see that the restriction of γ to either the
odd or the even elements of FN

2 is a bijection onto the set {1, . . . , 2N−1}.

Proposition 2. Suppose we give every white vertex c ∈ C the label γ(c)w
and every black vertex d ∈ D the label γ(d)b. Then iw is joined to ib by color
1, and it is joined to (i+ 2k−2)b by color k if 1 ≤ i (mod 2k−1) ≤ 2k−2 and
to (i− 2k−2)b otherwise.

Proof. It is easy to see that if c and d differ by e1, that is, if c is joined to d
by color 1, then γ(c) = γ(d). Further, for k ≥ 2 we find that

|γ(c)− γ(d)| = 2k−2

if c and d differ by ek. Lastly, after a quick check we find that γ(d) > γ(c)
precisely when

1 ≤ γ(c) (mod 2k−1) ≤ 2k−2.
�

Suppose that we have labeled the vertices of AN as above. We can then
label the edge of color k incident to iw with the number (i− 1)N + k. Such
a labeling gives rise to the following monodromies.

Corollary 2. The edges of the N -cube AN can be labeled so that the mon-
odromy group corresponding to the Belyi map is generated by

σ0 = (1 2 · · ·N)(N + 1 N + 2 · · · 2N)

· · · ((m− 1)N + 1 (m− 1)N + 2 · · ·mN)

and

σ1 =
(
a
(1)
N a

(1)
N−1 · · · a(1)1

)
· · ·

(
a
(m)
N a

(m)
N−1 · · · a(m)

1

)
,
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where m = 2k−1, a(i)1 = (i− 1)N + 1, and for k �= 1

(10) a
(i)
k =

{
(2k−2 + i− 1)N + k if 1 ≤ i (mod 2k−1) ≤ 2k−2,
(i− 1− 2k−2)N + k otherwise

Proof. The formula for σ0 is immediately clear from the labeling: if we choose
a white vertex γ(c)w, c ∈ C, and list the edges incident to it in the order
of the rainbow ,we get ((γ(c)− 1)N + 1, (γ(c)− 1)N + 2, . . . , γ(c)N). The
result for σ1 follows immediately from the previous formula for σ1 as an
element of SI by noting ic �→ (γ(c)− 1)N + i in the new labeling. �

For the sake of completeness, we also note the monodromy generators for
the map f : XN → BN .

Corollary 3. The monodromy group of (XN , fXN
) is generated by ρi ∈

S2N−1, 1 ≤ i ≤ N − 1, where

ρ1 = (1, 2)(3, 4) · · · (2N−1 − 1, 2N−1),(11)

ρi =

2N−1∏
j=1

1≤j mod 2i−1≤2i−2

(j, j + 2i−2 + 2i−1) for i �= 1.(12)

Proof. This follows immediately from the formula for ρi in terms of elements
of C by applying the map γ. �

The monodromy generators for a general Adinkra (quotient of the N -
cube) follow immediately from the above formulae, if we use the smallest
representatives for the equivalence classes in the quotienting procedure. In
this procedure, the formulae for σi will be the same as for the cube but with
m = 2N−k−1 instead of 2N−1. An example will help illustrate this.

Example 1 (N = 4). Consider A4 with rainbow (1, 2, 3, 4) and correspond-
ing Belyi pair (X4, β). By Propostion 1, X4 has genus 1 and is therefore an
elliptic curve (its complex structure is pulled back from P1(C) by β); see
Figure 2. The monodromy group of β is generated by
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Figure 2: The (4, 0) Adinkra with rainbow (green,blue,orange,purple)
embedded in a torus. The top row is identified with the bottom row and the
right column is identified with the left column. The (4, 1) Adinkra embed-
ding is obtained by taking only the left half of the (4, 0) embedding.

σ0 = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)(13)

· (17, 18, 19, 20)(21, 22, 23, 24)(25, 26, 27, 28)(29, 30, 31, 32)

and

σ1 = (20, 11, 6, 1)(24, 15, 2, 5)(28, 3, 14, 9)(32, 7, 10, 13)(14)

· (4, 27, 22, 17)(8, 31, 18, 21)(12, 19, 30, 25)(16, 23, 26, 29).

The faces are described by

π∞ = (1, 2, 5, 6)(2, 3, 14, 15)(3, 4, 27, 28)(4, 1, 20, 17)(15)

· (6, 7, 10, 11)(7, 8, 31, 32)(8, 5, 24, 21)(9, 10, 13, 14)
· (11, 12, 19, 20)(12, 9, 28, 25)(15, 16, 23, 24)(16, 13, 32, 29)
· (17, 18, 21, 22)(18, 19, 30, 31)(22, 23, 26, 27)(25, 26, 29, 30).

Now, assign the label i to the edge of color i incident to the white vertex
in B4. For β̃ : B4 → P1(C),

π̃∞ = (1, 2)(2, 3)(3, 4)(4, 1).

The map fX4
: X4 → B4 projects σ0 onto (1, 2, 3, 4) and σ1 onto (4, 3, 2, 1).

More interesting is how we can see the action on the faces by looking at
the action of f on π∞. All of the 1/2-colored faces, (1, 2, 5, 6), (9, 10, 13, 14),
(25, 26, 29, 30), and (17, 18, 21, 22) in X4 are projected onto the 1/2 colored
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face (1, 2) in B4 via fX4
. Similarly the four i/(i+ 1) faces in X4 map onto

the single i/(i+ 1) face in BN , what can be realized as the map that sends
each number j appearing in each 4-cycle to j (mod 4). Here we represent 0
(mod 4) by 4.

Finally, we consider the generators of the monodromy of f :

ρ1 = (1, 2)(3, 4)(5, 6)(7, 8),(16)

ρ2 = (1, 4)(2, 3)(5, 8)(6, 7),(17)

ρ3 = (1, 7)(2, 8)(3, 5)(4, 6),(18)

ρ4 = (1, 5)(2, 6)(3, 7)(4, 8).(19)

The numbers appearing in the ρi represent the eight white vertices in X4.
Each 2-cycle represents a single face that the two vertices listed are incident
to. The element ρi represents the four i/(i+ 1) faces that are equated by f .
Note that ρ4, which represents the 4/1 faces, is given by ρ1ρ2ρ3.

Now let us consider the Belyi curve X obtained by quotienting A4 by
the unique doubly even code generated by (1, 1, 1, 1). We denote this pro-
jection by pA : A4 → A = A4/〈(1, 1, 1, 1)〉. The code generated by (1, 1, 1, 1)
has two elements, so it divides the white vertices of A4 into four cosets, each
containing the two elements γ(c) and γ(c+ (1, 1, 1, 1)). Explicitly, the cosets
in A(4,1) are

(20) {1, 8}, {2, 7}, {3, 6}, {4, 5}.

We see immediately that the quotienting procedure identifies iw with (9−
i)w in A4, and similarly for the black vertices. Each face of X is the image
under pA of two faces in X4. We can see this from the effect of pA on the
monodromy generators over BN that describe the faces.

We obtain ρi(X) from ρi(X4) by identifying the 2-cycles according to
the action of pA. For example, consider ρ1(X4) = (1, 2)(3, 4)(5, 6)(7, 8), as in
Equation (16). From this we see that (1, 2) and (7, 8) should be equated and
that (3, 4) and (5, 6) should be equated. If we choose the smaller number in
each coset as the representative, we find

(21) ρ1(X) = (1, 2)(3, 4).

Now consider Equation (17), ρ2(X4) = (1, 4)(2, 3)(5, 8)(6, 7). From Equa-
tion (20) we see that (1, 4) and (5, 8) should be equated and that (2, 3) and
(6, 7) should be equated. Furthermore, since we have already chosen the
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representatives of the cosets we find

(22) ρ2(X) = (1, 4)(2, 3).

Similarly we find

ρ3(X) = (1, 2)(3, 4),(23)

ρ4(X) = (1, 4)(2, 3).(24)

The monodromy group of X(4,1) over BN has only two generators, since
quotienting out by a 1-dimensional code defines a relation between the
generators of the monodromy group for X4. The element ρ1(X(4,1)) inter-
changes white vertices that are connected by (1, 1, 0, 0), while ρ3(X) inter-
changes white vertices connected by (0, 0, 1, 1). Therefore, since (1, 1, 0, 0) +
(0, 0, 1, 1) = (1, 1, 1, 1), the generator of the code, we see that ρ1(X) =
(ρ3(X))−1.

By Proposition 1, X(4,1) has genus 1 and therefore is also a torus. If we
give X4 as depicted in Figure 2 standard (x, y) coordinates, then p : X4 →
X(4,1) is given by p(x, y) = (2x, x+ y). That is, it is the map from the torus
to the torus that wraps around the diagonal twice, as can be seen from the
2-to-1 effect on the faces by pA. The left half of Figure 2 can be taken as a
fundamental domain for X.

The choice of coset representatives for the vertices determines repre-
sentatives for the equivalence classes of the edges and similarly allows us
to obtain σi(X). Each equivalance class of edges contains two elements,
(i− 1) · 4 + j and (8− i) · 4 + j. Following our choice of representatives for
the vertices, we choose the smaller number as the representative. The mon-
odromy representatives for X coming from those for X4 are then as follows:

(25) σ0(X) = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)

and

(26) σ1(X) = (1, 16, 11, 6)(2, 5, 12, 15)(3, 14, 9, 8)(4, 7, 10, 13).

As an example, the 4-cycle (1, 16, 11, 6) appearing in σ1(X) is the chosen
representative of the coset consisting of the two elements (1, 20, 11, 6) and
(29, 16, 23, 26); see Equation (14).

Now let us turn our attention to effect of the R-symmetry group on
the Belyi curves. Recall that R-symmetry permutes the action of the Qi.
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As a concrete example, consider XN with rainbow (1, 2, . . . , N) and the
R-symmetry that interchanges the action of Q1 and Q3. The conditions
Q1φ0 = ψ1 and Q3φ0 = ψ3 is represented in AN ⊆ XN by joining the white
vertex representing φ0 to to the black vertex representing ψ1 by color 1, and
to the black vertex representing ψ3 by color 3. In our labeling scheme, we
can identify φ0 with the vertex 1w and ψi with the vertices ib.

In the normal interpretation of R-symmetry, we would represent the
R-symmetry that interchanges the actions of Q1 and Q3 by swapping the
colors of the edges of colors 1 and 3. This makes sense; indeed, after the R-
symmetry, Q1φ0 = ψ3 and Q3φ0 = ψ1. The Qi remain represented by color
i and therefore 1w should now be connected to 3b by color 1 and to 1b
by color 3. This yields a new chromotopology; call this chromotopology ÃN .
Note that the rainbow is unchanged by R-symmetry. Under the R-symmetry,
we changed only the actions of two of the Qi, not their ordering.

In fact we should really view the rainbow as labeling which Qi each color
represents. Since the rainbow determines which 2-colored loops we attach
2-cells to in order to create X̃N , we are still attaching 2-cells based on the
same adjacent colors. The 2-cells that are attached to loops containing only
colors that are not adjacent to 1 or 3 will remain unchanged. Let us look at
the 1/N 2-colored faces as an example. By construction, the 1/N 2-colored
loops in ÃN are equivalent to 3/N 2-colored loops in AN . Therefore, the
Riemann surface X̃N is isomorphic to the surface obtained from the origi-
nal AN , leaving the chromotopology AN unchanged, but using the rainbow
(3, 2, 1, 4, . . . , N). We interpret this as interchanging which Qi the different
colors represent. We are able to do this because we have the extra informa-
tion of the order of the Qi contained in the rainbow. In this way, we may
choose to view the action of R-symmetry as one that leaves the chromo-
topology invariant, but permutes the rainbow.

To explicitly see that the equivalent descriptions of R-symmetric sur-
faces described above are compatible with the Belyi map, consider ÃN with
the same labeling as AN so that the edges labeled kN + 1 in AN are now
color 3 in ÃN (as opposed to color 1 in AN ) and the edges labeled kN + 3 in
AN are now color 1 in ÃN . Therefore the monodromy at each white vertex
iw in ÃN , which is given by the edges incident to iw in the order of the rain-
bow (1, 2, 3, . . . , N), is ((i− 1)N + 3, (i− 1)N + 2, (i− 1)N + 1, (i− 1)N +
4, . . . , iN). This is the same as the monodromy at each white vertex for AN

with rainbow (3, 2, 1, 4, . . . , N). A similar argument shows that the mon-
odromies at the black vertices coincide, showing that the Belyi pairs are
equivalent. This shows that we can view the action of the permutation
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subgroup of the R-symmetry group on an Adinkra chromotopology with
a rainbow as a permutation of the rainbow.

Let C be the subset of even elements of FN
2 , and consider the subset of

C consisting of elements that have zero as their second component. These
are the white vertices that map to an odd number under γ. Let

Se = {γ(a1, a2, . . . , aN ) ∈ γ(C) | a1 = a2 = 0}

and

So = {γ(a1, a2, . . . , aN ) ∈ γ(C) | a1 = 1, a2 = 0}.

We now prove that R-symmetry leaves the Belyi curves invariant.

Theorem 4. The Belyi pair (XN , β) associated to the N -cube AN is invari-
ant under the action of the permutation subgroup of the R-symmetry group.

Proof. GiveAN the edge labeling from Corollary 2 with rainbow (1, 2, . . . , N).
The Adinkra ÃN has the the same underlying graph; all that is different is
the rainbow, i.e., the cyclic order of the N colors. The difference between AN

and ÃN is encoded in a permutation of the order of the N colors, i.e., an ele-
ment of SN . This means that for any twoN -cubes AN and ÃN with rainbows
r ∈ SN and r̃ ∈ SN respectively, there exists g ∈ SN such that r̃ = grg−1.
Since (1, 2) and (1, 2, . . . , N) generate all of SN it is enough to show that the
Belyi pair for AN with rainbow r = (1, 2, . . . , N) is equivalent to the Belyi
pair for ÃN with rainbow r̃ = grg−1 for just g = (1, 2) and (1, 2, . . . , N).

Let us first consider the case g = (1, 2, . . . , N). Conjugation by this g in
SN leaves the rainbow r invariant, and therefore leaves σ0 and σ1 invariant
as elements of Sd. The Belyi pairs are therefore trivially equivalent.

Now let us consider the case where ÃN is obtained from AN by inter-
changing the order of colors 1 and 2 in the rainbow. Since we have labeled the

edges AN as in Corollary 2, we have σ0 = σ
(1)
0 σ

(2)
0 · · ·σ(2N−1)

0 , where σ
(i)
0 =

((i− 1)N + 1, (i− 1)N + 2i, . . . , iN), and σ1 = σ
(1)
1 σ

(2)
1 · · ·σ(2N−1)

1 , where

σ
(i)
1 = (a

(i)
N a

(i)
N−1 · · · a(i)1 ) with a

(i)
k as in Corollary 2. We can give ÃN the same

labeling as AN since they have the same underlying graphs, but the rainbow
is now r̃ = (2, 1, 3, 4, . . . , N). Therefore the difference between σq and σ̃q will
be in the order of the colors. Changing the rainbow will leave unchanged the

numbers appearing in each disjoint N -cycle σ
(i)
0 = ((i− 1)N + 1, (i− 1)N +

2, . . . , iN), but the order of each one mod N will change from (1, 2, . . . , N −
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1, N) in the same way. Therefore,

(27) σ̃
(i)
0 = ((i− 1)N + 2, (i− 1)N + 1, (i− 1)N + 3, . . . , iN)

and

(28) σ̃
(i)
1 = (a

(i)
N , a

(i)
N−1, . . . , a

(i)
3 , a

(i)
1 , a

(i)
2 ).

Now define

(29) α =

2N−1∏
i=1
odd

(a
(i)
1 , a

(i+1)
2 )(a

(i+1)
1 , a

(i)
2 ),

(30) βo =
∏
i∈So

(a
(i)
1 , a

(i+1)
1 )(a

(i)
2 , a

(i+1)
2 ),

and

(31) βe =
∏
i∈Se

N∏
k=3

(a
(i)
k , a

(i+1)
k ).

Finally, let

(32) δ = αβoβe.

It is immediately clear that

σ̃1 = δ−1σ1δ.

It is a little harder to see this for σ0 since it is not written in terms of thea
(i)
k .

However, using the formula for a
(i)
k we see that

α =

2N−1∏
m=1

((m− 1)N + 1, (m− 1)N + 2),

while

β = βoβe =
∏

m∈So

N∏
k=1

((m− 1)N + k,mN + k).
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It follows that

σ̃0 = δ−1σ0δ,

completing the proof. �

Now let us consider R-symmetry for a general Adinkra3. As noted in
our discussion of R-symmetry for the N -cube, we can view an R-symmetry
as leaving the chromotopology alone and changing the rainbow. There was
nothing specific to the N -cube in that argument, so we see the same is true
for general Adinkras. Recall that from this viewpoint we consider the extra
data of the rainbow as encoding which supersymmetry generator each color
represents rather than considering each supersymmetry generator fixed to
the same color, as is usually the case. Since the rainbow is entirely deter-
mined by BN , we can view the relationship between R-symmetric Adinkras
as the pullback of the relationship between the R-symmetric BN ’s, where
we know allow the possibility of different rainbows for the curve BN .

Proposition 3. If ΣN is related to Σ̃N , by an R-symmetry, then the cor-
responding Belyi pairs (BN , β̃) and (B̃N , β̃) are equivalent.

Proof. We can consider the case where BN has the rainbow (1, 2, . . . , N).
We just need to show that changing the rainbow by (1, 2) and (1, 2, . . . , N)
gives equivalent Belyi curves, since (1, 2) and (1, 2, . . . , N) generate all of
SN . As with the case of the N -cube, changing the rainbow by (1, 2, . . . , N)
is trivial since the rainbow is invariant under conjugation by (1, 2, . . . , N).
The monodromy of (BN , β̃) is

σ0 =(1, 2, . . . , N)

and

σ1 =(N,N − 1, . . . , 1).

The Riemann surface B̃N has rainbow (1, 2)(1, 2, . . . , N)(1, 2) = (2, 1, 3,
. . . , N). Therefore the monodromy of (B̃N , β̃) is generated by

σ̃0 =(2, 1, 3, . . . , N)

3Again, when we refer to an R-symmetry we really mean the permutation sub-
group of the full R-symmetry group O(N).
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and

σ̃1 =(N,N − 1, . . . , 3, 1, 2).

We see that σ̃q = (1, 2)σq(1, 2) for q = 0, 1. Therefore by the Grothendieck
correspondence, (BN , β̃) and (B̃N , β̃) are equivalent Belyi pairs. �

Let us now suppose that X ∈ X(N,k), corresponding to an Adinkra with

rainbow (1, 2, . . . , N), and let X̃ be the Riemann surface associated to an
R-symmetric Adinkra Ã. By Theorems 3 and 4 and Proposition 3, we have
a commutative diagram

(33) XN

p

��

∼= �� X̃N

p̃
��

X

g

��

X̃

g̃
��

BN
∼= �� B̃N

Proposition 4. If A ∈ A(N,k) is an Adinkra and Ã is related to A by an

R-symmetry, then the corresponding Belyi pairs (X, βX) and (X̃, βX̃) are
equivalent.

Proof. As usual it is enough to consider the R-symmetry that interchanges
the actions of Q1 and Q2. By assumption, X and X̃ have the same chro-
motopology; they differ only in their rainbows. Therefore we can label their
vertices so that ρi = ρ̃i. For example, if the white vertex i is connected to
vertex j by an edge of color 2 followed by an edge of color 3 and is connected
to vertex l by an edge of color 1 followed by an edge of color 3, then the
labels of j and l should be interchanged in X̃. Since the monodromies of
g and g̃ are the same and (BN , β̃) and (B̃N , β̃) are equivalent, the result
follows.

In particular, there exists a pullback g of (1, 2), such that σ̃q = g−1σqg.
As an example, note that γ in the proof of Theorem 4 is a pullback of (1, 2).
We can see this by observing that (1, 2) = (1, 2)(3) · · · (N). For example, (3)
can lift to (mN + 3, (m+ 1)N + 3), as is the case here. �
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3.4. The exterior tensor product

Now that we have shown R-symmetric Adinkra chromotoplogies give equiv-
alent Belyi pairs, we can extende the exterior tensor product on Adinkras
to an operation on the corresponding Riemann surfaces.

The tensor product of two Adinkras is defined in [20]. If Ai ∈ A(Ni,ki)

is an Adinkra chromotopology obtained by quotienting an Ni-cube by a
ki-dimensional doubly even code, then

A1 ⊗A2

is the Adinkra chromotopology obtained by quotienting an (N1 +N2)-cube
by a (k1 + k2)-dimensional code. More precisely, we consider the direct sum
FN1

2 ⊕ FN2

2 , which is canonically isomorphic as a group to FN1+N2

2 . Under
this isomorphism, the image of the (k1 + k2)-dimensional code Ck1

⊕ Ck2
⊆

FN1

2 ⊕ FN2

2 is a doubly even code, and we define the tensor product Adinkra
to be the quotient of FN1+N2

2 by this code. Although it may seem more
appropriate to refer to this construction as a direct sum, the accepted term
is tensor product, which stems from the graph-theoretic roots of the con-
struction.

For convenience, let N = N1 +N2 and k = k1 + k2. The white vertices
of A1 ⊗A2 correspond to the orbits of the even elements of FN

2 under the
action of Ck, and the black vertices correspond to the orbits of the odd
elements. Therefore, there are two types of white vertex in A1 ⊗A2: we can
have a white vertex of the form w1 ⊕ w2 where wi ∈ Ai are white vertices,
or we can have a white vertex of the form b1 ⊕ b2 where bi ∈ Ai are black
vertices. The black vertices of A1 ⊗A2 arise as the sum of two vertices of
different colors in the original Adinkras.

Now let us describe the rainbow and edges of A1 ⊗A2. Suppose that Ai

has rainbow (1, 2, . . . , Ni). We can give A1 ⊗A2 the rainbow (1, 2, . . . , N1,
N1 + 1, . . . , N1 +N2). The edges are described as follows. Let v ⊕ w be a
vertex; the edge of color i incident to this vertex for 1 ≤ i ≤ N1 is the edge
that connects v ⊕ w to v′ ⊕ w, where v′ is the vertex in A1 that is joined to
v by color i. Similarly, if N1 + 1 ≤ i ≤ N1 +N2, the edge of color i is the
edge that joins v ⊕ w to v ⊕ w′, where w′ is the vertex in A2 that is joined
to w by color i−N1. Observe that if we delete all of the edges of A1 ⊗A2

of colors N1 + 1 ≤ i ≤ N1 +N2, we are left with 2N2−k2 disjoint copies of
A1, one copy for each vertex of A2. Similarly, if we delete all of the edges of
colors 1 ≤ i ≤ N1, then we obtain 2N1−k1 disjoint copies of A2.
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Lastly, we remark that the dashing of the Adinkra A1 ⊗A2 is obtained
from the dashings of the two Adinkras as follows: the dashing at a vertex
corresponding to two vertices of the same color is left alone, while the dashing
at a vertex corresponding to two vertices of different colors is reversed.

Proposition 5. The exterior tensor product on Adinkras extends to a well-
defined operation on the associated Belyi curves.

Proof. Since a Belyi curve is equivalent to a ribbon graph, it suffices to show
that the tensor product extends to a well-defined operation on the ribbon
structure, or rainbow, of the Adinkra chromotopology. The chromotopology
of A1 ⊗A2 is defined by the tensor product. The rainbow is a cyclic ordering
of the N = N1 +N2 colors, that ordering being determined by the rainbows
of the Ai. If r1 and r2 are two rainbows obtained by combining the rainbows
for the Ai in two different ways, then they are related by an R-symmetry.
Therefore, they are equivalent Belyi curves by Proposition 4.

It follows that the tensor product on Adinkras extends to the associated
Belyi pairs by assigning any cyclic ordering of the N colors to the product
as a rainbow. We will denote by X1 ⊗X2 the Riemann surface constructed
out of the Adinkra A1 ⊗A2. �

For concreteness, we will use the choice of rainbow for A1 ⊗A2 that was
given in the above discussion, namely (1, 2, . . . , N1 +N2).

Let us now examine what this operation looks like on the corresponding
Riemann surfaces X1 and X2. It is useful to first look at the operation
on the monodromies of Xi over BNi

. Before stating our theorem, we fix
some notation. Let Ci, Di ⊆ FNi

2 denote the set of even and odd elements
respectively, and let Xi be the surface obtained by quotienting the Ni-cube
by a ki-dimensional doubly even code Ci, so that the elements of Ci/Cki

correspond to the white vertices of Ai and the elements of Di/Cki
correspond

to the black vertices. As usual, let cj be the element that has zero in every
position except for the j and j + 1 positions. Then the monodromies of
X(Ni,ki) are given by

ρj,i =
∏
c∈Hj

(c, c+ cj),

where Hj is a set of orbit representatives for the action of 〈cj〉 on Ci/Cki
.

Note that we could have defined these monodromies in terms of the black
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vertices, in which case they would take the form

ρ′j,i =
∏
d∈Kj

(d, d+ cj),

where Kj is a set of orbit representatives for the action of 〈cj〉 on Di/Cki
.

We will use ρj,i to denote the j-th monodromy generator for Xi written in
terms of white vertices, and we will use ρ′j,i to denote the j-th monodromy
generator for Xi written in terms of black vertices.

Finally, it will be convenient for us to adopt the following notational
convention. If v is a vertex of A2 and τ is a permutation of the vertices of
A1 written as a cycle, then we define τ ⊕ v to be the cycle with each entry
equal to the corresponding entry of τ tensored by v on the right; we define
v ⊕ τ similarly. For example, if (c, d) is a 2-cycle with c, d being white vertices
in X1, and w is a white vertex in X2, then (c, d)⊕ w = (c⊕ w, d⊕ w), the
right-hand side now being a permutation of the white vertices of X1 ⊗X2.

Theorem 5. The monodromy group of X1 ⊗X2 over BN is generated by
elements ρj, 1 ≤ j ≤ N1 +N2, given as follows.

If 1 ≤ j ≤ N1 − 1, then

ρj =
∏
v∈V2

ρ
(v)
j

where V2 is the set of all vertices in A2 and

ρ
(v)
j =

{
ρj,1 ⊕ v if v is a white vertex

ρ′j,1 ⊕ v if v is a black vertex.

If j = N1, then

ρN1
=

∏
w1∈W1,w2∈W2

(w1 ⊕ w2, (w1 + eN1
)⊕ (w2 + e1))

where Wi is the set of white vertices in Ai.
If N1 + 1 ≤ j ≤ N1 +N2 − 1, then

ρj =
∏
v∈V1

ρ
(v)
j
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where V1 is the set of all vertices in A1 and

ρ
(v)
j =

{
v ⊕ ρj,2 if v is a white vertex

v ⊕ ρ′j,2 if v is a black vertex.

Finally,

ρN =
∏

w1∈W1

w2∈W2

(w1 ⊕ w2, (w1 + e1)⊕ (w2 + eN2
)).

Proof. As remarked earlier, if we delete the edges of color j ≥ N1 + 1, we
are left with 2N2−k2 disjoint copies of A1, one for each vertex v of A2. Let V2

denote the set of all vertices in A2. It follows that if 1 ≤ j ≤ N1 − 1, each
j/(j + 1) colored face is contained in a copy of A1 at a vertex v ∈ V2 and,
conversely, each j/(j + 1) colored face in such a copy will be a j/(j + 1)
colored face in X1 ⊗X2. Let us fix a vertex v ∈ V2 and assume it is white
for the time being. The transposition that switches the two adjacent white
vertices of a j/(j + 1) colored face is given by

(c⊕ v, (c+ cj)⊕ v) = (c, c+ cj)⊕ v,

where c ∈ C1/Ck1
. The product of all such transpositions over a set of orbit

representatives for the action of cj on C1/Ck1
is simply

ρj,1 ⊕ v.

This element is the product of all transpositions swapping each white vertex
with its opposite in any j/(j + 1) colored face, all this taking place in the
copy of A1 associated to the white vertex v.

If v is a black vertex, then the white vertices of the j/(j + 1) colored faces
are tensor products of the black vertices in the j/(j + 1) colored faces of A1

with v. The element ρ′j,1 ⊕ v is the product of all transpositions swapping
each black vertex with its opposite in any j/(j + 1) colored face, all this
taking place in the copy of A1 associated to the black vertex v. It follows

that each ρj is the product of the ρ
(v)
j as given in the theorem statement.

The monodromy generator ρN1
is the product of the transpositions that

swap the white vertices of the N1/(N1 + 1) colored faces. Each such face has
a unique vertex of the form w1 ⊕ w2, where the wi are white vertices of Ai.
The adjacent white vertex is given by (w1 + eN1

)⊕ (w2 + e1).
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It follows that

ρN1
=

∏
w1∈W1

w2∈W2

(w1 ⊕ w2, (w1 + eN1
)⊕ (w2 ⊕ e1)).

That ρj can be described as claimed for N1 + 1 ≤ j ≤ N1 +N2 − 1 is
demonstrated by complete analogy with the argument at the beginning of
the proof.

The N -th generator ρN can be described as∏
w1∈W1

w2∈W2

(w1 ⊕ w2, (w1 + e1)⊕ (w2 + eN2
)).

We arrive at this description in the same way we found ρN1
. �

Remark 1. We could also describe this result in the labeling defined by
the map γ in Proposition 2. While we defined this labeling via a map from
the labeling used in Theorem 2, we could have defined the new labeling
first. The proof that such a labeling exists without relying on our original
description in terms of elements of FN

2 uses induction on the dimension of
the cube. This approach makes it clear that a given N -cube can be obtained
by taking tensor products of lower dimensional cubes. This is one of the
most useful aspects of such a labeling and helps our understanding of the
geometric meaning of the tensor product of Adinkras.

Remark 2. If N2 = 1 then there is no j such that N1 + 1 ≤ j ≤ N − 1 =
N1. Therefore, the generators of the monodromy group for the tensor prod-
uct are completely determined by ρj,1 for 1 ≤ j ≤ N1. Similarly, if N1 = 1
then there is no j such that 1 ≤ j ≤ N1 − 1 = 0. We can choose ρ2, . . . , ρN2+1

as generators of the monodromy group of the tensor product, and these ele-
ments depend only on ρj,2. Note that if N1 = 1, then ρN contains the infor-
mation specifying which copy of A1 is connected to which by the new color.
If N2 = 1, then the same statement holds with ρN1

and A2 in place of ρN
and A1.

The case of N1 = N2 = 1 is unique in that, for both X1 and the tensor
product X1 ⊗X1, ρj is the identity for all j. We can see this immediately
for X1 since it is the Belyi base P1(C) with embedded graph Σ0 = A1. We
have X1 ⊗X1 = P1(C) with embedded graph A1 ⊗A1. Therefore the tensor
product has 2 faces, both with boundary A1 ⊗A1. For ρj to be non-trivial,
one would need to differentiate between the 1/2 and 2/1 faces.
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We can now look at the action of the tensor product on the Riemann
surfaces themselves. Let us first consider the case in which N1 = N2 = 1. We
can interpret the tensor product A1 ⊗A1 = A2 of Adinkras as an operation

on Riemann surfaces: X
(a)
1 ⊗X

(b)
1 = X2. We can view this operation as first

taking two copies of X
(a)
1 and two copies of X

(b)
1 , then removing the 2-face

of each copy of P1(C), and then connecting their 1-skeletons by adding two
2-cells. Each 2-cell is bounded by the four copies of A1, alternating a and b.
They are connected with opposite orientations to create P1(C). The 4 copies
of A1 can together be thought of as the equator. The fact that the 2-cells
are added with opposite orientations can be related to the different copies
of A1 being associated to white and black vertices; we will make this clearer
in the general case.

Next, let us consider the case N1 �= 1, N2 = 1.

Corollary 4. If X ∈ X(N1,k1) and X1 is the unique element of X(1,0), then

the Riemann surface X ⊗X1 can be viewed as a 2N1−k1−2-point connected
sum of X with itself.

Proof. Let A ∈ A(N1,k1) be the Adinkra out of which X is constructed, and
let A1 be the Adinkra associated to X1. There are two copies of A in A⊗A1,
corresponding to w and b, the unique white vertex and black vertex of A1. If
we ignore the edges of color N1 + 1, as well as the faces incident to them in
X ⊗X1, we are left with two copies of X with the N1/1 faces removed. For

1 ≤ j ≤ N1 − 1, we find that ρ
(w)
j = ρj,1 ⊕ w, showing that the subsurface of

X ⊗X1 corresponding to the first copy of A has all of the same j/(j + 1)
faces as X for 1 ≤ j ≤ N1 − 1. Since N1 and 1 are no longer adjacent, there
are no N1/1 colored faces. Therefore, X(w) is given by X with the N1/1
colored faces removed. Similarly, X(b) is a disjoint copy of X with the N1/1
colored faces removed. In summary, we are left with two copies of X, each
with 2N1−k1−2 punctures; the boundary of each puncture is an N1/1 colored
loop.

Consider a fixed puncture in X(w). The two white vertices in X(w) that
bound the puncture are c⊕ w and (c+ cN1

)⊕ w for some c ∈ C1/Ck1
. The

2-cycles in ρN1
corresponding to these two vertices, namely

(c⊕ w, (c+ eN1
)⊕ b) and ((c+ cN1

)⊕ w, (c+ e1)⊕ b) ,

describe the two N1/(N1 + 1) colored faces in X that connect this puncture
to the puncture on X(b) corresponding to c ∈ C1/Ck1

. Similarly, the two 2-
cycles in ρN that correspond to c are the two N/1 colored faces connecting
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the punctures. Therefore, we see that each hole of X(w) is connected to the
corresponding hole of X(b) by a tube made of two N1/N colored faces and
two N/1 colored faces. If we consider a single hole and ignore the others,
we obtain the connected sum of X with itself. Repeating for every puncture
yields a 2N1−k1−2-point connected sum of X with itself. �

Note that for a connected sum of oriented manifolds, the orientation on
the boundary of the holes that are connected is reversed. This is incorporated
by the tensor product structure on the Adinkra. The holes that need to have
their orientations reversed correspond to the black vertices of X1.

If both N1 �= 1 and N2 �= 1, the tensor product ceases to be a connected
sum since there are more than two copies of A1. The N1/(N1 + 1) faces and
N/1 faces connect a puncture to two different copies of A1, that is, the holes
are no longer connected by tubes. In particular, the N1 + 1 edge adjacent to
an N1/(N1 + 1) face bounds a puncture in a copy of A2, and similarly for
the N -colored edge adjacent to an N/1 face. For lack of a better term, we
will refer to this as a multi-point connected sum between A1 and A2. We
coin this terminology by analogy with the previous case, which gave rise to
being a multi-point connected sum of A with itself.

Corollary 5. If X1 ∈ X(N1,k1) and X2 ∈ X(N2,k2), then the Riemann surface

X = X1 ⊗X2 can be viewed as a multi-point connected sum of 2N2−k2 copies
of X1 and 2N1−k1 copies of X2.

Proof. Forgetting the edges of colorsN1 + 1, . . . , N and the 2-cells connected
to them in X1 ⊗X2 leaves 2N2−k2 copies of X1 with the 2N1−k1−2 N1/1

colored faces removed. We let X
(v)
1 denote the copy of X1 attached to the

vertex v ∈ A2, and similarly we let X
(v)
2 denote the copy of X2 attached to

the vertex v ∈ A1. For 1 ≤ j ≤ N1 − 1, ρ
(v)
j describes the j/(j + 1) colored

faces in X
(v)
1 , showing that X

(v)
1 has all of the same j/(j + 1) faces as X1

since ρ
(v)
j can be obtained from ρj,1 as described in Theorem 5 for j ≤ N1 − 1.

This accounts for all of the faces that do not have an edge of color greater

than N1 bounding it, so that X
(v)
1 does not have any N1/1 colored faces.

Similarly, forgetting the edges of colors 1, . . . , N1 and the 2-cells con-
nected to them in X1 ⊗X2 leaves 2

N1−k1 copies of X2 with the N2/1 colored

faces removed. Note that X
(v)
2 and X

(v′)
1 intersect only at vertices (if at all).

We separate them at the vertices so that we can see, in the next step, how
the vertices are forced to be equated.

Fix a puncture inX
(v′)
1 . The two adjacent white vertices in theN1/(N1 +

1) colored loop are given by v ⊕ v′ and (v + cN1
)⊕ v′ for some vertex v of



Geometrization of supersymmetry algebras, I 1083

the same color as v′. For simplicity of exposition, we assume v and v′ are
both white. The two 2-cycles in ρN1

corresponding to these vertices, namely

(v ⊕ v′, (v + eN1
)⊕ (v′ + e1)), ((v + cN1

)⊕ v′, (v + e1)⊕ (v′ + e1)),

describe the two N1/(N1 + 1) colored faces that connect the puncture on

X
(v′)
1 to the corresponding puncture on X

(v′+e1)
1 . The edges of color N1 that

bound these faces correspond to edges in the boundaries of the copies of

X
(v′)
1 that are being connected. The other two edges of these faces have color

N1 − 1 and are in the boundaries of the copies of X
(v)
2 . It follows that the

N1/(N1 + 1) faces of the tensor product connect two copies of X1 along part
of the boundary of corresponding punctures in one direction and connects
two copies of X2 in the other direction. This identifies the vertices along the

punctures of X
(v′)
1 with the vertices along the attached holes of X

(v)
2 .

After the N1/(N1 + 1) colored faces are added, the resulting manifold
still has boundary. We must add the N/1 colored faces along that boundary

according to ρN . Note that the N/1 faces connect holes of X
(v)
1 in one

direction and holes of X
(v′)
2 in the other, but will in general connect different

holes than the N1/(N1 + 1) colored faces. More precisely, we mean that if a

fixed puncture in X
(v)
1 is connected to a hole in X

(v′)
1 , then the N/1 colored

face will, in general, connect the original puncture to a puncture sitting
inside yet another copy of X1. �

Theorem 5 and its corollaries provide a new approach to the question of
whether or an Adinkra is factorizable, i.e., whether it can be written as the
tensor product of two other Adinkras.

4. The Belyi curves viewed algebraically

In this section, we’ll describe the curves lying in X(N,k) algebro-geometrically.
First, we will demonstrate that these curves have Fuchsian uniformizations
and that the uniformizing groups can be determined explicitly. Next, we will
present the curve XN , associated to a hypercube, as a complete intersection
of N − 3 quadrics in PN−1(C), and the curves X ∈ X(N,k) as quotients of
XN via groups of fixed-point-free automorphisms. The model for XN that
we will introduce initially is visibly defined over the field Q(ζ), where ζ is a
primitive 2N -th root of unity. This is not surprising because a Belyi curve
is always definable over the algebraic closure Q of Q. However, we will show
that XN and the quotients X ∈ X(N,k) are in fact definable over Q.
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4.1. Fuchsian uniformizations

It is a fact from covering space theory that every compact Riemann sur-
face can be uniformized, i.e., described as a quotient of C, P1(C), or the
upper half-plane H by a discrete subgroup of the corresponding automor-
phism group. In this section, we will describe how to uniformize the surfaces
X(N,k). As we have seen, the theory behind the curves for N ≤ 3 is not very
interesting, so we will discuss the story only for N ≥ 4. For N = 4, we will
see that X4 and its quotient by the unique doubly even code in F4

2 can be
described as quotients of P1(C), while for N ≥ 5, the curves in X(N,k) will be
described as quotients of H. More precisely, for any N ≥ 4, we will determine
the Fuchsian group Γ that uniformizes XN and show that all of the curves
in X(N,k) correspond to subgroups of Γ. Thus, we can study the curves in
X(N,k) in a uniform way by studying subgroups of a fixed Fuchsian group.

In Section 3, we described the curves in X(N,k) and their quotients explic-
itly in terms of monodromy data. This data, together with results in [2], will
give us the uniformization picture we are after. Let us begin by recalling
how monodromy data gives rise to uniformizations. A good reference for the
details of this discussion is [15]. Suppose we have a branched covering map
f : X → S. The monodromy representation of f is the map

Mf : π1(S − {y1, . . . , yn})→ Sd,

where {y1, . . . , yn} is the branch locus of f , d is the degree, and Sd is the
symmetric group on d letters. The map Mf describes how the fundamental
group acts on the fiber at an unbranched value and how it depends on a
choice of bijection between such a fiber and the set of d elements; different
choices result in corresponding conjugacies inside the symmetric group or
the fundamental group. Now suppose that S is uniformized by a Fuchsian
group Γ. The monodromy data can be given in terms of a map MΓ : Γ→ Sd

that fits into the following commutative diagram:

π1(S − {y1, . . . , yN})
Mf

��

ρ

��
Γ

MΓ

�� Sd

Here, the map ρ sends a loop γ to the unique transformation of the
universal cover (the upper-half plane if N ≥ 5) that sends a fixed choice of
initial point for a lift of γ to the then determined endpoint. The map ρ is
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surjective, and since the kernel of ρ is contained in the kernel of Mf , we can
use ρ to define MΓ in a well-defined manner. In this situation, the curve X
is uniformized by the group M−1

Γ (I(1)), where I(1) denotes the stabilizer
of 1.

For all of the curves in X(N,k), we have seen that the corresponding
monodromy elements σ0, σ1, and σ∞ have orders N , N , and 2, respectively.
Moreover, in the language of [15], the Adinkras are uniform, in the sense
that each vertex has the same number of incident edges. It follows from
results in [15] that all of the curves in X(N,k) are uniformized by normal
torsion-free subgroups of the (N,N, 2)-triangle group

ΓN,N,2 = 〈x1, x2, x3 | xN1 = xN2 = x23 = x1x2x3 = 1〉.

The group ΓN,N,2 acts on the upper half-plane forN ≥ 5, on the standard
plane for N = 4, and on the sphere for N = 1, 2, 3. In all cases, we can realize
ΓN,N,2 as a group of transformations as follows. Let R be a triangle with
vertices v1, v2, v3 and angles π/N, π/N, π/2 at the respective vertices. Let
xi be the transformation obtained by performing the two reflections in the
edges containing vi in ascending order modulo 3. Then x1 is just rotation
through an angle of 2π/N at v1, x2 is rotation through an angle of 2π/N at
v2, and x3 is rotation by an angle of π at v3. If D = R ∪R′, where R′ is the
image of R under reflection in one of the edges, then D is a fundamental
domain for the action of the triangle group on the ambient space and the
quotient is always the Riemann sphere.

Our goal is to describe explicitly the groups uniformizing these curves.
We will do this by first explicitly uniformizing the map from BN to the Belyi
base and then using this uniformization to contstruct the other uniformiza-
tions.

Proposition 6. The curve BN is uniformized by a Fuchsian group ΓN with
presentation

ΓN = 〈y1, . . . , yN | y21 = · · · = y2N = y1 · · · yN = 1〉.

Proof. Let β̃ : BN → P1(C) be the usual map. From the above discussion,
we see that the Belyi base is uniformized by ΓN,N,2. Therefore, we need to
consider the following commutative diagram:
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π1(P
1(C)− {0, 1,∞})

Mβ̃

		

ρ

��
ΓN,N,2

MΓN,N,2

�� SN

The fundamental group π1(CP
1 − {0, 1,∞}) has a presentation given by

〈w1, w2, w3 | w1w2w3 = 1〉 with w1 corresponding to a loop around 0, w2 to a
loop around 1, and w3 to a loop around∞. By definition of the monodromy
map, we have

Mβ̃(wi) = σ−1i ,

so that

MΓN,N,2
(xi) = σ−1i ,

where σi are the permutation representation pair for β̃. Note that the orders
of the σi are what make the map MΓN,N,2

well defined. Since the action of
the subgroup of SN generated by the σi is simply transitive, it follows that
the stabilizer is trivial. Therefore, by results found in [15], BN is uniformized
by ΓN = kerMΓN,N,2

⊆ ΓN,N,2 and the map β̃ is simply the map

Δ/ΓN → Δ/ΓN,N,2

induced by inclusion, where Δ is the upper half-plane for N ≥ 5 and the
Euclidean plane for N = 4. It is easy to see that the elements yi = xi1x3x

N−i
1

all lie in kerMΓN,N,2
. This can be seen group theoretically, but also by noting

that these elements correspond to the N lifts of the loop around∞ which are
the N loops around the centers of the faces of BN . Let K be the subgroup
of ΓN generated by the yi. One can check that K is a normal subgroup of
ΓN,N,2 and that ΓN,N,2/K ∼= Z/NZ. Since we know that ΓN has index N in
ΓN,N,2, it follows that K = ΓN , so that ΓN has the desired presentation.

Note that BN has N orbifold points of order 2, corresponding to the
centers of the faces. This is seen in the uniformization picture by noting
that ΓN is not a torsion-free subgroup. �

Proposition 7. The curve XN is uniformized by the torsion-free normal
subgroup Γ(N,0) = Γ′N , the commutator subgroup of ΓN . More concretely,
Γ(N,0) is the normal closure of the set

{(yiyj)2 | 1 ≤ i, j ≤ N}.
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Proof. The proof of this theorem is a slight modification of the proof of
Theorem 2.3 in [2] and we review it here in a bit more detail than is given
in the reference. We consider the commutative diagram

π1(BN − {ζj})
Mf

��
ρ

��
ΓN

MΓN

�� S2N−1

where ζ1 = e
πi

N ,ζj = ζ2j−11 , and f is the usual map f : XN → BN . Note that
the degree of this map is 2N−1.

We labeled the monodromy generators of f , ρj , by the white vertices in
XN . The fundamental group π1(BN − {ζj}) is equal to 〈z1, . . . , zN | z1 · · · zN
= 1〉, with zj corresponding to the loop around ζj . We have

Mf (zj) = ρj

and

MΓN
(yj) = ρj .

The stabilizer of a white vertex is trivial, so the kernel of MΓN
uni-

formizes XN and the map f : XN → BN is given in the uniformization pic-
ture as

Δ/Γ(N,0) → Δ/ΓN ,

where Δ is as above and we have wrote Γ(N,0) now instead of kerMΓN
. Let

F be the normal closure in ΓN of the set

{(yiyj)2 | 1 ≤ i, j ≤ N}.

Then it is easy to see that ΓN/F ∼= (Z/2Z)N−1, from which it follows by
index considerations that F = Γ(N,0), so that Γ(N,0) has the claimed presen-
tation.

The Riemann surface XN has no orbifold points, which shows that the
group Γ(N,0) is torsion-free. �

Let us consider once more the commutative diagram used in the proof of
Proposition 7. The loop zi corresponds under ρ to the transformation that
sends a white vertex w to the other white vertex that makes up an i/(i+ 1)
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colored face. Motivated by this, let us define a group homomorphism

ϕ : ΓN → FN
2

yi �→ ci

where, as usual, ci is the i-th generator of the maximal even code. The map
ϕ is surjective onto the maximal even code CN , so

ΓN/ kerϕ ∼= CN
∼= (Z/2Z)N−1.

Moreover, it is clear that kerϕ = kerMΓN
= Γ(N,0). Therefore, the group

uniformizing XN is described group theoretically as the kernel of a map from
ΓN to CN , namely the map ϕ. Now let Ck be a k-dimensional doubly even
subcode. Then

ΓN/ϕ−1(Ck) ∼= CN/Ck
With a little more work, we conclude in the proposition below, that ϕ−1(Ck)
uniformizes the curve in X(N,k) corresponding to Ck.

Proposition 8. Let ϕ : ΓN → CN be as above. Then Γ(N,k) = ϕ−1(Ck) uni-
formizes the curve X ∈ X(N,k) associated to Ck. Suppose further that Ck is

generated by {v1, . . . , vk}, with each vi written as
∑N−1

j=1 aijcj for uniquely
determined aij ∈ {0, 1}. If we set

yvi
=

N−1∏
j=1

y
aij

i

then ϕ−1(Ck) can be described as the normal closure in ΓN of the set

{yvi
| i = 1, . . . , k} ∪ {(yiyj)2 | 1 ≤ i, j ≤ N}.

Proof. Consider the commutative diagram

π1(BN − {ζj})
MX

��
ρ

��
ΓN

MΓN

�� S2N−k−1

where MX is defined in terms of the monodromy data for fX : X → BN

and MΓN
is defined to make the diagram commute. Then, as usual, X is
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uniformized by the kernel of MΓN
. Since two white vertices are identified

exactly when they differ by an element of Ck, it follows at once that this
kernel agrees with ϕ−1(Ck), whence ϕ−1(Ck) uniformizes X as desired.

Now let K be the normal closure of

{yvi
| i = 1, . . . , k} ∪ {(yiyj)2 | 1 ≤ i, j ≤ N}.

The yvi
were chosen such that ϕ(yvi

) = vi. Therefore, each element of Ck can
be written as the image of a product of the elements yvi

. So, if z ∈ ϕ−1(Ck),
then the element ϕ(z) can also be written as ϕ(y) where y is a product of
elements in the set {yvi

}. It follows that zy−1 ∈ kerϕ, from which we deduce
that z = yw for some element w ∈ kerϕ. Since the kernel of ϕ has been
determined to be the normal closure of {(yiyj)2 | 1 ≤ i, j ≤ N}, it follows
that z can be written as desired. �

4.2. An algebraic model for the hypercube surfaces

We demonstrated above that XN contains a subgroup of automorphisms
H ∼= (Z/2Z)N−1 and that the quotient XN/H ∼= BN . The curve BN is the
orbifold of signature (0, N ; 2, . . . , 2); indeed, it has N order 2 points at
the N -roots of −1. Such a curve is called a generalized Humbert curve in
the language of [2]. It is shown in [2] that any generalized Humbert curve
S such that S/H has signature (0, N ; 2, . . . , 2) has a model of the form
C(λ1, . . . , λN−3) where C(λ1, . . . , λN−3) is given by the zero-locus of the
following equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x21 + x22 + x23 = 0

λ1x
2
1 + x22 + x24 = 0

...

λN−3x21 + x22 + x2N = 0

and λi ∈ C− {0, 1}. The curve S comes equipped with the degree 2N−1 map

π : S → C

x �→ x22
x21

,

whose branch locus is the set {0,−1,∞,−λ1, . . . ,−λN−3}, as well as with
the group H ∼= (Z/2Z)N−1 of deck transformations of π generated by the
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maps

aj : S → S

[x1 : · · · : xj : · · · : xN ] �→ [x1 : · · · : −xj : · · · : xN ] .

The map XN → BN has the N -th roots of −1 as branch locus. If we let
f : BN → P1(C) be a Möbius transformation that maps the N -th roots of
−1 into {0,−1,∞,−λ1, . . . ,−λN}, then Theorem 4.3 of [2] states that XN

is conformally equivalent to C(λ1, . . . , λN ).

Let ζ = e
πi

N and ξ = ζ3−ζ−1

ζ−ζ3 . The Möbius transformation

f(z) =
z − ζ

z − ζ−1
ξ

maps the points ζ, ζ3, ζ2N−1 onto 0,−1,∞, respectively. The image under f
of the other roots of unity will necessarily lie on the negative real axis. Let
us order the N -th roots of −1 by setting

ζi = ζ2i−1.

If we set μi = f(ζi) for i = 1, . . . , N , then XN is conformally equivalent to
C(−μ2, . . . ,−μN−1). Note that μ1 = 0, μ2 = −1, and μN =∞. From now
on, we will use Xalg

N to denote this model and Balg
N to denote the target of

the map π.
Recall that the belyi map for BN is given by β̃ : BN → C, where

β̃(x) =
xN

xN + 1
.

Therefore, the Belyi map for Xalg
N is given by βalg = β̃ ◦ f−1 ◦ π : XN → C.

Let us describe the vertices of the N -cube sitting inside Xalg
N . If we set

ζ0 = f(0) and ζ∞ = f(∞), then the white vertices are the 2N−1 points of
π−1(ζ0) and the black vertices are the 2N−1 points of π−1(ζ∞). Explicitly,
we have

π−1(ζ0) =
[
1 : ±

√
ζ0 : ±

√
−1− ζ0 : ±

√
μ3 − ζ0 : · · · : ±

√
μN−1 − ζ0

]
and

π−1(ζ∞) =
[
1 : ±

√
ζ∞ : ±

√
−1− ζ∞ : ±

√
μ3 − ζ0 : · · · : ±

√
μN−1 − ζ∞

]
.
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Next, let us describe the edges of the N -cube in Xalg
N . Suppose that BN

has the usual rainbow (1, . . . , N), where the i-th color corresponds to the
ray with argument 2π/N . Then, Balg

N inherits the rainbow (1, . . . , N) with
the edge of color i corresponding to a circular arc which joins ζ0 to ζ∞ and
which crosses the negative real axis between μi and μi+1 if 1 ≤ i ≤ N − 1
and crosses the positive real axis if i = N . The curve Xalg

N is given the same
rainbow with the edges of color i being given by the pre-images of the edge
of color i on Balg

N .

The centers of the faces of Xalg
N are given by the vanishing of coordinate

functions. Indeed, they are the pre-images of the branch points. Therefore,
the centers of the faces are given by

π−1(μi) = {xi+1 = 0} ∩Xalg
N ,

where i+ 1 is computed modulo N , with the set of representatives taken as
{1, . . . , N}. In light of our description of the edges, we see that the points of
π−1(μi+1) are the centers of the i/(i+ 1) faces. In summary, we have proved
the following.

Proposition 9. Let ζ = e
πi

N , ξ = ζ3−ζ−1

ζ−ζ3 , and f(z) = z−ζ
z−ζ−1 ξ. Set μi =

f(ζ2i−1) for 1 ≤ i ≤ N , and let Xalg
N = C(−μ3, . . . ,−μN−1) ⊆ PN−1(C). Fur-

ther, let βalg = β̃ ◦ f−1 ◦ π. Then the Belyi pair (XN , β) is equivalent to the
Belyi pair (Xalg

N , βalg). If ζ0 = f(0) and ζ∞ = f(∞), then the white vertices

of Xalg
N are the points in π−1(ζ0) and the black vertices are the points in

π−1(ζ∞). If we give Xalg
N the rainbow that comes naturally from BN , then

the centers of the i/(i+ 1) colored faces are given by π−1(μi+1) = {xi+2 =
0} ∩Xalg

N .

The deck transformation group of π is the group H ∼= (Z/2Z)N−1 gen-
erated by the maps aj that switch the sign of the j-th coordinate. We claim
that the group of deck transformations of βalg is the semi-direct product
H � Z/NZ. Indeed, we have the following proposition, of which the claim is
a corollary.

Proposition 10. Let r : Balg
N → Balg

N be the Möbius transformation that
corresponds to the rotation of BN through an angle of 2π/N in the positive
direction. Let s : CPN−1 → CPN−1 be the automorphism given by

s[x1 : · · · : xN ] = [xN : x1 : · · · : xN−1]
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and let d : CPN−1 → CPN−1 be the diagonal automorphism given by

d[x1 : · · · : xN ] = [x1, c2x2, . . . , cNxN ],

where c2 =
√−μN−1, c3 = 1, and ci =

√
μi−1 for i = 4, . . . , N . Set Θ = d ◦

s|Xalg
N
. Then Θ is an automorphism of Xalg

N that is a lift of r. In particular,

Θ is a deck transformation of βalg.

The proof of this proposition is in the Appendix.

Corollary 6. The G of deck transformations of βalg is generated by H and
Θ. Moreover, there is an isomorphism of groups

G ∼= H � Z/NZ.

Proof. By inspection, the automorphisms hΘi, where h ∈ H and 0 ≤ i ≤
i− 1, are all distinct. Therefore, the group generated by Θ and H has order
at least 2N−1N . On the other hand, the degree of βalg is 2N−1N , so the full
deck transformation group must be generated by Θ and H.

Consider the natural map

〈Θ〉 → G/H.

It is injective because all non-trivial powers of Θ permute the coordinates
non-trivially. Further, it is an isomorphism, since both groups have order N .
It then follows that there is a group isomorphism

G ∼= H � 〈Θ〉 ∼= H � Z/NZ. �

4.3. The quotients of hypercube surfaces

Our next task is to describe the curves in X(N,k) algebraically. In order to
do this, we will describe how a doubly even code gives rise to a subgroup of
H that acts fixed-point free on Xalg

N . The quotient of Xalg
N by this subgroup

is the algebraic description we are after.
The curveX ∈ X(N,k) is obtained fromXN by identifying certain vertices

and edges determined by a doubly even code Ck ⊆ FN
2 . We determine here

how this identification translates to the algebraic picture. Recall that the
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white vertices of the N -cube sitting inside Xalg
N are given by

π−1(ζ0) =
[
1 : ±

√
ζ0 : ±

√
−1− ζ0 : · · · : ±

√
μN−1 − ζ0

]
and the black vertices by

π−1(ζ∞) =
[
1 : ±

√
ζ∞ : ±

√
−1− ζ∞ : · · · : ±

√
μN−1 − ζ∞

]
.

Each edge of Xalg
N arises from the analytic continuation of the function

z �→
[
1 :
√
z :
√−1− z : · · · :

√
−λN−3 − z

]
along an edge of Balg

N that starts at ζ0 and ends at ζ∞. Let us label the white
vertices w(+,±, . . . ,±) and the black vertices b(+,±, . . . ,±), where the i-th
sign is the sign of the i-th coordinate of the vertex. Note that since we are
currently working in the affine chart {x1 = 1}, the first sign will always be
+. If we start at a given white vertex w and travel along the edge of color i,
we will end up at some black vertex b(+,±, . . . ,±). Which vertex we arrive
at can be encoded by a sequence of signs that indicates whether or not the
i-th coordinate of b will have the same sign as that of w. We can determine
whether or not the sign will change by examining the branch cuts that are
needed to define

√
z.

Let us now be precise about how we define the square root function. Let
log(z) denote the principal branch of the logarithm obtained by making a
branch cut along the negative real axis, with arg(z) ∈ (−π, π]. We will take√
z to mean e

1

2
log(z); crossing the branch cut corresponds to choosing the

other branch of square root, which amounts to a switching of signs. The
maps

z �→ μi − z, i ≥ 2,

send the negative real axis onto the ray [μi,∞). We start at a white vertex
w and travel along the edge of color i. As we do so, we observe which branch
cuts the edge of color i on Balg

N crosses; each branch cut it crosses corresponds

to a sign switch. For example, the edge of color 1 on Balg
N crosses the negative

real axis between 0 and −1. Therefore, every branch cut is crossed and all
of the signs will change. In particular, the vertex w(+, . . . ,+) is connected
to b(+,−, . . . ,−) by the edge of color 1. The edge of color 2 will cross every
branch cut except the one corresponding to [−1,∞), so every coordinate
switches its sign except for the third coordinate. Each time we move down
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the rainbow one more color, we gain a coordinate whose sign does not change
until we hit colorN . The edge of colorN crosses the positive real axis, so that
all of the coordinates switch sign except for the second. We can summarize
the above in the following table.

Color Sign change

1 (+,−,−, . . . ,−)
2 (+,−,+,−, . . . ,−)
3 (+,−,+,+,−, . . . ,−)
4 (+,−,+,+,+,−, . . . ,−)
...

...

N − 1 (+,−,+, . . . ,+)

N (+,+,−,−, . . . ,−)
Recall that in the standard picture of the N -cube, the white vertices

correspond to even elements of FN
2 and the black vertices to odd elements.

Further, the i-th color corresponds to ei, the i-th standard basis vector, and
two vertices are adjacent via color i if they differ by ei. Therefore, we would
like to associate ei to the N -tuple of sign changes corresponding to the i-th
color in the table above. Rather than continue working with these N -tuples
of sign changes, we will associate to each of these sign changes the element of
H that acts as the corresponding sign changes. Putting everything together,
we may define a map of F2-vector spaces

ψ : FN
2 → H

by the rule

ψ(ej) =

⎧⎪⎨⎪⎩
a2

∏N
i=j+2 ai if 1 ≤ j ≤ N − 2

a2 if j = N − 1∏N
i=3 ai if j = N

We have therefore established a way to think of the colors of the N -cube
as elements of H. Note that since each color takes us from a white vertex
to a black vertex, it does not make sense geometrically to view the colors
themselves as elements of H. However, if we restrict ourselves to only the
even elements, then it does make sense to view them as elements of H.

Theorem 6. Let CN ⊆ FN
2 be the maximal even sub code. Then the restric-

tion of ψ to CN is an isomorphism onto H. If Ck ⊆ CN is a doubly even
code, then ψ(Ck) ⊆ H is a subgroup of fixed-point-free automorphisms. If
X ∈ X(N,k) is the curve associated to the code Ck, then X ∼= Xalg

N /ψ(Ck).
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Proof. First, let us show that ψ is surjective. We note that

ψ(ej + ej+1) = aj+2, 1 ≤ j ≤ N − 2.

It follows that a3, . . . , aN are in the image of ψ. Since ψ(eN−1) = a2 and H
is generated by a2, . . . , aN , we conclude that ψ is surjective. By counting
dimensions, we see that the kerψ is 1-dimensional. Since e1 + eN−1 + eN ∈
kerψ by inspection, we conclude that

kerψ = 〈e1 + eN−1 + eN 〉.

We now argue that the restriction of ψ to CN is an isomorphism. First,
since a2 = ψ(e1 + eN ) and the other ai are the images of even codewords, we
conclude that the restriction of ψ to CN is surjective. Since CN and H both
have dimension N − 1 as F2-vector spaces, it follows that the restriction of
ψ to CN is in fact an isomorphism.

Not all of the automorphisms in H act fixed-point free on H. In fact, any
point of Xalg

N that has zero as its i-th coordinate will be a fixed point of ai
and, conversely, any fixed point of an element of H must have zero as some
coordinate. However, we have already demonstrated that such a point is the
center of some face of Xalg

N . It follows that all of the ai for i = 2, . . . , N have
fixed points but any element of H that involves at least 2 of the ai must
act fixed-point free. We have already shown that the pre-image under ψ of
each ei is a codeword of weight 2. Since the restriction of ψ to CN is an
isomorphism, it follows that no doubly-even code word can map to any ai
for i = 1, . . . , N . Therefore, the image of a doubly even codeword will act
fixed-point free on Xalg

N .
By design, the automorphisms of H = ψ(CN ) identify vertices and edges

in the same way that the vertices and edges of the N -cube are identified.
Since Ck ⊆ CN is a subcode, ψ(Ck) makes the same identifications as Ck does
on the N -cube, so

X ∼= Xalg
N /ψ(Ck). �

4.4. Monodromies

Theorem 6 gives us an explicit way to view the action of the colors on the
vertices and edges of the Adinkra sitting inside of Xalg

N . We can use this to

help us label the monodromies of the map βalg : Xalg
N → C, as well as the

monodromies of the maps Xalg → Balg
N for X ∈ X(N,k).
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We begin by describing the permutation pair associated to the Belyi map
βalg. For h ∈ H, let wh be the white vertex described by the sign changes
encoded by h. For example,

w1 =
[
1 :

√
ζ0 :

√
−1− ζ0 : · · · :

√
μN−1 − ζ0

]
and

b1 =
[
1 :

√
ζ∞ :

√
−1− ζ∞ : · · · :

√
μN−1 − ζ∞

]
The map ψ appearing in Theorem 6 was designed in such a way that wh

will be connected to bhψ(ei) by the edge of color i. Let Θ be the rotational

automorphism of Xalg
N that was described explicitly in Proposition 10. One

can check that Θ(w1) = w1. Let e1 denote the edge of color i incident to w1.
Then

(e1,Θ · e1, . . . ,ΘN−1 · e1)
lists all the edges incident to w1 in the order of the rainbow. If wh = hw1

is another white vertex, then the incident edges in the order of the rainbow
are given by

(h · e1, hΘ · e1, . . . , hΘN−1 · e1).
Therefore, let us label the edges of the Adinkra by elements of G, the

full deck transformation group. Every g ∈ G can be written uniquely as hΘi

for some i; by the above discussion, the element hΘi corresponds to the edge
of color i− 1 incident to wh.

We can therefore describe σ0 as an element of SG, the symmetric group
on the elements of G:

σ0 =
∏
h∈H

(h, hΘ, hΘ2, . . . , hΘN−1) ∈ SG.

Now let us describe σ1. The black vertex bh is connected to wψ(ei)h by
the color i. On the other hand, we have already agreed to assign the label
hψ(ei)Θ

i−1 ∈ G to the edge of color i incident to whψ(ei).
It follows that

σ1 =
∏
h∈H

(ψ(eN )hΘN−1, ψ(eN−1)hΘN−2, . . . , ψ(e2)hΘ, ψ(e1)h) ∈ SG.

The product σ1σ0 is

σ∞ =

N∏
i=1

∏
h∈Ti

(hΘi−1, ψ(ei+1)ψ(ei)hΘ
i−1),
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where Ti is a set of coset representatives for H/〈ψ(ei+1)ψ(ei)〉. Notice that
hΘi−1 is the edge of color i incident to wh and ψ(ei+1)ψ(ei)hΘ

i is the edge of
color i incident to wψ(ei+1)ψ(ei)h, so that the transposition lists the opposite
edges of the i/(i+ 1) colored face.

Lastly, the element π∞ is the product of the 4-cycles that list the edges
of each face as we move clockwise around the center. Using our labeling, we
find that

π∞ =

N∏
i=1

∏
h∈Ti

(hΘi−1, hΘi, ψ(ei)ψ(ei+1)hΘ
i−1, ψ(ei)ψ(ei+1)hΘ

i).

Notice that we can obtain σ∞ from π∞ by omitting the second and
fourth entries above, which corresponds to looking only at the two edges of
the same color in each face. This is in line with what we observed earlier
when we were discussing monodromies. In summary, we have used our map
ψ and our explicit determination of the deck transformation group G to
label the monodromies σ0, σ1, σ∞, and π∞ as elements of SG.

Now, we would like to describe the monodromies over each face on the
curve Balg

N . Consider the usual map π : Xalg
N → Balg

N . Since π is unramified at
the vertices, we can label these monodromies by the vertices. Sticking to the
notation above, we let wh be the white vertex corresponding to the element
h ∈ H. Let ρi be the monodromy corresponding to the i/(i+ 1) colored face.
Then ρi is the product of the transpositions that interchange opposite white
vertices in each face. If wh is one of these vertices, then wψ(ei)ψ(ei+1)h is the
other. Therefore, if we identify wh with h ∈ H, then the elements

ρi =
∏
h∈Hi

(h, ψ(ei)ψ(ei+1)h)

describe the monodromies over the i/(i+ 1) colored face, where Hi is a set
of coset representatives for H/〈ψ(ei)ψ(ei+1)〉. Therefore, one way to view
ρi is as follows. Write H as a disjoint union of the cosets of 〈ψ(ei)ψ(ei+1)〉
in H. Then ρi is the product of the transpositions that interchange the two
elements of each coset.

The fact that ρ1 · · · ρN = 1 is easily seen from this point of view since

N∏
i=1

ψ(ei)ψ(ei+1) =

N+1∏
i=1

ψ(ei) = 1.

Now let Ck be a k-dimensional doubly even code, so that ψ(Ck) ⊆ H is a
subgroup of fixed-point-free automorphisms of Xalg

N , the quotient by which
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is Xalg. Two white vertices wh1
and wh2

in Xalg
N are identified in Xalg exactly

when h1 = ch2 for some c ∈ Ck. Equivalently, they are identified if h1 and
h2 are in the same coset of H/Ck, where we are identifying Ck with its image
in H via ψ. We may therefore label the white vertices of Xalg with elements
of H/CK . If ρi(X

alg) is the monodromy at the i/(i+ 1) colored face, then

ρi(X
alg) =

∏
h∈Hi

(h, ψ(ei)ψ(ei+1)),

where Hi is a set of coset representatives for 〈ψ(ei+1)(ψ(ei)〉 in H/Ck. In
fact, since Ck ∩ 〈ψ(ei)ψ(ei+1)〉 = {1}, we could also define ρi by

ρi(X
alg) =

∏
t∈Ti

(t, ψ(ei)ψ(ei+1)),

where Ti is a set of representatives for the (〈ψ(ei)ψ(ei+1)〉, Ck) double cosets
in H.

We have therefore expressed the monodromies of π as elements of SH ,
the symmetric group onH, and the monodromies ofXalg → Balg

N as elements
of SH/Ck

. The natural projection map between the monodromies is now just
induced by the natural map on symmetric groups

SH → SH/Ck .

Finally, it is clear from this point of view that the monodromy group
of Xalg → Balg

N is generated by N − k − 1 elements. Indeed, we see at once
that the monodromy group for π is generated by ρ1, . . . , ρN−1. By design, the
map to the monodromy group of Xalg → Balg

N is surjective. The quotienting
by Ck will introduce an additional k relations among the ρi, so that the
group is generated by N − k − 1 elements.

4.5. Field of definition

As noted at the beginning of the section, Belyi curves are always definable
over Q. The model that we provided for Xalg

N was visibly defined over Q(ζ),
where ζ is a primitive 2N -th root of unity. In fact, the Möbius transformation
that was used to map the N -th roots of −1 to the branch locus of Xalg

N

necessarily maps each root of unity to the real line, so that the model is in
fact defined over the maximal real subfield Q(ζ)+ ⊆ Q(ζ). It turns out that
we can do much better than this. We will show that XN is definable over
Q. In order to do this, we will need to introduce some preliminaries.
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If f : X → Y is a morphism of varieties defined over L and σ is a field
automorphism, then fσ : Xσ → Y σ is the map defined by σfσ−1. It fits into
the following commutative diagram:

X

σ
��

f �� Y

σ
��

Xσ fσ

�� Y σ

Definition 7. Let X be an algebraic variety defined over a number field
L, and let K ⊆ L be a subfield over which L is Galois with Galois group
Γ. A Galois descent datum for X with respect to L/K is a family of bira-
tional isomorphisms {fσ : X → Xσ}σ∈Γ that satisfy the following cocycle
condition:

fστ = fσ
τ fσ

for every σ, τ ∈ Γ.

According to Theorem 1 of [19], X is definable over the smaller field K
if and only if X admits a Galois descent datum with respect to L/K. This
is a very strong condition: even if X and Xσ are birationally equivalent for
each σ ∈ Γ, it may not be the case that X is defined over K if the birational
maps are not compatible. It turns out that the additional structure gained
from the fact that XN factors through BN , together with the fact that we
can translate the Galois action on BN into a geometric action via Möbius
transformations, allows us to build the morphisms necessary for a Galois
descent datum.

Let ζ ∈ Q be a fixed primitive N -th root of unity, and let B = P1(Q(ζ)).
Now set

f(z) =
z − ζ

z − ζ−1
ξ

where ξ = ζ3−ζ−1

ζ−ζ3 . Then f is a biregular isomorphism from B to itself that

maps the N -th roots of −1 into Q(ζ)+ with ζ, ζ3, ζ2N−1 mapping to 0,−1,∞
respectively. In order to make the following exposition clearer, it will be
necessary to modify the notation used for the algebraic model of XN . First,
let us fix an ordering of the N -th roots of unity by setting

ζi = ζ2i−1, i = 1, . . . , N.

Similarly, let us set

μi = f(ζi)
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In particular, μ1 = 0, μ2 = −1, and μN =∞. If we let X = C(−μ2, . . . ,
−μN−1) be the complete intersection of quadrics defined earlier, then X
is a model for XN defined over Q(ζ). Then, by design, there is a map
π : X → f(B) with branch locus {μ1, . . . , μN}.

If we set ζ0 = f(0) and ζ∞ = f(∞), then the white vertices are the points
of π−1(ζ0), the black vertices are the points of π−1(ζ∞), and the faces of X
are the points of π−1(μi) for i = 1, . . . , N . From the description of X as an
intersection of quadrics, it is clear that all of these points have coordinates
in Q.

We will prove that X has a model defined over Q by finding a Galois
descent datum for an appropriate field. The first step in doing so is to show
that X and Xσ are birationally equivalent for any field automorphism of Q.

The idea is as follows. We know that Xσ = C(−μσ
2 , . . . ,−μσ

N−1). On the
other hand, if we set

fσ(z) = fσf−1(z),

then fσ is a biregular morphism from f(B) to fσ(B) such that

{μ1, . . . , μN}σ = {μσ
1 , . . . , μ

σ
N}.

Therefore, Xσ is a model for XN that corresponds to choosing a different
biregular morphism that identifies the N -th roots of −1 with an appropriate
branch locus than f . By [2], this shows that they must be equivalent as
Riemann surfaces. By making the isomorphism explicit, we will show that
it can be used to build a Galois descent datum.

Proposition 11. Let N be the Galois closure (over Q) of the smallest
field containing Q(ζ), and the coordinates of the faces of X. Let σ ∈ Γ =
Gal(N/Q). There exists a biregular morphism η : X → Xσ, defined over N ,
that fits into the following commutative diagram:

X
η ��

π
��

Xσ

πσ

��
B

fσ �� Bσ

The proof of this proposition is located in the Appendix. We now use
this result to prove the following theorem.

Theorem 7. The Riemann surface XN is defined over Q. More precisely,
let M denote the Galois closure (over Q) of the smallest field containing
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Q(ζ), the coordinates of a fixed white vertex w ∈ π−1(ζ0), and the coordinates
of all of the faces of XN . Then there exists a Galois descent datum for X
with respect to M/Q.

Proof. Fix σ ∈ Γ, where Γ = Gal(M/Q). According to Proposition 11, there
exists a biregular morphism η : X → Xσ, defined over N ⊆M , that fits into
the appropriate commutative diagram. Using the deck transformation group
H ∼= (Z/2Z)N−1 of πσ, we see that there are precisely 2N−1 such morphisms,
all obtained by applying deck transformations to η. Both η(w) and wσ are
elements of π−1σ (ζσ0 ). Since H acts simply transitively on this fiber, there is a
unique deck transformation hσ ∈ H such that hση(w) = wσ. That is, there
is a unique biregular morphism that satisfies the appropriate commutative
diagram and takes w to wσ; we will call this morphism ησ.

The collection {ησ}σ∈Γ is a Galois descent datum. Indeed, one can check
that

fστ = fσ
τ fσ,

from which it follows that ηστ and ηστ ησ satisfy the same commutative dia-
gram. Since both maps take w to wστ , the maps must be equal by unique-
ness. �

Theorem 7 implies that the curve XN can be defined over Q. There is in
[19] a formulation of a Galois descent datum for a group of automorphisms
on a variety X, and a corresponding theorem that says that the existence
of a Galois descent datum implies that X and the group of automorphisms
are defined over a smaller field. The consequence for our situation is that
each automorphism of the rational model for XN is defined over Q. Indeed,
{ησ} forms a Galois descent datum, and each automorphism in H is already
defined over Q.

Proposition 12. The curves in X(N,k) are definable over Q.

Proof. By the above discussion, XN and its automorphism group H are
defined over Q. This readily implies that the quotients by fixed-point free
subgroups will also be defined over Q. �

An interesting consequence of this result is that for any of the Fuchsian
groups Γ(N,k) that uniformized the curves in X(N,k), Δ/Γ(N,k) is defined over
Q. This provides us with an interesting family of “modular” curves that
have integral models.
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5. Conclusion

Let us summarize the results of this paper. We have shown that every
Adinkra chromotopology canonically defines a Riemann surface as a cov-
ering space over P1(C) branched over {0, 1,∞}. The study of Adinkras is
of interest because they are graphical presentations of off-shell representa-
tions of the (1|N) superalgebra. Describing such representations as Riemann
surfaces provides a new approach to unanswered problems in supersymme-
try. Many of the structures of an Adinkra are described in terms of the
2-colored loops. This makes their description in terms of surfaces very nat-
ural, as statements about 2-colored loops become properties of the 2-cells
in the natural CW-decomposition. We have given a complete description of
these surfaces in multiple forms. The different descriptions of the surfaces
associated to Adinkra chromotopologies, again, provide varied approaches
to solving problems of interest. We list some of the salient features of the
different descriptions here.

1) The description of these Riemann surfaces as covering spaces of P1(C)
allowed us to illustrate the relationship between Adinkra chromo-
topologies and quotients of the Hamming cube using the Galois theory
of covering spaces.

2) Covering space theory allowed us to give a Fuchsian uniformization of
the surfaces in terms of torsion-free normal subgroups of the (N,N, 2)-
triangle group.

3) Finally, we gave an explicit algebraic description of the surfaces as
complete intersections of quadrics in projective space.

4) The algebraic description allowed us to see the quotienting of Adinkra
chromotopologies as reflections on affine coordinates in projective space.

5) Properties and results about Adinkras can now be recast geometrically.
We gave geometric interpretations of some of the important features
of Adinkras.
a) We have shown that Adinkra chromotoplogies related by R-

symmetry describe isomorphic Riemann surfaces.
b) We gave a description of the tensor product of Adinkras in terms

of a multi-point connected sum of the associated surfaces.

An Adinkra is defined through stripping the supersymmetry algebra of
its spatial dimensions. After showing that Adinkras naturally gives rise to
very special Riemann surfaces, it is reasonable to ask whether this emergent
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“extra” dimension is physically meaningful (e.g., are there settings in which
the Riemann surface can be naturally identified with a string worldsheet?).
Setting this sort of speculation aside, there is a completely natural way
to “remove” this emergent geometric dimension; we may integrate along 1-
cycles to produce periods. In other words, we can study the Jacobian abelian
variety of our geometrized Adinkra.

Studying so-called regular dessins, Wolfart was able to show that there
is a connection between the Jacobians of Riemann surfaces of the sort we
have produced with the Jacobians of Fermat curves [25]. More precisely,
it is shown that any 1-dimensional factor of the natural representation of
the automorphism group of the dessin on its Jacobian corresponds to a
complex multiplication factor which appears in the Jacobian of a Fermat
curve. A complete analysis of the arithmetic properties of the Jacobians of
our geometrized Adinkra chromotopologies constitutes work in progress.

The geometric interpretation of Adinkra chromotopologies ignores two
additional structures an Adinkra possesses that must be included in order
to give a full geometric description of off-shell representations of the (1|N)
superalgebra: an odd dashing and height assignment. In a subsequent paper,
[8], we show that the odd dashing defines a spin structure on the associated
Riemann surface. Following work by Donagi and Witten [4], the addition of
a spin structure allows us to define a canonical super Riemann surface struc-
ture with Ramond punctures. We also show in [8] that the Adinkra height
assignments define a discrete Morse function on the super Riemann surface
in the sense of both Banchoff [1] and Forman [10, 11]. The height assignment
simultaneously admits an interpretation as a divisor on the (super) Riemann
surface. Operations such as raising and lowering of nodes [14], which play
a key role in the physical application of Adinkras, are now geometrically
meaningful operations on these “Morse divisors”.

Geometrized chromotopologies are very special as Riemann surfaces, and
they remain so even when viewed as Belyi curves. While not the focus of
this current paper, spin structures that correspond to odd dashings on an
Adinkra are likewise distinguished. The same is true for the Morse divi-
sors coming from height assignments. The fact that Adinkras correspond to
very special points in a moduli space of well-studied geometric objects may
provide a key new tool for understanding supersymmetric representation
theory. It is our hope that the category of spin curves with Morse divisor,
which has emerged through geometrizing Adinkrizable supermultiplets, may
also be naturally broadened to include geometric incarnations of both non-
Adinkrizable supermultiplets [7, 21], and worldline reductions (“shadows”)
of on-shell supermultiplets of physical interest.
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Appendix: Proofs of Propositions 10 and 11

Proof of Proposition 10. We now supply the details for the proof of Propo-
sition 10. Let ρ denote the automorphism of PN−1(C) given by

ρ[x1 : x2 : · · · : xN ] = [xN : c2x1 : · · · : cNxN−1],

where c2 =
√−μN−1, c3 = 1, and ci =

√
μi−1 for i = 4, . . . , N . For brevity,

let x = [x1, . . . , xN ]; we need to verify that ρ(x) satisfies the N − 3 equations
that cut out Xalg

N . Plugging ρ(x) into the first defining equation, we are
reduced to showing that

(34) x2N − μN−1x21 + x22 = 0

But this equation holds, being the defining equation ofXalg
N that corresponds

to the the variable xN .
The other defining equations of XN are

−μix
2
1 + x22 + x2i+1 = 0, i = 2, . . . , N − 1.

Plugging in ρ(x), we must therefore verify that

−μix
2
N − μN−1x21 + μix

2
i = 0

for 3 ≤ i ≤ N − 1. Using (34) to replace x2N with μN−1x21 − x22, we are reduced
to checking that

(35) μN−1
−μi − 1

μi
x21 + x22 + x2i = 0.

We claim that

(36) μN−1
−μi − 1

μi
= −μi−1.

This will complete the proof of our claim about ρ, since Equation (36) will
then be true, being the same as the following defining equation of Xalg

N :

−μi−1x21 + x22 + x2i = 0.

Recall that the cross-ratio of any four distinct elements of a field is
defined as

(z1, z2; z3, z4) =
z1 − z3
z1 − z4

· z2 − z4
z2 − z3

.
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In terms of cross-ratios,

−μi = (ζi, ζ1; ζ3, ζN )

for all 1 ≤ i ≤ N . On the other hand, the action of the symmetric group on
cross-ratio is well known. In particular, we have

−μi − 1

−μi
= (ζi, ζN ; ζ2, ζ1),

Writing (36) in terms of cross-ratios and canceling out terms on both
sides, we are left with checking that the following equality holds:

ζN−1 − ζ1
ζN−1 − ζ2

· ζ2 − ζN
ζ2 − ζ1

· ζi − ζ2
ζi − ζ1

· ζN − ζ1
ζN − ζ2

=
ζi−1 − ζ1
ζi−1 − ζ2

· ζ2 − ζN
ζ2 − ζ1

.

Observe that each side in the above expression is a positive real number.
Therefore, it suffices to show that both sides have the same absolute value.
Using the fact that the N -th roots of −1 form a regular N -gon inscribed
in the unit-circle, it can be checked that the two sides of the equation are
indeed equal. For example, we see that

|ζi−1 − ζ1| = |ζi − ζ2|,

so we can cancel out the corresponding quantities on each side. We have
proved our claim about ρ.

Finally, one can check that the rotation on Balg
N is given by

r(z) =
μN−1

z − μN−1
.

Therefore,

r(π(x)) = −μN−1x21
x2N

= π(ρ(x)),

so that ρ is indeed a deck transformation of the Belyi map. �

Proof of Proposition 11. We will describe the map η explicitly as the compo-
sition of a permutation of the coordinates followed by a diagonal morphism
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on the ambient space. The action of σ on Q(ζ) can be encoded by a permu-
tation of the set {1, . . . , N} determined by

ζσ(i) = ζσi .

Moreover, we have

(37) fσ(μσ(i)) = μσ
i

Notice that the face corresponding to π−1(μi) is given by xi+1 = 0, where
we compute i+ 1 modulo N using N as our representative for 0.

We will consider three cases. First, suppose that σ|Q(ζ) = id. Then Xσ =
X, fσ = id, and it suffices to take η = id.

Next, let us suppose that σ|Q(ζ) : ζ �→ ζ−1. Note that in this case, we
still have Xσ = X, but since fσ is non-trivial, we cannot simply take a deck
transformation for the requisite diagram to commute. As a permutation of
the set {1, . . . , N}, σ is the product of the transpositions (i, N − i+ 1) for
1 ≤ i ≤ �N/2�. Let s and d be the automorphisms of PN−1(C) defined by

s : PN−1(C) → PN−1(C)
[x1 : x2 : · · · : xN ] �→ [

xσ(N)+1 : xσ(1)+1 : xσ(2)+1 : · · · : xσ(N−1)+1

]
= [x2 : x1 : xN−3 : · · · : x3]

d : PN−1(C) → PN−1(C)
[x1 : x2 : · · · : xN ] �→ [x1 : c2x2 : · · · : cNxN ] ,

where c3 = 1, ci =
√−μi−1 for 4 ≤ i ≤ N , and c2 = cN . Here, the nota-

tion
√−μi−1 means either choice of square root of −μi−1 in Q. Then η =

d ◦ s restricts to an isomorphism from X to Xσ that makes the requisite
diagram commute. The details for why η respects the equations for X and
Xσ are contained in the lemma below. One can check that the face corre-
sponding to μ1 is given by

π−1(0) = [1 : 0 : ±√−1 : ±√μ3 : · · · : ±√μN ],

from which it is clear that η will be defined over M .
Lastly, suppose that σ restricts to some other automorphism of Q(ζ).

Consider the face of X given by

π−1(μσ(1)) = [a1 : a2 : · · · : aN ],
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where the ai are given as follows:

ai =

⎧⎪⎨⎪⎩
1 if i = 1
√
μσ(1) if i = 2√
μi−1 − μσ(1) if i ≥ 3.

Notice that by (37), this face of X maps to a face of Xσ corresponding
to 0. Let s and d be the automorphisms of PN−1(C) given by

s : PN−1(C) → PN−1(C)
[x1 : x2 : · · · : xN ] �→ [

xσ(N)+1 : xσ(1)+1 : xσ(2)+1 : · · · : xσ(N−1)+1

]
d : PN−1(C) → PN−1(C)

[x1 : x2 : · · · : xN ] �→ [x1 : c2x2 : · · · : cNxN ] ,

where

c2 =
√

μσ
σ−1(N)

ci =
√

μσ
i−1 ·

aσ(N)+1

aσ(i−1)+1
, i ≥ 3.

Then η = d ◦ s restricts to an isomorphism from X to Xσ that makes the
requisite diagram commute. Once more, the details for why η respects the
equations for X and Xσ are contained in the lemma below. Since the ci are
defined in terms of the coordinates of a face, it follows that η will be defined
over M . �

Lemma 1. The morphisms η defined above restrict to morphisms X → Xσ.

Proof. We start with the second case above (the first being trivial), where
we claimed that we could take

η = [x2 : c2x1 : c3xN−3 · · · : cNx3]

with c3 = 1, ci =
√−μi−1 for 4 ≤ i ≤ N , and c2 = cN . Before showing that

η defines an isomorphism, we remark that

(38) − c22 = c2iμN−i+2, i ≥ 3.

The proof uses the same cross-ratio trick we employed earlier and is omitted.
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The verification that η is an isomorphism boils down to verifying that

(39) − μi−1x22 + c22x
2
1 + c2ix

2
N−i+3 = 0

for all i ≥ 3. Dividing through by c2i = −μi−1 and using Equation (38), we
see that (39) has the equivalent form

−μN−i+2x
2
1 + x22 + x2N−i+3 = 0

and this equation holds because it is a defining equation for Xalg
N .

For the remaining case, we again start by showing that c22 can be expressed
in terms of each μi for i ≥ 3. In fact, with notation as in Proposition 11, we
have

c22 = μσ
i−1

(
bσ(i−1)+1

aσ(i−1)+1

)2

= μσ
i−1

μσ(N) − μσ(i−1)
μσ(1) − μσ(i−1)

.

To see why, note that if i− 1 = σ−1(N), then the above just says

c22 = μσ
σ−1(N) = fσ(μN ),

which is true just by how we defined c2. We will now show that for all other
i ≥ 3 for which i− 1 �= σ−1(N), we have

μσ
i−1 ·

μσ(N) − μσ(i−1)
μσ(1) − μσ(i−1)

= fσ(μN ).

We know that μσ
i−1 = fσ(ζσ(i−1)) and fσ(μN ) = fσ(ζN ). After canceling the

factor of ξσ coming from both of these identities, we are reduced to showing
that

ζσ(i−1) − ζσ(1)

ζσ(i−1) − ζσ(N)
· μσ(N) − μσ(i−1)
μσ(1) − μσ(i−1)

=
ζN − ζσ(1)

ζN − ζσ(N)
.

In terms of cross-ratios,

μσ(N) − μσ(i−1)
μσ(1) − μσ(i−1)

= (μσ(N), μσ(1);μσ(i−1),∞).

Since Möbius transformations preserve cross-ratios, the above cross-ratio is
equal to

(ζσ(N), ζσ(1); ζσ(i−1), ζN ) =
ζσ(N) − ζσ(i−1)
ζσ(1) − ζσ(i−1)

· ζσ(1) − ζN

ζσ(N) − ζN
.
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Therefore, we are left to verify

ζσ(i−1) − ζσ(1)

ζσ(i−1) − ζσ(N)
· ζσ(N) − ζσ(i−1)
ζσ(1) − ζσ(i−1)

· ζσ(1) − ζN

ζσ(N) − ζN
=

ζN − ζσ(1)

ζN − ζσ(N)
.

We immediately see that everything cancels out nicely, so that

c22 = μσ
i−1 ·

μσ(i−1) − μσ(N)

μσ(i−1) − μσ(1)
,

as desired.
We now show that these choices of ci give rise to an isomorphism η. This

amounts to verifying

(40) − μσ
i−1x

2
σ(N)+1 + c22x

2
σ(1)+1 + c2ix

2
σ(i−1)+1 = 0, i ≥ 3.

There are three cases. First, suppose that i− 1 = σ−1(N), so that
xσ(i−1)+1 = x1. In this case,

c2i = μσ
i−1(μσ(N) − μσ(1))

and

c22 = μσ
i−1.

Using the equations for XN , we may use the identity

(41) x2σ(N)+1 = μσ(N)x
2
1 − x22

in Equation (40) and divide by c22, at which point it suffices to show that

x2σ(1)+1 + x22 − μσ(1)x
2
1 = 0.

But this is exactly the defining equation for XN corresponding to xσ(1)+1,
so it is indeed true.

The next case is σ(i− 1) = 1, so that xσ(i−1)+1 = x2. In this case, we
have

c2i = μσ
i−1

μσ(N) − μσ(1)

μσ(1)

and

c22 = μσ
i−1

μσ(N)

μσ(1)
.
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Again using the identity in (41), we are left with verifying that

x2σ(1)+1 + x22 − μσ(1)x
2
1 = 0,

which is valid because, as before, it is one of the defining equations for XN .
Finally, for all other values of i, we use both of the identities

x2σ(N)+1 = μσ(N)x
2
1 − x22,

x2σ(1)+1 = μσ(1)x
2
1 − x22.

Plugging them into (40) and arguing similarly as above, we are reduced to
checking that

(−μσ
i−1μσ(N) + c22μσ(1))

c2i
= −μσ(i−1),

which follows easily from our work above. �

Acknowledgements

We would like to thank S. J. Gates, Jr., and T. Hübsch for extended dis-
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