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We extend the notion of lattice polarization for K3 surfaces to families over a (not neces-

sarily simply connected) base, in a way that gives control over the action of monodromy

on the algebraic cycles, and discuss the uses of this new theory in the study of families

of K3 surfaces admitting fibrewise symplectic automorphisms. We then give an applica-

tion of these ideas to the study of Calabi-Yau three-folds admitting fibrations by lattice

polarized K3 surfaces.

1 Introduction

The concept of lattice polarization for K3 surfaces was first introduced by Nikulin [17]

and further developed by Dolgachev [7]. Our aim is to extend this theory to families of

K3 surfaces over a (not necessarily simply connected) base, in a way that allows control

over the action of monodromy on algebraic cycles.

Our interest in this problem arises from the study of Calabi-Yau three-folds with

small Hodge numbers. In their paper [9], Doran and Morgan explicitly classify the pos-

sible integral variations of Hodge structure that can underlie a family of Calabi-Yau

three-folds over the thrice-punctured sphere P1 − {0, 1,∞} with h2,1 = 1. Explicit exam-

ples, coming from toric geometry, of families realizing all but one of these variations of
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12266 C. F. Doran et al.

Hodge structure were known at the time of publication of [9], and a family realizing the

14th and final case was recently constructed in [4].

One of the main tools used to study the Calabi-Yau three-folds constructed in

[4] was the existence of a torically induced fibration (i.e., a fibration of the three-fold

induced by a fibration of the toric ambient space by toric subvarieties) of these three-

folds by K3 surfaces polarized by the rank 18 lattice

M := H ⊕ E8 ⊕ E8.

K3 surfaces polarized by this lattice have been studied by Clingher et al. [3, 5]

and have a rich geometric structure. In particular, the canonical embedding of the lattice

E8 ⊕ E8 into M defines a natural Shioda-Inose structure on them, which in turn defines

a canonical Nikulin involution [15]. The resolved quotient by this involution is a new

K3 surface, which may be seen to be a Kummer surface associated to a product of two

elliptic curves; its geometry is closely related to that of the original K3 surface.

In [4], toric geometry was used to show that this Nikulin involution is induced

on the M-polarized K3 fibres by a global involution of the Calabi-Yau three-fold. The

resolved quotient by this involution is another Calabi-Yau three-fold, which is fibred by

Kummer surfaces and has geometric properties closely related to the first. Examination

of this second Calabi-Yau three-fold was instrumental in proving that the construction

in [4] realized the “missing” fourteenth variation of Hodge structure from the Doran-

Morgan list.

Motivated by the discovery of this K3 fibration and the rich geometry that could

be derived from it, we decided to search for similar K3 fibrations on the other three-

folds from the Doran-Morgan classification. In a large number of cases (summarized by

Theorem 5.10), we found fibrations by K3 surfaces polarized by the rank 19 lattices

Mn := H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉,

which contain the lattice M as a sublattice. Many, but not all, of these fibrations are

torically induced.

This raises two natural questions: Do the canonical Nikulin involutions on the

fibres of these K3 fibrations extend to global symplectic involutions on the Calabi-Yau

three-folds? And if they do, what can be said about the geometry of the new Calabi-Yau

three-folds obtained as resolved quotients by these involutions?

Both of these questions may be addressed by studying the behaviour of the

Néron-Severi lattice of a K3 surface as it varies within a family. Furthermore, in order
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Families of Lattice Polarized K3 Surfaces 12267

for this theory to be useful in the study of K3 fibred Calabi-Yau three-folds it should be

able to cope with the possibility of monodromy around singular fibres, meaning that we

must allow for the case where the base of the family is not simply connected.

To initiate this study, we introduce a new definition of lattice polarization for

families of K3 surfaces and develop the basic theory surrounding it. We note that a

related notion of lattice polarizability for families of K3 surfaces was introduced by

Hosono et al. [11], who also proved statements about period maps and moduli for such

families. However, our definition is more subtle than theirs, given that our goal is to

derive precise data about the monodromy of algebraic cycles. The relationship between

the definitions is discussed in greater detail in Remark 2.6.

The structure of this paper is as follows. In Section 2, we begin with the central

definitions of N-polarized (Definition 2.1) and (N, G)-polarized (Definition 2.4) fami-

lies of K3 surfaces, where N is a lattice and G is a finite group. The first is a direct

extension of the definition of N-polarization for K3 surfaces to families and does not

allow for any action of monodromy on the lattice N. The second is more subtle: it

allows for a nontrivial action of monodromy, but this monodromy is controlled by the

group G.

The remainder of Section 2 proves some basic results about N- and (N, G)-

polarized families of K3 surfaces and their moduli. Of particular importance are Propo-

sition 2.11 and Corollary 2.12, which use this theory to give conditions under which

symplectic automorphisms can be extended from individual K3 fibres to entire families

of K3 surfaces.

Section 3 expands upon these results, focussing mainly on the case where the

symplectic automorphism is a Nikulin involution. The main result of this section is

Theorem 3.3, which shows that the resolved quotient of an N-polarized family of K3

surfaces, where N is the Néron-Severi lattice of a general fibre, by a Nikulin involution

is an (N ′, G)-polarized family of K3 surfaces, where N ′ is the Néron-Severi lattice of a

general fibre of the resolved quotient family and G is a finite group.

In Section 4, we specialize all of these results to families of M-polarized K3 sur-

faces with their canonical Nikulin involution, which extends globally over the family

by Corollary 2.12. The resolved quotient family is an (N ′, G)-polarized family of K3 sur-

faces whose general fibre is a Kummer surface. The first major result of this section,

Proposition 4.2, places bounds on the size of the group G.

To improve upon this result, in Section 4.3, we show that, after proceeding

to a finite cover of the base, we may realize these families of Kummer surfaces by

applying the Kummer construction fibrewise to a family of Abelian surfaces, a process
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12268 C. F. Doran et al.

which we call undoing the Kummer construction. As a result of this process we obtain

Theorem 4.11 and Corollary 4.13, which enable explicit calculation of the group G.

In Section 5, we further specialize this analysis to families of Mn-polarized K3

surfaces, then apply the resulting theory to the study of the Calabi-Yau three-folds from

the Doran-Morgan list. The main results here are Theorems 5.10 and 5.20, which show

that 12 of the 14 cases from that list admit fibrations by Mn-polarized K3 surfaces. In

fact, we prove an even stronger result: for n≥ 2 these fibrations are in fact pullbacks of

special Mn-polarized families on the moduli space of Mn-polarized K3 surfaces, under

the generalized functional invariant map, 1 and for n= 1 they are pullbacks of a special

two-parameter M1-polarized family by a closely related map.

We compute the generalized functional invariant maps for all of these fibrations

in Sections 5.4 and 5.5. We find that they all have a standard form, defining multiple

covers of the moduli spaces of Mn-polarized K3 surfaces with ramification behaviour

determined by a pair of integers (i, j).

Finally, in Section 6, we use these results to make an interesting observation

concerning an open problem related to the Doran-Morgan classification. Recall that each

of the three-folds from this classification moves in a one parameter family over the

thrice-punctured sphere. Recently, there has been a great deal of interest in studying

the action of monodromy around the punctures on the third integral cohomology group

of the three-folds. This monodromy action defines a Zariski dense subgroup of Sp(4, R),

which may be either arithmetic or non-arithmetic (more commonly called thin). Singh

and Venkataramana [25, 26] have proved that the monodromy is arithmetic in 7 of the 14

cases from the Doran-Morgan list, and Brav and Thomas [2] have proved that it is thin

in the remaining seven. It is an open problem to find geometric criteria that distinguish

between these two cases.

In Theorem 6.1, we provide a potential solution to this problem: the cases may

be distinguished by the values of the pair of integers (i, j) arising from the generalized

functional invariants of torically induced K3 fibrations on them. Specifically, we find

that a case has thin monodromy if and only if neither i nor j is equal to two. This

suggests that it may be possible to express the integral monodromy matrices for the

1 The generalized functional invariant, introduced in [8], may be thought of as an analogue for K3-fibred

three-folds of the classical functional invariant of an elliptic surface. Under this analogy, the study of the

action of monodromy on algebraic cycles that is the focus of this paper may be thought of as corresponding

to the homological invariant of an elliptic surface. As in the elliptic surface case, we expect these two

invariants to control much of the geometry of the K3-fibred three-fold.
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families of Calabi-Yau three-folds from the Doran-Morgan list in terms of the families

of transcendental cycles for their internal K3-fibrations, and that doing so explicitly may

be a good route towards an understanding of the geometric origin of the arithmetic/thin

dichotomy.

A different criterion to distinguish the arithmetic and thin cases was recently

given by Hofmann and van Straten [10, Section 6], using an observation about the inte-

gers m and a from [9, Table 1] (which are called d and k in [10]). Furthermore, the discov-

ery of a yet another criterion has been announced in lectures by M. Kontsevich, using a

technique involving Lyapunov exponents. Whilst our result does not appear to bear any

immediate relation to either of these other results, it is our intention to investigate the

links between them in future work.

2 Families of K3 Surfaces

Begin by assuming that X is a projective K3 surface. The Néron-Severi group of divisors

modulo homological equivalence on X forms a non-degenerate lattice inside of H2(X, Z),

denoted NS(X), which is even with signature (1, ρ − 1). The lattice of cycles orthogonal

to NS(X) is called the lattice of transcendental cycles on X and is denoted T(X).

The aim of this section is to develop theoretical tools that will enable us to

embark upon a study of the action of monodromy on the Néron-Severi group of a fibre

in a family of K3 surfaces.

2.1 Families of lattice polarized K3 surfaces

We begin with some generalities on families of K3 surfaces. A family of K3 surfaces will

be a variety X and a flat surjective morphism π : X → U onto some smooth, irreducible,

quasiprojective variety U such that for each p∈ U the fibre Xp above p is a smooth

projective K3 surface. For simplicity the reader may assume that U has dimension 1

but our results are valid in arbitrary dimension. We further assume that there is a line

bundle L whose restriction Lp to Xp is ample and primitive in Pic(Xp) for each p∈ U .

In the analytic topology, there is an integral local system on U given by R2π∗Z

whose fibre above u is isomorphic to H2(Xp, Z). The Gauss-Manin connection ∇GM is a

flat connection on R2π∗Z ⊗ OU .

The cup-product pairing on H2(Xp, Z) extends to a bilinear pairing of sheaves

〈·, ·〉X = R2π∗Z × R2π∗Z −→ R4π∗Z ∼= ZU , (1)

where ZU is the constant sheaf on U with Z coefficients. This form extends naturally to

arbitrary sub-rings of C.
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There is a Hodge filtration on R2π∗Z ⊗ OU giving rise to a variation of Hodge

structure, which we call HX . In particular, there is a rank one holomorphic sub-bundle

H2,0
X := F 2(R2π∗Z ⊗ OU ). Let T (X ) be the integral sub-local system of R2π∗Z underly-

ing the smallest integral sub-variation of Hodge structure of HX containing H2,0
X . The

local system T (X ) supports a polarized variation of Hodge structure with polarization

induced by the pairing 〈·, ·〉X . This variation of Hodge structure is the “essential part” of

HX , as defined by Saito and Zucker in [24, Section 4].

Let NS(X ) be the integral orthogonal complement of T (X ) in R2π∗Z. We have an

orthogonal direct sum decomposition over Q

R2π∗Q = (T (X ) ⊕ NS(X )) ⊗ZU QU .

According to [24, Proposition 4.14], the fibre T (X )p of T (X ) at any point p∈ U con-

tains the transcendental lattice of Xp, and equality holds if p is generic. Thus, the

fibre NS(X )p of NS(X ) over a generic point p∈ U is equal to the Néron-Severi lattice

of Xp.

Our aim is to use this to study the action of monodromy on the Néron-Severi

lattice of a general fibre of X . In order to gain control of this monodromy, we begin by

extending the definition of lattice polarization for K3 surfaces to families.

To do this, let N be a local subsystem of NS(X ) such that for any p∈ U , the

restriction of 〈·, ·〉X to the fibre Np over p exhibits Np as a non-degenerate integral lat-

tice of signature (1, n− 1), which is (non-canonically) isomorphic to a lattice N and

embedded into H2(Xp, Z) as a primitive sublattice containing the Chern class of the

ample line bundle Lp. This allows us to define a naı̈ve extension of lattice polarization to

families.

Definition 2.1. The family X is N-polarized if the local system N is a trivial local

system. �

Note that any family of K3 surfaces is polarized by the rank 1 lattice generated

by the Chern class of the line bundle L restricted to each fibre.

Unfortunately, this definition is too rigid for our needs: it is easy to see that for

an N-polarized family of K3 surfaces, a choice of isomorphism N ∼=Np for any point p

determines uniquely an isomorphism N ∼=Nq for any other point q by parallel transport,

so this definition does not allow for any action of monodromy on Nq. We will improve

upon this definition in Section 2.3, but in order to do so we first need to develop some

general theory.
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2.2 Monodromy of algebraic cycles on K3 surfaces

In this section, we will begin discussing the action of monodromy on the Néron-Severi

group of a general fibre of X . Let p be a point in U such that the fibre above p has

NS(Xp) ∼=NS(X )p. Parallel transport along paths in U starting at the base point p gives

a monodromy representation of π1(U, p)

ρX : π1(U, p) −→ O(H2(Xp, Z))

since we have the pairing in Equation (1). Furthermore, ρX restricts to monodromy rep-

resentations of both NS(X ) and T (X ), written as

ρNS : π1(U, p) −→ O(NS(Xp))

and

ρT : π1(U, p) −→ O(T(Xp)).

Similarly for any local subsystem N of R2π∗Z, we will denote the associated monodromy

representation by ρN . Note here that if X is N-polarized, then the image of ρN is the

trivial subgroup Id.

Now we prove an elementary but useful result concerning the image of ρNS .

Here we let X be a projective K3 surface. Recall that the lattice NS(X) is an even lattice

of signature (1, rank NS(X) − 1). For such a lattice NS(X), there is a set of roots

ΔX = {w ∈ NS(X) : 〈w,w〉 = −2}.

The Weyl group WX is the group generated by Picard-Lefschetz reflections across roots

in ΔX. It admits an embedding into the orthogonal group O(NS(X)). Denote the set of

roots in ΔX which are dual to the fundamental classes of rational curves by Δ+
X. Then

a fundamental domain for the action of WX on NS(X) is given by the closure of the

connected polyhedral cone

Amp(X) = {w ∈ NS(X) ⊗ R : 〈w,w〉 > 0, 〈w, δ〉 > 0 for all δ ∈ Δ+
X}.

Amp(X) is the ample cone of X.

If we let O+(NS(X)) be the subgroup of O(NS(X)) which fixes the positive cone in

NS(X) and let DX be the subgroup of O+(NS(X)) which maps Amp(X) to itself, then we
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obtain a semidirect product decomposition

O+(NS(X)) = DX � WX.

Now let L be an ample line bundle on X. Then the Chern class of L is contained

in Amp(X). Define DL
X to be the stabilizer of this Chern class in DX.

Proposition 2.2. Let X be a family of K3 surfaces and let Xp be a generic fibre of X .

Let Lp be the restriction of the bundle L on X to Xp. Then the group D
Lp

Xp
is finite and

contains the image of ρNS . �

Proof. First we show that D
Lp

Xp
is a finite group. Let γ be in D

Lp

Xp
. Then γ fixes Lp by

definition. Therefore, γ acts naturally on [Lp]⊥ and fixes [Lp]⊥ if and only if it fixes all

of NS(Xp). Since Lp is ample, the orthogonal complement of [Lp] in NS(Xp) is negative

definite by the Hodge index theorem.

We then recall the fact that O(N) is finite for any definite lattice N, so D
Lp

Xp
is

contained in a finite group and thus is itself finite.

To see that ρNS has image contained in D
Lp

Xp
, we recall that ρNS fixes Lp ∈

Amp(Xp) and hence, since the closure of Amp(Xp) is a fundamental domain for WXp

and the action of WXp is continuous, ρNS must have image in D
Lp

Xp
. �

2.3 Monodromy and symplectic automorphisms

We are now almost ready to make a central definition which extends Definition 2.1 to

cope with the possible action of monodromy on N.

Denote by N∗ the dual lattice of N. We may embed N∗ ⊆ N ⊗Z Q as the sublattice

of elements u of N ⊗Z Q such that 〈u, v〉 ∈ Z for all v ∈ N.

Definition 2.3. The discriminant lattice of N, which we call AN , is the finite group N∗/N

equipped with the bilinear form

bN : AN × AN −→ Q mod Z.

induced by the bilinear form on N ⊗Z Q. �

For each lattice N, we may define a map αN : O(N) → Aut(AN) where Aut(AN) is

the group of automorphisms of the finite Abelian group AN which preserve the bilinear

form bN . Denote the kernel of αN by O(N)∗. Then we make the central definition:
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Definition 2.4. Fix an even lattice N with signature (1, n− 1) and a subgroup G of

Aut(AN). Let X be a family of K3 surfaces and let Xp be a generic fibre of X . Assume

that there is local sub-system N ⊆NS(X ) which has fibres Np that are isometric to N

and are embedded into H2(Xp, Z) as primitive sublattices containing the Chern class

of the ample line bundle Lp. Then X is called an (N, G)-polarized family of K3 sur-

faces if the restriction of the map αN to the image of ρN is injective and has image

inside of G. �

One sees that if Id is the trivial subgroup of Aut(AN), then the definition of an

N-polarized family of K3 surfaces is identical to the definition of a family of (N, Id)-

polarized K3 surfaces. We also note that, if G ⊂ G ′, then any (N, G)-polarized family of

K3 surfaces will also be (N, G ′)-polarized. With this in mind, we identify a special class

of (N, G)-polarized families where the group G is as small as possible.

Definition 2.5. An (N, G)-polarized family of K3 surfaces X is called minimally (N, G)-

polarized if the composition αN ◦ ρN is surjective onto G. �

Remark 2.6. We note that in [11], the authors introduce a similar notion of N-

polarizability for a family of K3 surfaces. A K3 surface X is N-polarizable in the sense of

[11] if there is a sublattice inside of NS(X) isomorphic to N, but the primitive embedding

of N into NS(X) is only fixed up to automorphism of the K3 lattice ΛK3. A family of K3 sur-

faces is then called N-polarizable if each fibre is N-polarizable. There is a well-defined

period space of N polarizable K3 surfaces M◦
N , so that to any family of N-polarizable K3

surfaces there is a well-defined period map.

Our definition is more subtle than this, since our goal is to derive precise data

about the monodromy of algebraic cycles. Any (N, G)-polarized family of K3 surfaces is

N-polarizable, but the converse does not hold. In fact, both of the families constructed

in Section 2.4 are families of N-polarizable K3 surfaces, but only one of them is (N, G)-

polarized. �

There is a close relationship between (N, G)-polarizations and symplectic auto-

morphisms. Recall the following definition.

Definition 2.7. Let X be a smooth K3 surface and let τ : X → X be an automorphism

of X. The automorphism τ is called a symplectic automorphism if for some (hence any)

non-vanishing holomorphic 2-form ω on X, we have τ ∗ω = ω. If τ has order 2, it is called

a symplectic involution of X or a Nikulin involution. �
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Symplectic automorphisms of finite order on K3 surfaces exhibit behaviour

similar to translation by a torsion section on an elliptic curve. The quotient of an elliptic

curve by some subgroup of Pic(E)tors is an isogenous elliptic curve, that is, an elliptic

curve E ′ such that there is a Hodge isometry H1(E, Q) ∼= H1(E ′, Q). Analogously there

is a sense in which the resolved quotient of a K3 surface X by a finite group of sym-

plectic automorphisms is isogenous to X: there is a real quadratic extension of Q under

which the Hodge structures on their transcendental lattices are isometric. This will be

explained in detail by Proposition 3.1.

The following is a consequence of the famous Global Torelli theorem for K3 sur-

faces [17, 21]. More precisely, it may be seen as a corollary of [6, Theorem 4.2.3].

Theorem 2.8. The kernel of the restricted map αNS(Xp) : D
Lp

Xp
→ Aut(ANS(Xp)) is isomorphic

to the finite group of symplectic automorphisms of Xp which fix [Lp]. �

From this, using Proposition 2.2, we obtain:

Corollary 2.9. Let X be a family of K3 surfaces with generic Néron-Severi lattice N. The

family X is (N, G)-polarized for some G in Aut(AN) if and only if there is no γ ∈ π1(U, p)

such that ρNS(γ ) = σ |NS(Xp) for some symplectic automorphism σ of Xp. �

Therefore, a measure of how far a family of K3 surfaces with generic Néron-

Severi lattice N can be from being (N, G)-polarized is given by the size of the group of

symplectic automorphisms of a generic N-polarized K3 surface. The number of possible

finite groups of symplectic automorphisms of a K3 surface is relatively small. Mukai

[16, Theorem 0.3] has shown that such groups are all contained as special subgroups of

the Mathieu group M23, and in particular Nikulin [17, Proposition 7.1] has shown that

an algebraic K3 surface with symplectic automorphism must have Néron-Severi rank at

least 9. This gives:

Corollary 2.10. Any family of K3 surfaces with generic Néron-Severi group N having

rank(N) < 9 is (N, G)-polarized for some G ⊂ Aut(AN). �

We end this subsection with a proposition which determines when a symplectic

automorphism on a single K3 surface extends to an automorphism on an entire family

of K3 surfaces. This will be useful in Section 3, when we will further discuss symplectic

automorphisms in families.
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Proposition 2.11. Let Xp be a fibre in X which satisfies NS(X )p
∼= NS(Xp), and let τ be

a symplectic automorphism of Xp. Then τ extends to an automorphism of X if and only

if its action on NS(Xp) commutes with the image of ρX . �

Proof. Since X is a proper family of smooth manifolds, Ehresmann’s theorem (see, e.g.,

[29, Section 9.1.1]) implies that there is a local analytic open subset, called U0, about

p∈ U , so that there is a marking on the family of K3 surfaces XU0 on U0. Therefore,

[17, Lemma 4.2] and the Global Torelli theorem [17, Theorem 2.7’] show that τ extends

uniquely to an automorphism on XU0 .

Let γ ∈ π1(U, p), let γ ∗τ be the analytic continuation of τ along γ , and let w ∈
H2(X0, Z). Then it is easy to see that

γ ∗τ(w) = ρX (γ ) ◦ τ ◦ (ρX (γ ))−1(w).

Therefore, the action of τ on NS(Xp) commutes with the image of ρX if and only if the

action of γ ∗τ on NS(Xp) agrees with the action of τ . By the Global Torelli theorem, this

happens if and only if the automorphisms τ and γ ∗τ are the same. �

Corollary 2.12. Let X → U be an N-polarized family of K3 surfaces and suppose N ∼=
NS(Xp) for some fibre Xp. If Xp admits a symplectic automorphism τ , then τ extends to

an automorphism of X . �

2.4 A non-polarized example

As we have seen, algebraic monodromy of families of K3 surfaces is intimately related

to the existence of symplectic automorphisms. In this section, we will give a simple

example which will show how the existence of symplectic automorphisms produces non-

polarized families of K3 surfaces.

Let us take the pencil of K3 surfaces mirror (in the sense of [7]) to the Fermat

pencil of quartics in P3. We may write these surfaces as a family X of ADE singular

hypersurfaces in P3:

(x + y + z + w)4 + t2xyzw = 0.

As a non-compact three-fold, we may express these as a singular subvariety of

[x : y : z : w] × t ∈ P3 × C×.

This is an (H ⊕ E8 ⊕ E8 ⊕ 〈−4〉, Id)-polarized family of K3 surfaces. Each fibre admits

A4 as a group of symplectic automorphisms acting via even permutations on the
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coordinates x, y, z, w. In particular, we have a symplectic involution on each fibre

induced by

σ : [x : y : z : w] �−→ [y : x : w : z],

which extends to X by Corollary 2.12. We also have an involution on the base, acting via

η : t �−→ −t.

Therefore, the fibrewise resolutions of the quotient families Y1 = ˜X /(Id × η) and Y2 =
˜X /(σ × η) are fibrewise biregular, but are not biregular as total spaces. More impor-

tantly, both families have the same holomorphic periods, but the monodromy of NS(Y1)

is trivial and the monodromy of NS(Y2) is non-trivial around 0.

Thus we see that the family Y1 is N-polarized. However, by Corollary 2.9, the

family Y2 is not (N, G)-polarized for any G since, by construction, monodromy around 0

acts as a Nikulin involution on NS(Y2).

Remark 2.13. Of course this examples and examples like it reflect directly the general

principle that there does not exist a fine moduli scheme of objects which admit automor-

phisms, and in particular this example itself proves that the period space of K3 surfaces

is not a fine moduli space. If one considers instead the moduli stack of polarized K3

surfaces (see [22]), then such families are distinguished. �

2.5 Moduli spaces and period maps

In the last subsection of this section, we will study the moduli of (N, G)-polarized fam-

ilies. We begin by establishing some definitions regarding the period spaces of K3 sur-

faces; much of this material may be found in greater detail in [7].

Define the K3 lattice to be the lattice ΛK3 = H⊕3 ⊕ E⊕2
8 . The space of marked

pseudo-ample K3 surfaces is the type IV symmetric domain

PK3 = {z∈ P(ΛK3 ⊗ C) : 〈z, z〉 = 0, 〈z, z〉 > 0}.

There is a natural action on PK3 by the group O(ΛK3). Using terminology of [7], the orb-

ifold quotient

MK3 := O(ΛK3) \ PK3

is called the period space of Kähler K3 surfaces.

For any even lattice N of rank nand signature (1, n− 1) equipped with a primitive

embedding N ↪→ ΛK3, one may construct a period space of pseudo-ample marked K3
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surfaces with N-polarization. Let

PN = {z∈ P(N⊥ ⊗ C) : 〈z, z〉 = 0, 〈z, z〉 > 0}.

There is a natural embedding

ϕN : PN ↪→PK3

where we suppress the dependence upon choice of embedding of N into ΛK3. Let

O(N⊥) = {γ |N⊥ : γ ∈ O(ΛK3), γ (N) ⊆ N}.

The map ϕN descends to an embedding

ϕN : O(N⊥) \ PN ↪→ O(ΛK3) \ PK3.

For each group GN⊥ in Aut(AN⊥), we may construct a finite index subgroup

of O(N⊥),

O(N⊥, GN⊥) = {γ |N⊥ ∈ O(N⊥) : αN⊥(γ |N⊥) ∈ GN⊥}.

This subgroup is related to (N, GN)-polarized K3 surfaces in the following way. Recall

first the following standard lattice theoretic fact from [18].

Proposition 2.14 ([18, Proposition 1.6.1]). Let N be a primitive sublattice of an even

unimodular lattice Λ, and let N⊥ be the orthogonal complement of N in Λ. Then

(1) There is a canonical isomorphism φN between the underlying groups AN and

AN⊥ which satisfies

bN(a, b) = −bN⊥(φN(a), φN(b)).

(2) If g is an automorphism of N and g′ is an automorphism of N⊥, then g ⊕ g′ is

an automorphism of N ⊕ N⊥ which extends to an automorphism of Λ if and

only if the induced actions of g on AN and of g′ on AN⊥ are the same under

the identification φN . �

Therefore, if a family of K3 surfaces X is (N, GN)-polarized, then Proposition 2.14

shows that the transcendental monodromy of X is in O(N⊥, GN⊥) where GN⊥ is the sub-

group of AN⊥ identified with GN by φN .

As a particular example, if the family X is (N, Id)-polarized, where Id is the

trivial subgroup of Aut(AN), then X is N-polarized and the group O(N⊥, Id) corresponds

 at U
niversity of N

ebraska-L
incoln L

ibraries on June 7, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


12278 C. F. Doran et al.

to the group O(N⊥)∗. By [7, Proposition 3.3], we have

O(N⊥, Id) = O(N⊥)∗ ∼= {γ |N⊥ : γ ∈ O(ΛK3), γ (w) = w for all w ∈ N}.

In the case where our family is N-polarized, we will use the notation and language of

[7], but adopt the notation introduced above when the group GN becomes relevant.

In [7], the space
MN = O(N⊥)∗ \ PN

is called the period space of pseudo-ample N-polarized K3 surfaces. Dolgachev [7,

Remark 3.4] shows that for any N-polarized family of K3 surfaces π : X → U , there is

a period morphism
ΦX : U −→MN .

In light of this, define

M(N,GN ) := O(N⊥, GN⊥) \ PN .

Note that for GN ⊆ G ′
N , there is a natural inclusion O(N⊥, GN⊥) ⊆ O(N⊥, G ′

N⊥) and there-

fore there are natural surjective morphisms

M(N,GN ) −→M(N,G ′
N )

of degree [GN : G ′
N ].

We now take some time to prove the existence of period morphisms associated

to the spaces M(N,GN ).

Theorem 2.15. Let X → U be a family of K3 surfaces. If there is some local subsystem

N ⊆NS(X ), where N is fibrewise isomorphic to a lattice N of signature (1, n− 1) and

αN ◦ ρNS is contained inside of a subgroup GN of Aut(AN), then there a period morphism

Φ(N,GN ) : U −→M(N,GN ). �

Proof. Let Ũ be the simply connected universal covering space of U and g : Ũ → U be

the canonically associated covering map. Then, since g∗X is marked, pseudo-ample and

N-polarized, we have the following diagram

Ũ ��

g

��

PN

U
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Now we apply Proposition 2.14. Since the image of αN ◦ ρN is in GN , the image

of αN⊥ ◦ ρN⊥ is contained in GN⊥ under the identification induced by φN . Thus ρN⊥ is

contained in O(N⊥, GN⊥).

This allows us to canonically complete the diagram above to a commutative

square

Ũ ��

g

��

PN

��

U
Φ(N,GN )

�� M(N,GN )

as required. �

We note that the assumptions in this proposition are weaker than the assump-

tion that X → U is (N, GN)-polarized, as we do not assume here that the map αN is injec-

tive on the image of ρNS . What distinguishes (N, GN)-polarized families of K3 surfaces

from the rest is the following observation.

Remark 2.16. Let X → D∗ be an (N, GN)-polarized family of K3 surfaces over the

punctured disc D∗ and let γ be a generator of π1(D∗, p). Let u∈ N ⊆ NS(Xp) and

let u be its image in AN . Then under the identification φN defined in the proof of

Theorem 2.15,

(αN⊥ ◦ ρN⊥(γ ))(φN(u)) = φN((αN ◦ ρN (γ ))(u)).

Since αN is an injection and φN is an isomorphism, we see that, for an (N, GN)-polarized

family, all data about algebraic monodromy of N is captured by the monodromy

of N⊥. �

This remark will be essential for the calculations that we will do in Section 4.

3 Symplectic Automorphisms in Families

In this section, we expand upon Proposition 2.11 in the case where τ is a Nikulin

involution. The main result is Theorem 3.3, which will be used in Section 4 to study

lattice polarized families of K3 surfaces with Shioda-Inose structure, in an attempt

to understand the relationship between such families and their associated families of

Abelian surfaces.
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3.1 Symplectic automorphisms and Nikulin involutions

We begin with some background on symplectic automorphisms of K3 surfaces. Let X

be a projective K3 surface and let ω be a non-vanishing holomorphic 2-form on X. For

any group Σ of symplectic automorphisms of X, there are two lattices in H2(X, Z) which

may be canonically associated to Σ . The first is the fixed lattice H2(X, Z)Σ . To derive the

second, note that, by assumption, Σ fixes ω and hence, since Σ acts as Hodge isometries

on H2(X, Z), we see that Σ must preserve the transcendental Hodge structure on X. This

implies that T(X) ⊆ H2(X, Z)Σ . So we may define a second lattice

SΣ,X := (H2(X, Z)Σ)⊥.

When the K3 surface X is understood, we will abbreviate this notation to simply

SΣ . This is appropriate because Nikulin [17, Theorem 4.7] proves that, as an abstract

lattice, SΣ depends only upon Σ . It follows from the fact that T(X) is fixed by Σ that SΣ

is contained in NS(X). In [17, Lemma 4.2] it is also shown that SΣ is a negative definite

lattice and contains no elements of square (−2).

In [17, Proposition 7.1], Nikulin determines the lattice SΣ for any abelian group of

symplectic automorphisms Σ . Therefore, since any group contains at least one abelian

subgroup, if X admits any nontrivial group Σ of symplectic automorphisms, then SΣ

contains one of the lattices in [17, Proposition 7.1]. The smallest lattice listed therein is

SZ/2Z, which has rank 8.

In general, symplectic automorphisms have fixed point sets of dimension 0. The

local behaviour of Σ about the fixed points determines a quotient singularity in X/Σ .

It is easy to see from the classification of minimal surfaces that the minimal resolu-

tion Y := X̃/Σ of X/Σ is again a K3 surface: σ ∗ω = ω implies that ω descends to a non-

vanishing holomorphic two-form on the quotient surface and the resulting quotient sin-

gularities are crepant.

There is a diagram of surfaces

X̃
c

����
��

��
��

� q

����
��

��
��

�

X

����
��

��
��

Y

����
��

��
��

X/Σ
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where X̃ is the minimal blow up of X on which Σ acts equivariantly with the map c and

whose quotient X̃/Σ is Y.

In NS(Y) there is a lattice K spanned by exceptional classes. The minimal primi-

tive sublattice of NS(Y) containing K will be called K0. Nikulin [17, Propositions 7.1 and

10.1] shows that K0 and SΣ have the same rank but are, of course, not isomorphic. The

map

θ := q∗c∗ : K⊥
0 −→ H2(X, Z)Σ

is an isomorphism over Q and satisfies

〈θ(u), θ(v)〉 = |Σ |〈u, v〉

for any u, v ∈ K⊥
0 . Therefore, there is a linear transformation g over Q(

√|Σ |) which relates

the lattices H2(X, Z)Σ and K⊥
0 ; a more precise description of this relationship is given in

[30, Theorem 2.1].

Since the group Σ acts symplectically, for a class ω spanning H2,0(Y), we have

that θ(ω) is in H2,0(X), so we see that 〈θ(u), θ(ω)〉 = 0 if and only if 〈u, ω〉 = 0. Thus

θ(NS(Y) ∩ K⊥
0 ) = NS(X) ∩ H2(X, Z)Σ . In other words, θ(T(Y)) = T(X).

3.2 Symplectic quotients and Hodge bundles

If X is a family of K3 surfaces for which a group of symplectic automorphisms on the

fibres extends to a group of automorphisms on the total space, then base-change allows

us to relativize the constructions in Section 3.1.

We obtain sheaves of local systems (R2π∗Z)Σ and SΣ which agree fibrewise

with H2(Xp, Z)Σ , and SΣ,Xp. The Hodge filtration on R2π∗Z ⊗ OU restricted to these sub-

sheaves produces integral weight 2 variations of Hodge structure on U .

We wish to compare the variation of Hodge structure on (R2πX
∗ Z)Σ and the varia-

tion of Hodge structure on the subsystem of R2πY
∗ Z orthogonal to the lattice spanned by

exceptional curves in each fibre. Since we deal only with smooth fibrations, the following

statements are equivalent to their counterparts for individual K3 surfaces.

Proposition 3.1. Let X → U be a family of K3 surfaces on which a group Σ of sym-

plectic automorphisms acts fibrewise and extends to automorphisms of πX : X → U . Let

πY : Y → U be the resolved quotient three-fold. Then

(1) The Hodge bundles F 2(R2πX
∗ Z ⊗ OU ) and F 2(R2πY

∗ Z ⊗ OU ) are isomorphic as

complex line bundles on U .
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(2) If we extend scalars to Q(
√|Σ |), the induced VHS on (R2πX

∗ Z)Σ is isomorphic

to a sub-VHS of R2πY
∗ Z.

(3) The transcendental integral variations of Hodge structure T (X ) and T (Y) are

isomorphic over Q(
√|Σ |). �

Proof. These are relative versions of the discussion in Section 3.1. We use the fact that

statements about the local systems R2πX
∗ Z and R2πY

∗ Z reduce to statements on each

fibre. The same is true for statements about the Hodge filtrations on R2πX
∗ Z ⊗ OU and

R2πY
∗ Z ⊗ OU . Therefore, Proposition 3.1 reduces to the statements in Section 3.1. �

In particular, we can recover from Proposition 3.1 a result of Smith [27, Theorem

2.12], that the holomorphic Picard-Fuchs equation of X agrees with the Picard-Fuchs

equation of Y, since Picard-Fuchs equations depend only upon the underlying complex

VHS.

A corollary to this is that the transcendental monodromy of Y can be calculated

quite easily from the transcendental monodromy of X . If we let g be the Q(
√|Σ |)-linear

map relating the lattices H2(Xp, Z)Σ and K⊥
0

g : H2(Xp, Z)Σ −→ K⊥
0

for a given fibre Xp, then for any γ ∈ π1(U, p) and w ∈ H2(Xp, Z)Σ we have

(ρH2(Xp,Z)Σ (γ ))(w) = g−1 ◦ ρK⊥
0
(γ ) ◦ g(w). (2)

In particular, we find:

Corollary 3.2. Let X be an N-polarized family of K3 surfaces and suppose N ∼= NS(Xp)

for some fibre Xp. Assume that X admits a group of fibrewise symplectic automorphisms

Σ and let Y be the fibrewise resolution of the quotient X /Σ . If K⊥
0 is the sublattice gen-

erated by classes orthogonal to exceptional curves on Yp, then the monodromy represen-

tation fixes K⊥
0 ∩ NS(Yp). �

Proof. By construction, we have that NS(Xp)
Σ is fixed under monodromy. Therefore,

the relation in Equation (2) implies that its image in K⊥
0 under the Q(

√|Σ |) isometry g is

also fixed. Since g sends the transcendental lattice of Xp to the transcendental lattice Yp,

the image of NS(Xp)
Σ under g is K⊥

0 ∩ NS(Yp). Thus K⊥
0 ∩ NS(Yp) is fixed by monodromy

of the family Y. �
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3.3 Nikulin involutions in families

We will now tie our results together. We begin with a family X of K3 surfaces which

admits a fibrewise Nikulin involution and is lattice polarized by a lattice N which is iso-

morphic to the generic Néron-Severi lattice of the fibres of X . Our goal is to understand

how lattice polarization behaves under Nikulin involutions in families. We begin with

some generalities on Nikulin involutions.

A Nikulin involution fixes precisely eight points on a K3 surface X. The resulting

quotient X/β has eight ordinary double points which are then resolved by blowing up

to give a new K3 surface Y. We can also resolve these singularities indirectly by blowing

up X at the eight fixed points of β, calling the resulting exceptional divisors {Ei}8
i=1. We

see that the blown up K3 surface X̃ also admits an involution β̃ whose fixed locus is the

exceptional divisor

D =
8∑

i=1

Ei.

Let Fi = q∗Ei, where q : X̃ → X̃/β̃ ∼= Y is the quotient map. The branch divisor in Y is then

the sum f∗D =∑8
i=1 Fi. Since there is a double cover ramified over f∗D, there must be

some divisor

B = 1
2 f∗D.

We call the lattice generated by B and {Fi}8
i=1 the Nikulin lattice, which we denote KNik.

According to [17, Section 6], KNik is a primitive sublattice of NS(X̃/β̃) and, in the

case where Σ is a group of order 2, the lattice K0 discussed in Section 3.1 is equal to

KNik. The following theorem is a technical tool, useful for calculations in Section 4.

Theorem 3.3. Let X → U be an N-polarized family of K3 surfaces and suppose N ∼=
NS(Xp) for some fibre Xp. Suppose further that Xp admits a Nikulin involution β; by

Corollary 2.12 this extends to an involution on X . Let Y → U be the resolved quotient

family of K3 surfaces and let N ′ be the Néron-Severi lattice of a generic fibre of Y. Then

there is a subgroup G of Aut(AN ′) for which Y is an (N ′, G)-polarized family of K3 sur-

faces. �

Proof. To see that the resulting family Y is (N ′, G)-polarized for some G, it is enough

to see that monodromy of Y cannot act trivially on Aut(AN ′).

First we note that monodromy of Y must fix K⊥
Nik ∩ NS(Yp) by Corollary 3.2, where

KNik denotes the Nikulin lattice. Thus the only non-trivial action of monodromy can be

upon KNik.
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Suppose for a contradiction that the image of ρNS(Y) contains a non-identity

element g that lies in the kernel of αN ′ . Recall from Theorem 2.8 that such a g must

act on NS(Yp) in the same way as a non-trivial symplectic automorphism τ . Thus the

orthogonal complement of the fixed lattice NS(Yp)
g must have rank at least 8. Since KNik

has rank 8 and K⊥
Nik ∩ NS(Yp) is fixed under monodromy, the orthogonal complement of

NS(Yp)
g must be contained in KNik. For reasons of rank this containment cannot be strict,

so we must have equality. However, KNik is generated by elements of square (−2), thus,

by [17, Lemma 4.2], it cannot be the lattice Sτ of any automorphism τ of X. This is a

contradiction. �

Note that the proof given above does not extend to quotients by arbitrary sym-

plectic automorphisms.

As a result of this theorem, Remark 2.16 and Equation (2) we may calculate the

group G.

Corollary 3.4. If g is the linear transformation which relates T(Xp) to T(Yp) for some

p∈ U and ΓX (resp. ΓY ) is the image of the monodromy group of T (X ) in O(T(Xp)) (resp.

T (Y) in O(T(Yp))), then ΓY = g−1ΓX g and the image αT(Y)(ΓY) is the group G such that Y
is minimally (N ′, G)-polarized. �

This allows us to control the algebraic monodromy of the family Y of K3 surfaces.

In the following section, we concern ourselves with a geometric situation where it will

be important to know exactly what our algebraic monodromy looks like.

4 Undoing the Kummer Construction

One of the major motivations for this work is the idea of undoing the Kummer construc-

tion globally in families. As we shall see, this has applications to the study of Calabi-Yau

three-folds.

4.1 The general case

Begin by assuming that X is a family of K3 surfaces which admit Shioda-Inose struc-

ture. Concretely, a Shioda-Inose structure on a K3 surface X is an embedding of the

lattice E8 ⊕ E8 into NS(X). By [15, Section 6], a Shioda-Inose structure defines a canon-

ical Nikulin involution β and the minimal resolution of the quotient X/β is a Kummer

surface. Furthermore, if X has transcendental lattice T(X), then the resolved quotient

Y = X̃/β has transcendental lattice T(Y) ∼= T(X)(2).
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Assume that X is a lattice polarized family of Shioda-Inose K3 surfaces. Then

by Corollary 2.12, the Nikulin involution extends to the entire family of K3 surfaces to

produce a resolved quotient family Y of Kummer surfaces.

We would like to find conditions under which one may undo the Kummer

construction in families starting from the polarized family X of K3 surfaces with

Shioda-Inose structure. In other words, we would like to find conditions under which

a family of abelian surfaces A exists, such that application of the Kummer construction

fibrewise to A yields the family Y of Kummer surfaces associated to X .

The following proposition provides an easy sufficient condition for undoing the

Kummer construction on a family of Kummer surfaces.

Proposition 4.1. Beginning with a family of lattice polarized Shioda-Inose K3 surfaces

X over U , the Kummer construction can be undone on the family of resolved quotient K3

surfaces Y, if Y itself is lattice polarized. �

In general, however, the family Y will not be lattice polarized; instead, by

Theorem 3.3, it will be (N ′, G)-polarized, for some lattice N ′ and subgroup G of Aut(AN ′).

To rectify this, we will have to proceed to a cover f : U ′ → U to remove the action of the

group G, so that the Kummer construction can be undone on the pulled-back family f∗Y.

We begin by finding such a group G. We note, however, that in general Y will not

be minimally (N ′, G)-polarized for this choice of G.

Proposition 4.2. Let X → U be a family of N-polarized K3 surfaces with Shioda-Inose

structure, where N is isometric to the Néron-Severi lattice of a generic K3 fibre Xp. Then

the associated family of Kummer surfaces Y is an (N ′, G)-polarized family of K3 surfaces,

where N ′ is the generic Néron-Severi lattice of fibres of Y and G is the group

O(N⊥)∗/O(N⊥(2))∗.

Furthermore, if X has transcendental monodromy group ΓX = O(N⊥)∗, then Y is mini-

mally (N ′, G)-polarized. �

Proof. By the results of Section 3.2 there is a map

g : ρT (X ) −→ ρT (Y).

Let Xp be a general fibre of X and let Yp be the associated fibre of Y. As Xp has Shioda-

Inose structure and Yp is the associated Kummer surface, the transformation g induces
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the identity map on the level of orthogonal groups,

Id: O(T(Xp)) −→ O(T(Yp))

since the lattice T(Yp) is just T(Xp) scaled by 2.

Let ΓX (resp. ΓY ) denote the transcendental monodromy group of X (resp. Y).

Then, by Corollary 3.4, ΓY = g−1ΓX g ∼= ΓX and Y is minimally (N ′, αT(Y)(ΓY))-polarized.

But ΓX ⊂ O(T(Xp))
∗ ∼= O(N⊥)∗ (by [7, Proposition 3.3]) and αT(Y) has kernel O(T(Xp)(2))∗ ∼=

O(N⊥(2))∗, so αT(Y)(ΓY) ⊂ G, where G is as in the statement of the proposition, with

equality if ΓX = O(N⊥)∗. �

The group G from this proposition will prove to be very useful in later sections.

4.2 M-polarized K3 surfaces

We will be particularly interested in the case in which our family X is M-polarized,

where M denotes the lattice

M := H ⊕ E8 ⊕ E8.

Such families admit canonically defined Shioda-Inose structures, so the discussion from

Section 4.1 holds.

Our interest in such families stems from the paper [9], in which Doran and

Morgan explicitly classify the possible integral variations of Hodge structure that can

underlie a family of Calabi-Yau three-folds over P1 − {0, 1,∞} with h2,1 = 1. Their clas-

sification is given in [9, Table 1], which divides the possibilities into 14 cases. Explicit

examples, arising from toric geometry, of families of Calabi-Yau three-folds realizing 13

of these cases were known at the time of publication of [9] and are given in the rightmost

column of [9, Table 1]. A family of Calabi-Yau three-folds that realized the missing case

(hereafter known as the 14th case) was constructed in [4].

It turns out that many of these three-folds admit fibrations by M-polarized K3

surfaces. The ability to undo the Kummer construction globally on such three-folds

therefore provides a new perspective on the geometry of the families in [9, Table 1],

which will be explored further in the remainder of this paper.

We begin this discussion with a brief digression into the geometry of M-

polarized K3 surfaces, that we will need in the subsequent sections. In this section,

we will denote an M-polarized K3 surface by (X, i), where X is a K3 surface and i is an

embedding i : M ↪→ NS(X).
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Clingher et al. [5] have shown that M-polarized K3 surfaces have a coarse moduli

space given by the locus d �= 0 in the weighted projective space WP(2, 3, 6) with weighted

coordinates (a, b, d). Thus, by normalizing d= 1, we may associate a pair of complex

numbers (a, b) to an M-polarized K3 surface (X, i).

Let β denote the Nikulin involution defined by the canonical Shioda-Inose struc-

ture on (X, i). Then Clingher and Doran [3, Theorem 3.13] have shown that the resolved

quotient Y = X̃/β is isomorphic to the Kummer surface Kum(A), where A∼= E1 × E2 is

an Abelian surface that splits as a product of elliptic curves. By [3, Corollary 4.2] the

j-invariants of these elliptic curves are given by the roots of the equation

j2 − σ j + π = 0,

where σ and π are given in terms of the (a, b) values associated to (X, i) by σ = a3 − b2 + 1

and π = a3.

There is one final piece of structure on (X, i) that we will need in our discussion.

By [3, Proposition 3.10], the K3 surface X admits two uniquely defined elliptic fibrations

Θ1,2 : X → P1, the standard and alternate fibrations. We will be mainly concerned with

the alternate fibration Θ2. This fibration has two sections, one singular fibre of type I ∗
12

and, if a3 �= (b ± 1)2, six singular fibres of type I1 [3, Proposition 4.6]. Moreover, Θ2 is

preserved by the Nikulin involution β, so induces a fibration Ψ : Y → P1 on Y. The two

sections of Θ2 are identified to give a section of Ψ , and Ψ has one singular fibre of type

I ∗
6 and, if a3 �= (b ± 1)2, six I2’s [3, Proposition 4.7].

4.3 Undoing the Kummer construction for M-polarized families

We will use this background to outline a method by which we can undo the Kummer

construction for a family obtained as a resolved quotient of an M-polarized family of K3

surfaces. An illustration of the use of this method to undo the Kummer construction in

an explicit example may be found in [4, Section 7.1].

Let N be a lattice that contains a sublattice isomorphic to M. Assume that X is an

N-polarized family of K3 surfaces over U with generic Néron-Severi lattice N ∼= NS(Xp),

where Xp is the fibre over a general point p∈ U . Choose an embedding M ↪→ NS(Xp); this

extends uniquely to all other fibres of X by parallel transport and thus exhibits X as an

M-polarized family of K3 surfaces.

This M-polarization induces a Shioda-Inose structure on the fibres of X ,

which defines a canonical Nikulin involution on these fibres that extends globally by

Corollary 2.12. Define Y to be the variety obtained from X by quotienting by this

 at U
niversity of N

ebraska-L
incoln L

ibraries on June 7, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


12288 C. F. Doran et al.

fibrewise Nikulin involution and resolving the resulting singularities. Then Y is fibred

over U by Kummer surfaces associated to products of elliptic curves. Let Yp
∼= Kum(E1 ×

E2) denote the fibre of Y over the point p∈ U , where E1 and E2 are elliptic curves.

The aim of this section is to find a cover Y ′ of Y upon which we can undo the

Kummer construction. The results of Section 4.1 give a way to do this. Let N ′ ∼= NS(Yp)

denote the generic Néron-Severi lattice of Y. Then Theorem 3.3 shows that there is a

subgroup G of Aut(AN ′) for which Y is an (N ′, G)-polarized family of K3 surfaces. We

will find a way to compute the action of monodromy around loops in U on N ′, which will

allow us to find the group G such that Y is a minimally (N ′, G)-polarized family, along

with a cover Y ′ of Y that is an N ′-polarized family of K3 surfaces. Then Proposition 4.1

shows that we can undo the Kummer construction on Y ′.

To simplify this problem we note that, by Corollary 3.2, the only non-trivial

action of monodromy on N ′ can be on the Nikulin lattice KNik contained within it. This

lattice is generated by the eight exceptional curves Fi obtained by blowing up the fixed

points of the Nikulin involution. Moreover, as β extends to a global involution on X , the

set {F1, . . . , F8} is preserved under monodromy (although the curves themselves may be

permuted). Thus, we can compute the action of monodromy on N ′ by studying its action

on the curves Fi.

To find these curves, we begin by studying the configuration of divisors on a gen-

eral fibre Yp. Recall that Yp is isomorphic to Kum(E1 × E2), where E1 and E2 are elliptic

curves. There is a special configuration of 24 (−2)-curves on Kum(E1 × E2) arising from

the Kummer construction, that we shall now describe (here we note that we use the same

notation as [3, Definition 3.18], but with the roles of Gi and Hj reversed).

Let {x0, x1, x2, x3} and {y0, y1, y2, y3} denote the two sets of points of order 2 on E1

and E2, respectively. Denote by Gi and Hj (0 ≤ i, j ≤ 3) the (−2)-curves on Kum(E1 × E2)

obtained as the proper transforms of E1 × {yi} and {xj} × E2, respectively. Let Eij be the

exceptional (−2)-curve on Kum(E1 × E2) associated to the point (xj, yi) of E1 × E2. This

gives 24 curves, which have the following intersection numbers:

Gi.Hj = 0,

Gk.Eij = δik,

Hk.Eij = δ jk.

Definition 4.3. The configuration of 24 (−2)-curves

{Gi, Hj, Eij : 0 ≤ i, j ≤ 3}
is called a double Kummer pencil on Kum(E1 × E2). �
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Remark 4.4. Note that there may be many distinct double Kummer pencils on

Kum(E1 × E2). However, if E1 and E2 are non-isogenous, Oguiso [20, Lemma 1] shows

that any two double Kummer pencils are related by a symplectic automorphism on

Kum(E1 × E2). �

Clingher and Doran [3, Section 3.4] identify such a pencil on the resolved quotient

of an M-polarized K3 surface. We will study this pencil on a fibre of Y and, by studying

the action of monodromy on it, derive the action of monodromy on the curves Fi.

By the discussion in Section 4.2, the M-polarization structure on Xp defines an

elliptic fibration Θ2 on it, which is compatible with the Nikulin involution. Furthermore,

as X is an M-polarized family, this elliptic fibration extends to all fibres of X and is com-

patible with the fibrewise Nikulin involution. Therefore, Θ2 induces an elliptic fibration

Ψ on Yp which extends uniquely to all fibres of Y, so Ψ must be preserved under the

action of monodromy around loops in U .

Using the same notation as in [3, Diagram (26)], we may label some of the (−2)-

curves in the fibration Ψ as follows:

R1• R2•

��
��

�
F1•

��
��

�

R3•

��
��

�

R5• R6• R7• R8• R9• S̃1•

��
��

�

R4• F2•

Here R1 is the section of Ψ given uniquely as the image of the two sections of Θ2 and the

remaining curves form the I ∗
6 fibre. Note that the Ri and S̃1 are uniquely determined by

the structure of Ψ , so must be invariant under the action of monodromy around loops

in U . By the discussion in [3, Section 3.5], the curves F1 and F2 are two of the eight

exceptional curves that we seek, but are determined only up to permutation.

By the discussion in [3, Section 4.6], we may identify these curves with (−2)-

curves in a double Kummer pencil as follows: R1 = G2, R2 = E20, R3 = H0, R4 = E30,

R5 = E10, R6 = G1, R7 = E11, R8 = H1, R9 = E01, S̃1 = G0, F1 = E02 and F2 = E03. This gives:

Lemma 4.5. In the double Kummer pencil on Yp defined above, the action of monodromy

around loops in U must fix the 10 curves G0, G1, G2, H0, H1, E01, E10, E11, E20, E30. �
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We can improve on this result, but in order to do so we will need to make an

assumption:

Assumption 4.6. The fibration Ψ on Yp has six singular fibres of type I2. �

Remark 4.7. Recall from the discussion in Section 4.2 that this assumption is

equivalent to the assumption that the (a, b)-parameters of the M-polarized fibre Xp sat-

isfy a3 �= (b ± 1)2. �

Using this, we may now identify all eight of the curves Fi. From the discussion

above, we already know F1 = E02 and F2 = E03. [3, Section 3.5] shows that, under Assump-

tion 4.6, the remaining six Fi are the components of the six I2 fibres in Ψ that are disjoint

from the section R1 = G2.

Kuwata and Shioda [13, Section 5.2] explicitly identify these six I2 fibres in the

double Kummer pencil on Yp. We see that:

• the section G3 of Ψ is the unique section that intersects all six of F3, . . . , F8,

• the section H2 of Ψ intersects F1 and precisely three of F3, . . . , F8 (say F3,

F4, F5), and

• the section H3 of Ψ intersects F2 and the other three F3, . . . , F8 (say F6, F7, F8).

Combining this with Lemma 4.5 and the fact that the structure of Ψ is preserved

under monodromy, we obtain

Proposition 4.8. In addition to fixing the 10 curves from Lemma 4.5, the action of mon-

odromy around a loop in U must also fix G3 and either

(1) fix both F1 = E02 and F2 = E03, in which case H2 and H3 are also fixed and the

sets {F3, F4, F5} and {F6, F7, F8} are both preserved, or

(2) interchange F1 = E02 and F2 = E03, in which case H2 and H3 are also swapped

and the sets {F3, F4, F5} and {F6, F7, F8} are interchanged. �

Whether the action of monodromy around a given loop fixes or exchanges

F1 = E02 and F2 = E03 may be calculated explicitly. Recall that the curves {F3, . . . , F8}
appear as components of the I2 fibres in the fibration Ψ on Yp. Let x be an affine param-

eter on the base P1
x of the fibration Ψ on Yp, chosen so that the I ∗

6 -fibre occurs at x = ∞.

Then the locations of the I2 fibres are given explicitly by [3, Proposition 4.7]: they lie at
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the roots of the polynomials (P (x) ± 1), where

P (x) := 4x3 − 3ax − b,

for a and b the (a, b)-parameters associated to the M-polarized K3 surface Xp.

Without loss of generality, we may say that {F3, F4, F5} appear in the I2 fibres

occurring at roots of (P (x) − 1) and {F6, F7, F8} appear in the I2 fibres occurring at roots

of (P (x) + 1). We thus have:

Corollary 4.9. Case (1) (resp. (2)) of Proposition 4.8 holds for monodromy around a given

loop if and only if that monodromy preserves the set of roots of (P (x) + 1) (resp. switches

the sets of roots of the polynomials (P (x) + 1) and (P (x) − 1)). �

If Case (2) of Proposition 4.8 holds for some loop in U , we note that the Nikulin

lattice is not fixed under monodromy around that loop. This presents an obstruction to

Y admitting an N ′-polarization. To resolve this we may pullback Y to a double cover of

U , after which Case (1) of the lemma will hold around all loops and the curves F1 = E02,

F2 = E03, H2 and H3 will all be fixed under monodromy.

Given this, we may safely assume that Case (1) holds around all loops in U , so

F1 and F2 are fixed under monodromy and the sets {F3, F4, F5} and {F6, F7, F8} are both

preserved. All that remains is to find whether monodromy acts to permute F3, . . . , F8

within these sets.

Proposition 4.10. Assume that the action of monodromy around all loops in U fixes

both F1 and F2 (i.e., Case (1) of Proposition 4.8 holds around all loops in U ). Then the

action of monodromy around a loop in U permutes {F3, F4, F5} (resp. {F6, F7, F8}) if and

only if it permutes the roots of (P (x) − 1) (resp. (P (x) + 1)). �

Proof. As {F3, F4, F5} appear in the I2 fibres occurring at roots of (P (x) − 1) and

{F6, F7, F8} appear in the I2 fibres occurring at roots of (P (x) + 1), they are permuted

if and only if the corresponding roots of (P (x) − 1) and (P (x) + 1) are permuted. �

Monodromy around a loop thus acts on {F3, F4, F5} and {F6, F7, F8} as a permuta-

tion in S3 × S3. Taken together, the permutations corresponding to monodromy around

all loops generate a subgroup H of S3 × S3.

Therefore, in order to obtain a N ′-polarization on Y, we need to pull every-

thing back to a |H |-fold cover f : V → U . This cover is constructed as follows: the |H |
preimages of the point p∈ U are labelled by permutations in H and, if γ is a loop in U ,
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monodromy around f−1(γ ) acts on these labels as composition with the corresponding

permutation. This action extends to an action of H on the whole of V . In fact, we have:

Theorem 4.11. Let f : V → U be the cover constructed above and let Y ′ → V denote the

pull-back of Y → U . Then Y ′ is a N ′-polarized family, where N ′ is the generic Néron-

Severi lattice of Y, so we can undo the Kummer construction on Y ′. Furthermore, the

deck transformation group of f is a subgroup G of S6 given by

• If Case (1) of Proposition 4.8 holds around all loops in U , then G = H .

• If Case (2) of Proposition 4.8 holds around some loop in U , then there is an

exact sequence 1 → H → G → C2 → 1, where C2 denotes the cyclic group of

order 2 �

Remark 4.12. We note that in the second case there does not seem to be any reason

to believe that G ∼= H � C2 in general. Whilst we do not know of any explicit examples

where this fails, it does not seem to be inconsistent with the theory as presented. �

Proof. Let Y′
p denote one of the preimages of Yp under the pullback. Then the argument

above shows that each of the eight curves Fi extends uniquely to all smooth fibres of Y ′.

Thus the Nikulin lattice KNik is preserved under monodromy and so, by Corollary 3.2, N ′

is also. Therefore, Y ′ is a N ′-polarized family and, by Proposition 4.1, we may undo the

Kummer construction on Y ′.

It just remains to verify the statements about the group G. Note that G can be

seen as a subgroup of S6, given by permutations of the divisors {F3, . . . , F8}, and that

H is the subgroup of G given by those permutations that preserve the sets {F3, F4, F5}
and {F6, F7, F8}. If Case (1) of Proposition 4.8 holds around all loops in U , then all per-

mutations in G preserve the sets {F3, F4, F5} and {F6, F7, F8}, so G = H . If Case (2) of

Proposition 4.8 holds around some loop in U then H has index 2 in G, so it must be a

normal subgroup with quotient G/H ∼= C2. �

Corollary 4.13. Y is a minimally (N ′, G)-polarized family of K3 surfaces, where G is the

group from Theorem 4.11. �

Proof. We just need to show that G is minimal. Note that G was constructed explicitly

as the permutation group of the divisors {F1, . . . , F8} under monodromy. Furthermore,

it is clear from the construction that any permutation in G is induced by monodromy

around some loop in U . So αN ′ is surjective and G is minimal. �
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Remark 4.14. As the group G from Theorem 4.11 is minimal, it will be a subgroup of

the group O(N⊥)∗/O(N⊥(2))∗ from Proposition 4.2. �

4.4 The generically M-polarized case

Suppose now that we are in the case where a general fibre Xp of X has NS(Xp) ∼= M. In

this case, we have the following version of Proposition 4.2.

Proposition 4.15. Suppose that X is an M-polarized family of K3 surfaces with general

fibre Xp satisfying NS(Xp) ∼= M. Then the resolved quotient Y ∼= X̃ /β of X by the fibre-

wise Nikulin involution is a (not necessarily minimally) (N ′, G)-polarized family of K3

surfaces, where G ∼= (S3 × S3) � C2. �

Proof. Recall that M⊥ is isomorphic to H⊕2. The proposition will follow from Proposi-

tion 4.2 if we can show that

O(H⊕2)∗/O(H⊕2(2))∗ ∼= (S3 × S3) � C2.

This quotient is just Aut(AH⊕2(2)). To see this, note that O(H⊕2)∗ is isomorphic to

O(H⊕2), since AH⊕2 is the trivial group, and O(H⊕2) is isomorphic to O(H⊕2(2)), hence

O(H⊕2(2))/O(H⊕2(2))∗ ∼= O(H⊕2)∗/O(H⊕2(2))∗.

By a standard lattice theoretic fact (see, for example, [18, Theorem 3.6.3]), O(H⊕2(2))

maps surjectively onto Aut(AH⊕2(2)). The group O(H⊕2)∗/O(H2(2))∗ is thus isomorphic to

Aut(AH⊕2(2)). According to [12, Lemma 3.5] this group is isomorphic to (S3 × S3) � C2. �

Remark 4.16. The results of Section 4.3 give an immediate interpretation for this group:

the two S3 factors correspond to permutations of the two sets of divisors {F3, F4, F5} and

{F6, F7, F8}, whilst the C2 corresponds to the action which interchanges these two sets

(and also swaps F1 and F2). �

Example 4.17. In [4], the family of three-folds Y1 that realize the 14th case variation

of Hodge structure admit torically induced fibrations by M-polarized K3 surfaces with

general fibre Xp satisfying NS(Xp) ∼= M. In [4, Section 7.1], we apply the results of the

previous section to undo the Kummer construction for the resolved quotient W ∼= Ỹ1/β

of Y1 by the fibrewise Nikulin involution. It is an easy consequence of those calculations

that W is minimally (N ′, G)-polarized, for G ∼= (S3 × S3) � C2. �
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It turns out, however, that the 14th case is the only case from [9, Table 1]

that admits a torically induced M-polarized fibration with general fibre Xp satisfying

NS(Xp) ∼= M. In most other cases (see Theorem 5.10), the Néron-Severi lattice of the gen-

eral fibre is a lattice enhancement of M to a lattice

Mn := M ⊕ 〈−2n〉,

with 1 ≤ n≤ 4. In particular, note that Mn-polarized K3 surfaces are also M-polarized, so

the analysis of this section still holds. We will examine this case in the next section.

5 Three-folds Fibred by Mn-Polarized K3 Surfaces

In this section, we will specialize the analysis of Section 4 to the case where we have

a family X of Mn-polarized K3 surfaces. We will then apply this theory to study Mn-

polarized families of K3 surfaces arising from three-folds in the Doran-Morgan classifi-

cation [9, Table 1].

5.1 The groups G

We begin with the analog of Proposition 4.2 in the Mn-polarized case.

Proposition 5.1. Suppose that X is an Mn-polarized family of K3 surfaces with gen-

eral fibre Xp satisfying NS(Xp) ∼= Mn. Then the resolved quotient Y ∼= X̃ /β of X by the

fibrewise Nikulin involution is a (not necessarily minimal) (N ′, G)-polarized family of K3

surfaces, where N ′ is the generic Néron-Severi lattice of Y and

• if n= 1 then G = S3 × C2,

• if n= 2 then G = D8, the dihedral group of order 8,

• if n= 3 then G = D12, and

• if n= 4 then G = D8. �

Proof. This will follow from Proposition 4.2 if we can show that

O(M⊥
n )∗/O(M⊥

n (2))∗ ∼= G,

where G is as in each of the four cases in the statement of the proposition. We proceed

by obtaining generators for O(M⊥
n )∗ ∼= O(H ⊕ 〈2n〉)∗ and then determining their actions

on AH(2)⊕〈4n〉 to compute the group G.
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In the case n= 1, the generators of O(H ⊕ 〈2〉)∗ are

g1 =

⎛⎜⎜⎝
0 −1 0

−1 0 0

0 0 1

⎞⎟⎟⎠ , g2 =

⎛⎜⎜⎝
1 0 0

1 1 2

1 0 1

⎞⎟⎟⎠ , g3 =

⎛⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎠
whose induced actions on AH(2)⊕〈4〉 have orders 2, 3, and 2, respectively. One may check

that g1g2g1 = g2
2, and hence g1 and g2 generate a copy of S3. It is clear that g3 commutes

with g1 and g2, so the subgroup of Aut(AH(2)⊕〈4〉) generated by g1, g2, and g3 is isomorphic

to S3 × C2.

In the case n= 2, the group O(H ⊕ 〈4〉)∗ has a non-minimal set of generators

g1 =

⎛⎜⎜⎝
1 0 0

2 1 4

1 0 1

⎞⎟⎟⎠ , g2 =

⎛⎜⎜⎝
1 2 4

2 1 4

−1 −1 −3

⎞⎟⎟⎠ , g3 =

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎠ .

Let the automorphism induced on AH(2)⊕〈8〉 by gi be denoted hi. Then h2
1 = h2

2 = h2
3 = Id. We

check h1h3 has order 4 and it is easy to see that

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore, h1 and h1h3 generate a copy of D8. Finally, one checks that (h1h3)h1 = h2, so

the group of automorphisms 〈h1, h2, h3〉 is isomorphic to D8.

In the case when n= 3, we may calculate generators of O(H ⊕ 〈6〉)∗ to find

g1 =

⎛⎜⎜⎝
1 0 0

3 1 6

1 0 1

⎞⎟⎟⎠ , g2 =

⎛⎜⎜⎝
1 3 6

3 4 12

−1 −2 −5

⎞⎟⎟⎠ , g3 =

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎠ .

As before, let the corresponding automorphisms of H(2) ⊕ 〈12〉 be called h1, h2, and h3.

We calculate that

h2
1 = h3

2 = h2
3 = (h1h3)

6 = Id.

Furthermore, (h1h3)
2 = h2 and

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore, the group 〈h1, h2, h3〉 is isomorphic to D12.
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In the case when n= 4, we may calculate generators of O(H ⊕ 〈8〉)∗ to obtain

g1 =

⎛⎜⎜⎝
1 0 0

4 1 8

1 0 1

⎞⎟⎟⎠ , g2 =

⎛⎜⎜⎝
9 4 24

4 1 8

−3 −1 −7

⎞⎟⎟⎠ , g3 =

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎠ .

Once again, let the corresponding automorphisms of H(2) ⊕ 〈16〉 be called h1, h2, and h3.

We calculate that

h2
1 = h2

2 = h2
3 = Id.

We check that h1h2 = h2h1 and h3h2 = h2h3. Once again, we also have (h1h3)
2 = h2 and

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore, the group 〈h1, h2, h3〉 is isomorphic to D8. �

5.2 Some special families

There are some special families of Mn-polarized K3 surfaces that we can use to vastly

reduce the amount of work that we have to do to undo the Kummer construction for the

Mn-polarized cases from [9, Table 1].

We begin by noting that the moduli space MMn of Mn-polarized K3 surfaces is a

1-dimensional modular curve [7, Theorem 7.1]. Denote by UMn the open subset of MMn

obtained by removing the orbifold points.

Definition 5.2. Xn → UMn will denote an Mn-polarized family of K3 surfaces over UMn,

with period map UMn →MMn given by the inclusion and transcendental monodromy

group ΓXn = O(M⊥
n )∗. �

Remark 5.3. Examples of such families for any n are given by the restriction of the

special M-polarized family from [5, Theorem 3.1] to the Mn-polarized loci calculated

in [5, Section 3.2]. For n≤ 4, we will explicitly construct examples of such families in

Sections 5.4 and 5.5. �

Let Yn → UMn be the family of Kummer surfaces associated to Xn → UMn and let

Kn be the Néron-Severi lattice of the Kummer surface associated to a K3 surface with

Shioda-Inose structure and Néron-Severi lattice Mn.

Suppose now that we can undo the Kummer construction for Yn, by pulling back

to a cover C Mn →MMn. Then if we know that an Mn-polarized family of K3 surfaces
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X → U is the pullback of a family Xn → UMn by the period map U →MMn (which, in the

Mn-polarized case, is more commonly known as the generalized functional invariant,

see [8]), then we can undo the Kummer construction for the associated family of Kummer

surfaces Y → U by pulling back to the fibre product U ×MMn
C Mn.

Thus the aim of this section is to find covers C Mn →MMn such that the pullbacks

of Yn to C Mn are Kn-polarized (and so, by Proposition 4.1, the Kummer construction can

be undone on these pull-backs).

Lemma 5.4. The families Yn are minimally (Kn, G)-polarized, where G is the group

G = O(M⊥
n )∗/O(M⊥

n (2))∗ �

Proof. This follows from Proposition 4.2 and the assumption that the families Xn have

transcendental monodromy groups O(M⊥
n )∗. �

As MMn = O(M⊥
n )∗ \ PMn, this lemma suggests that, in order to undo the action

of G, we should define C Mn to be the curve C Mn := O(M⊥
n (2))∗ \ PMn. This curve may be

constructed as a modular curve in the following way.

Recall that

Γ0(n) :=
{

γ ∈ SL2(Z) : γ ≡
(

∗ ∗
0 ∗

)
mod n

}

and

Γ (n) :=
{

γ ∈ SL2(Z) : γ ≡
(

1 0

0 1

)
mod n

}
.

By convention, Γ0(1) and Γ (1) are just the full modular group Γ = SL2(Z). We also have

Γ0(n)+ := Γ0(n) ∪ τnΓ0(n) ⊆ SL2(R)

where

τn =
(

0 −1/
√

n
√

n 0

)

is the Fricke involution. With this notation, we have MMn
∼= Γ0(n)+ \ H [7, Theorem 7.1].

For any lattice N, let PO(N) be defined as the cokernel of the obvious injection

±Id ↪→ O(N). Then we have the exact sequence

1 −→ {±Id} −→ O(N) −→ PO(N) −→ 1.

If N is a lattice of signature (1, n− 1) with a fixed primitive embedding into ΛK3 and Γ

and Γ ′ are two subgroups of O(N⊥), the quotients Γ \ PN and Γ ′ \ PN are the same if and
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only if Γ and Γ ′ have the same images in PO(N⊥), in which case Γ and Γ ′ are said to be

projectively equivalent.

By [7, Theorem 7.1], there is a map Rn, defined in the following proposition,

under which Γ0(n)+ is mapped to a subgroup of SO(M⊥
n ) that is projectively equivalent

to O(M⊥
n )∗.

Lemma 5.5. The group O(M⊥
n (2))∗ is projectively equivalent to the image of Γ (2) ∩ Γ0(2n)

under the map

Rn : SL2(R) −→ SOR(2, 1)

which is defined as (
a b

cn d

)
�−→

⎛⎜⎜⎝
a2 c2n 2acn

b2n d2 2bdn

ab cd bcn+ ad

⎞⎟⎟⎠
(see the related map in [11, Equation 5.6]). �

Proof. We know that the preimage of O(M⊥
n )∗ under Rn is the subgroup Γ0(n)+ and that

O(M⊥
n (2))∗ ⊆ O(M⊥

n )∗ is the subgroup which fixes the group AM⊥
n (2). Since Rn maps the

Fricke involution to the automorphism⎛⎜⎜⎝
0 1 0

1 0 0

0 0 −1

⎞⎟⎟⎠ ,

which is never trivial or −Id on AM⊥
n (2), we may automatically restrict to the image of

Γ0(n). Automorphisms which fix AM⊥
n (2) are matrices of the form⎛⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎠
with a12, a21, a31, a32 ≡ 0 mod 2, a13, a23,≡ 0 mod 2n, a11, a22 ≡ 1 mod 2 and a33 ≡ 1

mod 2n. Thus a2 ≡ d2 ≡ 1 mod 2 and hence a, d≡ 1 mod 2. Using this and the fact that

ab ≡ cd≡ 0 mod 2, we find that b ≡ c ≡ 0 mod 2. Therefore, the matrices which map to

O(M⊥
n (2))∗ are precisely those which satisfy(

a b

cn d

)
≡
(

∗ ∗
0 ∗

)
mod 2n
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and (
a b

cn d

)
≡
(

1 0

0 1

)
mod 2.

In other words elements of the group Γ0(2n) ∩ Γ (2). �

We therefore have

C Mn
∼= (Γ0(2n) ∩ Γ (2)) \ H.

Let f : C Mn →MMn be the natural map coming from the modular description of each

curve.

Proposition 5.6. If n �= 1, the pullback f∗Yn of Yn to C Mn is Kn-polarized. �

Proof. The transcendental monodromy of the pullback f∗Xn is a group Γ contained

in O(M⊥
n )∗ with quotient space Γ \ PMn

∼= (Γ0(2n) ∩ Γ (2)) \ H. By Lemma 5.5, the group

O((M⊥
n )(2))∗ has this property.

Suppose that there is another subgroup Γ ′ of O(M⊥
n )∗ with this property. Let

γ ∈ Γ be any element and let g ∈ PO(M⊥
n ) be its image. Since Γ and Γ ′ are projectively

equivalent, there is some γ ′ ∈ Γ ′ which maps to g.

If Γ and Γ ′ are not the same group, we can find some g ∈ PO(M⊥
n ) such that there

are γ ∈ Γ and γ ′ ∈ Γ which map to g yet have γ �= γ ′. Thus γ −1γ ′ �= Id but γ −1γ ′ maps to

the identity in PO(M⊥
n ). However, for n �= 1, [11, Lemma 1.15] shows that the kernel of

O(M⊥
n )∗ → PO(Mn) is trivial. This is a contradiction, hence Γ = Γ ′.

Therefore, the monodromy group of the family f∗Xn is O(M⊥
n (2))∗ ⊆ O(M⊥

n )∗. By

Corollary 3.4, the associated family of Kummer surfaces then has transcendental mon-

odromy O(M⊥
n (2))∗ as well. Since this group is contained in the kernel of αT(Yn), we con-

clude that Yn is Kn-polarized. �

Remark 5.7. This discussion may be rephrased in the following way. The quotient-

resolution procedure taking Xn to Yn defines an isomorphism MMn

∼−→M(Kn,G), where

G is the group from Lemma 5.4. The cover C Mn →MMn is then precisely the cover

MKn →M(Kn,G). �

In the case where n= 1 this proof fails, as the kernel of the map O(M⊥
n )∗ →

PO(Mn) is nontrivial. It will therefore be necessary for us to do a little more work in

order to find a cover of MM1 on which the pullback of Y1 is lattice polarized.

The family X1 is a family of smooth K3 surfaces over P1 \ {0, 1,∞}. Let g1 and g2

in O(H ⊕ 〈2〉)∗ be as in the n= 1 case of the proof of Proposition 5.1: then g1 describes
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monodromy around 1 and g2 describes monodromy around ∞, and monodromy around

0 is, as usual, given by g1g−1
2 . Around the point 1, the order of monodromy is 2, around

0, the order of monodromy is 6, and around ∞, the order of monodromy is infinite.

The group Γ0(2) ∩ Γ (2) is just Γ (2), since Γ (2) ⊆ Γ0(2), and the map from

C M1 = Γ (2) \ H to MM1 = Γ0(1)+ \ H ∼= Γ0(1) \ H is just the j-function of the Legendre fam-

ily of elliptic curves. This map may be written as a rational function,

j(t) = (t2 − t + 1)3

27t2(t − 1)2
.

The function j(t) has three ramification points of order 2 over 1, three ramification

points of order 2 over ∞ and two ramification points of order 3 over 0. Looking back

at the proof of Proposition 5.1, we see that the monodromy around the preimages of

1 and ∞ must act as h2
1 = Id and h2

2 = Id on AH(2)⊕〈4〉. However, monodromy around the

preimages of 0 acts on AH(2)⊕〈4〉 as (h1h2)
2 = −Id. Therefore, in order for monodromy to

act trivially on AH(2)⊕〈4〉, we must take a further double cover of C M1 = Γ (2) \ H = P1
t ram-

ified along the roots of t2 − t + 1 = 0. We thus have the following proposition.

Proposition 5.8. If n= 1, there is a double cover C ′
M1

of C M1 on which the pull-back of

the family Yn is K1-polarized. �

The maps f : C Mn →MMn will be calculated in the next section.

5.3 Covers for small n

In this section, we will explicitly compute the maps f : C Mn →MMn for n≤ 4. To do this,

we decompose the map f = f1 ◦ f2 ◦ f3, where

f1 : Γ0(n) \ H −→ Γ0(n)+ \ H,

f2 : Γ0(2n) \ H −→ Γ0(n) \ H,

f3 : C Mn
∼= (Γ0(2n) ∩ Γ (2)) \ H −→ Γ0(2n) \ H.

5.3.1 The case n= 1

The rational modular curves Γ0(1)+ \ H and Γ0(1) \ H are isomorphic and have two ellip-

tic points of orders 2 and 3 along with a single cusp. The map f2 is a triple cover ramified

with index 3 over the elliptic point of order 3 and indices (2, 1) over the elliptic point

of order 2 and the cusp. Γ0(2) \ H is a rational modular curve with an elliptic point of
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order 2 and two cusps. Finally, f3 is a double cover ramified over the elliptic point and

the cusp that is not a ramification point of f2 and C M1 is a rational modular curve with

three cusps.

We thus see that f : C M1 → Γ0(1)+ \ H is a 6-fold cover ramified with indices 2

and 3 at all points over the elliptic points of order 2 and 3, respectively, and index 2 at

all points over the cusp. It is easy to see that the deck transformation group of f is S3.

However, from Proposition 5.8, we need to take a further double cover of C M1

before we can undo the Kummer construction. This double cover is ramified over the two

preimages under f of the elliptic point of order 3. The composition C ′
M1

→ Γ0(1)+ \ H is a

12-fold cover ramified with indices 2 and 6 at all points over the elliptic points of order 2

and 3, respectively and index 2 at all points over the cusp. It is easy to see that the deck

transformation group of this composition is S3 × C2, as expected from Proposition 5.1.

5.3.2 The case n= 2

The rational modular curve Γ0(2)+ \ H has two elliptic points of orders 2 and 4 and

a single cusp. The map f1 is a double cover ramified over the two elliptic points and

Γ0(2) \ H is a rational modular curve with a single elliptic point of order 2 and two

cusps. The map f2 is then a double cover ramified over the elliptic point and one of the

cusps, and Γ0(4) \ H is a rational modular curve with three cusps. Finally, f3 is a double

cover ramified over the two cusps that are not ramification points of f2 and C M2 is a

rational modular curve with four cusps.

We thus see that f : C M2 → Γ0(2)+ \ H is an eight-fold cover ramified with indices

2 and 4 at all points over the elliptic points of order 2 and 4, respectively, and index 2 at

all points over the cusp. It is easy to see that the deck transformation group of f is D8,

as expected from Proposition 5.1.

5.3.3 The case n= 3

The rational modular curve Γ0(3)+ \ H has two elliptic points of orders 2 and 6 and

a single cusp. The map f1 is a double cover ramified over the two elliptic points and

Γ0(3) \ H is a rational modular curve with one elliptic point of order 3 and two cusps.

The map f2 is then a triple cover ramified with index 3 over the elliptic point and indices

(2, 1) over each of the cusps, and Γ0(6) \ H is a rational modular curve with four cusps.

Finally, f3 is a double cover ramified over the two cusps that are not ramification points

of f2 and C M3 is a rational modular curve with six cusps.

We thus see that the map f : C M3 → Γ0(3)+ \ H is an 12-fold cover ramified with

indices 2 and 6 at all points lying over the elliptic points of orders 2 and 6, respectively,

 at U
niversity of N

ebraska-L
incoln L

ibraries on June 7, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


12302 C. F. Doran et al.

and index 2 at all points over the cusp. It is easy to see that the deck transformation

group of f is D12, as expected from Proposition 5.1.

5.3.4 The case n= 4

The rational modular curve Γ0(4)+ \ H has an elliptic point of order 2 and two cusps. The

two cusps are distinguished by their widths, which are 1 and 2. The map f1 is a double

cover ramified over the elliptic point and the cusp of width 2. The rational modular curve

Γ0(4) \ H has three cusps of widths (4, 1, 1). The map f2 is then a double cover ramified

with index 2 over the cusp of width 4 and one of the cusps of width 1. The rational

modular curve Γ0(8) \ H has four cusps of widths (8, 2, 1, 1). Finally, f3 is a double cover

ramified over the two cusps of width 1. The curve C M4 is a rational modular curve with

six cusps of widths (8, 8, 2, 2, 2, 2).

We thus see that f : C M4 → Γ0(4)+ \ H is an eight-fold cover ramified with index 2

at all points lying over the elliptic point and indices 2 and 4 at all points over the cusps

of widths 1 and 2, respectively. It is easy to see that the deck transformation group of f

is D8, as expected from Proposition 5.1.

Remark 5.9. Note that if n �= 1 we may also find a cover of Yn → UMn that is Kn-polarized

using the method of Section 4.3 (if n= 1 then this method cannot be used, as Assump-

tion 4.6 fails; see Section 5.5). In the three cases with n≥ 2 above it may be seen that this

cover agrees with C Mn. �

5.4 Application to the 14 cases

We now apply this theory to undo the Kummer construction for families of Kummer

surfaces arising from M-polarized fibrations on the 14 cases in [9, Table 1].

Examining these cases, we find Mn-polarized K3 fibrations with 2 ≤ n≤ 4 on nine

of them, listed in the appropriate sections of Table 1. In this table, the first column gives

the polarization lattice M or Mn, the second gives the mirrors of the three-folds that have

M- or Mn-polarized K3 fibrations, and the third states whether or not these fibrations

are torically induced (the meanings of the fourth and fifth columns will be discussed

later). More precisely, we have the following theorem.

Theorem 5.10. There exist K3 fibrations with Mn-polarized generic fibre, for 2 ≤ n≤ 4,

on nine of the three-folds in [9, Table 1], given by the mirrors of those listed in the

appropriate sections of Table 1. Furthermore, if X → P1 denotes one of these fibrations

and U ⊂ P1 is the open set over which the fibres of X are nonsingular, then the restriction
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Table 1. Lattice polarized K3 fibrations on the three-folds from [9, Table 1]

Lattice Mirror three-fold Toric? (i, j) Arithmetic/thin

M1 WP(1, 1, 1, 1, 2)[6] Yes (1, 2) Arithmetic

WP(1, 1, 1, 1, 4)[8] Yes (1, 3) Thin

WP(1, 1, 1, 2, 5)[10] Yes (2, 3) Arithmetic

WP(1, 1, 1, 1, 1, 3)[2, 6]∗ Yes (1, 1) Thin

WP(1, 1, 1, 2, 2, 3)[4, 6]∗ Yes (2, 2) Arithmetic

M2 P4[5] Yes (1, 4) Thin

WP(1, 1, 1, 1, 2)[6] Yes (2, 4) Arithmetic

WP(1, 1, 1, 1, 4)[8] Yes (4, 4) Thin

P5[2, 4] Yes (1, 1) Thin

WP(1, 1, 1, 1, 2, 2)[4, 4] Yes (2, 2) Arithmetic

M3 P4[5] No (2, 3) Thin

P5[2, 4] No (1, 3) Thin

P5[3, 3] Yes (1, 2) Arithmetic

WP(1, 1, 1, 1, 1, 2)[3, 4]∗ Yes (2, 2) Arithmetic

P6[2, 2, 3] Yes (1, 1) Thin

M4 P5[2, 4] No (2, 2) Thin

P6[2, 2, 3] No (1, 2) Thin

P7[2, 2, 2, 2] Yes (1, 1) Thin

M WP(1, 1, 1, 1, 4, 6)[2, 12] Yes (1, 1) Thin

X |U → U agrees with the pullback of a family Xn (see Definition 5.2) by the generalized

functional invariant map U →MMn. The family X |U → U is thus an Mn-polarized family

of K3 surfaces. �

Remark 5.11. The M1-polarized cases in the first section of Table 1 will require some

extra work, so they will be discussed separately in Section 5.5. The 14th case of [4] has

already been discussed in Example 4.17, where we recalled that the family of three-

folds Y1 realizing the 14th case variation of Hodge structure admit torically induced

M-polarized K3 fibrations. By [4, Section 8.2], these three-folds Y1 can be thought of as

mirror to complete intersections WP(1, 1, 1, 1, 4, 6)[2, 12]. This case is included in the

final row of Table 1. �

Remark 5.12. To check which of the fibrations listed in Table 1 are torically induced,

one may use the computer software Sage to find all fibrations of the toric ambient spaces

by toric subvarieties that induce fibrations of the Calabi-Yau three-fold by M-polarized
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K3 surfaces. The resulting list may be compared with the list of fibrations in Table 1,

giving the third column of this table. This also proves that Table 1 contains all torically

induced fibrations of the Calabi-Yau three-folds from [9, Table 1] by M-polarized K3

surfaces. �

We will prove Theorem 5.10 by explicit calculation: we find families Xn satisfying

Definition 5.2 and show that they pullback to give the families X |U under the generalized

functional invariant maps.

In each case, we will see that the generalized functional invariant map is com-

pletely determined by the pair of integers (i, j) from the fourth column of Table 1. In

fact, we find that it is an (i + j)-fold cover of MMn
∼= Γ0(n)+ \ H having exactly four ram-

ification points: one of order (i + j) over the cusp (or, in the M4-polarized case, the cusp

of width 1), two of orders i and j over the elliptic point of order �= 2 (or, in the M4-

polarized case, the cusp of width 2), and one of order 2 which varies with the value of

the Calabi-Yau deformation parameter.

We thus have everything we need to undo the Kummer construction in the fam-

ilies arising as the resolved quotients of the families X |U from Theorem 5.10. By the

discussion in Section 5.2, in order to undo the Kummer construction we just need to pull-

back to the cover C Mn ×MMn
U , where the map C Mn →MMn is as calculated in Section 5.3

and U →MMn is the generalized functional invariant map, described above.

5.4.1 M2-polarized families

We begin the proof of Theorem 5.10 with the M2 case. Note first that an M2-polarized K3

surface is mirror (in the sense of [7]) to a 〈4〉-polarized K3 surface, which is generically

a hypersurface of degree 4 in P3.

By the Batyrev-Borisov mirror construction [1], the mirror of a degree 4 hyper-

surface in P3 is a hypersurface in the toric variety polar dual to P3. The intersection of

this hypersurface with the maximal torus is isomorphic to the locus in (C×)3 defined by

the rational polynomial

x1 + x2 + x3 + λ

x1x2x3
= 1, (3)

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of degree

4 in P3, given by the equation

λw4 + xyz(x + y + z − w) = 0,

where (w, x, y, z) are coordinates on P3.
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Consider the family of surfaces over C obtained by varying λ. By resolving the

singularities of the generic fibre and removing any singular fibres that remain, we obtain

a family of K3 surfaces X2 → U2 ⊂ C. Dolgachev [7, Example (8.2)] exhibited elliptic fibra-

tions on the K3 fibres of X2 and used them to give a set of divisors generating the lattice

M2. It can be seen from the structure of these elliptic fibrations that these divisors are

invariant under monodromy, so there can be no action of monodromy on M2. We thus

see that X2 is an M2-polarized family of K3 surfaces.

The action of transcendental monodromy on X2 was calculated by Narumiya and

Shiga [19] (note that our parameter λ is different from theirs: our λ is equal to μ4 or
u

256 from their paper). In [19, Section 4], they find that the fibre Xλ of X2 is smooth

away from λ ∈ {0, 1
256 } and the monodromy action has order 2 around λ = 1

256 , order 4

around λ = ∞, and infinite order around λ = 0. Furthermore, they show [19, Remark 6.1]

that the monodromy of X2 generates the (2, 4,∞) triangle group (which is isomorphic

to Γ 0(2)+ ∼= O(M⊥
2 )∗), so the period map of X2 → U2 must be injective. Thus the family

X2 → U2 satisfies Definition 5.2.

We can use the local form (3) of the family X2 to find M2-polarized families of K3

surfaces on the three-folds from [9, Table 1]. This is illustrated by the following example.

Example 5.13. The first M2-polarized case from Table 1 is the mirror to the quintic

three-fold. By the Batyrev-Borisov construction, on the maximal torus we may write

this mirror as the locus in (C×)4 defined by the rational polynomial

x1 + x2 + x3 + x4 + A

x1x2x3x4
= 1,

where A∈ C is the Calabi-Yau deformation parameter. Consider the fibration induced

by projection onto the x4 coordinate; for clarity, we make the substitution x4 = t. If we

further substitute xi �→ xi(1 − t) for 1 ≤ i ≤ 3 and rearrange, we obtain

x1 + x2 + x3 + A

x1x2x3t(1 − t)4
= 1.

But, from the local form (3), it is clear that this describes an M2-polarized family of K3

surfaces with

λ = A

t(1 − t)4
.

This is the generalized functional invariant map of the fibration. Note that it is ramified

to orders 1 and 4 over the order 4 elliptic point λ = ∞, order 5 over the cusp λ = 0, and

order 2 over the variable point λ = 55 A
28 , giving (i, j) = (1, 4). �
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Similar calculations may be performed in the other M2-polarized cases from

Table 1. We find that the generalized functional invariants are given by

λ = Aui+ j

ti(u− t) j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration, (i, j)

are as in Table 1, and A is the Calabi-Yau deformation parameter.

5.4.2 M3-polarized families

Here we follow a similar method to the M2-polarized case. An M3-polarized K3 surface

is mirror to a 〈6〉-polarized K3 surface, which may be realized as a complete intersection

of type (2, 3) in P4.

By the Batyrev-Borisov construction, on the maximal torus we may express the

mirror of a (2, 3) complete intersection in P4 as the locus in (C×)3 defined by the rational

polynomial

x1 + λ

x1x2x3(1 − x2 − x3)
= 1, (4)

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of bide-

gree (2, 3) in P1 × P2, given by the equation

λs2z3 + r(r − s)xy(z − x − y) = 0,

where (r, s) are coordinates on P1 and (x, y, z) are coordinates on P2.

Consider the family of surfaces over C obtained by varying λ. By resolving the

singularities of the generic fibre and removing any singular fibres that remain, we obtain

a family of K3 surfaces X3 → U3 ⊂ C. We now show that X3 is an M3-polarized family that

satisfies Definition 5.2.

There is a natural elliptic fibration on the fibres of X3, obtained by projecting

onto the P1 factor. This elliptic fibration has two singular fibers of Kodaira type I V∗ at

r = 0 and r = s, a fibre of type I6 at s = 0, two fibres of type I1 and a section. In fact, one

sees easily that the hypersurface obtained by intersecting with z= 0 splits into three

lines, which project with degree 1 onto P1 and hence are all sections. If we choose one of

these sections as a zero section, the other two are three-torsion sections and generate a

subgroup of the Mordell-Weil group of order 3.

One can check that the lattice spanned by components of reducible fibers and

these torsion sections is a copy of the lattice M3 inside of NS(Xλ), for each fiber Xλ of

X3 → U3. Since the three-torsion sections are individually fixed under monodromy, there
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Families of Lattice Polarized K3 Surfaces 12307

can be no monodromy action on this copy of M3 in NS(Xλ). We thus see that X3 is an

M3-polarized family of K3 surfaces.

Next we calculate the transcendental monodromy of this family to show that it

satisfies Definition 5.2.

Lemma 5.14. U3 is the open subset given by removing the points λ ∈ {0, 1
108 } from C.

Transcendental monodromy of the family X3 → U3 has order 2 around λ = 1
108 , order

dividing 6 around λ = ∞ and infinite order around λ = 0. �

Proof. The discriminant of the elliptic fibration on a fibre Xλ of X3 vanishes for λ ∈
{0, 1

108 ,∞}, giving the locations of the singular K3 surfaces that are removed from the

family X3. At λ = 1
108 the two singular fibres of type I1 collide so that the K3 surface

Xλ= 1
108

has a single node. Thus there is a vanishing class of square (−2) associated to the

fibre Xλ= 1
108

and monodromy around this fibre is a reflection across this class. Therefore

monodromy around λ = 1
108 has order 2.

We will use this to indirectly calculate the monodromies around other points.

After base change λ = μ3 and a change in variables, one finds that the λ = ∞ fiber can

be replaced with an elliptically fibred K3 surface with three singular fibers of type I V∗.

Since a generic member of the family X3 has Néron-Severi rank 19, this fiber can only

have a single node, so again the monodromy transformation around it must be of order

at most 2. Hence, monodromy around λ = ∞ has order dividing 6.

To determine monodromy around the final point, it is enough to note that the

moduli space of Mn-polarized K3 surfaces has a cusp, and the preimage of this cusp

under the period map must also have monodromy of infinite order. Since the points

λ ∈ { 1
108 ,∞} are of finite order and every other fiber is smooth, λ = 0 must map to the

cusp under the period map and therefore has infinite order monodromy. �

As a result we find:

Proposition 5.15. The period map of X3 → U3 is injective and the subgroup of O(M⊥
3 )∗

generated by monodromy transformations is O(M⊥
3 )∗ itself. The family X3 thus satisfies

Definition 5.2. �

Proof. Notice first that, by Lemma 5.14, the monodromy group of X3 is isomorphic to

a triangle group of type (2, d,∞) for d= 2, 3, or 6 and contained in O(M⊥
3 )∗. It is well

known that O(M⊥
3 )∗ ∼= Γ0(3)+ is a (2, 6,∞) triangle group, and since the period map is of

finite degree, the monodromy group of X3 is of finite index in Γ0(3)+. Thus we need to
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show that the only finite index embedding of a (2, d,∞) triangle group into the (2, 6,∞)

triangle group is the identity map from the (2, 6,∞) triangle group to itself. But this is

calculated in [28]. �

As before, we can use the local form (4) of the family X3 to find M3-polarized

families of K3 surfaces on the three-folds from [9, Table 1]. We find that the generalized

functional invariants are given by

λ = Aui+ j

ti(u− t) j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration, (i, j)

are as in Table 1, and A is the Calabi-Yau deformation parameter.

5.4.3 M4-polarized families

We conclude the proof of Theorem 5.10 with the M4-polarized case. An M4-polarized K3

surface is mirror to an 〈8〉-polarized K3 surface, given generically as a complete inter-

section of type (2, 2, 2) in P5.

By the Batyrev-Borisov construction, on the maximal torus we may express the

mirror of a complete intersection of type (2, 2, 2) in P5 as the locus in (C×)3 defined by

the rational polynomial

x1 + λ

x2(1 − x2)x3(1 − x3)x1
= 1. (5)

This may be easily compactified to a singular hypersurface of multidegree (2, 2, 2) in

(P1)3 given by

λs2
1s2

2s2
3 − r1(s1 − r1)r2(s2 − r2)r3(s3 − r3) = 0,

where (ri, si) are coordinates on the ith copy of P1.

As above, we consider the family of surfaces over C obtained by varying λ. By

resolving the singularities of the generic fibre and removing any singular fibres that

remain, we obtain a family of K3 surfaces X4 → U4 ⊂ C. We now show that X4 is an M4-

polarized family that satisfies Definition 5.2.

Begin by noting that there is an S3 symmetry on X4 obtained by permuting copies

of P1. Furthermore, projection of (P1)3 onto any one of the three copies of P1 produces an

elliptic fibration on the K3 hypersurfaces. This elliptic fibration has a description very

similar to that of the elliptic fibration on X3. Generically it has two fibres of type I ∗
1 at

ri = 0 and ri = si, a fibre of type I8 at si = 0, and two fibres of type I1.
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This elliptic fibration has a four-torsion section. Using standard facts relating

the Néron-Severi group of an elliptic fibration to its singular fiber types and Mordell-

Weil group (see [14, Lecture VII]), we see that each fiber of X4 is polarized by a rank 19

lattice with discriminant 8. A little lattice theory shows that this must be the lattice M4.

The embedding of M4 into the Néron-Severi group must be primitive, otherwise we would

find full two-torsion structure, which is not the case. As in the case of X3, this embedding

of M4 is monodromy invariant, so X4 is an M4-polarized family of K3 surfaces.

Proposition 5.16. U4 is the open subset given by removing the points λ = {0, 1
64 } from C.

Transcendental monodromy of the family X4 → U4 has order 2 around λ = 1
64 and infinite

order around λ ∈ {0,∞}.
Furthermore, the period map of X4 → U4 is injective and the subgroup of O(M⊥

4 )∗

generated by monodromy transformations is O(M⊥
4 )∗ itself. The family X4 thus satisfies

Definition 5.2. �

Proof. As in the proof of Lemma 5.14, to see that fibers of X4 degenerate only when

λ ∈ {0, 1
64 ,∞}, it is enough to do a simple discriminant computation. The elliptic fibra-

tion described above is well-defined away from λ ∈ {0,∞} and the two I1 singular fibers

collide when λ = 1
64 . As before, this shows that monodromy has order 2 around λ = 1

64 .

To see that monodromies around λ ∈ {0,∞} have infinite order, we argue as fol-

lows. We have a period map from P1
λ to MM4 , the Baily-Borel compactification of the

period space of M4-polarized K3 surfaces. The monodromy of X4 is a (2, k, l) triangle

group for some choice of k, l, and lies inside of O(M⊥
4 )∗ ∼= Γ0(4)+ (which is a (2,∞,∞) tri-

angle group) as a finite index subgroup, since the period map is dominant. However, by

[28], the only (2, k, l) triangle group of finite index inside of the (2,∞,∞) triangle group

is the (2,∞,∞) triangle group itself (equipped with the identity embedding). Therefore,

the period map is the identity and monodromy around λ ∈ {0,∞} is of infinite order. �

As in the previous cases, we can use the local form (5) of the family X4 to find

M4-polarized families of K3 surfaces on the three-folds from [9, Table 1]. We find that

the generalized functional invariants are given by

λ = Aui+ j

ti(u− t) j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration, (i, j) are

as in Table 1, and A is the Calabi-Yau deformation parameter. This completes the proof

of Theorem 5.10.
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5.5 The case n= 1

It remains to address the case of three-folds from [9, Table 1] that are fibred by M1-

polarized K3 surfaces. Unfortunately, many of the results that we have proved so far do

not apply in this case: Assumption 4.6 does not hold (this follows easily from Remark 4.7

and the expressions for the (a, b, d)-parameters of M1-polarized K3 surfaces, below), so

the methods of Section 4.3 do not apply, and the torically induced fibrations of these

three-folds by M1-polarized K3 surfaces (computed with Sage) cannot all be seen as

pullbacks of special M1-polarized families X1 from the moduli space MM1 , so we cannot

directly use the results of Section 5.2 either.

Instead, we will construct a special 2-parameter M1-polarized family of K3 sur-

faces X 2
1 → U2

1 , which is very closely related to a family X1 satisfying Definition 5.2 (this

relationship will be made precise in Proposition 5.18 and Remark 5.19), and show that

the M1-polarized fibrations X → U on our three-folds are pullbacks of this family by

maps U → U2
1 .

Now let Y2
1 → U2

1 denote the family of Kummer surfaces associated to X 2
1 → U2

1

and suppose that we can construct a cover V → U2
1 that undoes the Kummer construction

for Y2
1 . Then, as before, we may undo the Kummer construction for the family of Kummer

surfaces associated to X → U by pulling back to the fibre product U ×U2
1

V .

To construct the two-parameter family X 2
1 → U2

1 , we begin by noting that an M1-

polarized K3 surface is mirror to a 〈2〉-polarized K3 surface, which can generically be

expressed as a hypersurface of degree 6 in WP(1, 1, 1, 3). By the Batyrev-Borisov con-

struction, an M1-polarized K3 surface can be realized torically as an anticanonical

hypersurface in the polar dual of WP(1, 1, 1, 3). The defining polynomial of a generic

such anticanonical hypersurface is

a0x6
0 + a1x6

1 + a2x6
2 + a3x2

3 + a4x0x1x2x3 + a5x2
0 x2

1 x2
2 , (6)

where x0, x1, x2 are variables of weight 1 and x3 is a variable of weight 3.

On the maximal torus, the family defined by this equation is isomorphic to the

vanishing locus in (C×)3 of the rational polynomial

y + z + α

x3yz
+ x + 1 + β

x
= 0, (7)

where α = a0a1a2a3
3

a6
4

and β = a3a5

a2
4

. Consider the family of K3 surfaces over C2 obtained by

varying α and β. By resolving the singularities of the generic fibre and removing any sin-

gular fibres that remain, we obtain the 2-parameter family of K3 surfaces X 2
1 →U2

1 ⊂ C2.
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Families of Lattice Polarized K3 Surfaces 12311

We can compute the (a, b, d)-parameters (see Section 4.2) of a fibre of X 2
1 in terms

of α and β. To do this, we use the fact that the standard and alternate fibrations on the

K3 fibres are torically induced, so their g2 and g3 invariants may be computed (in terms

of α and β) using the toric geometry functionality of the computer software Sage. These

expressions can then be compared to the corresponding expressions computed for an

M-polarized K3 surface in normal form (see, for instance, [5, Theorem 3.1]). We thus

obtain

a= 1, b = 2633α

(4β − 1)3
+ 1, d=

(
2633α

(4β − 1)3

)2

.

Introducing a new parameter

γ := 2633α

(4β − 1)3
,

we see from the expressions for (a, b, d) above that γ parametrizes the moduli space

MM1 , so the generalized functional invariant of the family X 2
1 is given by γ . Then we find

the following lemma.

Lemma 5.17. U2
1 is the open set U2

1 := {(α, β) ∈ C2 : γ /∈ {0,−1,∞}}. Furthermore, X 2
1 → U2

1

is an M1-polarized family of K3 surfaces. �

Proof. Using the computer software Sage, it is possible to explicitly compute a toric

resolution of a generic K3 surface defined in the polar dual of WP(1, 1, 1, 3) by Equation

(6). From this, we find that the singular fibres of this family occur precisely over γ ∈
{0,−1,∞}.

To see that X 2
1 → U2

1 is an M1-polarized family, we note that X 2
1 is a family of

hypersurfaces in the polar dual to WP(1, 1, 1, 3). By [23], there is a toric resolution Y of

the ambient space such that the fibres X of X 2
1 become smooth K3 surfaces in Y and the

restriction map

res : NS(Y) −→ NS(X)

is surjective. Furthermore, the image of res is the lattice M1. This defines a lattice

polarization on each fiber and, since this polarization is induced from the ambient three-

fold, it is unaffected by monodromy. Thus X 2
1 is a family of M1-polarized K3 surfaces. �

Changing variables in (7) and completing the square in x, the family X 2
1 may be

written on (C×)3 as the vanishing locus of

x2

4β − 1
+ y + z + γ

yz
+ 1 = 0.
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Furthermore, we note that points (α, β) ∈ U2
1 correspond bijectively with points (β, γ ) in

{(β, γ ) ∈ C2 : β �= 1
4 , γ /∈ {0,−1}}. Using this we can reparametrize U2

1 by β and γ , and thus

think of X 2
1 → U2

1 as the two-parameter family parametrized by β and γ given on the

maximal torus by the expression above.

After performing this reparametrization, the generalized functional invariant

map of the family X 2
1 is given simply by projection onto γ . The fibres of this map are

1-parameter families of K3 surfaces with the same period, parametrized by β ∈ C − { 1
4 },

which are therefore isotrivial. It is tempting to expect that these isotrivial families are

in fact trivial, but this is not the case. Instead, we find:

Proposition 5.18. Monodromy around the line β = 1
4 fixes the Néron-Severi lattice of a

generic fibre of X 2
1 and acts on the transcendental lattice as multiplication by −Id.

Furthermore, the family X̂ 2
1 obtained by pulling back X 2

1 to the double cover of

U2
1 ramified over the line β = 1

4 is isomorphic to a direct product X1 × C×, where X1 is an

M1-polarized family of K3 surfaces satisfying Definition 5.2. �

Proof. The double cover of U2
1 ramified over the line β = 1

4 is given by the map C× × (C −
{0,−1}) → U2

1 taking (μ, γ ) → (β, γ ) = (μ2 + 1
4 , γ ). After a change of variables x �→ xμ, the

family X̂ 2
1 may be written on the maximal torus (C×)3 as the vanishing locus of the

rational polynomial

x2 + y + z + γ

33yz
+ 1 = 0. (8)

This family does not depend upon μ, so X̂ 2
1 is isomorphic to a direct prod-

uct X1 × C×, for some family X1 → (C − {0,−1}) parametrized by γ , and its monodromy

around μ = 0 is trivial. Furthermore, for two K3 surfaces X1 and X2 in X̂ 2
1 lying above a

fiber X in X 2
1 there are natural isomorphisms

φ1 : X1 −→ X, φ2 : X2 −→ X.

The automorphism φ−1
1 · φ2 is the non-symplectic involution given on the maximal torus

by (x, y, z) �→ (−x, y, z), which fixes the lattice M1 = NS(X).

Therefore, monodromy around β = 1/4 has order 2 and acts on TX in the same

way as a non-symplectic involution ι with fixed lattice M1 = NS(X). Thus, TX = (NS(X)ι)⊥

and so ι acts irreducibly on TX with order 2. It must therefore act as −Id.

It remains to prove that the one-parameter family X1 → (C − {0,−1}) given on

the maximal torus by varying γ in (8) satisfies Definition 5.2. We have already noted that

the generalized functional invariant map (C − {0,−1}) →MM1 defined by γ is injective.
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Furthermore, using the expressions for a, b, and d calculated earlier we see that γ = −1

at the elliptic point of order 2, γ = ∞ at the elliptic point of order 3, and γ = 0 at the

cusp. All that remains is to check that the monodromy of the family X1 → (C − {0,−1})
has the appropriate orders around each of these points.

This family X1 has been studied by Smith [27, Example 2.15], where it appears

as family D in Table 2.2 (and we note that Smith’s parameter μ is equal to − 1
γ

in our

notation). Its monodromy around the points γ ∈ {0,−1,∞} is given by the symmetric

squares of the matrices calculated in [27, Example 3.9]; in particular we find that this

monodromy has the required orders. �

Remark 5.19. We note that the complicating factor in the M1-polarized case is the fact

that a generic M1-polarized K3 surface X admits a non-symplectic involution which fixes

M1 ⊆ NS(X). It is this which prevents some of the torically induced fibrations of the

three-folds in [9, Table 1] by M1-polarized K3 surfaces from being expressible as pull-

backs of an M1-polarized family X1 from the moduli space MM1 . However, from Proposi-

tion 5.18, we find that we can express these fibrations as pullbacks of X1 if we proceed

to a double cover of the base which kills this involution. �

Given this result, it is easy to undo the Kummer construction for the family

Y2
1 → U2

1 of Kummer surfaces associated to the family X 2
1 . First, pullback Y2

1 to the dou-

ble cover (C − {0,−1}) × C× ∼= UM1 × C× of U2
1 ramified over the line β = 1

4 (where UM1 is

defined as in Section 5.2). The result is the family of Kummer surfaces associated to the

family X̂ 2
1

∼=X1 × C×. This is exactly the family Y1 × C×, where Y1 → UM1 is the family

of Kummer surfaces associated to X1. The Kummer construction can then be undone

for this family by pulling back to the cover V = C M1 × C× of UM1 × C×, where the cover

C M1 → UM1 is as calculated in Section 5.3.

Thus, given a family X → U of M1-polarized K3 surfaces that can be expressed

as the pullback of the family X 2
1 by a map U → U2

1 , we may undo the Kummer construc-

tion for the associated family of Kummer surfaces Y → U by pulling back to the cover

V ×U2
1

U .

We conclude by applying this to the cases from [9, Table 1]. We find the following

theorem.

Theorem 5.20. There exist K3 fibrations with M1-polarized generic fibre on five of the

three-folds in [9, Table 1], given by the mirrors of those listed in Table 2.

Furthermore, if X → P1
t,u denotes one of these fibrations and U ⊂ P1

t,u is the open

set over which the fibres of X are nonsingular, then the restriction X |U → U agrees
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Table 2. Values of α and β for three-folds admitting M1-polarized fibrations

Mirror three-fold α β γ

WP(1, 1, 1, 1, 2)[6]
A(t + u)3

tu2 0 −2633 A(t + u)3

tu2

WP(1, 1, 1, 1, 4)[8]
Au

t

t

u

2633 Au4

t(4t − u)3

WP(1, 1, 1, 2, 5)[10]
Au2

t2

t

u

2633 Au5

t2(4t − u)3

WP(1, 1, 1, 1, 1, 3)[2, 6]∗ − Au2

t(t + u)
k − 2633 Au2

(4k − 1)3t(t + u)

WP(1, 1, 1, 2, 2, 3)[4, 6]∗
Au4

t2(t + u)2 k
2633 Au4

(4k − 1)3t2(t + u)2

with the pullback of the family X 2
1 by the map U → U2

1 defined by α and β in Table 2

(in this table (t, u) are coordinates on the base U ⊂ P1
t,u of the fibration, A is the Calabi-

Yau deformation parameter and k∈ C − {0, 1
4 } is a constant). The family X |U → U is thus

an M1-polarized family of K3 surfaces. �

Proof. This is proved in the same way as Theorem 5.10, by comparing the forms of the

maximal tori in the three-folds from [9, Table 1] to the local form of the family X 2
1 given

by Equation (7). �
Finally, we note that the generalized functional invariants in these cases are

given by γ in Table 2. We see that, as in Section 5.4, they are all (i + j)-fold cov-

ers of MM1
∼= Γ0(1) \ H (where (i, j) are as in Table 1) having exactly four ramification

points: one of order (i + j) over the cusp, two of orders i and j over the elliptic point of

order 3, and one of order 2 which varies with the value of the Calabi-Yau deformation

parameter A.

Remark 5.21. There is precisely one case from [9, Table 1] that has not been discussed:

the mirror of the complete intersection WP(1, 1, 2, 2, 3, 3)[6, 6]. However, it can be seen

that this three-fold does not admit any torically induced M-polarized K3 fibrations, and

our methods have not yielded any that are not torically induced either. �

6 Application to the Arithmetic/Thin Dichotomy

Recall that each of the three-folds X from [9, Table 1] moves in a one parameter family

over the thrice-punctured sphere P1 − {0, 1,∞}. Recently, there has been a great deal of
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interest in studying the action of monodromy around the punctures on the third coho-

mology H3(X, Z). This monodromy action defines a Zariski dense subgroup of Sp(4, R),

which may be either arithmetic or non-arithmetic (more commonly called thin). Singh

and Venkataramana [26][25] have proved that the monodromy is arithmetic in 7 of the 14

cases from [9, Table 1], and Brav and Thomas [2] have proved that it is thin in the remain-

ing seven. The arithmetic/thin status of each of the three-folds from Theorems 5.10

and 5.20 is given in the fifth column of Table 1.

It is an open problem to explain this behaviour geometrically. To this end, we

are able to make an interesting observation concerning the arithmetic/thin dichotomy

for the Mn-polarized families with Theorems 5.10 and 5.20. Specifically, from Table 1

we observe that a three-fold admitting a torically induced fibration by Mn-polarized K3

surfaces has thin monodromy if and only if neither of the values (i, j) associated to this

fibration are equal to 2.

This observation may also be extended to the 14th case [4]. In this case, recall

that the three-fold Y1, which moves in a one-parameter family realizing the 14th case

variation of Hodge structure, admits a torically induced fibration by M-polarized K3’s

rather than Mn-polarized K3’s. Thus the generalized functional invariant map from Y1

has image in the two-dimensional moduli space of M-polarized K3 surfaces, rather than

one of the modular curves MMn. However, from [4, Section 5.1 and Equation (4.5)], we

see that the image of the generalized functional invariant map from Y1 is contained in

the special curve in the M-polarized moduli space defined by the equation σ = 1 (where

σ and π are the rational functions from Section 4.2).

By the results of [5, Section 3.1], the moduli space of M-polarized K3 surfaces

may be identified with the Hilbert modular surface

(PSL(2, Z) × PSL(2, Z)) � Z/2Z \ H × H,

with natural coordinates given by σ and π . The σ = 1 locus is thus parametrized by π

and has an orbifold structure induced from the Hilbert modular surface. This orbifold

structure has an elliptic point of order six at π = 0, an elliptic point of order two at

π = 1
4 , and a cusp at π = ∞.

The generalized functional invariant map for the K3 fibration on Y1 is given by

the rational function π , which is calculated explicitly in [4, Equation (4.4)]. It is a double

cover of the σ = 1 locus ramified over the cusp and a second point that varies with the

value of the Calabi-Yau deformation parameter. This agrees perfectly with the descrip-

tion of the generalized functional invariants for the Mn-polarized cases from Section 5.4,
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with (i, j) = (1, 1), thereby giving the final row of Table 1. From this table, we observe the

following theorem.

Theorem 6.1. Suppose that X is a family of Calabi-Yau three-folds from [9, Table 1]

that admit a torically induced fibration by Mn-polarized K3 surfaces (resp. M-polarized

K3 surfaces with σ = 1). By our previous discussion, the generalized functional invariant

of this fibration is a (i + j)-fold cover of the modular curve MMn
∼= Γ0(n)+ \ H (resp. the

orbifold curve given by the σ = 1 locus in the moduli space of M-polarized K3 surfaces),

where i and j are given by Table 1, which is totally ramified over the cusp and rami-

fied to orders i and j over the remaining orbifold point of order �= 2. Then X has thin

monodromy if and only if neither i nor j is equal to 2. �
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ics (Montréal, QC, 1999), 139–161. CRM Proceedings and Lecture Notes 30. Providence, RI:

American Mathematical Society: 2001.

[20] Oguiso, K. “On Jacobian fibrations on the Kummer surfaces of the product of non-

isogenous elliptic curves.” Journal of the Mathematical Society of Japan 41, no. 4 (1989):

651–80.

 at U
niversity of N

ebraska-L
incoln L

ibraries on June 7, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

arXiv:1312.3063
http://imrn.oxfordjournals.org/


12318 C. F. Doran et al.
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