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Abstract: At special loci in their moduli spaces, Calabi—Yau manifolds are endowed
with discrete symmetries. Over the years, such spaces have been intensely studied and
have found a variety of important applications. As string compactifications they are phe-
nomenologically favored, and considerably simplify many important calculations. Math-
ematically, they provided the framework for the first construction of mirror manifolds,
and the resulting rational curve counts. Thus, it is of significant interest to investigate
such manifolds further. In this paper, we consider several unexplored loci within familiar
families of Calabi—Yau hypersurfaces that have large but unexpected discrete symmetry
groups. By deriving, correcting, and generalizing a technique similar to that of Candelas,
de la Ossa and Rodriguez—Villegas, we find a calculationally tractable means of finding
the Picard—Fuchs equations satisfied by the periods of all 3—forms in these families. To
provide a modest point of comparison, we then briefly investigate the relation between
the size of the symmetry group along these loci and the number of nonzero Yukawa
couplings. We include an introductory exposition of the mathematics involved, intended
to be accessible to physicists, in order to make the discussion self—contained.
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1. Introduction — Mirror Manifolds far from the Fermat Point

Although a global description of the complex structure moduli space of many Calabi—
Yau manifolds is available, it is often very useful to consider special loci with discrete
symmetries.

For example, in the context of the Eg x Eg heterotic string compactified to 4 dimen-
sions, a simple but powerful way to break the gauge symmetry to SU (3) x SU (2) x U (1)"
is to allow Wilson lines, which require that the compact 6d manifold is not simply
connected[1-3]. Suitable manifolds with nontrivial fundamental group are most easily
constructed by starting out with a simply connected space X with a freely acting discrete
symmetry group G, and taking the quotient X = X /G, which then has 7] = G.

A more technical but equally important reason for focusing on models with a discrete
symmetry group G (or after quotienting with 71 = G), is that many interesting calcu-
lations are considerably simpler than in the general case with trivial G. For example, in
heterotic compactifications that pass through an E¢ GUT phase, [1,2] phenomenological
information is contained in the 27 ® 27 ® 27 Yukawa couplings:

e )= [ dn a2 ek (1)

Here §2 is the holomorphic 3—form, and «, 8, y € H'(T) correspond to four-dimensional
fields that lie in the 27 of E¢. In general, there are a large number of such integrals, and
each is burdensome to calculate. If discrete symmetries are present, then there are rela-
tions among the couplings, and many vanish [1,4,5].

Other simplifications have been found in calculations of the stabilized values of
moduli in type IIB string backgrounds with nontrivial flux [6]. The vacua are determined
by the Gukov—Vafa-Witten superpotential: [7,8]"

W= [ Gr@o gmi) &)
CY i

where g; are integers specifying the number of units of flux around the i 3—cycle of
the Calabi—Yau, @; (¢) is the integral of §2 over the ith 3—cycle (the ith period of £2), and
t denotes the coordinates on the complex structure moduli space. One usually finds the
periods by solving certain differential equations that they satisfy, the so—called Picard—
Fuchs equations. Unfortunately the order of the equations is in general b3(CY), which
can be very large (~ 100). It was noted in [9] that if the manifold has discrete symmetries,
then the order of the Picard—Fuchs equations is vastly reduced, greatly facilitating their
solution.

From a mathematical point of view as well, Calabi—Yau manifolds with discrete
symmetries have been instrumental to key developments. For example, the first con-
struction of a pair of mirror manifolds [10] involved the prototypical family of 3—folds
with discrete symmetry: the Fermat family of quintic hypersurfaces in P4, defined in
homogeneous coordinates [xo, . .., x4] by:

(1) = (x0)° + (x1)° + (x2)° + (x3)° + (x4)° — Stxpx1x2x3%4 = 0. A3)

1 G is a combination of the 3—form fluxes and the dilaton. So in type IIB string theory, generic nonzero
flux creates a potential for the complex structure moduli and the dilaton, but not for the Kéhler moduli.
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Quintic Moduli Space Quintic Mirror Moduli Space
Complex Complex
Structure Structure
(dim = 101) (dim=1) V(t)
t
40 — )P
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eV (0)
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Fig. 1. A schematic diagram of the moduli spaces of the quintic in P4 and its mirror. The line shown in the

quintic moduli space is mirror to the horizontal line on the mirror side. But the quotient by (25)3 gives the
vertical line

This family (denoted V (¢)) is invariant under the S5 group of permutations of the
x;’s, as well as 4 Zs scalings” generated by:

81 =1(1,0,0,0,4), g3=(1,0,4,0,0), “)
g2 =(1,0,0,4,0), g4=(1,4,0,0,0),

where (a, b, ¢, d, e) means (xg, X1, X2, X3, x4) — (¥%x0, y”xl, y<xa, ydx3, y€x4) and
¥> =1 # y. Because we are working in projective space, g1. g2, g3, g4 are not inde-
pendent symmetries of V (¢), since g1228384 = (4,4,4,4,4) = I, implying that the
symmetry group is [Ss X (Zs5)*] /Zs. Quotienting V (0) by (Zs)? (generated by partic-
ular combinations of the 4 g;’s) and resolving the orbifold singularities appropriately
produces V (0), the mirror to the Fermat quintic[10]. The single complex structure para-
meter of the mirror is then ¢, but somewhat confusingly, V (¢)/ (Zs)3 is not V(1) (the
mirror to V ()) except at t = 0. This is because V() and V(t)/(Zs)? differ from V (0)
and V (0)/(Zs)? respectively only in their complex structure, but moving in the complex
structure moduli space of the mirror corresponds to moving in the Kéhler moduli space
of the original manifold and vice versa. See Fig. 1.

One can see that a mirror must exist for any nonsingular quintic in P4 by considering
deformations of the conformal field theory away from the Fermat point by truly marginal
operators. These are interpreted differently on the original and mirror manifolds (com-
plex structure and Kihler deformations switch roles), but they exist on both sides. It is
clear that it is the symmetry of the Fermat quintic that makes this construction possible,
by allowing an explicit realization of the mirror at one point in moduli space.

The goal of [14] was to find other points in moduli space where the mirror can be
presented as a resolution of a quotient by a discrete symmetry. One might guess from
the simplicity of the form of (3) that moving away from the Fermat family will reduce
the symmetry to a subgroup of [S5 x (Zs5)*] /Zs. Indeed this seems to be the case for
local deformations, but it turns out to be spectacularly false if one searches the moduli

2 We use the notation: Z,, = Z/nZ.



678 C. Doran, B. Greene, S. Judes

space sufficiently. For example, in [14] the hypersurface Vy41(¢) defined by:

041(1) = (o) y1 + (1) y2 + ) y3 + (3)*ya + ) *yo — Styoyiyeyzya =0 (5)

was found to possess a Zy41 scaling symmetry generated by (1, 37, 16, 18, 10) where the
entries now indicate nontrivial 41 roots of unity. It is worthwhile to recall the reasoning
that leads to the form of (5). The idea is to implement the (Zs)3 quotient of the Fermat
quintic by making an unusual, apparently ill-defined, change of variables:

4/5 1/5 4/5 1/5 _4/5 1/5 _4/5 1/5 _4/5 1/5
(x0, x1, X2, X3, x4)—>(y/ /»yl/ yz/ »yz/ y3/ /y4/ »)’4/)’/) (6)

Generally, the fractional powers would require, at the very least, choices of branch cuts
to make the map and its inverse well defined. However, it is easy to see that away
from coordinate hyperplanes, appropriate coordinate identifications make this unnec-
essary. From (6) it is immediate that imposing a (Zs)® group of identifications on
the (xo, x1, X2, x3, x4)—the very same group, in fact, that yields the mirror Calabi—Yau
family—the map from the y’s to the x’s becomes well defined.

However, this is not yet sufficient for (6) to be one—to—one. By solving for the inverse,
we find, for example:

205 ,. 205 . 205 ,. 205 ,. 205
Yo = Xg DX X5 X3 X (7)

and cyclic permutations
which requires further identifications be made on the y;’s. One can check that (7) is

well defined if one identifies y; with its image under the Z4; scaling symmetry indicated
above. This suggests a relationship:

VFermat(t) - V41(t)
(Zs)3 Ly

®)

But since the fractional change of variables is only invertible away from coordinate
hyperplanes, the relationship in (8) is not a biholomorphism. It was argued in [14] using
the methods of toric geometry, that the two quotients are nevertheless topologically
identical, representing two parametrizations of the complex structure moduli space of
the quintic mirror, at different points in the Kédhler moduli space. The relationship (8)
suggests that by focusing on points in the quintic moduli space that have a maximal
discrete symmetry group in their local neighborhood, and by then quotienting by this
maximal group, we generate the mirror partners to these manifolds. Since the initial
manifolds differ by deformations of their complex structures, their mirrors would then
differ by deformations of their Kahler structures. In particular, this would mean that the
Picard—Fuchs equations for the periods of the holomorphic 3—form of the Z4; quotient,
or equivalently for those periods of V41(¢) invariant under Z4;, should agree with the
standard Picard-Fuchs equation on the mirror quintic. In [14] a tedious calculation using
the Griftiths—Dwork technique on Vi (#) /Z41 was shown to yield:

4
|:(1—t5)%—10t——25t——15t——t:|/[2—0 9)

which is precisely the Picard—Fuchs equation satisfied by the periods of the holomorphic
3—form of the mirror family V (¢) [12].
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Table 1. Six 1—parameter families of quintic hypersurfaces with discrete symmetries

Q(t) Scaling Symmetries Action
1 L (4074 +d% +6%) — tabede (Zs5)? (4.1,0,0,0), (4,0, 1,0,0),
(4.0.0.1,0)

a4b+b4c+c4d+d4e+e4a) —tabede Ty (1.37.16, 18, 10)
a4b+b4c+c4d+d4a+e5) — tabcde Zs (1,47, 16, 38,0)
a*b+bic+cta+dd +e5) — tabede Zs x 713 0.0.0,4,1),(1,9.3)
a*b+bic+cta+die+ e4d) —tabede 73 x 713 0.0.0,1,2), (1.9.3)

D= U= D= Q= U=
P e e e e

a*b+bra+d +dd+ e5) — tabede (Zs5)% x Z3 (0.0.4,1,0), (0,0.4,0, 1),
(1,2,0.0.0)

It is easily seen that the technique illustrated by (6) offers numerous variations,
providing a rich set of new enhanced symmetry loci. For example, one can consider:

4/5 1/5 4/5 1/5 475 1/5 4/5 1/5

which leads to a family with another unfamiliar symmetry group, Zs;. Several other
examples were tabulated in [14, 19], which we repeat in Table 1.

Given how useful loci with discrete symmetry have been in the development of
our understanding of Calabi—Yau moduli spaces, new symmetric families are of great
interest. They expand the range of examples to which analytic methods can be applied,
and provide new testing grounds for mirror symmetry, rational curve counts, moduli
stabilization, and phenomenology.

To orient our analysis, it is interesting to ask where in moduli space these new loci
reside; for example, where is the V41 (¢) family in relation to the Fermat locus? We might
attempt a linear transformation x (y) on Q41(¢) to bring it into the form:

041 = (30 + (1) +(12)° + (13)° + (ya)> +--- = 0, (11)

where the ellipsis indicates a specific combination of quintic monomials at most cubic
in any of the y;’s. But this brings a more pressing issue into sharp relief. Notice that
such a linear transformation would obscure the presence of the Z4; symmetry. Similarly,
it is clear that an arbitrary linear transformation of the Fermat quintic would make the
(Zs)? symmetry significantly less obvious because the symmetry would no longer act
diagonally on the homogeneous coordinates.

This may lead one to wonder whether the Z41 symmetric family and the Fermat family
are even distinct loci. Perhaps Z4; acts nondiagonally on (3), and (Zs)3 nondiagonally
on (5). To show that this is not the case, we write the polynomial defining the Fermat
family as: 1 Q¢ — t Qs = 0, where Qg = (x0)° + (x1)° + (x2)° + (x3)° + (x4)7 is the
Fermat polynomial and Q o, = xox1x2x3x4. If the symmetry groups of Q¢ and QO are
denoted G and G, respectively, then the automorphism group of a generic member
of the Fermat family is just Gy N G. In [15] it was shown that Go = S5 X (Zs)*,
i.e. the automorphisms of the Fermat quintic are permutations of the homogeneous
coordinates, and scalings by 5 roots of unity, excluding an overall scaling which is
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trivial in projective space.® On the other hand G, = S5 x (C*)*, i.e. we can permute the
coordinates, and scale them. The full automorphism group of a generic member of the
pencil is then G = S5 x (Zs)3, i.e. the subgroup of Gp N G that scales %Qo — 1000 by
an overall factor. In other words there are no more symmetries than those found above
by inspection. G is a finite group with 53 x 5! elements, so it has no subgroup of order
41 or 51. It follows that the families with Z4; and Zs; symmetries cannot be isomorphic
to the Fermat family.

The new loci are thus distinct from the Fermat family, and therefore constitute a new
probe for enriching our understanding of Calabi—Yau manifolds and their moduli spaces.
Utilizing this probe requires that we’re able to perform the basic calculations of periods,
familiar from studies of Fermat families, which contain essential information about the
complex structure and geometric monodromy of the families. The purpose of this paper
is to set up the formalism for doing so.

Plan of the paper. In Sect. 2, we review the aspects of the cohomology of families
of hypersurfaces required to understand the Picard—Fuchs equations and the Griffiths—
Dwork procedure for finding them. The expert reader will find much in this section that
is already familiar. However, because our results and, in particular, the way they differ
from [9], depend critically on this background, a self-contained summary is essential.
We emphasize those aspects which play key roles in the sections that follow. Some
examples and further aspects of the formalism are developed in Appendices C and D.
In Sect. 3 we derive an alternative to the Griffiths—Dwork method for symmetric
hypersurfaces in P, which greatly reduces the labor of computation. The technique is
similar in its details to that applied to the quintic 3—fold by Candelas, de la Ossa and
Rodriguez—Villegas [9], but our results improve on [9] in three key respects:

— Here (in Sect. 3.1) the technique is derived in a rigorous fashion from fundamental
results of Griffiths [16].

— In[9]itis claimed that these methods compute differential equations whose solutions
are periods of the holomorphic 3—form. By carefully relating the method to the work
of Griffiths [16] (reviewed in Section 2), we show that this is generally not true.
Instead, we show that most of the resulting equations are satisfied by other elements
of the period matrix, i.e. integrals of elements of H 3 (X, C) not contained in H 30(x ).

— The technique involves constructing diagrams which display the relevant relations
among periods in a useful way. We find an algorithm for sytematically constructing
these diagrams, summarized in Sect. 3.1.2.

We then apply the procedure to calculate the Picard—Fuchs equations for the Z4;—
symmetric family of 3—folds. Other families can be treated in the same way, and the
results for the Zs; case are tabulated in Appendix A.

To give a feel for the new loci and to see another way in which they differ from the
Fermat family, Sect. 4 examines the effect of the discrete symmetries on the Yukawa
couplings of the 6 quintics in Table 1. We find a somewhat surprising relation between
the number of nonzero couplings and the size of the symmetry group.

Finally, in Appendix B we indicate how to extend the technique to symmetric Calabi—
Yau hypersurfaces in weighted projective spaces, and we compute the Picard—Fuchs
equation for the example of a Fermat—type hypersurface in WIP|41 48 51,52.64][256].

3 The result: Lemma 3.2 of [15] is rather more general. Ford > 3 andn > 2 and (d. n) # (3,2) or (4, 3),
the symmetries of the degree d Fermat hypersurface in P, are Sy, X (Z;)". In words, a semi—direct product
of permutations and scalings by d" roots of unity.
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2. Cohomology of Hypersurfaces

The Calabi—Yau manifolds we will consider are all hypersurfaces in P, i.e. submanifolds
of P, defined by the vanishing locus of a single homogeneous polynomial.* This is
a rather special choice, which can be generalized in many ways, but is particularly
convenient to analyze. The goal of this section is to review a useful way to get our hands
on elements of the Dolbeault cohomology groups of such a hypersurface.

We consider a smooth hypersurface V' C P, defined by the zero locus of anirreducible
degree [ polynomial Q(x) in the homogeneous coordinates [xo, ..., x,]. As might be
expected, it is hard to set up coordinates on V and describe differential forms on the
hypersurface directly. Instead we make use of a beautiful generalization of the Cauchy
integral formula due to Griffiths [16].

Starting from Cauchy’s theorem

L f PG

, dz = > w;(i"Residue), 12

el e Z i ) (12)

where the sum is over the poles enclosed by the contour C that winds around the i"" pole

w; times, and the residue is the coefficient of the 1/z term in a Laurent expansion of
P(z)

f) = re) about the pole. Griffiths interpreted the right-hand side as the integral of a

O0—form over a O—cycle on the Riemann sphere P;. The O—cycle (which we suggestively
denote by V) is the set of poles of %dz, each weighted by the number of times the
contour C winds around, and the O—form is the value of the residue at each pole. Notice
that adding an exact rational 1—form (whose poles are contained in V) to the left-hand
side integrand makes no difference, so we can think of the residue as a map:

Res : H(V) — H(V, C), (13)

where H(V) is like the de Rham cohomology group H'(P; — V, C), but using only
rational forms. The purpose of generalizing this story to higher dimensions is to represent
(n — 1)—forms on V (which becomes a hypersurface), as residues of rational n—forms
on the complement P, — V. The latter are considerably easier to work with.

2.1. Some results of Griffiths. Let A"(V') be the space of rational n—forms on P, with
polarlocus V. Then we define H (V) = A”(V)/dA" 1 (V),i.e. the de Rham cohomology
of rational n—forms on P, — V. The residue map Res : H(V) — H"~!(V, C) is then
defined by the property:

1/ .
— ga:/ Res(g). (14)

278 J1y) y

Here ¢ € H(V), y is an (n — l)—cycle in V and T (y) is a tubular neighborhood
of y in P, — V. More precisely, T (y) is a circle bundle over y with an embedding
into PP, — V such that it encloses y. For small enough radii, any two such bundles are
homologous in H, (P, — V, Z), so the construction is unique. A rather abstract way to

4 In Appendix B we generalize this slightly to hypersurfaces in weighted projective space.

5 Note that A" (V) = 0 since n is the maximal holomorphic degree of a form on Py, and d A" (V) = 0
because rational forms are by definition holomorphic. In defining (V') there is therefore no need to restrict
the numerator of the quotient to closed forms only — they are all closed.
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state the definition (14) is that Res is the dual of the so—called Leray coboundary map:
H,_1(V,Z) — H,(P, — V,Z) which sends [y] to [T (y)].

A more concrete description of the residue map can be given as follows. Let ¢ be a
smooth differential form on P,,, except for possible singularities on V. To indicate the
order of the singularities, suppose that for some positive integer k, %@ and f¥=1df A ¢
are smooth everywhere if f = 0 is a local defining equation for V. In terms of local

(affine) coordinates z!,...,z", we have ¢ = @(z)dz' A ... A dz”, but close to the
hypersurface (i.e. near f = 0), we can choose coordinates (zl, o f) and write:
df na N B
Y= —
fk fk 1
1 B+ qda
-~ (i) A s

where « and f are smooth forms and do not contain d f. This expression is only valid
in a single patch, but by making use of a partition of unity, one can show that for k # 1,
¢ = dyr +n, where ¥ and n are globally defined smooth forms with poles of order k — 1
along V. It follows that up to an exact form, ¢ can be reduced to a form with a pole of
order 1 along V:

o' Adf
f

where v, has a pole of order kK — a along V. The residue is then the coefficient of d f/f
restricted to the hypersurface:

—dWr+---+ Y1) = +6, (16)

Res(p) = o'|y. (17)

This is precisely analogous to the usual definition of the residue as the coefficient of the
1/z term in the Laurent expansion. Note that the residue of a rational n—form with k = 1
is necessarily holomorphic, but since the construction above uses a partition of unity,
residues of forms with k > 1 are only smooth in general.

Having defined the residue map, we now need to explore its properties. In particular,
we have the following question: which rational n—forms on P, — V map to which
cohomology classes on V? The answer is provided by another beautiful theorem of
Griffiths, in preparation for which we must introduce some further formalism.

Let A} (V) C A"(V) denote the rational n—forms on P, — V with poles of order k
along V. By analogy with H(V'), we can define the cohomology groups:

ALY)

Hi (V) = ————.
k(V) A=)

(18)

It is important to note that two such groups Hy (V') and Hy/ (V') generally have a nonzero
intersection. If for example we take k = 1 and k" = 2, the statement is just that there are
rational forms with double poles that differ from rational forms with simple poles only
by exact rational forms with simple poles. We will explicitly delineate such intersections
shortly, but notice that what we’re speaking of here is different from the reduction of
pole order in the residue construction. There we were interested in lowering the pole
order by adding smooth forms. Here we are only allowed to add rational forms. We will
return shortly to the question of when such a reduction is possible.
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For the moment, let us follow Griffiths and write the groups Hx (V) as a sequence of
inclusions:

Hi(V) CH(V)C-eeee C Hy(V) =H(V). (19)

The nontrivial claim here is the final equality: H,, (V) = H(V), the proof of which can
be found in [16]. A decomposition like (19) with inclusions (as opposed to a direct sum
decomposition) is called a filtration, and we will refer to (19) as the filtration of H(V')
by order of pole.

There is another filtration we are interested in, the so—called Hodge filtration of
H"1(V, C), given by:

bt vy c B Ry e cF W) =H""'(V.C).,  (20)

where F* (V) = H*O(V) @ H* M1 (V) @ ... @ H"“". This time the equality on
the right-hand side is just the Hodge decomposition of cohomology, which holds for all
Kéhler manifolds:

H'Wv.C0)=H"""Vye H" >\ (V) ...® H"" (V). 1)

Any algebraic submanifold of P, (a hypersurface for example) is necessarily Kihler, so
we are not imposing any new restriction.

The essence of Griffiths’ theorem is that the residue map acts in a very nice way
between the order of pole filtration and the Hodge filtration:

Hi(V) < Ha(V) Ceeeee C Ha(V) = H)
J Res J Res J Res ! Res (22)
Fn—l,n—l(v) C Fn—lén—2(v) Covennn C Fn_l’O(V) — Hn_l(V, (C)

We have already confirmed the far left part of the diagram: rational n—forms on P,
with poles of order 1 on V map to holomorphic (n — 1)—forms on V, i.e. elements of
H"=1.0(v) = F"=1.7=1(V). The remainder of the proof can be found in [16]. This is the
answer we were looking for to the question: which (n — 1)—forms on V are the residues
of which n—forms on P, — V7 The order of the pole of the form on P, — V (and hence
the degree of the numerator) determines which of the Hodge filtrants the residue lies in.

We can say more. It is clear when a form in F*~1"=2 is also in F"~!"~! but not
so clear yet when a form in H,(V) is also in (V). In words: we know from (16)
that the order of the pole of a form can be lowered arbitrarily by adding an appropriate
smooth form, but when can this decrease be accomplished using only rational forms?
The key to finding out is to look more closely at rational n—forms on PP, — V. Working

in homogeneous coordinates [x’, ..., x"], one can show that any such n—form ¢ can be
written:®
Px) zn i g0 — n
gﬂzmgo, 20 = (—=D'x'dx” AL dxt .o A dx”, (23)
X
i=0

where Q(x) = O defines the hypersurface V, and P(x) is a homogeneous polyno-
mial obeying deg P = kdeg Q — (n + 1) in order that ¢ is well defined on projective
space. It follows that a rational n—form in P, — V can be specified by an element of

6 This is Corollary 2.1 of [16]. The hat on the 5;’ indicates that it should be left out of the wedge product.
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Clx°, ..., X" ki—(n+1),1.€. a polynomial of degree kI — (n+1) with complex coefficients,
where [ = deg Q. The information we need is contained in the formula:”

20 < d 1 20 < 3P,
ﬁ z Pi(x) ) _ . Q()?)k z ,(ix) +exact rational forms.  (24)
i=0

Qx ax! pr ox
Thus the order of pole of a form ¢ = QP ((;‘))k 20 € Hy (V) canbe lowered using a rational
form iff P(x) = Z?:o P;(x) dde(,x) for some polynomials P;(x). The ideal generated by

[000(x), ..., 0,0(x)] is called the Jacobian ideal of Q(x), and denoted J(Q). So the
order of pole can be lowered iff the numerator is in J(Q).

This relates to the Hodge filtration as follows. If we quotient a filtrant (a single group in
the filtration) by the filtrant to its left, we find F"~ LK (V) /Fr—Lk+1 vy = ghn=1-k(y),
We have just seen that for the order of pole filtration we have:

He(V)  CIx% o X ki)

= (25)
Hi—1(V) J(Q)
So the residue map induces a homomorphism:
0 n
Clx”, .., x" k= (n+1) L gkl 0y, 26)
J(Q)

One further note of importance is the following. The image of the map (26) in
H"k=1(v) is called the primitive cohomology of V, and denoted P H"~K*=1(v),
If in (22) we replace the Hodge filtrants Fe-b (V) with their analogs constructed from
primitive cohomology groups (denoted Fg’b(V)), then the residue maps become isomor-
phisms.

This is the most we will say about the general properties of the residue map. Later
we will consider the simplifications that arise if V has discrete symmetries.

2.2. Example: Quintic Calabi-Yau 3—folds. Consider the case n = 4, = 5. Since
I = n + 1 is precisely the condition ¢; = 0, V is a Calabi—Yau 3—fold. The Hodge
filtrants are:

Fy* (V) = PHM(V),
Fo2(V) = PH> (V) ® PH>'(V),
Fy'(V) = PH¥ (V)& PH> (V)@ PH'(V),
FOv) = PH*(Vy® PH* (V)@ PH" (V) ® PHO3 (V).
The isomorphism with the filtration given by order of pole is:’
Hi(V) C Ha(V) C Hz(V) C Ha(V) = H(V)
l Res l Res J Res J Res J Res 27)
F° (V) c Fo2(v) c Fal(v) c FyOv) = H3(V, )

7 Formula 4.5 of [16]
C°

n
8 A common alternative notation for the Jacobian ring —[TQ;CIW- is R’S.

9 For odd dimensional hypersurfaces we have PHP-4 (V) ~ HP-9(V). In the case of Calabi—Yau 3—folds
this can be seen as follows: One can define PHP-3=P(V) alternatively as the kernel of the Lefschetz map
L: HP3=P(V) = H3(V) defined by L([¢]) = [J A ¢], where J is a Kéhler form on V. For a Calabi—Yau
3—fold with SU (3) holonomy, b5 = 0, so the kernel of L is the whole of H P3=P (V).
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Now look for example at Res: Ha(V) — ]Fg’z(V). Notice that [e2] € H2(V) maps to
IE‘3f3(V) C IE‘3’2(V) iff [ax] = [or1], where o has a pole of order 1, i.e. if o = oy +dn.
From [16], this is equivalent to P € J(Q), where oy = &.Qo. We therefore have:

Clxo, ..., xals _ Ha(V)  Fy*(V) -
~ ~ ~ PH>" (V). 28
J(Q) HI(V) () V) %)

Similarly, we have:

Clxo, ..., xalo _ 1,v) 3.3 3,0

70 ~ g = Fo (V) = PHYO(V), 29
Clxo, ..., xali0 _ 1yv) _ F2lv) 1.2

7(0) W) T RXwv) PH™(V). G0
Clxo, .- xalis 1) B 0.3

o ~ Han = piy, = PH">(V). (31)

The maps are given explicitly by:

Clxo, ..., x4l5n . P 3
———— 3 [P] <—> (3—n,n)pieceof Res{ — 20 ) € PH’(V,C), (32)
J(Q) ok
where k = de%P + 1. This is just the standard and often—used association between

5n™ order monomials and elements of H3~""(V). For instance, the isomorphism (28)
(n = 1) has a familiar interpretation as two different ways of looking at deformations
of complex structure: on the one hand as an element of H 2.1(V) and on the other as an
additional monomial term in the defining equation of the hypersurface V.

As an example of the use of the above formalism, we derive a common expression for

the unique holomorphic 3—form £2 = Res (%) Working in the patch xog # 0, we can

scale the homogeneous coordinates so that xo = 1, and therefore £29 = dx; Adxa Adx3 A
dxs = dz! Adz? AdZ3 Adz?, where 7 = x; /x0. Writing Q as Q(xq, X1, X2, X3, X4), We

define f = Q(1,z',22, 23, z%), and so 2 = Res (w). Next we replace

the coordinate z4 with f, and using d f = %dzi, find:

dz! Adz2 AdZB Ad dz! Adz? A dZ3
Q:RGS(ZAZAZAf:ZAZAZ 33)

fﬂ af

azt azt

Vv

which can be found in [1,4,11] for example. It is more difficult to identify forms with
monomials of higher order, but explicit expressions are derived in [4]. Aside from the
case of the holomorphic 3—form, the residues are generally not of pure Hodge type,
i.e. they are not elements of any single group H”:3~P(V). This conclusion requires
modification if V possesses discrete symmetries.
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Hodge type of the non—holomorphic forms. We saw that for a generic quintic in P4, the
3—forms corresponding to monomials of order 5n live in the (3 — n)'" Hodge filtrant:
F3" = H*0 @ ... @ H3> ™", In the presence of a discrete scaling symmetry, which is
also a symmetry of the holomorphic 3—form,'” we can make a stronger statement.

For example, let [0] € H>°@ H?! be a class corresponding to a 5" order monomial.
If £2 is the holomorphic 3—form, and w>! a d—closed (2, 1)—form, we can write [w] =
c[$£2] + [w*] for some constant ¢ € C. Now consider the integral:

/w/\ﬁzc/:z/\ﬁ. (34)

The right-hand side is manifestly invariant, so if [w] transforms by a nontrivial scaling,
then ¢ = 0. This however is just the same as saying that [w] € H?>!. A similar argument
shows that the noninvariant 10/ order monomials correspond to classes in H>! @ H'-2
rather than the full F1,

2.3. Families of hypersurfaces and the period matrix. Say we allow Q(x) and hence V
to depend on a parameter ¢ which takes values in a space T'. If we vary ¢ smoothly from
11 to tp and do not allow V to become singular along the way, then V (1) and V (#;) are
diffeomorphic, but not in general biholomorphic to one another.!! Our interest is in the
cohomology of the hypersurface V, and in particular in the Hodge decomposition,

H™'(Vv.O)= @ HP(W). (35)

p+q=n—1

As we move around in complex structure moduli space, the Hodge decomposition
changes because what we mean by a (p, g)—form changes. However, one can always
define a so—called topological basis of H"~!(V, C) that does not change (at least under
local deformations). This basis consists of the duals of a basis of topological cycles in
H,_1(V, Z).'? The purpose of this section is to study in concrete terms how the Hodge
basis varies with respect to the ‘anchor’ of the topological basis. !

We can phrase the discussion in terms of a fixed real differentiable manifold X
diffeomorphic to V (), and a basis of r—dependent (n — 1)—forms [23( (1) € A" (X, 0),
wherei =0, ..., b3 — 1. We can choose the forms .Q;( (t) to have fixed bidegree (p, q)
in the complex structure at point ¢, so that their cohomology classes provide the Hodge
decomposition for each ¢ € T. But because residues are generally not of pure Hodge
type (see (22)), it makes more sense to work in terms of the Hodge filtration. In other
words, we choose forms £24 (¢) to be elements of F"~!-7(V) rather than H"~!=7- (V).

Next we define the period matrix of V (¢) as the integrals of [23( () over a topological
basis of H,_1(X, Z). Denoting such a basis y;,i = 1,...,2(n — 1), the periods are:

250). (36)
Vi

10 1n the mathematics literature, symmetries that preserve the holomorphic 3—form are called symplectic
automorphisms.

' The complex structure we are talking about on V (¢) is the one inherited from the embedding in P;,.

12 We make use of the inclusion: H"~1(V,Z) — H"~L(V, C).

13 This subject has been formulated in a more abstract fashion, under the name variations of Hodge structure.
An excellent and readable introduction can be found in [17].
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It is these integrals that contain the information about how the Hodge structure varies
with . We would therefore like to differentiate them with respect to ¢. It might seem
naive to just differentiate under the integral sign, but in fact that is the correct thing to
do. Technically we are looking for a connection on the bundle over T whose fibers are
H"=1(V (1), C) (the so—called Hodge bundle), but this bundle admits a flat connection
V; known as the Gauss—Manin connection that can be defined by the property:

. d
vt/ 9§(r)=/ ang(t). (37)
Yi Yi

Notice thatby repeatedly differentiating £2 )J( (t) we generate a sequence of representatives
of classes in H" 1 (X, C). Since dim H"~ (X, C) is finite (for X compact) we must
eventually find that some derivative of .Q)/((t) can be related to lower derivatives up
to exact forms, which disappear upon integration. It follows that each column of the
period matrix, i.e. the periods fw 2 )J((t) for fixed j, obeys a differential equation in the
variables ¢, called a Picard—Fuchs equation. By comparing these equations, we will be
able to distinguish between different families of Calabi—Yau manifolds.

First though, despite the simplification of (37), we still have a hurdle to overcome.
The problem is that in Sect. 2 we worked with t—dependent hypersurfaces in PP, rather
than an underlying differentiable manifold X with r~—dependent (n — 1)—forms. Given a
(n — 1)—cycle (and hence a period) in V (#1), what is the corresponding (n — 1)—cycle
in V(t2)?

The conclusion we will find is that we should use the tools of Sect. 2 to rewrite the
period matrix as integrals of rational forms on the complement of V'; the reader interested
more in the final result than the technical details may want to skip directly to the result,
41).

We would like to have a precise notion of cycles varying smoothly with ¢. To this
end, consider  : X' — T a differentiable proper mapping of differentiable manifolds,
with rank = dim 7, so that X, = 7~ (¢) is diffeomorphic to a compact manifold X for
any ¢. We are interested in the case where X, inherits a complex structure from X', and
is biholomorphic to V(7). The Ehresmann theorem implies that the fibration X' — T
is locally trivial, so we can think of X’ as a fiber bundle with base 7. We can then
specify an Ehresmann connection on X' — T, i.e. a decomposition of the tangent space
T X' into vertical and horizontal subspaces 7" X’ and TV X’ respectively. This defines a
notion of parallel transport along a path in T'. So given a cycle y (f;) € X;; and a smooth
path linking # and #,, an Ehresmann connection defines a cycle y (f2) € X;,. Although
y(t2) depends on the path taken in 7 as well as the choice of connection, [y (%)] €
H,_1(Xy,, Z) (locally) does not. Moreover, if «(¢) : X; — X is a diffeomorphism, then
in H,—1(X, Z) we have: [a(11)y (t1)] = [a(r2)y (12)].

To summarize, one can choose a basis of H,—1(V (ty), Z), and parallel transport
it using an Ehresmann connection to obtain a (locally) unique horizontal family of
homology classes. How does this help us? It means we can rewrite the period integrals:

25 (1) = / 24O, (38)
Vi Vi (1)

where for example Qg(t)(t) is the holomorphic (n — 1)—form on V (), found using the
techniques that lead to (33). We have transformed the integrand to something we know
how to work with, but at the expense of introducing ¢ dependence into the cycle over
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which we are integrating. How do we then differentiate the periods with respect to ?
The answer is to represent Q{,(t) (t) as a meromorphic form on P,,:

. P
2y (0 = / 20, (39)

Jyw Toiy QOF

P2y
ok

which is just to say that .Q{,m(t) = Res (

holomorphic (n — 1)—form:

). For example, the case i = 0 is the

' 0 20
2yin) = —
¥i (1) Tyt Q)

For i # 0, there will be a nontrivial P and a higher power of Q(#) in the denominator.

Now for 7 in a sufficiently small neighborhood of 7y, T (y;(¢)) is homologous to
T (yi(tp)) in H, (P, — V., C). For the case of a single parameter, we can then differentiate
as follows:

d PQo_d/ P2y k/ P20 dO
dt Jrpy Q% dt Jrga0) QOF Tty Q@ dr

(40)

(41)

If r = dimg (H,(V)) = dimg (H"~'(V, C)), only the first » — 1 derivatives can be
linearly independent. Therefore the periods must satisfy a linear ordinary differential
equation of order at most » — this is a Picard—Fuchs equation.

2.4. Picard—Fuchs equations a la Griffiths—Dwork. The tools introduced above provide
a systematic, but usually tedious, technique for calculating Picard—Fuchs equations,
outlined for example in [18]:

1. Differentiate the period r times. If Q(¢) is linear in ¢, then one finds:

dr PQO (k+r_1)' QO {)Q -
dir ¢ :/ —=P(-—) . @
& Jrn) Q0 Toiy (k=D Q@ Y

2. Write P (—B—Q)r explicitly as anelement of J(Q),i.e.as >, Ai(x)a—Q where A; (x)

at ax;°
are polynomials of degree (n + 1)(r +k — 1) — n.
3. Use Formula 4.5 from [16] to reduce the order of the pole:

20 < 00 1820~ 04,
S0 NTA = = ST (). 43

4. Repeat the above steps until the r'h derivative has been expressed in terms of lower
derivatives. This is the required equation.

Appendix C contains two worked out applications of the above steps: the Hesse family
of elliptic curves and the Fermat family of quintics in [Py4.
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Parameterizing the moduli space. Conventionally, the Picard—Fuchs equation satisfied
by periods of the holomorphic 3—form on the Fermat quintic or its mirror, is written as

in Sect. 2.4:
[94— (e+1) (9+%) (e+§) (e+‘-‘)}ﬂ> =0 (204)
B 5 5 5))7

Recall that x = 1= and 6 = x%, while 7 is the parameter of the Fermat family:

1
0(t) = g(a5 b+ +d + e5) — tabede. (200)

For some purposes this is rather convenient; for example, since (204) is in generalized
hypergeometric form, one can make use of standard results about the monodromy of its
solutions [22].

However, the coordinate x is not particularly useful for analysing the equations sat-
isfied by the other periods. To see why, we review the usual argument for the change of
variables. It is noted!* that the transformation t — 2"/t can be undone by a simple
change of coordinates: x; — e~ 2 /5x; where x; is any of the homogeneous coordi-
nates [xo, x1, X2, X3, x4] = [a, b, ¢, d, e]. Since this transformation is holomorphic, it
follows that the hypersurfaces specified by 7 and by e>"!/3¢ are biholomorphic. The
natural coordinate on the complex structure moduli space therefore seems to be ¢ or

1.
Let us then take x = °, and consider the following period of a (2, 1)—form:

a’b? a’b?
/ 2 =/ S2. (@44
Q(x) [% (a5 +b5+cS+dd+ 85) — xl/Schde]

Suppose we want to interpret its monodromy around x = ¢ = 0. We note that circling
around x = 0 corresponds to t — ¢>7//3¢, which can then be undone by a — e=>"/q.
The form as a whole receives a scaling by ¢>7#/5 = e 327/ >, coming from the a> in the
numerator, as well as the factor of da in £2¢. If on the other hand we decided to absorb
the change into a scaling of b instead of a, then the form would scale by a different factor.
Working in terms of x, it is therefore tricky to determine what part of the monodromy of
the periods comes from geometric monodromy of the cycles, and what part comes from
the scalings of the forms.

This is not an issue for the holomorphic 3—form (or its derivatives), and hence does not
arise in discussions of the quintic mirror. In that case, the numerator of the form is some
power of abcde, so the overall scaling is the same no matter which of the coordinates one
chooses to absorb the scaling of ¢. In the case of the holomorphic 3—form, the numerator
is 1, so the only scaling comes from £2p which behaves the same as abcde. One can then
make the form as a whole invariant under the monodromy by including an additional
factor of ¢ in the numerator. This explains the (sometimes obscure) appearance of the
factor of 7 in Eq. (204). The monodromy of the periods is then entirely geometric in
origin.

For the non—invariant forms it is unclear how to achieve the same outcome, so we work
in terms of the original variable ¢, thus ensuring that the monodromy of the Picard—Fuchs
equations comes only from the cycles.

14 See for example Sect. 2.2 of [18].
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3. Quintic Calabi-Yau 3-Folds along Enhanced Discrete Symmetry Loci

As shown by the examples in Appendix C, the Griffiths—Dwork method involves some
algebraic tedium, particularly at Step 2 of the procedure outlined in 2.4. In this section
we exploit a much simpler technique, similar to that found in [9] but one in which our
derivation, utilizing the results reviewed in 2, establishes a different interpretation than
that suggested in [9]. We then apply it to two families of Calabi—Yau 3—folds.

3.1. The diagram technique for the Fermat quintic. We start with Formula 4.5 from
[16], which in our notation is:

200 1 20 DA
Z Q(. ) 0 —— + exact forms. 45)
axi Tk Ok &

Q(t)k+1

Recall that Q(?) is the defining equation of the hype/r_sllrface, A; are homogeneous
polynomials in the [x'],and 29 = > (—Dix'dxOA...dxi ... Adx". Wenow specialize
to the Fermat family of quintics, i.e. n = 4, and:

(1) = (a +b S +dve ) — tabede, (46)

where |a, b, c,d,e| = [xo, x! %2, x3, x4] is an alternative notation for the homoge-

neous coordinates. For this case, we have:
00(1)
axi

Next we choose A; = &;;x; A, where A = (x)"(x!)U1 (x3)2(x3)B(xH)" = a®0pY!
c2dV3eY+. Griffiths’ formula then becomes:

=) 0 x L xt (47)

o . e
Q(t)(/)<+1A[(xl)5 txoxlx2x3x4] zQ(O)"( Fodpesatioms. (9

In order that these forms are well defined on P4, we must have:
1 1
k:gdegA+1=§(v0+v1+v2+v3+v4)+1, (49)

so we will write k(v) from now on. Integrating over a cycle in P4 — V gives:

2 ; 2 1+
/—O Axy = t/ 0 AxOx it 4 ( vl)/ (50)
O(n)kw+ Q)+ k(v) Q(t)"(“)

We can write this relation in the form:

(vo, ..., vi+5,...,v4) = d+v )(vo,v1 V2, V3, V4)
k(v)
+t(vg+1,v1+1,vp+1,v3+1,v4+1) 51

which uses the following shorthand for the periods:

01000 = [ SRS EORED G RE 5
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The opportunity to write a differential equation arises because:
d 20

d
a(vo, V1, V2, U3, V4) = ar ] 0ay®

= k(v) &auoﬂbvwlcuﬁldvﬁleU4+1 (53)
- Q(t)k(”)"'l

a® bl V2 dv3 et

=k (vo+1,vi+1,vmu+1,v3+1,v4+1).
To organize these relations in a useful way, the authors of [9] presented (51) as a diagram:

(vo, V1, 12,03, 04) —> (vop+1,v1+1,vo+1,03+1,v4+1)
| D; (54)
(U(),...,Ul'+5,...,v4)

One should read this simply as saying that these three periods are linearly related, the
subscript on D; indicating which linear relation is being used. It’s also useful to keep
in mind that the period on the top right is proportional to the derivative of the period on
the top left. One can then build up larger diagrams, for example:

0,0,0,0,0) — (1, 1.1, 1, 1) — (2,2,2,2,2) — (3.3,3,3,3) — (4,4,4,4.4)

I Do I Do { Do I Do
(5,0,0,0,0) > (6,1.1,1,1) — (7,2.2,2,2) — (8,3,3,3,3)
I Dy I Dy | Dy
(5,5,0,0,0) - (6,6,1,1,1) — (7,7,2,2,2)
I D | Dy
(5,5.5,0,0) — (6,6,1,1,1)
| D3
“4,4,4,4,—-1) — (5,5,5,5,0)
J Dy
4,4,4.4.4)

Several comments are in order:

1. Theentry (4,4, 4,4, —1) does not correspond to a period. As one can see from (51),
this part of the diagram just says that (4, 4, 4, 4, 4) is proportional to (5, 5, 5, 5, 0).

2. Only one of the D; is used in each row, and each D; is used once.

3. Working up the diagram using (51), one can write (4, 4, 4, 4, 4) at the bottom in
terms of the top row of periods. This is then a 4" order differential equation for the
period (0, 0, 0, 0, 0), i.e. the periods of the holomorphic 3—form.

=1 d + 104 & +25¢° a2 +15¢2 d +1[(0,0,0,0)=0. (55)
dr# dr? dr? dt T
Or, in terms of n = 7 ;:
1
[(n +1)* - t—5n(n - bDHn—=2)(n— 3)} (0,0,0,0,0) =0. (56)

One can put this in generalized hypergeometric form with a change of variables:
A=1,0=2rL:
’ dn

4
[9(6—1) (e-g) (e—é)—x(ml) }(0,0,0,0,0):0. (57)
5 5 5 5
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1
This is the equation satisfied by 4 F3 |: 5

Gis

’

»5
4. This procedure is rather more convenient than the Griffiths—Dwork approach [16,20].

The reason that a 4" order equation appears as opposed to order 204 = dim¢ P H3
(V(t), C) = b3 can be traced back to the discrete symmetries of V (¢) mentioned in the
introduction. Recall that the symmetry group is (S5 X (Zs5) /Zs. For the subgroup of
scaling symmetries we can take the following for generators:

g1 =1(1,0,0,0,4), 82 =1(1,0,0,4,0), g3 =1(1,0,4,0,0), (58)

where as before the entries indicate powers of a nontrivial 5" root of unity. Notice that the
rule (54) ensures that all periods in a given diagram transform in the same representation
of (Z5)3. It follows that as one moves around the base of the family (i.e. as 7 varies), each
3—form only samples a subspace of H3(X, C) spanned by those 3—forms transforming
in the same representation of (Ss X (Zs)) /7s.

3.1.1. Interpretation of equations from the diagram technique. Equation (51) and its
diagramatic representation (54) can be found in Sect. 3.1 of [9]. However, in this paper
a different meaning is attached to the components of the diagram: (vo, vy, v2, v3, v4).In
particular the authors of [9] define:

1 / 5 (x())vo(xl)ul(x2)vz(x3)v3(x4)v4
d’x
r

(o, V1, V2, V3, V4) = =— O+

2mi
where I" is a 5-torus in C whose factors are loops winding around the 5 varieties
d; O = 0. Equation 3.2 of [9] then claims that this is in fact a period of the holomorphic
3—form:

: (59)

(vo, V1, V2, V3, V4) =/ 02, (60)
12

where yy is a 3—cycle whose homology class corresponds to the element of the Jacobian
ideal represented by the monomial (x°)¥0 (x 1)1 (x%)?2(x3)" (x*)¥. The purpose of the
extended introduction in Sect. 2 (and in particular the statement of Griffith’s theorems)
is to show that this interpretation cannot be correct. It is clear from the definition of the
Gauss—Manin connection in Eq. (37) that all 204 periods of the holomorphic 3—form
obey the 4 h order Eq. (55). And it is clear from (22) and the derivation above that the
equations corresponding to other monomials are not satisfied by different periods of £2,
but rather by all 204 periods of other, non—holomorphic forms.'>

Periods of the forms corresponding to 5" order monomials. In general, the quintic
monomials map to classes in F>? = H30@ H?!, but we saw in Sect. 2.4 that the symme-
tries can entail further restrictions. We therefore classify the elements of Cla, b, ¢, d, e]s
by their transformation properties under the (Zs)> symmetries of the Fermat quintic. For-
tunately there is no need to look at each of the 126 monomials separately, because they
fall into 5 sets which transform among themselves under permutations of the homoge-
neous coordinates. See Table 2.

15 There is a trivial sense in which our interpretation of the diagrams is consistent with that of [9]. One can
choose a basis of cycles so that all but four periods of the holomorphic 3—form 2 vanish identically over the
entire moduli space. These 200 vanishing periods of £2 then satisfy the ODEs assigned to them in [9], simply
because zero is a solution of any linear homogeneous differential equation.
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Table 2. The 126 quintic monomials split into 5 sets under the permutation and scaling symmetries. The
number in the right column is the number of example monomials listed supplemented by their permutations

Representation Class Example Monomials Number of Monomials in Class
A ad. b2, 5. d5, €5, abede 6
B a*b, b*cde 40
c a’h? 20
D abe 30
£ a’bc 30

Table 3. After the quotient by the Jacobian ideal J(Q) = [9; Q(¢)], there are 101 independent monomials

Representation Independent Example Number of Independent
Class Monomials Monomials in Class

A abcde 1

B b2cde 20

c a’h? 20

D a’be 30

£ a*h’c 30

As is well known, finding a set of 101 of these 126 that are independent as elements
of Cla, b, c,d, els/J(Q) is immediate. From (47), we see that a. b, 3. d°, & and
abcde are all equivalent, and from

b, O(t) = a*b — th*cde, (61)

we see that we can get rid of half of the monomials in representation class 3. The result
is summarized in Table 3.
By the argument at the end of Sect. 2.4, if [m5] €

B, C, D or &, then the classes Res (mgfo ) are elements of H2! rather than H3-0@ H2 !,

There is no such restriction for the single class in representation .A: the derivative of the
holomorphic 3—form with respect to 7.

Cla.b.c.d.el5 -, - .
~ 70 _lsm representations

3.1.2. Algorithm for diagram construction. In the previous section as well as in [9], the
diagram for the holomorphic 3—form was constructed and utilized in an ad hoc manner.
We now present a general algorithm which can be applied straightforwardly to all the
forms on several families of hypersurfaces.

Representation class A: {abcde).

1. Inthis case, we are looking for an equation satisfied by (1, 1, 1, 1, 1). First, differen-
tiate with respect to r as many times as is necessary to create the following ‘staircase

diagram’:
(3.3.3,3.3) > (4.4.4.4.4)
| Do
(7,2,2,2,2) — (8,3,3.3,3)
| Dy
6,6,1,1,1) - (7,7,2,2,2)
1 Dy (62)
(5,5.5.0,0) — (6,6,6,1,1)
| D3
(4,4.4,4,—1) — (5.5,5.5,0)
4 Dy

(4,4.4,4,4)
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As before, one uses each of the D;’s once, so that the bottom left and top right
periods match.
2. Nextextend the diagram to the left as far as possible by adding extra mini—diagrams:

(1,1.1,1,H)a — (2,2,2,2,2) — (3,3,3,3,3) — (4.4.4,4,4)

1 Do | Dy | Do
(5,0.0,0,0)p — (6,1,1,1,1) — (7.2,2,2,2) — (8,3,3,3,3)
| Dy 1 D | Dy
5,5,0,0,0)c - (6.6,1,1,1) — (7,7,2,2,2)
I D I D (63)
(5,5,5,0,0)p — (6,6,6,1,1)
| D3
“4,4,4,4,—-1) — (5,5,5,5.0)g
| Dy
4,4,4,4,4)

The one exception is that we do not add a piece to the left of the period we are
interested in: (1, 1, 1, 1, 1). The subscripts on the leftmost periods in each row are
the symbols we will use to denote them in equations.

3. We now write the relations corresponding to the leftmost mini—diagrams, i.e. a
coupled system in (A, B, C, D, E):

1 1 1
ﬁn(n—l)(n—Z)Azt“E, E=Z(n+1)D, D=§(n+1)C, (64)

1
C=5m+DB, nB=1tn+2)A, (65)
where as before 7 is the logarithmic derivative d(%gt) = t%.

4. Finally we manipulate the coupled system to find an equation containing A alone,
(11 = D0 =201 =4 = P +2)*]a 0. (66)

For this last step relations like nt = (¢ + 1)n are particularly helpful.

Representation class B: {bzcde}.
0,2,1,1,1)4 — (1.3,2,2,2)
| Dy | Dy
0,2,1.1,6)p — (1,3,2,2,7)

3
(=1.1,0,5.5) — (0,2,1.6,6)¢

} Do
3,0,-1,4,4) — 4,1,0.5.5)p
1 Dy
2,-1,3,3.3) - (3,0,4.4. 4
| Dy
(2,4,3,3.3)
The coupled system is:

1
grz(n— VA=E, E=tD, D=1C, (67)

C:%(n+2)B, B:%(n+2)A. (68)
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The equation for A is:
5 2
[n61= 1 =P +272]a=o0. (69)

Representation class C: {a3 bz}.

(3,2.0,0,0)4 — 4,3, 1,1, 1)

| Dy | Dy
(3,2,0,0.5)5 — (4,3,1,1.6)
| D3
(2,1,-1,4,4) = (3,2,0,5,5)¢
| D> (70)
0,-1,2,2,2) - (1,0.3,3,3)p — (2,1,4,4,4)
1 Dy
(=13, 1,1, 1) = (0,4,2,2,2)¢
1 Do
4,3, 1,1, 1)
The coupled system is:
1 2 1 2
—-nA=tE, E=tD, -nD=1t"C, (71)
2 3
1 1
C= g(n +1)B, B= E(n +1)A. (72)
The equation for A is:
5 204
[n01=3) = +1?]a =0, (73)

Representation class D: {a3bc}.

(3,1.1.0,0)4 — (4.2,2,1, 1)

| D4 | D4
(2,0.0,—-1.4) — (3,1.1,0.5)p — (4.2,2,1,6)
J D3 | D3
(2,0,0,4,4)¢c — (3.1,1,5,5)
| Dy
(1,-1.4,3,3) —»> (2,0.5.4.4)p
Vv Dy
(=1,2,2,1,1) = (0,3,3,2,2)p — (1,4,4,3.3)
1 Dy
4,2.2.1,1)
The coupled system is:
1 2 1 5 1
—nA=tE, —-nE=t"D, D=-(n+1)C, (74)
2 3 3
1
C=1B, B:E(n+1)A. (75)

The equation for A is:

[n1=2) =P+ D@ +)]a = 0. (76)
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Representation class & : {a2b2c}.

(2,2,1,0,004 — 3,3,2, 1, 1)

1 Dy V Dy
1,1,0,-1,4) - (2,2,1,0,5p5 — (3,3,2,1,6)
\ D3 VD3
0,0,-1,3,3) > (1,1,0,4,49)¢c — (2,2,1,5,5)
1 Dy | Dy
0,0,4,3,3)p —> (1,1,5,4,4)
1 Dy
(=1,4,3,2,2) — (0,5.4,3,3)f
{ Do
(4,4,3,2,2)
The coupled system is:
1 3 1
gn(n—l)A:t E, E=§(TI+1)D, D =1C, (77)
1
C =1B, B:E(n+1)A. (78)
The equation for A is:
(11 =1 = Fm+3)0+D]a = 0. 79)

Summary of Columns of the Period Matrix
Corresponding to 5" Order Monomials

Number of Classes|  Operator Annihilating Periods Hodge Type
A 1 nn—1Dn—=2)(n—4) —35(n+2)*| H** o H>!
B 20 nm—1)—1(n+2)> H*!
C 20 nn—3) — 21+ 1)> H*!
D 30 nmn—=2)—n+ D +2) H2!
£ 30 nm—10—=02m+3)m+1) H*!

Periods of the forms corresponding to 10'" order monomials Tt 1ooks like an unpleasant
task to sift through the (144) = 1001 10" order monomials, classifying them by their
transformations under (Zs)?3, and checking for relations in J(Q). So we take a different
route.

Our aim is to find a convenient basis of Cla, b, ¢, d, e]19/J(Q). To this end, notice
that we can choose a basis of Cla, b, ¢, d, e]s/J (Q) not containing any homogeneous
coordinate raised to the 4/ or 5" power. If the basis elements are restricted to being
monomials, then the basis is unique:

[m;] = {[abcde], [b2cdel, [d3b2], [d3be), [azbzc]} + permutations.  (80)
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Here i = 1,...,101. In other words, any element of Cla, b, ¢, d, e]s/J(Q) can be
written: >, o;[m;] with ;; € C. We now define a map denoted «:

~Cla,b.c.d, els Cla, b, c.d, elio

— (81)
J(Q) J(0)
a’h33d3e’
such that *[m] = [T} . (82)

Note that it is crucial that the basis ;] contains no elements like [a*b] or [¢®] in order
that the map is well defined. We define the action of x to be linear:

x (cnlm] + @almal) = @y x [my] + otz % o). (83)
The claim is that if [m;] is the above basis of Wf(—‘gglek, then «[m;] is a basis of
Q%lm To prove it, consider the pairing:

Cla,b,c.d,els " Cla, b, c,d, elo N Cla, b, c,d, elys
J(Q) J(0) J(Q)

givenby F (zai[mi]), Zﬁj[’hj] =2 iBj[mim;].  (85)
i J

~C (84)

where [m;] is a basis of Cla, b, ¢, d, e]19/J(Q). The isomorphism with C is realized

by taking the coefficient of [a>bh3c3d3e?] in the sum. We’ll denote this coefficient F.
Now we know that:

Cla, b, c,d, els . Cla,b,c,d,elio
G DES i L2 S0
J(Q) J(O)

So, x[m;] is a basis of Cla, b, ¢, d, e]1o/J(Q) if the 101 x 101 matrix F([mi], *[mj])

dim 101. (86)

is nondegenerate. But it’s not hard to see that F [m;], *[mj]) = §;j, the 101 x 101

identity matrix. So x[m;] is the dual basis to [m;]. We have therefore found the basis we
were looking for.

Before constructing diagrams for the periods corresponding to *[m;], it is worth
looking at how the » operator interacts with the discrete symmetries of the Fermat quintic.
First some notation: for the (Z5)3 generated by g1, g2 and g3, we say that a monomial
[m]is in the (n1, ny, n3) representation if g;[m] = y"™ [m] fori = 1,2, 3, where y is a
nontrivial 5 root of unity. It is easy to see that if [n] transforms in the representation
(n1, na, n3), then «[m] transforms in the representation (5 —n,5 —n,5 — n).

We can go a step further, and think of  as acting on the classes of irreps of (Zs)3
that transform into each other under permutations. (We labeled these A, B, C, D and £.)
One finds a simple action:

* A=A, *B =B, *C =C, *D =D, *€=E. (87

For example, representation class C includes the monomial a3b?, with (n1,no,n3) =
(3,3, 3). We find x[a’b?] = [bc3d3e3], which has (n;, n2, n3) = (2,2,2). One can
check that this representation is also in class C. Even better, a permutation of [bc>d3e?]
already appears in diagram (70) for representation class C, so there is no need to construct
a new diagram. We will see that this happens for the other representations as well.
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Representation class A. The 5’ " order monomial was abede, with period(1,1,1,1,1) =

A. Acting with the » map gives (2,2,2,2,2) = %% = A. All we need to do is write

the relations for A in terms of A, to get the coupled system:

1 . 1 1
—nn—DA=1E, E=- DD, D=- nC 38
12n(n ) . 4(n+ )D, 3(n+ )C, (88)

1 1 ~
C= E(n +1)B, zn(n — 1B =1*(n+3)A. (89)
which leads to the following equation for A:
(11 =D =30 =4 =P +3) [A 0. (90)

Representation class B. The (2, 1) period was (0,2, 1, 1, 1) = A. The corresponding

(1,2) period'® is (3,1,2,2,2) = (1,3,2,2,2) = 39 = A. Again we write the

relations for A in terms of A, to get the coupled system:

1 -

5r;A =t’E, E=1tD, D=1C, 1)
1 N

C=3m+2)B, nB=1(+3)A, (92)

which leads to the following equation for A:
[n01=4) =P +37] A = 0. (93)

Representation class C. The (2, 1) period was (3, 2, 0, 0, 0). The corresponding (1, 2)
period is (0, 1, 3, 3, 3) = (1,0, 3, 3, 3) which appears in the diagram denoted D. We
can therefore just use the same coupled system as before to solve for D:

[n(n — =+ 4)2]D —0. (94)

Representation class D. The (2, 1) period was (3, 1, 1, 0, 0). The corresponding (1, 2)
period is (0, 2, 2, 3, 3) = (0, 3, 3, 2, 2) which appears in the diagram as E. So as with
representation class C, we just use the same coupled system as found for the (2, 1)—forms
to solve for E:

[n(n —3) =5 +3)(n +4)]E —0. (95)

16 We refer to the periods of forms corresponding to 10 " order monomials as (1, 2)—periods, but one should
keep in mind that generally these are integrals of classes contained in H 30¢ HZ @ H1-2 not just H 12,
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Representation class £. The (2, 1) period was (2,2, 1,0,0) = A. The corresponding
(1,2) period is (1,1,2,3.3) = (3,3,2,1,1) = 194 = A As with representation
classes A and BB, we write the relations for A in terms of A, to get the coupled system:

1 - 1
gnA =t’E, E= 5(n +1)D, D=1C, (96)
C=1B, nB=1t(n+2)A, (97)

which leads to the following equation for A:

(001 =4 =P+ 20 +3)]A = 0. 98)

Summary of Columns of the Period Matrix
Corresponding to 10" Order Monomials

# Classes|  Operator Annihilating Periods Hodge Type
Al 1 nn=D =3 =4 -2+ H* e H> @ H'2
Bl 20 nm—4) —>(n+3)>% H*!' ¢ H'2
cl 20 nn —2) —>(n+4)? H*!' g H!2
Dl 30 nn—3)—r2m+3)(n+4) H*' @ H'?
gl 30 nm—4)—2n+2)(n+3) H*!' @ H!2

Periods of the class corresponding to 15 " order monomials The spaceCla, b, ¢, d, elis/
J(Q) is 1 dimensional, and we can take the single nonzero basis vector to be the mono-
mial a3b3c3d3e3. This choice allows us to reuse the diagram for (1,1, 1,1, 1), now
defining A = (3,3,3,3,3) = GST? e H3@ H>' @ H'> @ H"3. The coupled system
becomes:

1 1 1
Zr;A:tzE, E=10+DD. D=0+ 1C. (99)

C=%(7}+1)B, én(n—l)(n—Z)B:t3(n +4)A. (100)

The resulting equation is:

[n61=2)(1 =300 =4 = P +*]a =0 (101

The algorithm we’ve given for the diagrammatic method is both systematic and
powerful. As our discussion of the Fermat pencil has made clear, the key prerequisite
is focusing on a family of varieties each of whose members respects a large discrete
symmetry group. Earlier, we emphasized that the quintic moduli space has other, less
familiar, loci that respect other, less familiar, discrete symmetries. We now extend the
diagrammatic technique to these families, focussing for definiteness on the Z4; case.
The results for the Zs; family are summarized in Appendix A.
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3.2. The Z.41 quintic: Q(t) = % (a4b +bic+ctd+de+ e4a) —tabcde = 0. The sym-
metries of this quintic family are the Z4; scalings generated by g = (1, 37, 16, 18, 10)
where the entries now indicate the powers of a nontrivial 415" root of unity multiplying
each homogeneous coordinate. There is also a Zs group of cyclic permutations of the
homogeneous coordinates generated by « : (a,b,c,d,e) — (b,c.d, e, a), which is
intertwined with the scalings by the relation:

ozgot_1 = glo. (102)
As for the Fermat family we have:
. v()bvl Usz} V4
Q) = / #90. (103)
Vi T(yi) Q(n)kw
But the relation that previously was interpreted diagramatically is now:
2 00(t 1 £
0 x! Q(. ) = - 0 A(1 + v;) + exact forms, (104)
Q(t)k(u)+l ox! k Q(t)k(”)
a0(t 4 1
a Q( ) = —a*b + =¢*a — tabcde, (105)
da 5 5
a0(t 4 1
with 220 _Hpa Loy tabede, (106)
b 5 5
a0(t 4 1
c gc( ) = §c4d + §b4c — tabcde, (107)
dQ(t 4 1
a220 3 s L sy vabede. (108)
ad 5 5
a0(t 4 1
e& = —¢*a+ —d*e — tabcde. (109)
de 5 5

Equations (105-109) now have three terms on the right hand side, in contrast with their
counterparts in the (Zs)? case, so these relations cannot be used to construct diagrams
as before. But one can rectify the problem by taking particular linear combinations:

256 1 —4 16 —64\ [ad,Q(r) a*b — tabcede
—64 256 1 —4 16 b, O(1) b*c — tabcde
16 —64256 1 —4 || ca.0@) | =205 c*d —tabede |. (110)
—4 16 —64 256 1 ddg Q1) d*e — tabede
1 —4 16 —64 256 ) \ €3, Q(1) c*a — tabede

Performing the same manipulations on (104) and integrating gives:
_ fGv
205k (v)
+t(vo+1,v1+1,vo+1,v3+1,v4+1), (111)

(o, ..., vi+4,vigr +1,...,04) (vo, v1, V2, V3, Vs)

where f(i, v) is the i’ h component of the column vector:

256 1 —4 16 —64 vo+1
—64 256 1 —4 16 vy +1

16 —64 256 1 —4 v+l |, (112)
—4 16 —64 256 0 v3+1

1 —4 16 —64 256 vg+1
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and again k(v) = 1+ >, v;. The above is encoded in the following diagrams:

(Vo, V1, v2,v3,04) —> (vo+ 1L, vi+1, v+ 1, v3+1,v4+1),
¥+ Do (113)
(vo+4, v +1, v, v3, Vg)
(vo, V1, v2,v3,04)  —> (o+ 1, v+ 1, v+ 1, v3+1,v4+1),
| Dy (114)
(vo, v1 +4,v2+ 1, v3, V4)
(vo, V1, v2,v3,04)  —> (o+ L, vp+1, v+ 1, v3+1,v4+1),
I Dy (115)
(vo, v, v2 +4,v3+ 1, v4)
(vo, v1,v2,v3,14) —> (wo+Lvi+ L v+l v3+1,v4+1),
¥ D3 (116)
(vo, v1, v2. v3+4, v4+ 1)
(vo, v1,v2,v3,v4)  —> (o+ Lvr+ 1, v+ 1L vs+ 1L v+ 1),
I Dy (117)
(vo+1,v1,v2,v3, 04 +4)

The algorithm for finding Picard—Fuchs equations is the same as in the Fermat case
except that we can no longer use diagrams with —1 appearing in any of the entries of
(vo, v1, v2, V3, V4).

Periods of the holomorphic 3—form.

0,0,0,0,004 — (1,1, 1,1, 1) = (2,2,2,2,2) - (3.3.3,3.3) —> 4. 4.4.4.4

1 Dy 1 Dy L Dy | Do
(4,1,0,0,0)p — (5,2,1,1,1) — (6,3,2.2,2) — (7,4,3,3.3)
| Dy | Dy | Dy
4,5,1,0,0)c — (5,6,2,1,1) — (6,7,3.2,2)
| Dy | Dy

(4,5,5,1.00p — (5,6,6,2. 1)

3
(3,4,4,4,00p > (4,5.5.5.1)
| Dy
(4,4,4,4,4)

The coupled system is:
én(n—l)(n—Z)(n—3)A=t4nE, nE=t(n+1)D, (118)
D=%(n+1)C, C:%(n+1)B, B=m+1)A, (119)
which leads to the equation:
[n61= D =200 =3) = P+ 1*|a =0 (120)

Notice that the equation for the periods of the holomorphic 3—form is the same as
for the Fermat family. As indicated in the introduction, this fact can be interpreted as
a consequence of mirror symmetry. The Greene—Plesser mirror construction [10,14]
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Table 4. The 126 quintic monomials according to their transformation under Z41

0 1 2 3 4 5 6 7 8 9 10
a*b ebe b*d Sbd a3 &2 d*c pad & & d3ab
bre b2c2d 3d? a%c?e c3ab d3b? eac a’d?e  bie? 3a? a’bre
c*d b2d%c  a?b%e  biac cZabd  cZe?b e3ad a’be
d*e a’cde d?abc e%bed
e*a
abed
11 12 13 14 15 16 17 18 19 20 21
a’c?d  a?b?d  Abe a‘e e*e b3de etd cae b a‘c b
d?e*b  c*ela a’d*c  b3ce d3a? d%¢’a  a’bd a’e?b d3be b3c? e3c?

b2e?a  e*acd a3be d?bee bZace c2ade c3bd

cZbde b2ade

22 23 24 25 26 27 28 29 30 31 32
a*d ade?  cta Sd? b d*b b2e*c  ddce  dlac  ba®  d*a
3b? eded b3d? d3be c3ad 3e? 2d?a b2d%’a  a*c*b dde e2a’?
Ped  2d*h  dPae b3c2a aPbde  e3ab c2e?d  b*e’d  d*e*c a*bed
d?ace a%bee b*acd
33 34 35 36 37 38 39 40
c*e a?d*h  bte b a’cd a?e’c e A3p?
d3é? b2c2e a3c? a’b? Ad%e b d%e  a’d? blac
e2abc c3de bZcde d3ce a’e’d

e2abd c2abe

involves quotienting the manifold at ¢ = 0 by the group of scaling symmetries that
preserve the holomorphic 3—form, so the differential forms that descend to the mirror
are precisely those that transform trivially. Now recall from Fig. 1 that the quotient of
the Fermat family is a 1-parameter familiy in mirror moduli space, varying in complex
structure with . The same is true for the quotient of the Z4; family. But the mirror
family of quintics in P4 has Ay ;1 = 1 and &1 ; = 101, so the complex structure moduli
space is one dimensional. It follows that the quotients of the Fermat and Z4; families are
isomorphic in terms of their complex structure, differing only in their Kéhler structure.
We therefore expect the invariant periods of both loci to obey the same Picard—Fuchs
equations.

Periods of the forms corresponding to 5" order monomials. As before, elements of
Cla, b, c,d, e]s/J(Q) correspond to cohomology classes in F32 = H30@ H2! 1n
this case it helps to classify the 126 quintic monomials by their transformation under
the Z4; scaling symmetry generated by g = (1, 37, 16, 18, 10). We say a monomial m
is in representation n if g(m) = y"m, where y is a nontrivial 415" root of unity. The
monomials are listed by representation in Table 4.

The decomposition into representations of Zj4; must be compatible with the
permutation symmetry in the sense that cyclic permutation of all the monomials in
a given representation should give the monomials in some other representation. We
therefore group the representations by their behavior under cyclic permutations in
Table 5.

We now need to take account of the quotient of Cla, b, ¢, d, e]5 by J(Q) to find out
how many forms are associated with each representation class. The results are summa-
rized in Table 6. In total there are | + 5(3+2+2+3+3+3+2+2) = 101 independent
monomials as expected.
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Table 5. The representations of a given row of the right column transform into each other under cyclic
permutations of the homogeneous coordinates

Representation Class Z41 Representations Contained Therein
A

Bl 5,8,9,21,39

B2 1,10,16,18,37

B3 2,20,32,33,36

B4 4,23,25,31,40

C1 15,22,24,27,35

c2 3,7,13,29,30

C3 6,14,17,19,26

c4 11,12,28,34,38

Table 6. The 25 relations among the 126 quintic monomials, considered as elements of Cla, b, ¢, d, e|5/J (Q)

Representation Relations # Forms per Hodge Type
Class Representation

A a*b ~btc ~ *d ~ d*e ~ e*a ~ abed 1 H30 g g2!
Bl adpQ = %b3ac+ %115 —ta’cde 3 H2!

B2 No relations 2 H2!

B3 docQ = $c3d? + Lb*d — 1d%abe 2 H>!

B4 No relations 3 H2!

Cl cia 0 = %a3be+ %e4c—tczbde 3 H21

C2 No relations 3 H~!

C3 cdeQ = §e3ac+%d4c —tc%abd 2 H%!

C4 No relations 2 H2!

Representation class A: {abcde}.

1, 1,1, 1, )4, — (2,2,2,2,2) — (3,3,3,3,3) — (4.4.4,4.4)

| Do v Do 1 Do
4,1,0,0,0)p — (5,2.1,1,1) — (6,3,2,2,2) — (7.4,3,3,3)
| Dy 1 Dy | Dy
4,5.1,0,0)c — (5,6,2,1,1) — (6,7,3,2,2)
| Dy L Dy
(4.5,5.1.00p — (5,6,6,2,1)
| D3
3,4,4,4,00 - 4.5,5,5.1)
{ Dy
(4,4,4,4,4)

The coupled system is:
1 3 1
gn(n —1(n—2)A=tnE, nE=t(n+1)D, D= g(n +1)C, (121
1
C= E(n +1)B, nB=t(n+2)A, (122)
from which one can find the following equation for the period A:

(11 =D =20 =4 =P +2)* | 4 0. (123)
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Representation class B1: 3 of {a°, d°b?, b*ac, a*cde}. In anticipation of using the

map to find the (1, 2)—periods, it will be helpful to find a diagram without a°:
0,2,0,3,004 — (1,3,1,4, 1)

1 Dy 1 Dy
(1,2,0,3,Hp — (2,3,1,4,5)
1 D
0,1,3,3,3)c —» (1,2,4,4,4)
| Do
2,0,1,1,1)p - (3.1,2,2,2) - (4,2,3,3,3)
| Dy
(1.3,1,0,00p - (2,4,2,1,1)

VD3
(1,3,1,4. 1)

The coupled system is:

A=t +37E E=t +180 1( D =+¢> +10c
nA=t\n+ o )E. nE=t\n+ o )D. 5n = (\n+ 7)€

(124)
Cet(n+ B B=L(ns+1)a (125)
O UTY E A T A

which results in the following equations for the 3 independent periods:

(=D =20 =D -9 =1 1+ = = o ~)|a=o
n( " n n (n+ 41)(n+ 41)(n+41)(n+41)(n+41) =0.
133 98 83 78 18
[n(n—1)(77—2)(n—3)(n—4)—t5(n+ﬂ)(n+ﬁ)(n+ﬁ) (n+ﬁ) (n+ﬂ)]D:0,
=D —2)( —3)( —4)—1‘5( +@)( +2)( +ﬂ)( +£)( +£)
I R 2 2 KRTRY B T AU A URITE A LT

Representation class 32: {e3bc, b2c2d}.

=
Il
[}

0,1,1,0,3)4 — (1,2,2,1,4)

| Ds | Ds
0,1,1,4,4)p — (1,2,2,5,5)
I Do
3,1,0,3,3)c — 4,2,1,4,4)
I Dy
(2,0,3.3.2)p - (3.1.4.4,3)
1 Dy
0,2,2,1,0)g — (1.3,3.2,1) — (2.4,4.3.2)
| Dy

(1,2,2.1.4)

The coupled system is:

33 1 20 36
A=t —)E, —n(n—1E =1+> —)\D, nD=t —)c,
n (n+41) 2n(n ) (n+41) n (n+41)

c=i(n+2)B B='(n+32)a (128)
S U TY RN T R
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The equations for the 2 independent periods are:

[n(n— D0 — 20— 30 —4) 15 (n+—197) (n+%) (n+ﬂ) (n+2) (n+3)]A —0,
41 41 41 41 41

[n(n— D =2 — 3 —4) — 15 (n+—143) (n+E) (n+ﬁ) (n+£) (n+£)} E —o0.
41 41 41 41 41

Representation class 33: 2 of {b4d, Ad?, d2abe}.

0,4,0,1,004 — (1,5,1,2, 1)

| Dy I Dy
(1,4,0,1,9Hp — (2,5,1,2,5)
1 D
0,3,3,1,3)c > (1,4,4,2,4)
I Do
(3.3,2,0,2)p — (4,4.3,1,3)
| D3
(1,1,0,2, hg — (2.2,1,3.2) = (3,3.2,4,3)
| Dy
(1,5,1,2, 1)

The coupled system is:

a=i(n+3)E 1( DE =¢2 +B\p, op=1 +4c
nA=t\n+ g )E Sn =t \n+ )P nD=1{n+7)C

(130)
C=t 10 B, B= ! + = A
=T ) P )
The equations for the 2 independent periods are:

5 245 105 45 25 10 _
[71(77—1)('7—2)(77—3)(77—4)—t (77+ Z) (77+H) (77+ H) (77+ H) (H—H)}A =0,
146 86 81 66 31
[7}(7) —Dn—=2)(n—=3)(n—4) — = (7) + H) (7]+ H) (7]+ H) (n+ H) (7]+ H)] E =0.

(132)

(131)

Representation class B4: {d362, c3ab, azbze}.

0,0,2,3,.004 — (1,1,3,4, 1)

1 Dy | Dy
(1,0,2.3,49)p — (2.1,3.4,5)
I Dy
0,3,2,2,3)c = (1,4,3,3,4)
I Do
(2,2,0.0,H)p — (3.3.1,1.2) — (4.4.2.2,3)
I D>
(1,1,3,0,00 — (2,2,4,1,1)

1 Ds
(1,1,3,4,1)
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The coupled system is:

NA =t\n+ E HE =1{n+ ! D 17}(7] I)D = tz n+ C
41 ' 41 ’ 2 41 ’

39 1 9
C B, B=- — )4, 134
1 t(n+41) 2(77+41) (134)

which results in the following equations for the 3 independent periods:

=D —2)(n —3)( —4)—t5( +@)( +ﬁ)( +@)( +B)( +2) A=0
nm 1 n n n 41 n 41 Ul ] n a1 n 1 =0,
0290014 2) (102 (5 2) (14 29) (14 2) |2 -0
n(n =1 1 1 Uaavrall A Uasorall A UAivrs AUAS TS A UAm =0,
5 185 90 80 50 5
|:77(7l—1)(?7—2)(71—3)(71—4)—[ (’H—H) (77+—1) (77+H) ("+H) (U+H)}E

Il
o

(135)

Representation class C1: 3 of {e4c, d3a?, abe, czbde}. Here it will be convenient to

leave out the monomial e*c.

(3,1,1,0,004 — 4,2.2,1,1)

| D; | D3
2,0,0,3,00p > 3,1,1,4,1) — 4,2,2.5,2)
\L D4 l, D4
3,0,0,3,49)¢c > 4.1,1,4,5)
I Dy
(2.3.0.2,3)p — (3.4,1.3,4)
| Dy
0. L2, 1.Dg — (1.2.3,2,2) — (2,3.4,3,3)
| Do
“4,2,2,1,1)

The coupled system is:

41 ’ 2 41 ’ 41 ’

c= (03B wB=1(ns+2)a (137)
o\ )P e E T )

The equations for the 3 independent periods are:

_1 _2 _3 _4 _t5(+ﬁ)(+§)(+%)(+ﬁ)(+§)
[n(n Y —=2)(n—3)(n—4) U b AUAS TS A UAsrl A LA ]
=20 =30 =45 (10 ) (12 53 (2 B (14 B) (o2 2
[n(n D —=2)(n—=3)n—4) —1 (77+ a1 )(n+ ) ) (77+ 41) (77+ 41) (77+ 41)} B

5 (e 30 (e 5 (04 55) (54 29) (4 22) ] -
[n(n—l)(n—Z)(n—3)(n—4)—t (n+ 41)(n+41)(77+41)(71+41)(n+41)]E =0.

(138)

S
Il
=)

Il
=
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Representation class C2: {e3bd, ac?e, bzdzc}.

0,1,0.1,3)4 — (1.2, 1,2,4)

1 Do 1 Do
(4,2,0.1,3)p — (5,3.1,2.4)
Dy
(2,0.2,0,1)c — (3.1,3.1.2) — (4,2.4.2,3)
| Dy | Dy
2.4,3,0,1)p — (3,5.4,1,2)
| D3
0,2,1,2,0)g — (1,3,2,3,1) > (2,4,3,4,2)
4 Dy
(1,2,1,2,4)

The coupled system is:

nA:t(n+£)E, lr](r]—l)E=1‘2<n+E)D, D:l(n+9)c, (139)
41 2 41 2 41

1 2 26 1 6

§n(n—1)C=t (”+H)B’ BZE(“H)A' (140)

The equations for the 3 independent periods are:

[n(n — Do =D =3 —4) -1 (n+ %) ('7 + %) (n+ %) (n+ %) (n - 46—1)} A =0,

[n(n—1)(n—2)(n—3)(n—4)—t5 (n+@) (n+g) (n+2) (n+£) (n+£)}€ =0,
41 41 41 41 41

|:77(1] —D(n—=2)n -3y —4) — = (n+ E) (77 + g) (1]+ ﬂ) (1]+ ﬂ) (1]+ H)] E =0.
41 41 41 41 41

Representation class C3: 2 of {d4c, elac, czabd}.

(1,0,1,0,3)4 — (2.1,2,1,4)

| Dy 1 Dy
(1,4,2,0,3)p — (2,5,3,1,4)
| D;
0,3,1.3,3)c — (1,4.2.4,4)
1 Do
(3,3,0.2,2)p = (4,4,1,3,3)
\ D>
(1,1,2, 1,00 — (2.2,3,2.1) = (3.3,4,3,2)
1 Dy
2,1,2,1,4)

The coupled system is:

A=t +34 E 1( DE =t + b up = +12C(142)
nA=t\n+ o) E. S0 =t \n+ g) D D =t{n+ 7 )C.

C=i(n+2)B B='(1+2)a (143)
R UTY EA A GT A
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The equations for the 2 independent periods are:

198 93 53 38 28
[fl(fl— DO =20 = 3) (1 —4) — 17 (Tl+ H) (7]+ H) (77+ H) (77+ H) (77+ H)i| A =0,
_ _ B N 134 94 79 69 34 B
[n(n Dn—=2)n—=3)(n—4)—1 (n+ TR ) (n+ —41) (77+ —41) (n+ —41) (77+ —41)] E =0.

Representation class C4: {azczd, d2e2b}.

(2.0.2.1.004 — (3.1.3.2, 1)

| Dy | Dy
(2,4,3,1,00p — (3,5,4,2,1)
1 Dy
(2,3,2,0,3)c - (3,4,3,1,4)
1 D3
0,1,0,2,2)p — (1.2.1,3,3) = (2,3.2,4,4)
1 Dy )
0,1,4,3,2)p — (1,2,5,4,3)
1 Do
4,2,4,3,2)

The coupled system is:

1( DA = ¢2 +22 E E—1 +27 D 1( DD = t? +24 C
21 P\t ) r T\t ) T\ a)
(145)

Cei(n+2)B B=1(n+)a (146)
=) P\ )

The equations for the 2 independent periods are:

[n(n— D0 =20 =3 — ) — 1 (n+@) (n+£) (n+§) (n+§) (n+£)}A o,
41 41 41 41 41

0 — 1)) — 2)(n — 3)( —4)—t5( +£)( +ﬂ)(,+ﬂ)( +2)( +2) D=0
T ! P T )\ )T )\ )\ s -

(147)

In summary, the classes corresponding to representations in B1, ..., B4,C1,...,C4
are of pure Hodge type H>!, and their periods all obey 5/ order generalized hyper-
geometric equations. The periods of the single class in representation A (the trivial
representation) are of mixed Hodge type, and obey a 4" order generalized hypergeo-
metric equation — the same as that obeyed by the corresponding periods in the Fermat
family.

Periods of the forms corresponding to 10" order monomials. As for the Fermat quintic,
we would like to use the » map to generate a basis of Cla, b, ¢, d, e]19/J(Q). This
requires that we find a basis of Cla, b, ¢, d, e]s/J(Q) with no monomials containing
4" or 5'" powers of any coordinate. One can see by examining the relations in Table 6
as well as the monomial content of the representation classes, that such a basis can be
found for the Z4; quintic.
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As with the Fermat quintic, » acts nicely on the representations of the discrete sym-
metry group. If [m] is in representation n of Z41, then x[m] is in representation 41 — n.
Here though the x map acts in a nontrivial way on the representation classes:

* A=A, *B1 = B3, *B2 = B4, *B3 = Bl, *B4 = B2, (148)
*Cl =C3, *C2=0C4, *(C3=C1, C4=20_C2. (149)

For example, the 10" order monomials found by acting with  on the 5/ order monomials
of B1 appear in the diagram for B3 up to cyclic permutations.

Representation class A. The 5'" order monomial in class A is abcde, which maps

to a2b%c2d?e* under . We can therefore reuse the diagram (63), but solve for dA [e's
(2,2,2,2,2) rather than A = (1, 1, 1, 1, 1). The result is:
5 47dA
(101 =D =30 =4 = Fa+3)* | =o. (150)

Representation class B1. From (148) we see that we should look at the 5" order mono-
mials in B3: {c3d2, dzabe}. Acting with » gives {a3b3de3, a2b2c3d62}, corresponding
to periods (3,3, 0, 1, 3) and (2, 2, 3, 1, 2). These are cyclic permutations of (and hence
equal to) (3, 1,2, 2,2) and (0, 1, 3, 3, 3) which appear in the B1 diagram as C and %‘ff;
respectively. So all we need to do is write the coupled system in terms of <= dD rather than

D and then solve for C and == dD . The coupled system is:

A=t +37 E, n(n—DE =1> +59 b 1 db t +loc (151)
R U T A =P\ ) e 27 T\ )

c=i(n+3%Y5 B='(1+L)a (152)
=TT ) 2\ )

The equations for the 2 independent periods are:

174 139 124 119 59 dp
['7(77—1)(77—2)(71—3)(71—4)—t (U+H) (77+ Z) (77+ H) (U+H) (71 41)] a =0,
180 165 160 100 10
|:77(?7 -D@=2)(n=3)n—-4) —1 (71+ H) (77+ H) (7l+ H) (77+ H) (77+ H)] Cc=0.

Representation class B2. The 5'" order monomials in B4 are {d3c?, c3ab, a*b*e}. Act-
ing with » gives {a’b>ce’, a’b*d> e, abc® d3e?)}, corresponding to periods (3, 3, 1, 0, 3),
(2,2,0,3,3)and (1, 1, 3, 3, 2). These are cyclic permutations of (3, 1, 0, 3, 3), (2, 0, 3,

3,2) and (1, 3, 3, 2, 1) which appear in the B2 diagram as C, D and 5 1 dE + respectively.

de

We therefore write the coupled system in terms o rather than E and then solve for

C, D and %—f. The coupled system is:

n—1DA =12 L4 4E 1 dE + b gp=iy+2 C, (153)
i =t\"q) e 27 TP\t g) P =ity

c=i(n+2)B B='(1+2)a (154)
=T ) PE T )
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The equations for the 3 independent periods are:

[n(n — D=2 =3 —4) 1 (n + %) (n+ %) (n+ %) (n + %) (n + %)} dE g,

[n(n—l)(n—Z)(n—3)(n—4)—t (n+ﬁ) (n+@) (n+@) (n+ﬂ) (n+§)} c=o
41 41 41 41 41

{n(n -DO =2 =3)n—-4) —1 (n+ @) (n + E) (n+ E) (n+ E) (7/ + Q)} D =0.
41 41 41 41 41

Representation class B3. The independent 5 order monomlals in B1 can be chosen
to be {d*b?, blac, a*cde}. Acting with x gives {a’bcie?, a’c*d’e?, ab’c?d?e?}, cor-
responding to periods (3, 1,3, 0, 3), (2,0,2,3,3) and (1, 3, 2,2,2). These are cyclic

permutations of (0, 3,3, 1, 3), (3,3,2,0,2) and (2, 2, 1, 3, 2) which appear in the B3
diagram as C, D and % ‘ff respectively. We therefore write the coupled system in terms

of <= dE rather than E and then solve for C, D and dE . The coupled system is:

A=ty B)E l( 1)dE—z2 +2Yp, p=i(n+)c (155)
M=) e 2T g TP\t )) P e )

C=1 g a=L(h+2)a (156)
G U TY A S LT R

The equations for the 2 independent periods are:

[n(n— Y —2)(n—3) (1 —4) =1 (1 + e A RSl A Wil ACASTE A KRS }
o v Ay a5 168 163 148 113 23 B
|:1)(7/ D —=2)(n—=3)n—4)—1t (7]+ TR ) (n+ TR ) (7/+ TR )(7}+ TE ) (71+ 41)i| D =0,
=D =20—3)n—4)—1 ( +187)( +£)( +E)( +ﬂ)( +7—2) dE _
R DR 2 2 T )T ) )\ )\t ) o T

Representation class B4. The 5" order monomials in B2 are {€*bc, b>c*d }. Acting with
* gives {a3b2c2d3, a3bcd2e3}, corresponding to periods (3, 2, 2, 3,0),and (3, 1, 1, 2, 3).
These are cyclic permutations of (0,3, 2,2,3)and (3, 3, 1, 1, 2) which appear in the B4

diagram as C, and é g respectively. We write the coupled system in terms of 3= dD rather

+

0.

than D and then solve for C and <= dD . The coupled system is:

A=t(n+ > E, nn—DE =1> +62 b 1 dD—t + 8 c. (157)
TA=I\IT gy ) B M =\ 2T U ) s
39 1 9
- ~)B, B= ) A, 1
nC t(n+41) 2(7]+41) (158)

which results in the following equations for the 3 independent periods:

{Yl(ﬂ ~ D=2 -3 —4 -1 (77+ ﬁ) (n+ g) (77 + %) (n+ %) (n + E)} C =0,
41 41 41 41 41
[n(n D=2 =3 —4 -1 (n+ E) (n + E) (n + g) (n+ ﬁ) (n+ Q)} w_ 0.
41 41 41 41 41) | dr



Families of Quintic Calabi—Yau 3—Folds with Discrete Symmetries 711

Representation class C1. The independent 5" order monomials in C3 can be chosen
to be {e3ac, czabd}. Acting with  gives {a’b3c?d?, a®b?>cd?e?), corresponding to
periods (2, 3,2,3,0),and (2, 2, 1, 2, 3). These are cyclic permutations of (2, 3, 0, 2, 3)
and (1, 2, 3, 2, 2) which appear in the C1 diagram as D, and %% respectively. We write
the coupled system in terms of %—‘tg rather than E and then solve for D and %—f. The
coupled system is:

— DA = 2 Ed_E ld_E_ lD 159
nn—DA =1 n+41 o 3" =1 n+41 , (159)

p=t(n+2Ye. c=1(u+2 )b nB=1(n+2)A. 60
M=\ ) S\ ) e e )

which results in the following equations for the 2 independent periods:

[n(n—1)(n—2)(n—3)(n—4)—t5 (n+ﬂ) (n+ﬁ) (n+2) (77+£) (n+l)} D=0,
41 41 41 41 41

(1= D)0 = 2)(y = 3)( —4)—t5(1+ﬂ)(1+£6)(1+12—6)( +£)( +7—1) dE
R 2 T )T ) )\ )\ ) e T

Representation class C2. The 5'" order monomials in C4 are {azczd . dzezb}. Act-
ing with % gives {ab3cd2e3, a3b2c3de}, corresponding to periods (1,3, 1,2, 3), and
(3,2,3, 1, 1). These are cyclic permutations of (3, 1, 3, 1,2) and (1, 3, 2, 3, 1) which

appear in the C2 diagram as %%, and %%—f respectively. Rewriting the coupled system

in terms of these variables:

n— DA =12 +58 dE 1dE—t +14 D (161)
T T\ a) e 27 T\ )

D—lt +60 dc 1dc—t +26 B B—1 +6 A, (162)
M=\ ) e 2ar TP\ ) P\t )t

which results in the following equations for the periods:

[n(n—1)(n—2)(n—3)(n—4)—t5 (n+@) (n+@) (n+@) (n+@) (n+§)} 4 =0,
41 41 41 41 41 )| dt

= 1) —2)(n — 3)( —4)—t5(7+§)( +ﬁ)( +ﬁ)( +§)( +§) £
R DR I 2 T )\ )T )\ )\ ) e T

Representation class C3. Theindependent 5/ order monomialsin C1 can be chosen to be
{d3a?, a®be, c*bde}. Acting withx gives {ab’c*e3, b*c*d3 e, a*b*cd®e?}, correspond-
ing to periods (1, 3,3, 0, 3), (0,2, 2,3,3) and (3, 2, 1, 2, 2). These are cyclic permuta-
tions of (0, 3, 1, 3, 3), (3, 3,0, 2,2) and (2, 2, 3, 2, 1) which appear in the C3 diagram
as C, D and %% respectively. The coupled system is:

A=t (n+ 2V4E LAE (MY b= (n+ 2 e a6
i =\ ) 2%a T\ ) T ) s

ci(n+2Y5 B='(1:+3%)a (164)
G UATY RN LT A
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The equations for the 3 independent periods are:

5 202 192 157 52 1
[77(77 —D@=2)n=3)n—4) —1 (?7+ Z) (77+ Z) (77 + H) (?7+ H) (71 H)} C
s( 176 161\ (151 16\ (11 B
|:7](71 D=2 =3 n—4) —1t (7/ + TE ) (7/ + T ) (71 + T ) (7/ + T ) (71 + ey )} D=0,

{n(n D=2 -3 —4 -1 (n+ E) (77 + E) (n+ @) (n+ M) (n + E)} %‘5 =0.
41 41 41 41 41 !

Representation class C4. The 5" order monomials in C2 are {e’bd, a*c?e, b*d*c}.
Acting with  gives {a’b>c’d?, ab’cde?, a’bc’de’), corresponding to periods
3,2,3,2,0), (1,3,1,3,2) and (3,1,2,1,3). These are cyclic permutations of
(2,3,2,0,3), (3,1,3,2,1) and (1,2, 1, 3, 3) which appear in the C4 diagram as C,

+

0.

%% and %% respectively. The coupled system is:
1 dA 22 1 68\ dD 1 dD 24
2 =’("+a) Bk =5t (’“H) 2w =’("+a) <
(165)
nC :t(n+3—5) B, nB = 1t (n+§) d—A (166)
41 2 41) dr

The equations for the 3 independent periods are:

-0 (1+5) 1+ 2) (1+2) 1+ ) ()
[n(n—)(n— n—=3)n—4) — m T+ g g )\ 41}
D — 20— 3 —4) — 5 (14 12 17 109 104 2
{n(n D =2)(n—=3)n—4) t(n+ 41)(77+ 41)(n+ 41)(n+ 41)(n+41)}
5 188 158 138 68 63 D

[17(77— D=2 —=3)(n—4) —1 (17+ H) (71+ H) (77+ H) (7l+ H) (77+ H)} T =0.

Periods of the class corresponding to 15" order monomials. As for the Fermat quin-
tic, we choose the monomial a*h’c3d>e® to represent the single independent class in
Cla, b, c,d, el15/J(Q), so we can reuse the diagram for (1, 1, 1, 1, 1) and solve for the

period (3,3,3,3,3) = %‘i‘%. The resulting equation is:

=0,

+
o

9}

=0.

(=9

2

d-A
(11 =20 =3 —4) = +4)"

52 =0 (167)

3.3. Decomposition of the monodromy representations. With the Picard—Fuchs data in
hand, we now see what we can learn about the corresponding monodromy representa-
tions. Recall from Sect. 2 that the forms we integrate to get periods are single—valued as
functions of ¢, i.e. as sections of the Hodge bundle over P; — F, where the set F consists
of 5" roots of unity and co. The only source of the monodromy of the solutions to the
Picard—Fuchs equations is therefore the geometric monodromy of the cycles.

However, in general the Picard—Fuchs equations contain less information than the
monodromy of the cycles. For example, the holomorphic 3—form v/ obeys a 4/ order
equation. This means that as ¢ varies, ¥ moves around in a 4 dimensional space ¥ C
H3(X,C). If [y] € H3(X,C) is a class whose dual is in ¥, then y will pick up
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monodromy [y ] — [y]+[§] only if f[él ¥ # 0, 1i.e.if [6] has a component in the dual of
¥ as well. Another way to say this is that the Picard—Fuchs equations tell us only about
particular block diagonal pieces of the monodromy matrices. In particular, we get:

4 x4 4 x4
2x2 5x5
Fermat: 2x2 . Zay 5x5

2x2 55
(168)

In both cases, the single 4 x 4 block is the monodromy representation of Eq. (57). For
the Fermat family, the 2 x 2 blocks correspond to the 2" order equations satisfied by
the 200 other forms. There is a block for each of the 100 other representations of (Zs)?
instantiated by the degree 5 monomials. For the Z4; family, there is a 5 x 5 block for
each of the 40 representations of Z4.

In general, the non—block diagonal pieces of the monodromy matrices will be nonzero,
but the extra symmetry in the Fermat and Z4; examples provides nongeneric constraints.
We now construct a basis in which the action is purely block—diagonal. Start with the
204 forms, at a point fy such that tg # 1, 00:

P;
¢i = Res (WQO), (169)

where as before P; are monomials, Q is the polynomial defining the family of hyper-
surfaces, and £2q is as in Eq. (23). Let [¢;] € H3(V (1), C) denote the dual classes to
the ¢;, and let ¢; be representative cycles of these classes. We choose the P; to trans-
form in a representation g; of the symmetry group, so that the classes transform in the
representations —g;. One can then use an Ehresmann connection to generate a family
of cycles ¢;(t) in some neighborhood of #j, such that for each ¢, ¢; (¢) transforms in
the representation —g; 17 Since the connection by definition respects the (Z5)3 or Z41
symmetry, cycles can only mix under monodromy with cycles in the same representation
of the symmetry group. This is equivalent to the monodromy representation being block
diagonal as above.

4. Yukawa couplings of (2, 1)—forms

We stressed in the introduction that the families in Table 1 are distinct from the more
familiar Fermat locus (3). As a first step to seeing how these differences play out in
the more detailed properties of the loci, we work out the number of Yukawa couplings
constrained to vanish by the discrete symmetry group. This information is also useful
for applications to string compactification, since the Yukawa couplings are intimately
related to physically measurable constants in the 4d low energy effective theory.
Suppose £2(t) is the holomorphic 3—form on a family of Calabi—Yau 3—folds para-

meterized by ¢. The derivative d‘gtm is no longer restricted to H>%(X), but is instead

contained in the second Hodge filtrant: % e H3¥X)@ H>1(X).'8 Similarly for the

17 Note that in general [4;, (t)] is only dual to ¢; () when t = 1.

18 1n the context of abstract variations of Hodge structure, this property is known as Griffiths transversality,
and is a useful necessary condition for the variation of Hodge structure to be geometrical in origin. For
hypersurfaces in projective space, Griffiths transversality follows from the results of Sect. 2.
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second derivative, we have: 9520 ¢ H*9(X)® H>'(X) @ H"2(X). The following
integrals therefore vanish identically:

d2.{2(t)
/ Q) A /9( ) A 0. (170)

But including third derivatives gives a nonzero result:

&30
2(t) N 7E #0 for general . (171)

This is the prototype Yukawa coupling. More generally we can look at the dependence
of £2 over the whole complex structure moduli space (as opposed to just a |-parameter
family). £2 will then depend on /> | parameters #;, and the Yukawa couplings are:

t o d d 172
l]k(l)_/ (1) A dt dt dtk ( ) t.’:t" ( )

Alternatively, with a given normalization for £2(#;), we can interpret the #;’s as different
directions in 7;, M ~ H 21X (1;)), the tangent space to the complex structure moduli
space. The Yukawa couplings are then a map:

H>Y (X (1)) x H*'(X (1)) x H*'(X(;)) — C. (173)

Y;jk is clearly symmetric in its 3 indices, each of which takes /5 ; different values. The
number of independent Yukawa couplings is therefore:

1
Nyukawas = gh2,1 (ho +1) (h21 +2). (174)

For example, quintic hypersurfaces in P4 have hy 1 = 101, so Nyykawas = 176851. The
technique for performing detailed calculations of Yukawa couplings was presented in
[4]. Here we find the number of Y;j;’s that are potentially nonzero in the presence of
various discrete symmetries.

For symmetries that preserve £2(¢) (i.e. projective linear transformations that act
trivially on abcde), the only Yukawa couplings that are allowed to be finite are those
corresponding to 3 monomial deformations of X whose product is invariant. A computer
search for such triples (summarized in Table 7) yields numbers that approximately
satisfy:

Total # of Yukawas
# nonzero Yukawas >~ . (175)
Ord G

A relation of this form is somewhat surprising for the following reason. The trans-
formations of the 101 monomials do not exhaust the 125 irreducible representations
of (Z5)3, whereas in the Z4; case there is some monomial transforming in each of the
41 representations. Therefore one might not expect the numbers of nonzero Yukawa
couplings for G = (Zs)? to fit the line defined by the cases with smaller G.

It would be interesting to more fully examine the dependence of the number of
(potentially) nonzero cubic invariants on the size of the manifold’s discrete symmetry

group.
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Table 7. Numbers of potentially nonvanishing Yukawa couplings for the six families of quintics in P4 listed
at the end of Sect. 3.1

Symmetry Group G # Nonzero Yukawas (Total # Yukawas)/(Ord G)
(Zs)3 1431 1414.8
Zay 4321 43134
Zs1 3477 3467.7
Zs x 713 2736 2720.8
Z3 x 713 4554 4534.6
(Zs)? x 73 2391 2358.0

5. Conclusion

We have investigated some well-known Calabi—Yau 3—folds but focused on unfamiliar
loci in their complex structure moduli that give rise to unexpected discrete symmetry
groups. With the important role that Calabi—Yau manifolds with enhanced symmetries
have played in both the physics and mathematics literatures, there is strong motivation
to study these new families. By carefully deriving a technique apparently similar to
that of [9] but differing significantly in interpretation, we succeeded in developing a
systematic method for computing the Picard—Fuchs equations satisfied by each entry
in the full period matrix of along these loci. To illustrate the method, we applied it to
the Fermat family (3) as well as the Z4; quintic hypersurface family (the Zs; family
and a weighted projective space example are handled the appendix). We then saw how
discrete symmetries are reflected in the detailed structure of the geometric monodromy
representations. In particular, aside from the 4 x4 invariant part the monodromy matrices
decompose into block diagonal pieces of different sizes in the different families. Finally
we found the number of Yukawa couplings constrained to vanish by the symmetries and
noted an intriguing approximate relation between the number of nonzero couplings and
the size of the symmetry group.

The Z41 and Zs families and their cousins in Table 1 are thus a new testing ground for
many calculations. For example, as with the Fermat family, computations of periods and
Yukawa couplings are more tractable than for a general hypersurface. Such calculations
are of interest because in heterotic string compactifications, the Yukawa couplings are
eventually nothing but the parameters of the standard model, as well as because of the
role periods play in various moduli stabilization schemes. For instance, in any model
that purports phenomenological realism, the Yukawas must be able to incorporate the
range of observed particle masses, spanning at least 14 orders of magnitude.'” It would
be interesting to know if the moduli space of quintics in P4 (which is only a toy example
in this context) admits regions with a large enough range of Yukawa couplings, and
if so how many flux—stabilized vacua they contain. This could potentially amount to a
very severe phenomenological restriction on the ‘landscape’ of vacua which currently
plagues attempts to extract TeV scale predictions from string theory.

A mathematical direction for future work is to use the non—Fermat families to test
some of the claims of mirror symmetry. In particular Morrison has constructed [23,18] a
variation of Hodge structure on the even dimensional cohomology of the mirror (the so—
called A—model variation) in analogy with that coming from the middle—dimensional
cohomology of the original manifold (the B-model variation). Corresponding to the
B-model monodromy action on H3(X, C), there are conjectured automorphisms of

19 Neutrinos are now known to have a mass approximately 1073eV, whereas the Z boson has a mass of
9.1 x 1010%V.
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the topological K—theory of the mirror.2°[24]. Making this correspondence explicit for
the special families considered here should provide new insights into the mathematical
structure (quantum cohomology and Gromov—Witten theory) of the A—-model on Calabi—
Yau threefold hypersurfaces in toric orbifolds[26].

Our derivation of the corrected version of the technique outlined by Candelas, de
la Ossa and Rodriguez—Villegas greatly reduces the computation required to find the
Picard—Fuchs equations for a variety of families of Calabi—Yau manifolds with discrete
symmetries. The method summarized in Sect. (3) readily extends to the other examples
of 3—folds with discrete symmetries, as well as symmetric Calabi—Yau hypersurfaces of
other dimensions.”!

In [27] we examine 1-parameter families of K3 surfaces. Though the Picard—Fuchs
equations can be derived in the same way, the interpretation of the results is more
complicated than for 3—folds. The reason is essentially that H"~!-! which controls the
deformations of complex structure coincides with H LT Which contains the Kihler form,
as well as information about algebraic cycles. For example, there is an important sub-
lattice of H'1 N H2(V(t), Z) known as the Picard group, whose classes consist of
algebraic cycles. The rank of this group (the Picard rank) can jump discontinuously
as one deforms the hypersurface, even without passing through singular configurations.
Moreover, it has been shown that loci endowed with discrete symmetries are some of the
places where such jumps take place [28]. K3 surfaces also display some extraordinary
phenomena that are apparently unrelated to enhancements of Picard rank. An example
is the theorem of Oguiso [29], that nontrivial projective families (such as quartic hyper-
surfaces in P3) contain dense subsets where the automorphism group is of infinite order.
Nothing analogous to this occurs in families of 3—folds.
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during the course of this work. BG and SJ gratefully acknowledge the support of DOE grant DE-FG02-
92ER40699. SJ acknowledges support from Columbia University ISE and the Pfister Foundation. C.ED. is
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A. Picard-Fuchs Equations for the Zs; Quintic

The calculation of the Picard—Fuchs equations for the Zs; quintic:
1
0 = < (a4b +bhrc+ctd v dia+ e5) — tabede = 0 (176)

differs only in detail from that of the Z4; case. The final results are as follows. The 51
representations of Zs; group into 14 permutation classes as follows:

20 One often imagines mirror symmetry exchanging middle cohomology H 3 with even cohomology
Hee" — HO@ H2 @ H* ® HO. But the Chern map, which sends an element (E, F) € KO to0 c(E)/c(F) (the
quotient of the total Chern classes) is in fact an isomorphism when (as for quintics in P4) HV*"(Z) contains
no torsion classes.

21 One might hope to generalize the technique further to hypersurfaces and complete intersections in toric

varieties, perhaps with a view to bridge the gap between GKZ systems (which can be derived algorithmically)
and true Picard—Fuchs differential equations [25].
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#(2,1)-Forms

Rep. Class  Reps.  #(2,1)-Forms|Rep. Class Reps.
A 0 1 H 7,10, 11,23
B 1,16, 38, 47 1 T 8,19, 26,49
C 2,25,32,43 2 J 9,15,36,42
D 3,12,39,48 2 K 14,20, 22, 46
& 4,13,35,50 3 L 17,34
F 5.29,31,37 2 M 18,21, 30, 33
g 6,24,27,45 2 N 28,40, 41, 44

W —

The operators annihilating the periods of the (2,1)—forms are then:
A =D =20 —4) -0 +2)"

B nn == =3) =1 (n+%) (n+ ) (n+52) (n+5P)
C =10 =20=3) =15 (n+3) (7+2) (n+ 5L) (7+ 18
10 =D =20 =3 =15 (n+ ) (14 8) (n+F) (1+B)
D o= D=0 -3 = (n+3) (n+F) 1+ %) (1+4)
N =D =20 =3)=1>(n+57) n+3) 1+ 5) (n+37)
& nn—1Dm =2 =3) =15 (n+3) (1+ 1) (1+ 1) (n+ %)
N =10 —=2)(n=3) =1 (n+3}) (n+37) (n+57) (1 +57)
10 =D =20 =3 =15 (n+5) (14 B) (n+ F) (1+ %)
F == =3 =1 (n+3) (n+ %) (n+52) (n+ 2
N =10 =20 =3) = (n+5) (n+5]) (n+ ) (1+§7)
G == =3) = (n+F) (n+3}) 1+ ) (n+37)
10— D0 =20 =3 =1 (n+ F) (1+ F) (1+ 57) (+ )
H onn—D =D —3)— (n+3) (n+3) (n+58) (n+ )
I =D =2)(n=3)—2 (n+3) (n+3f) n+5L) n+%E)
1= D=2 =3 =1 (1+5) (n+F) 0+ F) (1+ F)
J n=D0 =2 =3 =2 (n+5) n+§) (n+5L) (n+F)
N =10 =20 =3) =1 (n+3) 1+ ) (1+57) (1+%7)
K G =10=2)0=3) =2 (n+5) (n+5) (1+ ) 0+ 57)

717



718 C. Doran, B. Greene, S. Judes

n0 = D0 =220 =3 =2 (1+ 3) (n+ ) (n+ ) (n+ 2
L= 10— —3)— 15 (+12) (n+ 137)?
2 2
nn— D —2)n=3) =1 (n+31)" (n+22)
M =D =20 =3) =2 (n+2) (n+ ) (n+ L) (n+ 1)
n(n— D —2)(n=3) =15 (n+ ) (n+B) (n+12) (n+ &)
N =10 =21 =3) =15 (n+357) (n+$1) (1+57) (n+57)
10— D =20 =3 = 1> (n+F) (1+ 1) (7+18) (1+12)
nn— D=2 =3 =1 (n+2) (n+B) (n+52) (n+Z)

B. Symmetric Hypersurfaces in Weighted Projective Space

Itis known that any Calabi—Yau 3—fold can be embedded in IP,, for some sufficiently large
n, but the case where the embedding is a hypersurface is the exception rather than the
rule. More often the embedding can only be realized as an intersection of a large number
of hypersurfaces. It is therefore useful to consider other constructions of Calabi—Yau
3—folds. One of the simplest generalizations of a hypersurface in P, is a hypersurface in
a weighted projective space: (C,, — {0}) / ~ where the equivalence relation ~ is given
by:

[X0, - .., Xn] ~ [M0xq, ..., a%n]. (177)

Here X is any nonzero complex number, and {ko, ..., k,} are a collection of integers
called the weights. This space is denoted WP, .. x,|, and one easily sees that ordinary
projective space is a special case: P, = WP, 1.

The formulas relating to hypersurfaces in P, generalize straightforwardly to the case
of nontrivial weights [30]. As before we have:

n

n
00 1 £
(t)k+1 Z ok 00 - Z — + exact forms. 45)
But the n—form £2¢ is now given by:
Q0= (~Dkix'dx® AL dil .. Ada" (178)

i

As an example, consider the collection of weights [ko, k1, k2, k3, k4] = [41, 51,52,
48, 64]. The condition for a hypersurface to have zero first Chern class is: deg Q =
> ki =256, so the Fermat-like Calabi—Yau hypersurface is:

1
o) = ; (a5b+b4c+c4d+d4e+e4) — tabede = 0. (179)

One can check that this hypersurface has /2.1 = 1, and so the only periods to consider
are those of the holomorphic 3—form and its derivatives.
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As in ordinary projective space, one can find linear combinations of derivatives of O
suitable for constructing diagrams involving 3 periods:

25 0 0 0 0 ad, O(t) a’b — tabcde
—64320 0 0 O b3, O(1) b*c — tabcde
16 —80320 0 O cd:.0(t) | =256 ¢*d —tabede |, (180)
—4 20 —80 320 0O ddg (1) d*e — tabcde
1 =5 20 —80320 €d,0(1) 4 _ tabede

and the relations corresponding to diagrams are therefore:

(00 +5, 01 + 1,02, V3, 14) = 3500 (0) + 1 (v + 1), (181)
(v0. V1 +4,v3 + 1,03, 1g) = S5 (0) + 1 (v + 1), (182)
(v0. vi. V2 +4, 03+ 1, vg) = £ED(0) +1 (v +1), (183)
(00, V1, 2, V3 +4, v + 1) = P (V) +1(v+ 1), (184)

(v0. V1, 2, V3, U +4) = St () + (v + 1), (185)

with the coefficients f (i, v) given by:

£(0,v) 2% 0 0 0 0 v+ 1
(1, v) —64320 0 0 0 v+ 1
fe,v |=| 16 =80320 0 o v+l |. (186)
3, v) —4 20 —80320 0 v+ 1
4, v) 1 =5 20 —80320/ \ws+1

The diagram for the periods of the holomorphic 3—form is then:

(0,0.0.0,004 — (1,1, 1,1,1) - (2.2,2,2,2) - (3,3,3,3.3) — (4.4.4,4.4)

| Dy | Dy | Dy | Dy
0,0,0,0,4)p — (1,1,1,1,5) — (2,2,2,2,6) — (3.3.3,3,7)
| D3 | D3 | D3
(0,0,0.4,5)¢c — (1,1,1,5,6) — (2,2.2,6,7)
1 Dy I Dy
0,0,4,5.5p — (1,1,5,6,6)
| Dy
(—1,3.4,4,4) — (0,4,5.5.5g
1 Do
(4,4,4,4,4)

The encoded coupled system is:

11— D —2)(n —3)A = F, E=j;(n+1)D, (187)
D=1m+1ncC, C=1m+1)B, B=m+1)A, (188)

which results in the following Picard—Fuchs equation:

[n61= Dt =2 =3) =P+ D*| 4 = 0. (189)
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C. Examples of the Griffiths—Dwork Technique

As examples of the formalism outlined in Sect. 2 we compute some of the Picard—Fuchs
equations for a family of elliptic curves and the Fermat family of quintics in Py.

Hesse form cubics in P;. Cubic hypersurfaces in P; are elliptic curves, and hence admit

a single holomorphic 1-form. We have the following correspondence in general:>>

eV =F" > [1]1eCla.b clo/l3:Q] — Py =fé90,
e Yo H" =F'0 - [abc] € Cla, b, c13/[8; Q] — P2 = [ 45 2.
Here [a, b, c] are homogeneous coordinates, P is generic notation for a column of the

period matrix, and the polynomial Q(¢) defining the hypersurface is:

o) = (a b3 c3) — tabe = 0. (190)

Holomorphic 1-Form Differentiating a period of the holomorphic 1-form twice gives:
i’ = f %(abc)z, where P; is a period, and the prime denotes differentiation with
respect to ¢. As an element of the Jacobian ideal, we find:

J 0 d
(1 — 3)(abc)? = t%%ﬂ—Q + m3b“—Q +a2b2£. (191)
da a ac
Applying (43) results in:
a’p
(1 —t3)—1 =2 —t abc+/—ta (192)
Now writing a® = rabc + ass Q , we find:
20 0 d
ta —/—t abe 0,20 _ 2921 | p (193)
Q2 da dr
Substituting back into (192) gives the Picard—Fuchs equation:
d? d
@32 329 e o, (194)
dr? t
In terms of the logarithmic derivative: n = t , this becomes:
[(n+1)2—t—3n(n— 1)} P =0. (195)

Making the substitution x = 7~ and ¢ = x% results in an equation in standard

hypergeometric form:
) 1 2
07 —x 6)+§ 9+§ tP; =0. (196)

Since nothing in the reasoning above depends on the choice of cycle integrated over, we
conclude that both of the by = 2 integrals of the holomorphic 1-form (one column of

the period matrix f 23,) obey Eq. (196).

22 For the rest of this section we will abbreviate H 79 (V (¢)) and FP+4 (V (¢)) with HP-9 and FP-4 .
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Mixed 1-form The Griffiths—Dwork technique doesn’t work so well for the periods of
the derivative of the holomorphic 1-form:

" abc d [ 29
2

Pr=[ —20=— [ —.
: 002 " ar ) o)

(197)

The problem is that we only have to differentiate once in order that the numerator of
the integrand is in the ideal [9; Q ()], so one might guess that the P obeys a 1" order
equation. Indeed a Ist order equation can be derived, but it contains P as well, so it is
not a Picard—Fuchs equation. To eliminate 77} one must differentiate P, a second time.
In the method introduced in Sect. 3.1, this happens automatically. The end result is:

d2P2 1\ dP,

3 2

P —1)—== 5t°+ — ) —+4tP, =0 198
( )dtz +( +t) a (198)

Or, withx =13 and ¥ = x%, in hypergeometric form:

o 2 0 2273—0 199
(=5) < (3) [0 Y

Again, since nothing depends on the cycle integrated over, both periods obey the above
equation. The Hesse form cubic is the simplest possible example; in general computa-
tional techniques are required to do the algebra.

Fermat form quintics in P4. Smooth quintic hypersurfaces in [P4 are Calabi—Yau 3—folds
with b3 = 204. The results of Sect. 2 give the following correspondence:

Qe H3O0 — [1] e —C[a’[]’ya’,-(.ét]lte] - Pr= 690»

wg € H30 @ H2! N [My] € C[a.ll;;c,af.ek _ Py = f%QO»

o) € 130 @ g2l @ gl2 - (M, ] € C[a.ﬁ;ic,Qd].e]]Q . P — f%ﬂo,
chgz cHMN o 2 g HI2 g HO3 o [a3p3c3d363) e C[a.féicél].ellg Py = [ a3b365d3e3 2

Again [a, b, c, d, e] are homogeneous coordinates, and Q(7) is the polynomial defin-
ing the hypersurface. The indices « and ¢ have theranges {2, . .., 102}and {103, ..., 203}
respectively. If we now specialize to the Fermat family of quintic hypersurfaces:

1
@0:§@M¢Mwhdhmﬁ—mmw, (200)

then there are two simplifications. For a general quintic, each period satisfies a 204'"
order differential equation. In computational terms, one expects to have to differentiate
periods 204 times before the numerator in the integrand lies in the Jacobian ideal J(Q).
For (200) the order of the equations is reduced to 4 or less. The other simplification
is that we can say more about the Hodge type of the forms than merely which Hodge
filtrant they are in.
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Periods of the holomorphic 3—form. One finds (by Grobner basis techniques for exam-
ple) that it is sufficient to differentiate the periods of the holomorphic 3—form just 4
times,

d*py 422 4
el 0 (abcde)™, (201)
(1 — 5 (abede)* = [t4a4(bcde)3]8a 0+ [t3a7b3 (cde)z]BbQ + [tz(ab)6c2de] 3.0
+[t (abc)sd] 90 + [(abcd)“]ae 0. (202)
Then proceeding in the same way as with the Hesse cubic, one finds the equation:
d*p P d>P dP

5 4 3 2
r°—1 10z 25t 15— +tP; =0. 203
(= D g H 100 # 50g + 1S+ P (2039

Substituting x = 7> and 6 = x% gives an equation in generalized hypergeometric

form:
' 1 2 3 4 B

Indeed this is how the Picard—Fuchs equation for the invariant periods is most often
presented. From hereon though we will not make such changes of variables, but rather
work directly in terms of the variable ¢, and the logarithmic derivative n = %. The
reasons for this choice are summarized at the end of Sect. 2.4.

As before, nothing depends on which cycle is integrated over, so all 204 integrals of
.Q?( obey the 4th order Eq. (203). This fact is related to the symmetries of the Fermat
locus in Sect. 3.1.

Periods of the other forms. In a similar way, one can pick a basis of the rest of
Cla, b, c,d, e]/J(Q) and work out the equations satisfied by each of the 203 other
forms. It is easier to do this with the techniques introduced in Sect. 3.1. In particular we
take advantage of the symmetries of the Fermat—form quintic with greater ease.

D. Geometric Mondromy

In Sect. 2 we explored the connections between two descriptions of hypersurfaces; on
the one hand as objects embedded in projective space (via the order of pole filtration),
and on the other as complex manifolds (via the Hodge filtration). As already alluded
to, a great deal of information about the relation between these two points of view is
contained in the period matrix:

H,,_l(V(t),Z) x H"—l(vu), c) -, (205)
lyvi@®], [$2;@®)] — [;;(t) = ()-Qj(t)- (206)
Yilt

The ¢ dependence in [y;(¢)] is locally trivial, but if one follows the homology classes
[vi(z)] around a path enclosing a singular hypersurface, one finds that the class at the
finish is not the same as at the beginning.
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1 oo 0 ( t 1 ) co

A B

Fig. 2. The two sheets of the Riemann surface of y2 = x(x — 1)(x — ), which topologically glue together
to make a torus. The A and B cycles are also shown

Though the reader may be familiar with monodromy of in general, for the purpose
of interpreting Picard—Fuchs equations, it is useful to have in mind a simple example
of geometric monodromy acting on the homology groups of a manifold. As is often the
case, elliptic curves provide a beautifully concrete case study.>® Consider for example
the Riemann surface of the function:**

¥ =x(x — D(x —1), (207)

which is singular at # = 0, 1 and oco. There are 2 sheets, and we choose the branch cuts
to be as in Fig. 2.
As defined pictorially, the intersection matrix is given by:

ANAANB 0-1
(BﬂABﬂB):(lo)' (208)
But now imagine that 7 executes a small circle around 0. The consequences for the cycles
A and B are shown in Fig. 3.

In particular, the bottom diagram shows both the old B cycle (in red) and the new B’
(in blue). One can then read off the intersections:

ANA=0, ANB=-—1, (209)
BNA=1, B'NB=2. (210)

From this it follows that the homology classes of the primed cycles are related to those
of the unprimed cycles in the following way:

AlY _(10 [A]
(151) - (%9) (1) e
In general, it is easy to see that moving cycles around 0, 1, oo gives a map:
m(IP’l — 0,1, oo}) ) 212)

23 The following argument and diagrams are adapted from [21].
24 This set of curves parametrized by ¢ is called the Legendre family.
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Fig. 3. The A and B cycles after ¢ rotates by 7 /2, w and 2. The dashed lines are on the 24 gheet

called the monodromy representation, or the monodromy action. The image is Sp(2, Z)
rather than a more general matrix because the intersection form (208) must be preserved.
An important consequence of nontrivial monodromy is that the period matrix is a mul-
tivalued function of ¢. To distinguish the monodromy of cycles from the monodromy of
anything else (hypergeometric functions say), we call the former geometric monodromy.

The families of Calabi—Yau 3—folds we consider in Sect. 3 have a somewhat different
singularity structure from the elliptic curves (207). They have the singularities of the
Fermat form quintic (200).25 Rather than at r = 0, 1, oo, the singular hypersurfaces are
atr> = land ¢ = oo.
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