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Abstract

We demonstrate a method for describing one-dimensionalN -extended
supermultiplets and building supersymmetric actions in terms of un-
constrained prepotential superfields, explicitly working with the Scalar
supermultiplet. The method uses intuitive manipulations of Adinkras
and GR(d, N) algebras, a variant of Clifford algebras. In the process
we clarify the relationship between Adinkras, GR(d, N) algebras, and
superspace.

Mathematics Subject Classification: Primary: 81Q60;
Secondary: 15A66, 70S05

Keywords: off-shell supersymmetry, superfields, superpotentials,
Lagrangian dynamics

1 Introduction

During the second half of the twentieth century, quantum field theory in general
and Yang-Mills theories in particular provided a fertile and important arena
for speculating about fundamental laws of nature. A fundamental aspect of
these theories is that the constituent fields comprise representations of various
symmetries. In these theories, most notably the standard model of particle
physics, which has garnered spectacular experimental verification, the elemen-
tary fields describe off-shell representations of internal symmetries, where the
important qualifier off-shell indicates that the symmetry representation of the
fields is independent of their four-momentum configuration. The most im-
portant contemporaneous arena for attempting to reconcile particle physics
with gravitation is perturbative string theory, its developing non-perturbative
generalizations, such as M-theory, and its effective descriptions in terms of su-
pergravity theories, all of which involve supersymmetry in one way or another.
However, there remains a noteworthy fundamental structural distinction be-
tween string-inspired physics and Yang-Mills theories concerning the way the
respective inherent symmetries are represented. Superstring theories, and their
effective descriptions in terms of ten- or eleven-dimensional supergravity, are
formulated on-shell : the supersymmetry is realized only when the basic fields
satisfy classical equations of motion. This discrepancy indicates that the cur-
rent understanding of supersymmetry is as yet incomplete, and it motivates
the investigation of how off-shell supersymmetry can be realized generally in
quantum field theories.

A traditional approach to classifying irreducible supersymmetry represen-
tations relies on the fact that all known off-shell supermultiplets can be formu-
lated using Salam-Strathdee superfields subject to differential constraints and
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gauge transformations. Distinctions between supermultiplets can be encoded
using different ways to pose such restrictions. This approach has an appealing
elegance to it. Unfortunately, for cases with more than a few supersymmetries,
the range of possible constraints is large, and no compelling rhyme nor reason
has emerged as a means for organizing these. For instance, the importantly
influential N = 4 Super Yang-Mills theory in four dimensions has never been
described off-shell, and if there exists a constrained N = 4 superfield descrip-
tion of this supermultiplet, this has not yet been discovered. We believe that
in order to resolve this dilemma, we must go beyond ordinary superspace tech-
niques, instead developing new approaches based on emerging facts about the
mathematical underpinnings of supersymmetry.

In previous papers [1,2,3] we described a re-conceptualization for orga-
nizing the mathematics associated with supersymmetry representation the-
ory which is complementary to, but logically independent of, the popular
Salam-Strathdee superspace methods. Our approach provides fresh insight
and additional leverage from which to attack the off-shell problem. One of
our motivating desires is to determine an off-shell field theory description of
four-dimensional N = 4 Super Yang-Mills theory and the ten- and eleven-
dimensional supergravity theories. Our investigations are predicated on two
related themes: The first purports that the mathematical content of supersym-
metry in field theories of arbitrary spacetime dimension is fully encoded in the
seemingly restricted context of one-dimensional field theories, i.e., within su-
persymmetric quantum mechanics. The second is the observation that the rep-
resentations of one-dimensional superalgebras admit a classification in terms
of graph theory, using diagrams called “Adinkras” which we have been incre-
mentally developing.

Our two most recent previous papers on this subject [1,2] have concen-
trated on formal mathematical aspects of this approach and were devoted to
developing precise terminology, developing mathematical theorems associated
with our Adinkra diagrams, and describing part of a supermultiplet classifica-
tion scheme using the language of Adinkras. In this paper we use these tech-
niques to elucidate instead some of the physics of supersymmetry rather than
the mathematics. In particular we address the question of how the the spe-
cial class of irreducible one-dimensional arbitrary N -extended supermultiplets
known as Scalar supermultiplets can be described in terms of unconstrained
superfields2, known as prepotentials, and how these can be used to build su-
persymmetric action functionals for these supermultiplets. We focus on Scalar
supermultiplets because these provide the simplest non-trivial context in which
to illustrate our techniques. Similar techniques can be brought to bear on a
wide class of interesting supermultiplets; we intend to produce followup papers

2Theorem 7.6 of Ref. [1] guarantees this, and gives a general algorithm to this effect; part
of our present task then is to show the concrete details of this construction.
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in the near future addressing some of these questions.

A familiarity with the basic techniques described in [1,3], which in turn are
predicated on developments appearing in [5,6,7], is an absolute prerequisite
for following our subsequent discussion. Central to these are the relevance of
GR(d, N) algebras to supersymmetry representations, the meaning and the
significance of Adinkra diagrams, and the basic idea concerning how automor-
phisms on the space of supermultiplets may be coded in terms of raising and
lowering operations on Adinkras.

This paper is structured as follows:

In Section 2 we describe a special class of Adinkra diagrams, known as
Base Adinkras, which are the graphical counterparts of Clifford algebra su-
perfields. We explain how these diagrams, which are in general reducible, can
be used as fundamental tools for constructing irreducible supermultiplets via
geometric vertex raising operations. In Section 3 we review another special
class of Adinkras, known as Top Adinkras, which are the graphical counter-
parts of Salam-Strathdee superfields; these provide the connection between our
technology and more traditional techniques. We explain how Top Adinkras
can be obtained from Base Adinkras via extreme application of vertex raising
operations, and we review a relationship between superspace differentiation
and vertex raising. We explain how Top Adinkras can be used to organize
the construction of superspace operators useful for projecting onto subspaces
corresponding to irreducible representations; this method supplies a graphical
counterpart to the organization of superspace differential projection operators.
In Section 4 we review the concept of garden algebras, and we explain in al-
gebraic terms what is meant by a Clifford algebra superfield. This section
describes algebraically many of the diagrammatic facts appearing in Section 2.
In Section 5 we review the definition of Scalar supermultiplets and we develop
the rudiments of an algorithm for discerning a prepotential description of these,
which is implemented in the balance of the paper. In Section 6 we focus on
the special case of N = 2 Scalar supermultiplets and methodically develop the
corresponding prepotential superfields and a manifestly supersymmetric action
built as a superspace integral involving these. This allows for a clean expo-
sition regarding superspace gauge structures endemic to similar prepotential
descriptions in the context of general N -extended supersymmetry. In Section 7
we describe the main computational result of the paper, by generalizing the
N = 2 analysis presented in Section 6 to the case of general Scalar superfields
for any value of N . An important output of this analysis is that we provide
the first descriptions of 1D, N -arbitrary superprojectors which naturally are
associated with Scalar supermultiplets. We then briefly summarize our results
with concluding remarks.
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2 Adinkrammatics

The mathematical data of one-dimensional N -extended supermultiplets can of-
ten be conveniently described in terms of bipartite graphs known as Adinkras,
introduced in [3]. The vertices of these graphs correspond to the component
fields of the supermultiplet, while the edges encode the supersymmetry trans-
formations. In addition, each vertex of an Adinkra comes with an integral
height assignment corresponding to twice the engineering dimension 3 of the
corresponding component field. A subset of vertices, called sinks, correspond
to local maxima; these connect via edges only to vertices with lower height.4

Another subset of vertices, known as sources, correspond to local minima;
these connect via edges only to vertices with greater height. In [1] we proved
the so-called “Hanging Gardens Theorem”, which states that an Adinkra is
fully determined by specifying the underlying graph together with the set of
sinks and the heights of those sinks. An Adinkra can then be envisioned as a
latticework or a macramé, hanging from its sinks, and we alternatively refer
to the sinks as “hooks”.

By performing various geometric operations on their Adinkras, we can
transform one supermultiplet into another. In earlier papers we have described
some of these operations as part of an ongoing endeavor to describe a mathe-
matically rigorous supersymmetry representation theory. In a “vertex raising”
operation5, we take a vertex which is a local minimum or source and increase
its height by two, physically lifting it two levels on the page. In terms of the
supermultiplet, such an operation replaces the corresponding component field
with a new component field of engineering dimension one greater. In [1] we
explained how such vertex raising operations, when applied to superfields, can
be implemented via superspace derivatives.

A central construct in this system is a particular supermultiplet known
as the “Clifford algebra superfield”, whose component fields correspond to a
basis of the Clifford algebra Cl(N). This supermultiplet, which in general is
reducible, has 2N−1 boson fields sharing a common engineering dimension and
2N−1 fermion fields of common engineering dimension one-half unit greater
than the bosons. All supermultiplets can be obtained from Clifford algebra
superfields via a combination of operations analogous to vertex raising and

3A field with engineering dimension δ has units of (mass )δ in a system where � = c = 1.
4In [3], the edges were directed with arrows indicating the placement of time derivatives

in the supersymmetry transformations. Here, we assume that the fields have well-defined
engineering dimensions, and that the Adinkra vertices have a height assignment. In this
case, all arrows point towards the vertex of greater height. With this convention, our use of
sources and sinks agrees with the standard usage in graph theory.

5This operation is related to the “automorphic duality” transformation of [3,7], which
we also referred to as a “vertex raise” in [1]. The corresponding transformation of super-
multiplets is called “dressing” in [9].
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quotients or projections derived from the symmetries of the corresponding
Adinkra.

In the balance of this section we provide a graphical description of the
Clifford algebra superfield and some related and relevant diagrammatic opera-
tions. It should be understood that there exists an algebraic context for these
methods, and that a full appreciation requires a synergistic understanding of
the diagrams and their underlying algebraic structure. The algebraic context
for the diagrams are reviewed below in Section 4. (Subsection 4.1 in particu-
lar provides an especially useful context for understanding the ways in which
vertices may be coalesced.)

2.1 The Base Adinkra

The Adinkra corresponding to the Clifford algebra superfield is called the “Base
Adinkra”. For example, the N = 4 Clifford algebra superfield includes eight
bosons sharing a common engineering dimension and eight fermions with en-
gineering dimension one-half unit greater than the bosons. The N = 4 Base
Adinkra can be drawn as follows:

(2.1)

where each of the four supersymmetries corresponds to a unique edge color,
each bosonic vertex corresponds to a boson field while each fermionic vertex
corresponds to a fermion field. We use throughout this paper the conven-
tion promulgated in [1] whereby the vertical placement of Adinkra vertices
correlates faithfully with the height assignment. Thus, higher components,
having larger engineering dimension, appear closer to the top of the diagram.
The existence of the height assignment to each vertex implies that Adinkras
also provide a natural realization of an abelian symmetry, whose generator
(denoted by d) is realized on each vertex by multiplication of the vertex by
one-half times the height assignment of the vertex. This is the basis of the
filtration discussed in [2].

In (2.1), a left-right symmetry is apparent: the Adinkra remains unchanged
if it is reflected about a vertical axis passing through its center. This symmetry
of the Adinkra gives rise to a projection of theN = 4 Clifford algebra superfield
onto an irreducible submultiplet corresponding to the N = 4 Scalar Adinkra.
This projection is described in detail in Subsection 2.4 below.



Adinkras and superspace prepotential dynamics 119

Another way to draw the N = 4 Base Adinkra is as follows:

(2.2)

This can be obtained from (2.1) by moving vertices while maintaining the
inter-vertex edge connections. This second presentation of the Base Adinkra
can be obtained by selecting one bosonic vertex of the Base Adinkra, call it φ,
and putting it on the left side of the diagram. We then gather together those
vertices in the Base Adinkra that are one edge away from φ, and these are
placed at the same height as they were in the Base Adinkra (one level above
φ) but slightly to the right of φ. We then take the vertices that are two edges
away from φ, and these six vertices are placed slightly to the right of that, at
the correct height (the same height as φ), and so on.

The meaning of this arrangement comes about when we consider that each
vertex in the Base Adinkra can be obtained by applying a finite antisym-
metrized sequence of supersymmetry generators QI to φ. Thus, we can label
the vertices that are one edge away from φ using a single index I ranging from
1 to N . Likewise, the vertices that are two edges away from φ can be labelled
with two indices that are antisymmetrized, and so on. In general, vertices that
are p edges away from φ are labelled as antisymmetric p-tensors with indices
ranging from 1 to N .

This is not merely suggestive formalism. Once we fix the field φ, the
supersymmetry generators map φ to other fields. The group SO(N) of R-
symmetries, which acts naturally on the N supersymmetry generators, thus
also acts on the fields. The orbits are precisely the clumps of vertices in the
above diagram, and form a representation of SO(N) that is isomorphic to the
corresponding exterior tensor power of the standard representation of SO(N).

We can abbreviate (2.2) as

4 4

6 11
(2.3)

Here the vertex multiplicity is indicated by a numeral, and the edges have
been coalesced. (In general, a black edge encodes the bundled action of N
supersymmetries in a manner which is well defined.)6

6See (4.7) below for an algebraic clarification of this point.
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More generally, for any N , the Base Adinkra characteristically admits an
accordion-like presentation, for example as shown here:

...

N
0( )

N
1( )

N
2( )

N
3( )

N
4( ) N

N( )

N
N-1( )

N
N-2( )

N
N-3( )

(2.4)

where the indicated vertex multiplicities are the binomial coefficients
(
N
p

)
,

where p = 0, 1, . . . , N sequentially labels the compound vertices starting from
the left. This reflects the fact that these vertices coincide with rank p antisym-
metric tensor representations of SO(N), each of which describes

(
N
p

)
degrees of

freedom. For the sake of brevity, we refer to such representations as “p-forms”.
Thus, the left-most bosonic vertex (white circle) is a zero-form, and the other
vertices are collected into a chain, such that the second compound vertex is
a one-form fermion, the third compound vertex is a two-form boson, and so
forth. The Adinkra shown in (2.4) is the general Base Adinkra for cases in
which N is even; in cases where N is odd, the chain terminates on a fermionic
vertex (black circle) rather than on a bosonic vertex (white circle),

...

N
0
( )

N
1
( )

N
2( )

N
3( )

N
4( )

N
N( )

N
N-1( )

N
N-2( )

(2.5)

This Adinkra codifies particular transformation rules, which are exhibited be-
low in Subsection 4.2.

2.2 The Dual Base Adinkra

We have explained how the components of the Base Adinkra can be organized
into p-form representations of SO(N), such that the bosons are even-forms and
the fermions are odd-forms. Alternatively, the vertices of the Base Adinkra
can be organized differently such that the fermions are even-forms and the
bosons are odd-forms. To see this, we start with our original rendering of the
Base Adinkra, shown in (2.1), but this time re-organize the same vertices into
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the following configuration,

(2.6)

This Adinkra is equivalent to (2.1) and also to (2.2), and these can be trans-
formed into each other merely by grouping the vertices together in different
ways. In particular, (2.6) is obtained from (2.1) by starting with a 0-form
fermion, and collecting vertices according to their distance from this fermion.
We can abbreviate (2.6) as

6 11

4 4 (2.7)

The difference between this Adinkra and (2.3) lies in the way the SO(N)
structure has been imposed on the skeletal Adinkra (2.1). A similar alterna-
tive grouping can be applied to the Base Adinkra for any N , resulting in the
following Dual Base Adinkra for even N :

...

N
0
( )

N
2( )

N
4( )

N
N( )

N
N-2( )

N
1
( ) N

3( )
N
N-1( )N

N-3( )
(2.8)

The difference between (2.8) and (2.4) lies in the manner in which the vertices
have been grouped into representations of SO(N). An algebraic description of
this concept is described in Subsection 4.3.

2.3 The Conjugate Base Adinkra and its dual

Every supermultiplet has a counterpart obtained by toggling the statistics of
all of its component fields, replacing each boson with a fermion, and vice-versa;
this operation is known as a Klein flip7 (see also [4]). The Klein flipped analog

7In the mathematical supersymmetry literature [10,11], this is called parity reversal and
is denoted Π.
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of the Clifford algebra superfield is called the Conjugate Clifford superfield; the
corresponding Adinkra, called the Conjugate Base Adinkra, is (for N even)

...

N
0
( )

N
2( )

N
4( )

N
N( )

N
N-2( )

N
1
( ) N

3( )
N
N-1( )N

N-3( )
(2.9)

This is obtained from (2.8) by replacing all boson vertices with fermion vertices
and vice-versa.8

Finally, there is an alternate way to group the vertices of the Conjugate
Base Adinkra into SO(N) tensors; in a manner similar to that described above,
we can re-group the compound vertices in (2.9) so that the bosons are odd-
forms while the fermions are even-forms (for even N):

...

N
0
( )

N
1
( )

N
2( )

N
3( )

N
4( )

N
N( )

N
N-1( )

N
N-2( )

N
N-3( )

(2.10)

This Adinkra may also be obtained as the Klein flip of (2.4). The Base
Adinkra (2.4), its dual (2.8), its conjugate (2.9), and the Conjugate Base
Adinkra (2.10) are depicted together in Figure 1. Each of these constructions
can be used as a launching point for describing more general supermultiplets.

2.4 The Scalar Adinkra

The Base Adinkra is central concept in the representation of one-dimensional
N -extended supersymmetry. Many of the irreducible representations can be
obtained from the Base Adinkra by applying various operations. One such op-
eration was mentioned above in Subsection 2.1: by imposing consistent vertex
identifications we can project a given Adinkra onto sub-Adinkras correspond-
ing to smaller representations. For example, we can make pairwise identifica-
tions of those vertices in (2.1) mapped into each other by a left-right folding

8By using (2.4) as an intermediary, we can describe another operative way to connect (2.8)
with (2.9). According to this alternate scheme, we first transform (2.8) into (2.4) by merely
re-grouping vertices in the manner described above. Then, via a sequence of vertex raises,
we can map (2.4) into (2.9).
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...

......

...

BASE

CONJUGATE BASE

DUAL BASE

DUAL CONJUGATE BASE

Figure 1: The Base Adinkra describes a zig-zag chain of SO(N) tensor fields
starting with a lower component zero-form boson. The Dual Base, the Con-
jugate Base, and the Dual Conjugate Base Adinkras describe analogous con-
structions distinguished by whether the zero-form is a boson or a fermion or
by whether it is the bosons or fermions which have lower height. We display
here the Adinkras for even N ; the ones for odd N are analogous, starting with
the Base Adinkra (2.5).

operation. What results is the following Adinkra:

(2.11)

which corresponds to the irreducible N = 4 Scalar supermultiplet. A geomet-
ric way to understand this projection is to identify the underlying graph of
the N = 4 Base Adinkra with the vertices and edges of a 4-dimensional hy-
percube (or tesseract). We then take a quotient of this hypercube, identifying
antipodal vertices and edges (see [3]). In general, the relationship between the
Clifford algebra superfield and the Scalar superfield, for each value of N , can
be understood in terms of quotients of cubical Adinkras.

2.5 Node raising and other supermultiplets

The generalized Base Adinkras, shown in Figure 1, and the Scalar Adinkra,
shown in (2.11), share the feature that their vertices span only two differ-
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ent height assignments, or equivalently that the corresponding supermulti-
plets have component fields of only two engineering dimensions. To construct
Adinkras corresponding to supermultiplets with fields of more than two engi-
neering dimensions, we can start with these Adinkras and operate on them by
vertex raising operations. To raise a vertex in an Adinkra, we take a source ver-
tex and increase its height assignment by two. At the level of supermultiplets,
a vertex raising operation replaces a component field with a new component
field given by the τ derivative of the original component field. For example,
if a given vertex corresponds to the field φ(τ), then we can define a new field
via φ̃ := ∂τφ. If φ corresponds to a source vertex, then the supersymmetry
transformations continue to involve only local superspace operators, and we
thereby obtain a new supermultiplet. Since the operator ∂τ carries one unit
of engineering dimension, it follows that φ̃(τ) describes a higher component.
In [1] we discussed these operations at length, explaining relationship between
vertex raising and superspace derivation.

For example, suppose we start with the Base Adinkra, as drawn in (2.4).
If we raise the fifth bosonic vertex, counting from the left, what results is the
following new Adinkra:

(2.12)

This Adinkra describes a supermultiplet which is distinct from the Clifford
algebra superfield, as evidenced by the fact that three different height assign-
ments are represented.

If we raise en masse a collection of vertices which have been coalesced into
an SO(N) p-form, then the resulting Adinkra respects the SO(N) structure
in the sense that the components of each SO(N) tensor continue to share a
common engineering dimension. For instance, if we start with the N = 4
Base Adinkra as shown in (2.3), we can raise the multiplicity-six compound
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two-form vertex to obtain

4 4

6

11
(2.13)

As another possibility, we could start again with the Base Adinkra (2.3) and
raise the singlet four-form vertex, to obtain

4 4

6

1

1 (2.14)

There are many other possibilities. A subset of the possible vertex raising
operations maintains the height-equivalence of all components of each SO(N)
tensor, while the complementary set breaks this height-equivalence feature. As
an example of a raising operation in the latter class, we could start with (2.3),
and then raise the multiplicity-one four-form vertex and also one of the vertices
out of the six in the multiplicity-six compound vertex, as follows:

4 4

5

11

1
(2.15)

In this Adinkra, the black edges correspond, as above, to a bundling of all four
supersymmetries. However, the bicolored edges indicate vertex interrelation-
ships involving only two of the four supersymmetries. The edges with combined
black and colored edges describe a bundling of all four supersymmetries, but
some of the implicit connectivity, namely that associated with the bicolored
edges, is missing from this bundling. Here we see that the six components of
the bosonic two-form do not share a common height assignment. Thus, the
two-form does not have a collectively unambiguous engineering dimension. In
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this case we say that the supermultiplet has a skew R-charge, as opposed to a
conventional R-charge.

Recall that the discussion of p-forms in Adinkras depends on choosing a
starting vertex to be the 0-form, and note that the skewness of the R-charge
may depend on this choice of 0-form vertex. Indeed, the R-symmetries act on
the supersymmetry generators, not the supermultiplet, unless we fix a choice
of a vertex. We will therefore define a supermultiplet or Adinkra to have
a conventional R-charge if there exists some choice of 0-form vertex so that
the vertices for each p-form all have the same engineering dimension, and a
supermultiplet is said to be skew otherwise.

In the case of an Adinkra with a conventional R-charge, the generator
d introduced in Subsection 2.1 commutes with the generator of the SO(N)
R-charge. For any Adinkra with a skew R-charge, these generators do not
commute.

Also note that the presence of a skew R-charge does not preclude the
existence of an invariant functional, built using the components of such a su-
permultiplet, which is both supersymmetric and SO(N)-invariant. Multiplets
having a conventional R-charge form a class which is distinct from those in
which the SO(N)-structure is skew, and may prove interesting to model build-
ing. However, in the balance of this paper we consider only supermultiplets
having conventional R-charge.

3 Top Adinkras and Salam-Strathdee Super-

fields

The Base Adinkra and its kin described in the previous section comprise an
extreme class of supermultiplets in the sense that the component fields span
a minimal number of distinct engineering dimensions, namely two. Another
extreme class of supermultiplets are those described by a connected Adinkra
involving 2N total component fields (vertices) spanning a maximal number of
distinct height assignments. This class of supermultiplets can be obtained from
the generalized Base Adinkras by raising vertices until the chains depicted in
Figure 1 are fully extended rather than maximally compressed. For instance,
if we start with the Base Adinkra (2.4), we can lift vertices while maintaining
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R-charge until we obtain the following Adinkra:

...

N
0
( )

N
1
( )

N
2( )

N
N( )

N
N-1( )

(3.1)

This is the unique fully-extended Adinkra having a zero-form boson as its
lowest component, and is called the Top Adinkra. This supermultiplet spans
N + 1 different height assignments, and corresponds directly with the scalar
Salam-Strathdee superfield, Φ(τ, θI), where θI are the fermionic superspace
coordinates. The lowest vertex in (3.1) corresponds to the lowest component
of the superfield, Φ |, i.e., that component which survives projection to the
θI → 0 submanifold of the superspace, sometimes called the body of the su-
perfield. The next highest vertices in (3.1) correspond to the body of the
derivative superfield, DIΦ | . In general, the p-form vertices in a Top Adinkra
are proportional to D[I1 · · ·DIp]Φ |.9 The component transformation rules as-
sociated with the generators of supersymmetry transformations on superspace
are identical with those codified by the Adinkra, as spelled out in [1,2,3].

Starting with the Top Adinkra (3.1), one can raise the lowermost vertex to

9A superspace derivative is defined as DI := ∂I + i θI ∂τ , whereby {DI , DJ} = 2 i ∂τ .
It follows that the product of two superspace derivatives can be decomposed as DI DJ =
D[I DJ] + i δIJ ∂τ . Because of this, a complete set of differential operators on superspace is
generated by the antisymmetric operator products D[I1 · · ·DIn], and by the time derivatives
∂pτ following the action of these.
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obtain the following distinct Adinkra:

...
N
0
( )

N
1
( )

N
2( )

N
N( )

N
N-1( )

(3.2)

This new Adinkra corresponds to the superderivative superfield DIΦ, modulo
the zero-mode of the singlet field labeled “

(
N
0

)
”. In this way, the superspace

derivative operation is mirrored on the Top Adinkra by a vertex raising. To
be more precise, the singlet vertex “

(
N
0

)
” in the Adinkra (3.2) describes the τ

derivative of the corresponding singlet field in Φ, its lowest component. This
begs an interesting and relevant question: Does there exist a superspace de-
scription of the supermultiplet described by (3.2) in which the Adinkra vertices
correlate one-to-one, without derivatives, to the components of some uncon-
strained superfields? As it turns out, such a construction does exist, is related
to the result of Theorem 7.6 of Ref. [1], and we describe it in detail below.
This construction requires not one, but two unconstrained superfields, Φ1 and
Φ2, called “prepotentials” and which are associated to the two local maxima
(sinks) of the Adinkra (3.2): those labeled “

(
N
N

)
” and “

(
N
0

)
”. A particular

linear combination of superspace derivatives of these contains precisely the su-
permultiplet described by (3.2). This linear combination comprises a superfield
subject to a constraint. There are twice as many component fields collectively
described by Φ1 and Φ2 as there are described by (3.2). The excess component
fields correspond to gauge degrees of freedom and do not appear in (3.2).



Adinkras and superspace prepotential dynamics 129

Next, starting with (3.2) we can raise the one-form vertices to obtain:

...
N
0
( )

N
1
( )

N
2( )

N
3
( )

N
4
( )

N
N( )

(3.3)

This Adinkra does not correspond directly to a single unconstrained super-
field. What we mean by this is that the particular component transformation
rules encoded by (3.3) do not coincide with the transformation rules associ-
ated with the components of any particular unconstrained superfield for which
the superfield components and the Adinkra vertices are in one-to-one corre-
spondence. This does not mean that the supermultiplet described by (3.3)
does not have a superspace interpretation. Indeed, the source-sink reversal
of Theorem 7.6 of Ref. [1] guarantees that a corresponding superfield exists,
and provides a general algorithm for its determination. In this case, for ex-
ample, the supermultiplet in question can be described by an unconstrained
scalar superfield along with a set of N unconstrained fermionic superfields,
respectively corresponding to the vertex labeled “

(
N
N

)
” and the multiple vertex

labeled “
(
N
1

)
”. These N + 1 total unconstrained prepotential superfields once

again correspond to the N + 1 local maxima (sinks) in the Adinkra (3.3), and
they involve a total of (N + 1) · 2N total components, significantly more than
the 2N vertices appearing in (3.3). The extra degrees of freedom appearing in
the superspace description are associated with gauge degrees of freedom; there
exist linear combinations of the prepotential superfields and derivatives thereof
which involve only those degrees of freedom corresponding to the Adinkra ver-
tices in (3.3). The superfield corresponding to such a linear combination is
subject to constraints. It has been a historically interesting question to at-
tempt to classify the possible realizable superfield constraints which give rise
to irreducible supermultiplets. The paradigm we are espousing speaks point-
edly to this endeavor. We expand on these ideas, and include relevant algebraic
details, later in this paper.
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Starting with (3.3), one can raise the singlet vertex labeled “
(
N
0

)
” to obtain:

...

N
0
( )

N
1
( )

N
2( )

N
3
( )

N
4
( )

N
N( )

(3.4)

This Adinkra corresponds to the superderivative superfield D[IDJ ]Φ modulo
several modes associated with the lifted vertices. More precisely, the one-form
vertex in (3.4) describes the τ derivative of the corresponding one-form fermion
in Φ and the singlet vertex in (3.4) describes the second derivative ∂2

τ of the
corresponding singlet boson in Φ, its lowest component.

The Adinkras (3.2) and (3.4) share a feature not exhibited by (3.3) or by
the majority of Adinkras: namely, these Adinkras have exactly two sinks and
exactly one compound source, meaning that the source vertices combine into a
particular SO(N) p-form. These Adinkras are obtained from the Top Adinkra
by lifting its lowest vertex upward, dragging other vertices behind, as if one
were raising a chain. Adinkras with this feature correspond to the antisymmet-
ric product of superderivatives acting on an unconstrained superfield Φ, which
itself corresponds to the Top Adinkra. This concept is illustrated by Figure
2 in the particular case of N = 4 supersymmetry. The dots which appear on
some vertices in Figure 2 indicate the relationship between these vertices and
the vertices in the leftmost, Top, Adinkra. For example, the topmost vertex
in the rightmost Adinkra, the one corresponding to D[IDJDKDL]Φ, has a blue
numeral and has four dots. These dots indicate that this vertex describes the
fourth derivative ∂4

τ of the field corresponding to the lowermost vertex in the
Top Adinkra. (This is the unique vertex in the Top Adinkra having a blue nu-
meral.) Notice that the top derivative DN = 1

4!
εI1···IN DI1 · · ·DIN completely

swivels the Top Adinkra about its hook, so that its source becomes a sink,
albeit differentiated, and its sink becomes a source.

The Top Adinkra, which corresponds to an unconstrained superfield Φ, and
its elemental derivatives,

Ξqp = D[I1 · · ·DIp] ∂
q
τ Φ , (3.5)

describe building blocks from which more general superfields may be con-
structed by forming linear combinations. The question of which superfield



Adinkras and superspace prepotential dynamics 131

D D[I J]Φ

DIΦ

Φ

D DD[I K]J Φ

D D[I DL]JDK Φ
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6

4 4 4 4 4
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1

1

111

.
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.

....

..

..

.....

...

Figure 2: TheN = 4 Top Adinkra, corresponding to the unconstrained super-
field Φ, and a sequence of related Adinkras obtained as antisymmetric products
of superspace derivatives acting on Φ. We have drawn distinctions between
the two multiplicity-four fermion vertices and the two singlet vertices by using
different coloring on the multiplicity labels appearing on these vertices.
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constraints correspond to which irreducible supermultiplets can be re-phrased
as a question of which linear combinations of the basic building blocks Ξqp
correspond to the irreducible supermultiplets.

Note that the basic building blocks can be visualized in terms of sets,
such as those pictured in Figure 2 plus versions of such diagrams raised by
global differentiation, by which we mean similar diagrams obtained by adding
a common number q of τ derivatives to each vertex. Figure 2 enumerates the
set {Ξ0

p } in the case N = 4, for the cases p = 0, 1, 2, 3, 4. Additional diagrams
Ξq �=0
p are obtained by differentiating all vertices q times. Each τ derivative lifts

the entire diagram by one engineering dimension, which corresponds to two
height units since the height is twice the engineering dimension. For example,
the relationship between the diagrams Ξ0

1 = DI Φ and Ξ1
1 = DI Φ̇ is seen as

follows:

..

16

4

4

1

.

Ξ1
0

16

4

4

1

.

.

.

.

Ξ1
1

(3.6)

The fact that the vertices of Ξ1
1 have two height units greater than their coun-

terparts in Ξ0
1 is manifested by the raised placement of the second diagram

relative to the first.
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4 Garden Algebras, and Clifford Algebra Su-

perfields

Adinkra diagrams provide a concise and elegant way to represent supermul-
tiplets. This is loosely analogous to the way Feynman diagrams represent
integrals appearing in field theory calculations. But Adinkra diagrams have
their own magic; these can be manipulated in a way which mirrors various
algebraic tasks associated with superfields or associated with component field
calculations. Some of these have been described above. The core algebraic
underpinning of Adinkras lies, however, in the realm of GR(d, N) algebras,
introduced in [5] and [6], which have emerged as vitally important for super-
symmetry representation theory. In this section we review these algebras and
their relevance to one-dimensional supersymmetry. We use these to describe
the algebraic counterpart to the pictorial presentation in Section 2.

A supersymmetry transformation δQ(ε) is parameterized by εI , where I =
1, ..., N is an SO(N) vector index. Two supersymmetry transformations com-
mute into a time translation according to

[ δQ(ε1) , δQ(ε2) ] = −2 i εI1 ε
I
2 ∂τ . (4.1)

The representations of (4.1) can be classified using the so-called “garden alge-
bra” GR(d, N), generated by two sets (LI )i

ĵ and (RI )ı̂
j of N d×d matrices,

known as “garden matrices”, subject to the relations

(LI RJ + LJ RI )i
j = −2 δIJ δi

j

(RI LJ +RJ LI )ı̂
ĵ = −2 δIJ δı̂

ĵ

LI = −RT
I . (4.2)

We note that garden algebras are closely related to Clifford algebras. Indeed,
a choice of garden matrices generating GR(d, N) contains the same mathe-
matical information as a representation of the Clifford algebra Cl(N) on a
d + d-dimensional super vector space, with the Clifford generators acting by
odd, skew-adjoint operators.

For fixed values ofN , there are multiple values of d for which these matrices
exist. But there is one dN that is the least integer for which d × d garden
matrices exist. The value of this integer for every N is tabulated in [3]. There
are different sorts of indices adorning (LI )i

ĵ and (RI )ı̂
j . The non-hatted

indices i, j, ... span a vector space VL ∼= R
d while the hatted indices ı̂, ĵ, ... span

another vector space VR ∼= R
d. These indices adorn the matrices LI and RI ,

the first index labels the row (thus, the range) and the second index labels the
column (thus, the domain). Thus, the LI describe linear maps from VR to VL,
and the RI describe linear maps from VL to VR. The compositions of these
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will then be maps on VL ⊕ VR that can be furthermore classified according to
their domain and range as follows:

{ML } : VR → VL { UL } : VL → VL
{MR } : VL → VR { UR } : VR → VR . (4.3)

This formalism produces a visualization of these concepts in a coordinate-
independent manner. We use Venn diagrams to represent the sets VL and
VR. The set of linear operators that act between and on these sets may be
represented by a set of directed arrows as shown in the Placement-putting
Graph [7], shown in Figure 3

In this paper the action of a matrix is defined in terms of left multiplication.
Thus, (LI )i

ĵ ∈ ML and (RI )ı̂
j ∈ MR. The “normal part of the enveloping

algebra”, denoted ∧EGR(d, N), is generated by the wedge products involving
LI and RI ,

( fI )i
ĵ = (LI )i

ĵ ( f̃I )ı̂
j = (RI )ı̂

j

( fIJ )i
j = (L[I RJ ] )i

j ( f̃IJ )ı̂
ĵ = (R[I LJ ] )ı̂

ĵ

( fIJK )i
ĵ = (L[I RJ LK] )i

ĵ ( f̃IJK )ı̂
j = (R[I LJ RK] )ı̂

j , (4.4)

and so forth. The subsets of the vector spaces UL,R and ML,R, defined in (4.3),

which are also in ∧EGR(d, N), are called, respectively, U (n)
L,R and M(n)

L,R, where
the superscript (n) indicates the “normal part”.

4.1 The Placement-Putting of Adinkra Nodes

The component fields of one-dimensional supermultiplets naturally admit a
structural organization associated with the vector spaces described above. For
example, the components of a Clifford algebra superfield, or equivalently the
vertices of a Base Adinkra, are valued in subsets of ∧EGR(d, N), such as U (n)

L

and M(n)
R , whereas the components of Scalar supermultiplets, or equivalently

the vertices of a Scalar Adinkra, are valued in VR and VL. In fact, the garden
algebras represent special cases of real Clifford algebras, such that component
fields, or equivalently collections of Adinkra vertices, that are valued in VL or
VR transform as some spinor representation(s) of an associated SO(N) sym-
metry. Similarly, fields or vertices valued in ∧EGR(d, N) transform as some p-
form representation(s) of an SO(N) symmetry. Thus, the vertices of Adinkras
span representations whose generators act on the vertices by multiplication
with appropriate matrices. We refer to the distinct SO(N) representations
carried by vertices, as their “R-charge”.
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{ ML }

VL VR

{ MR }

{ UR }{ UL }

Figure 3: The PpG diagram.

4.2 The Clifford Algebra Superfield

A fundamental representation of the N -extended superalgebra is given by the
Clifford algebra superfield. This involves 2N−1 bosons Φi

j ∈ U (n)
L and 2N−1

fermions Ψı̂
j ∈ M(n)

R , subject to the following transformation rules:

δΦi
j = −i εI (LI )i

k̂ Ψk̂
j

δΨı̂
j = εI (RI )ı̂

k ∂τΦk
j . (4.5)

If we make a particular choice for the garden matrices (LI )i
ĵ and (RI )ı̂

j,
then it is straightforward to translate the transformation rules (4.5) into the
equivalent Adinkra, using the techniques developed in [1] and [3]. The result-
ing Adinkra is shown in (2.4). We can expand the component fields in (4.5)
using the bases (4.4) as follows:

Φi
j =

�N/2�∑
p=0

( f I1···I2 p )i
j φI1···I2 p

Ψı̂
j =

�N/2�∑
p=1

( f̃ I1···I2 p−1 )ı̂
j ψI1···I2 p−1 , (4.6)

where � · � selects the integer part of its argument. In this way we can replace
the matrix fields Φi

j and Ψı̂
j with p-forms on SO(N). The transformation
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rules (4.5) imply the following corresponding rules for the p-form fields:

δ φ[peven] = −i ε[I1 ψI2···Ip] + (p+ 1) i εJ ψ
I1···Ip J

δ ψ[podd] = −ε[I1 φ̇I2···Ip] + (p+ 1) εJ φ̇
I1···Ip J . (4.7)

Thus, the Clifford algebra superfield involves 2N−1 bosons which assemble
as even-forms on SO(N) and 2N−1 fermions which assemble as odd-forms on
SO(N). Equation (4.7) is equivalent to equation (4.5). The equivalence may
be proved using algebraic identities satisfied by the garden matrices, which
follow as corollaries of the garden algebra. The Adinkra counterpart to (4.7)
is (2.4).

Notice that Φi
j ∈ U (n)

L , which is spanned by even-forms of the sort de-
fined in (4.4), and Ψı̂

j ∈ MR, which is spanned by odd-forms. It is for this
reason that the Clifford algebra superfield corresponds to the Base Adinkra,
shown in Figure 1, rather than to the Dual Base Adinkra. The latter construc-
tion involves even-form fermions rather than even-form bosons. The algebraic
counterpart to the Dual Base Adinkra is described in the following subsection.

4.3 The Dual Clifford Superfield

An alternative way to formulate a Clifford algebra superfield involves 2N−1

bosons Φı̂
j ∈ M(n)

R and 2N−1 fermions Ψi
j ∈ U (n)

L , subject to the following
transformation rules:

δΦı̂
j = −i εI (RI )ı̂

k Ψk
j

δΨi
j = εI (LI )i

k̂ ∂τΦk̂
j . (4.8)

The difference between (4.8) and (4.5) lies in the way the component degrees
of freedom are embedded in ∧EGR(d, N), as reflected by the placement of
the hatted and unhatted indices on the component fields themselves and on
whether it is the matrix (LI )i

ĵ or (RI )ı̂
j which appears in the transformation

rule for the bosons or fermions.
We can expand the component fields in (4.8) using the bases (4.4) as follows:

Φı̂
j =

�N/2�∑
p=1

( f̃ I1···I2 p−1 )ı̂
j φI1···I2 p−1

Ψi
j =

�N/2�∑
p=0

( f I1···I2 p )i
j ψI1···I2 p , (4.9)

where � · � selects the integer part of its argument. In this way we can replace
the matrix fields Φi

j and Ψı̂
j with p-forms on SO(N). The transformation
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rules (4.8) imply the following corresponding rules for the p-form fields:

δ φ[podd] = −i ε[I1 ψI2···Ip] + (p+ 1) i εJ ψ
I1···Ip J

δ ψ[peven] = −ε[I1 φ̇I2···Ip] + (p+ 1) εJ φ̇
I1···Ip J . (4.10)

Thus, the Dual Clifford algebra superfield involves 2N−1 bosons which assem-
ble as odd-forms on SO(N) and 2N−1 fermions which assemble as even-forms
on SO(N). Equation (4.10) is equivalent to equation (4.8). The Adinkra
counterpart to (4.10) is shown in (2.8).

4.4 The Conjugate Clifford Superfield, and its dual

Two additional fundamental supermultiplets are the Klein flipped versions of
the Clifford algebra superfield and its dual, described in Subsections 4.2 and
4.3, respectively.

The Conjugate Clifford superfield involves 2N−1 fermions Ψ̃ı̂
j ∈ M(n)

R and

2N−1 bosons Φ̃i
j ∈ U (n)

L , subject to the following transformation rules:

δΨı̂
j = εI (RI )ı̂ k Φk

j

δΦi
j = −i εI (LI )i k̂ ∂τ Ψk̂

j . (4.11)

In this case the fermions describe the lower components and decompose as
odd-forms on SO(N), while the bosons describe the higher components and
decompose as even-forms on SO(N). This supermultiplet is represented by the
Conjugate Base Adinkra, which is shown in (2.9).

The Dual Conjugate Clifford superfield involves 2N−1 fermions Ψ̃i
j ∈ U (n)

L

and 2N−1 bosons Φ̃ı̂
j ∈ M(n)

R , subject to the following transformation rules:

δΨi
j = εI (LI )i k Φk

j

δΦı̂
j = −i εI (RI )ı̂ k̂ ∂τ Ψk̂

j . (4.12)

In this case the fermions describe the lower components and decompose as
even-forms on SO(N), while the bosons describe the higher components and
decompose as odd-forms on SO(N). This supermultiplet is represented by the
Dual Conjugate Base Adinkra, which is shown in (2.10).

5 Scalar Multiplets

Generalized Clifford algebra superfields, which correspond to generalized Base
Adinkras, are reducible for N ≥ 4. Similarly, unconstrained Salam-Strathdee
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superfields, which correspond to Top Adinkras, are also reducible for N ≥ 4.
On the other hand, the Scalar supermultiplets are irreducible for all N . A
Scalar supermultiplet involves d bosonic fields φi ∈ VL ∼= R

d and d fermionic
fields ψı̂ ∈ VR ∼= R

d, where d = dN is the minimum value for which d × d
garden matrices exist. The supersymmetry transformation rules are given by

δQ(ε)φi = −i εI (LI )i
ĵ ψĵ

δQ(ε)ψı̂ = εI (RI )ı̂
j ∂τ φj . (5.1)

A Scalar supermultiplet is represented by an Adinkra having d fermionic ver-
tices all at height zero and d bosonic vertices all at height minus one.10 For
example, in the case N = 4, we have dN = 4, and the Scalar Adinkra is the
following complete bipartite graph with 4 + 4 vertices:

(5.2)

We now wish to examine the following question: Does there exist a su-
perspace description of a general-N Scalar Adinkra for which the vertices
correlate one-to-one with the components of some unconstrained prepoten-
tial Salam-Strathdee superfields? (As we saw in Subsection 2.4, the Scalar
supermultiplet can be constructed from the Clifford algebra superfield via a
projection determined by the symmetries of the Base Adinkra. However, this
is not immediately helpful, as we have not yet given a superspace description
of the general-N Clifford algebra superfield in terms of Salam-Strathdee super-
fields.) In addition, we ask whether we can construct a supersymmetric action
functional in terms of a superspace integral built from these prepotentials for
which the propagating fields correspond precisely to the Scalar supermultiplet?
It should be kept in mind that the definitions of superfields we have been using
so far in this discussion are totally independent of the Salam-Strathdee super-
field formalism. So the answer has not been presumed in our discussion to this
point.

10By making this choice, we are normalizing the height of the Scalar supermultiplet by
choosing canonical dimensions for its component fields: A propagating scalar field φ has a
canonical kinetic action given by Sφ =

∫
dτ 1

2 φ̇
2; since the engineering dimension of τ is

minus one, it follows that S is dimensionless only if φ has dimension minus one-half. Since
the height parameter is twice the engineering dimension, it follows that the canonical height
of a one-dimensional scalar is minus one. Similar reasoning may be applied to the canonical
fermion action Sψ =

∫
dτψψ̇ to conclude that canonical propagating fermions have zero

height.
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The answer to this question has been known for some years. It was explic-
itly stated, for example in a 1982 work by Gates and Siegel [12]: “Conversely,
the highest-dimension component field appearing in an action is the highest
θ-component of a superfield appearing in this action.” As it turns out, a
given Adinkra can be described using one prepotential superfield for each of
its hooks, i.e., its sink vertices. The statistics and the GR(d, N) or SO(N)
structure of these prepotentials are dictated by statistics and the GR(d, N) or
SO(N) structures of the sink vertices on the target Adinkra, i.e., the Adinkra
we wish to describe using the prepotentials. Since the prepotentials are un-
constrained, these correspond to Top Adinkras, each of which has exactly one
hook. The statistics for each prepotential are chosen such that the hook of the
corresponding Top Adinkra correlates with one hook of the target Adinkra. A
fermionic hook therefore corresponds to a bosonic prepotential in cases where
N is odd and to a fermionic prepotential in cases where N is even. Similarly,
a bosonic hook corresponds to a fermionic prepotential in cases where N is
odd and to a bosonic prepotential in cases where N is even. These conclu-
sions follow because the statistics of a Salam-Strathdee superfield coincide with
the statistics of the source vertex (the lowest vertex) on the associated Top
Adinkra and because a Top Adinkra spans N +1 different height assignments.
Therefore the statistics of the Top Adinkra source vertex coincides with the
statistics of its hook in cases where N is even and differs from the statistics of
its hook in cases where N is odd.

According to this claim, the N = 4 Scalar supermultiplet requires four real
fermionic superfields, Fı̂, as prepotentials, where the index ı̂ spans VR ∼= R

4.
This is determined by (5.2), where we see that the N = 4 Scalar Adinkra
has four real fermionic scalar hooks; these span VR since the four fermion
fields corresponding to these vertices are ψı̂ ∈ VR. For the case of general-
N Scalar supermultiplets, similar reasoning implies that d real superfields Sı̂
should suffice. We prove below, in Section 7, that such a prepotential construc-
tion does properly describe any Scalar supermultiplet, and we also show how
these unconstrained superfields can be used to build supersymmetric action
functionals. The reader might wonder because d unconstrained real fermionic
scalar superfields involve a total of d ·2N−1 +d ·2N−1 component fields whereas
a Scalar supermultiplet has only 2N−1 + 2N−1 component fields, an appar-
ent mismatch. The resolution is that the excess correspond to gauge degrees
of freedom; there is a particular linear combination of the building blocks
D[I1 · · ·DIp] ∂

q
τ Sı̂, where Sı̂ are the prepotentials, which describes precisely the

degrees of freedom in the Scalar supermultiplet.

The fact that this works in the general case might be surprising to some
readers. We think it is helpful, therefore, to describe in detail the simplest
case—the case N = 2—in order to illustrate clearly how the gauge structure
appears in the prepotentials. (In the case N = 1 the unconstrained superfield
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and the Scalar supermultiplet are identical.) Accordingly, the following section
focuses on the case N = 2. The general case is described in Section 7.

Our basic strategy, which ultimately gives rise to the solution described
above, is predicated on the following thoughts: Scalar supermultiplets span
two height assignments, whereas Top Adinkras span N+1 height assignments.
Thus, if we wish to describe a Scalar supermultiplet using a prepotential or a
set of prepotentials, we will have to operate on these. We explained at length
above how superspace differential operators lift vertices and can reduce the
span of an Adinkra. A complete set of differential operators on superspace are
given by D[I1 · · ·DIp] ∂

q
τ , where p and q are integers constrained by 0 ≤ p ≤ N

and q ≥ 0. Our strategy will be to consider linear combinations

Γ({a})m;I1···Ir :=
λ∑
n=1

∞∑
s=0

N∑
p=0

( aps )
n;J1···Jp

m;I1···IrD[J1
· · ·DJp] ∂

s
τ Sn , (5.3)

where Sn are a set of λ ∈ N unconstrained prepotential superfields and the
complex tensor coefficients ( aps )

n;J1···Jp

m;I1···Ir remain to be determined,11 and where
the indices m and n take values in a vector space W, for which dimW = λ,
to be determined. (For the Scalar supermultiplets, it turns out that W = VR
and λ = d.) The statistics of the prepotentials may vary. In other words, some
number b of the Sn could be bosonic while the remaining λ− b prepotentials
would be fermionic. (Clearly, 0 ≤ b ≤ λ.)

Our tasks are: 1) to determine whether a set of prepotentials (specified by

a choice of λ and a choice of b) and a set of complex coefficients ( aps )
n;J1···Jp

m;I1···Ir
exist such that Γ({a}) includes precisely the field content of a given target
supermultiplet, in this case a Scalar supermultiplet, and 2) to use the prepo-
tential superfields to build a supersymmetric action functional depending only
on the degrees of freedom corresponding to the target supermultiplet.

6 N = 2 Prepotentials

In this section we address the question posed in the previous section, regard-
ing the existence of a suitable prepotential for Scalar supermultiplets, in the
restricted context of N = 2 supersymmetry. We do not presuppose the par-
ticular solution described in the previous section but instead arrive at this
solution via methodical reasoning.

11Note: Two superfields may be added only if these have the same statistics, and describe
the same SO(N) representation, and have the same engineering dimension. The third of
these restrictions dramatically limits the possibilities. The summands in (5.3) have engi-
neering dimension η = 1

2 p+ s, since the DI have dimension one-half. This number should
be the same for each summand in order for Γ({a}) to have definite engineering dimension.
Thus, there is only one value of p for each value of s for which the coefficients can be
nonvanishing.
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Figure 4: The Adinkras for the fermionic N = 2 superfield F , and deriva-
tives thereof. The vertical placement of the vertices in this graphic correlates
faithfully with the vertex height assignments. This illustrates again how the
application of a superderivative lifts vertices, how application of a top deriva-
tive, D2 in this case, swivels the Top Adinkra around its hook by 180◦, and how
the operator ∂τ lifts the F Adinkra up without swiveling. (Thus, τ derivatives
lift entire Adinkras while superderivatives lift vertices.)

We adopt a notational convention in which the name of a component field
provides information regarding the statistics (boson or fermion), the engineer-
ing dimension, and the number of derivatives appearing on that object. In
particular, we use B

(m)
δ to refer to the mth τ derivative of a bosonic component

field having engineering dimension δ and F
(m)
δ to refer to the mth τ derivative

of a fermionic component field having engineering dimension δ. Thus, a bo-
son field having engineering dimension minus one-half would be named B

(0)
−1/2,

whereas the fourth derivative of this field would be named B
(4)
−1/2. The engineer-

ing dimension of an object can be read off of the labels, since [B
(m)
δ ] = (δ+m).

To begin, we consider the simplest possibility, and involve only one real
prepotential, i.e., we make an ansatz λ = 1. We develop the case where this
superpotential is fermionic (so that b = 0).12 Using the notational conven-
tion introduced in the previous paragraph, an unconstrained fermionic N = 2
superfield is given by

12As it turns out, it is not possible to build a local superspace action having canonical
kinetic terms in the case of even-N Scalar supermultiplets using bosonic prepotentials. The
reasons for this are explained near the end of this section.
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F = F
(0)
−1 + θI (B

(0)
−1/2 )I + 1

2!
i θI θJ (F

(0)
0 )IJ . (6.1)

We can enumerate the possible terms in a “Gamma expansion”, defined in (5.3),
by computing various derivatives of this superfield. Since N = 2, there are
only three possible terms for which q = 0. The first involves (6.1) itself. The
second involves the first superderivative,

DI F = (B
(0)
−1/2 )I + i θJ

(
(F

(0)
0 )IJ + δIJ F

(1)
−1

)
+ 1

2!
i εJK θ

J θK
(
εIL (B

(1)
−1/2 )L

)
, (6.2)

and the third involves the second superderivative,

iD[I DJ ] F = (F
(0)
0 )IJ + θK

(
− 2 δK [I (B

(1)
−1/2 )J ]

)
+ 1

2!
i εKL θ

K θL
(
− εIJ F

(2)
−1

)
. (6.3)

We have included a conventional factor of i in (6.3) because the operator
iD[IDJ ] preserves the phase of F . We will abbreviate 1

2
εIJ DIDJ by writing

D2. The Adinkras corresponding to the superfields F , DI F , and iD2 F are
shown in Figure 4, where the precise correspondence between the Adinkra
vertices and the superfield components are indicated. Every other possible
term in the Gamma expansion corresponds to a τ derivative of one of these
three terms, i.e., F (q), DI F (q), or iD2 F (q), where X(q) := ∂qτ X. Figure 4
also shows the Adinkra corresponding to F (1) = Ḟ ; note that it has the same
graphical form as the Adinkra for iD2 F , but with different labels.

There are very few possibilities for forming linear combinations of the su-
perfields described so far. The only way to obtain an SO(2) singlet superfield
as a sum is by adding

∂τ F = F
(1)
−1 + θI (B

(1)
−1/2 )I + 1

2!
i θI θJ (F

(1)
0 )IJ (6.4)

to some multiple of

iD2 F = 1
2
εIJ (F

(0)
0 )IJ + θI

(
− εIJ (B

(1)
−1/2 )J

)
+ 1

2!
i θI θJ

(
− εIJ F

(2)
−1

)
, (6.5)

or by adding together total derivatives ∂qτ of both of these. Consider first the
sum of (6.4) and (6.5), using a relative coefficient of unity. This yields

( iD2 + ∂τ )F = F
(1)
−1 + 1

2
εIJ (F

(0)
0 )IJ

+θI
(

(B
(1)
−1/2 )I − εIJ (B

(1)
−1/2 )J

)
− 1

2!
i εIJ θ

I θJ
(
F

(2)
−1 − 1

2
εKL (F

(1)
0 )KL

)
. (6.6)
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This operation preserves the overall phase of F . For instance, if F is a real
superfield, satisfying F = F †, then ( iD2 + ∂τ )F is a new real superfield
built by rearranging the components of F . So the Adinkra corresponding
to (6.6) is a Top Adinkra, not a Scalar Adinkra. A similar conclusion follows
if we consider any combination ( a iD2 + ∂τ )F , where a is any real number.
Thus, this does not provide us with what we are looking for, i.e., a superfield
corresponding to a two-height Adinkra. It might seem odd to expect that by
adding together three-height Adinkras we could obtain a two-height Adinkra.
But this is possible if the addition serves to project out some the vertices, as
we show presently.

We have determined that a linear combination of ∂τ F and iD2 F might
correspond to a two-height Adinkra only if the relative coefficient is not real.
It follows that we must allow F to be a complex superfield.13 Thus, we have
revised our original ansatz and are now considering the case λ = 2. Now, we
can form a new linear combination of ∂τ F and iD2F , this time including a
relative factor of i between the two terms,

Ψ := (−D2 + ∂τ )F . (6.7)

The component expansion for this superfield is

Ψ = F
(1)
−1 + 1

2
i εIJ (F

(0)
0 )IJ

+θI
(

(B
(1)
−1/2 )I − i εIJ (B

(1)
−1/2 )J

)
+ 1

2!
εIJ θ

I θJ
(
F

(2)
−1 + 1

2
i εKL (F

(1)
0 )KL

)
. (6.8)

This combination has a remarkable feature: the highest component of Ψ is
the τ derivative of its lowest component. Thus, the highest component is
completely determined by data included at a lower level in the superfield. In
fact, the combinations which appear at the lowest two levels, namely

( B̂
(0)
−1/2 )I := ( δIJ − i εIJ ) (B

(0)
−1/2 )J

F̂
(0)
0 := F

(1)
−1 + 1

2
i εIJ (F

(0)
0 )IJ , (6.9)

describe a new supermultiplet spanning two engineering dimensions d = −1/2
and d = 0. Using the definitions (6.9) we can rewrite (6.8) as

Ψ = F̂
(0)
0 + θI ( B̂

(1)
−1/2 )I + 1

2
i εIJ θ

I θJ F̂
(1)
0 . (6.10)

13Equivalently, we could add another real prepotential so that we have two of these, say
F1 and F2. But these could be complexified by writing F = F1 + iF2, which ultimately
amounts to the same thing.
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Here F̂
(0)
0 is a complex scalar, and thus has two real degrees of freedom, and

( B̂
(0)
−1/2 )I , though it appears at first to have four real degrees of freedom, really

has two, for the following reason.
If we define (P± )IJ := δIJ±iεIJ , then (P± )I

J are a pair of complementary
projection operators, meaning P+

2 = P+, P−2 = P−, P+P− = P−P+ = 0, and
P+ + P− = 1. The operator P+ projects to the set of self-dual one-forms
and P− to the anti-self-dual one-forms. Every one-form ω can be written as
P+ω + P−ω, where the first term is self-dual and the second term is anti-self-

dual. The expression in (6.9) explicitly shows that B̂
(0)
−1/2 is anti-self-dual, so

the range of possibilities here is halved. In other words, B̂
(0)
−1/2 satisfies the

constraint P+B̂
(0)
−1/2 = 0. Thus the components of (6.9) involve two bosonic

degrees of freedom and two fermionic degrees of freedom, or exactly half of
those in F .

Another way to think of this situation is in terms of gauge equivalences.
It is straightforward to see that F̂

(0)
0 and ( B̂

(1)
−1/2 )I , and therefore the entire

superfield Ψ, are invariant under the following gauge transformation:

δ (F
(0)
0 )IJ = β̇IJ

δ (B
(0)
−1/2 )I = ( δIJ + i εIJ ) aJ

δ F
(0)
−1 = −1

2
i εIJ βIJ , (6.11)

where βIJ is a complex two-form, describing two fermionic degrees of free-
dom, and aJ is a self-dual complex one-form describing two bosonic degrees of
freedom. We can use this freedom to make a gauge choice

F
(0)
−1 = 0

( δIJ + i εIJ ) (B
(0)
−1/2 )J = 0 . (6.12)

But, the degrees of freedom removed from F by making this choice are also
removed by the operation described by (6.7). An Adinkrammatic depiction
of (6.7) is given in Figure 5.

The superfield Ψ describes the general solution to the following constraint:

( δIJ + i εIJ )DJ Ψ = 0 . (6.13)

Equivalently, Ψ describes the projection (6.7) of an unconstrained superfield F .
Figure 6 describes the Adinkrammatics associated with the projection (6.7).
But the most important way to regard this supermultiplet, for the purposes
of our discussion, is via its relationship to the N = 2 Scalar supermultiplet.
The complex, anti-self-dual boson ( B̂

(0)
−1/2 )I and the complex fermion F̂

(0)
0 de-

scribe the 2 + 2 components corresponding to φi and ψı̂, as defined in (5.1),
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F
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Figure 5: When adding together the Adinkras corresponding to the super-
fields −D2 F and ∂τ F , we take an appropriate linear combination of these
superfields which induces a projection onto a sub-Adinkra corresponding to
the superfield Ψ. The fermionic degrees of freedom F

(1)
−1 − 1

2
εIJ (F

(0)
0 )IJ

are removed by this process, as are the bosonic degrees of freedom ( δIJ +

i εIJ ) (B
(0)
−1/2 )J , owing to the presence of the gauge symmetry shown in (6.11).

respectively. The precise correspondence is described immediately below in
subsection 6.1. The superfield Ψ, and its Adinkra, shown in Figure 7, corre-
spond to a vertex-raised version of this Scalar supermultiplet/Adinkra, since it

is the derivative ( B̂
(1)
−1/2 )I which contributes to these, rather than the elemen-

tal field ( B̂
(0)
−1/2 )I . A more fundamental superfield which contains precisely

( B̂
(0)
−1/2 )I and F̂

(0)
0 is called ΦI , and is described in subsection 6.2. The fact

that this describes the N = 2 Scalar supermultiplet is easy to prove, since
there is only one way to draw a two-height N = 2 Adinkra where the lower
components are bosons.

Note that equation (6.13) may be construed as a chirality constraint, since
we could regard the operator ( δIJ + i εIJ )DJ as a complex superspace deriva-
tive. Thus, the superfield Ψ is an example of a “chiral” superfield. Note that
in the context of D = 4 N = 1 supersymmetry (which is equivalent to D = 1
N = 4 supersymmetry) similar superfields, along with a differential condition
analogous to (6.13) also exist.

The SO(2)-invariant Levi-Civita tensor εIJ defines a complex structure on
the “target space”. However, additional algebraic structures suggested by the
vector spaces defined in the PpG diagram (Figure 3) prove instrumental to
the ability to generalize the developments of this section to the context of
higher-N supersymmetry. In the following subsection we describe some of this
additional structure in the case N = 2.
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Figure 6: Schematically, the N = 2 operator (−D2 + ∂τ ) implements the
indicated operations on the Top Adinkra. First, it raises the Top Adinkra
two height units by a combination of swiveling and lifting. Then it lowers
the topmost vertex, by folding the raised Adinkra in half, removing half of
the degrees of freedom in the process. What results is the gauge-invariant Ψ
Adinkra.
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Figure 7: The N = 2 operator 1
2
( δIJ − i εIJ )DJ implements the indicated

operations on the Top Adinkra. If lifts the lowermost vertex, and removes half
the degrees of freedom. What results is the gauge-invariant Φ Adinkra. The
Ψ Adinkra, shown in Figure 6 is obtained by raising the lower vertex in the Φ
Adinkra, which is equivalent to swiveling Φ Adinkra 180◦ about its hook.
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6.1 GR(2, 2) Structure

The component transformation rules can be determined from (6.1) using
δQ(ε) = −i εI QI , where εI is an SO(2) doublet of real supersymmetry param-
eters and QI = i ∂I + θI ∂τ is the local superspace supersymmetry generator.
Accordingly, the superfield F transforms as

δQ(ε)F = εI ( ∂I − i θI ∂τ )F . (6.14)

Via explicit computation using (6.1), this tells us

δQ F
(0)
−1 = εI (B

(0)
−1/2 )I

δQ (B
(0)
−1/2 )I = i εJ (F

(0)
0 )IJ + i εI F

(1)
−1

δQ (F
(0)
0 )IJ = −2 ε[I (B

(1)
−1/2 )J ] . (6.15)

We can use (6.15) to determine the corresponding transformations of the
“gauge-invariant” degrees of freedom defined in (6.9), with the result given
by

δQ ( B̂
(0)
−1/2 )I = i ( εI − i εIJ ε

J ) F̂
(0)
0

δQ F̂
(0)
0 = ( εI + i εIJ ε

J ) ∂τ ( B̂
(0)
−1/2 )I . (6.16)

This illustrates explicitly that the gauge-invariant fields do properly comprise
a supersymmetry representation in and of themselves. Now consider the fol-
lowing independent real combinations, which suggestively package the 2 + 2
invariant degrees of freedom,

φ1 := Re ( B̂
(0)
−1/2 )2 − Im ( B̂

(0)
−1/2 )1

φ2 := Im ( B̂
(0)
−1/2 )2 + Re ( B̂

(0)
−1/2 )1

ψ1̂ := Re F̂
(0)
0

ψ2̂ := Im F̂
(0)
0 . (6.17)

In terms of these, the transformation rules (6.16) become

δQ φ1 = −i ε1 ψ2̂ + i ε2 ψ1̂

δQ φ2 = i ε1 ψ1̂ + i ε2 ψ2̂

δQ ψ1̂ = ε1 φ̇2 + ε2 φ̇1

δQ ψ2̂ = −ε1 φ̇1 + ε2 φ̇2 . (6.18)
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Using the index conventions described in section 4, the “physical” degrees of
freedom, φi and ψı̂, may be assigned values in VL and VR, respectively, thereby
exposing a natural GR(2, 2) structure associated with this supermultiplet. This
is made all the more explicit if we make the following particular basis choice
for the N = 2 garden matrices,

L1 =

(
0 1
−1 0

)
R1 =

(
0 1
−1 0

)

L2 =

( −1 0
0 −1

)
R2 =

(
1 0
0 1

)
. (6.19)

Using these, the transformation rules (6.18) can be written more concisely as

δQ(ε)φi = −i εI (LI )i
ĵ ψĵ

δQ(ε)ψı̂ = εI (RI )ı̂
j ∂τ φj , (6.20)

which, as we recognize from (5.1), precisely describes a Scalar supermultiplet.

6.2 An N = 2 Invariant Action

A manifestly supersymmetric action can be written as follows:

S =

∫
dτ d2θ

(
1
2
iF † Ψ̇ + h.c.

)
. (6.21)

Using the component expansion for F , given in (6.1) and the component expan-
sion for Ψ, given in (6.8), then performing the theta integration, we determine
the action in terms of the component fields,

S =

∫
dτ

(
− 1

2
( B̂

(1)
−1/2 )†I( B̂

(1)
−1/2 )I − i 1

2
( F̂

(0) †
0 F̂

(1)
0 − F̂

(1) †
0 F̂

(0)
0 )

)
, (6.22)

where ( B̂−1/2 )I and F̂0 are the gauge-invariant combinations given in (6.9).
This demonstrates that (6.21) provides for a canonical kinetic action for the
component fields and also that this result is invariant under the gauge transfor-
mation (6.11). Thus, (6.21) depends only on the 2+2 gauge-invariant degrees
of freedom defined in (6.9) rather than on the full 4 + 4 degrees of freedom
described by F . By way of contrast, the prepotential superfield F includes the
physical as well as the spurious, gauge degrees of freedom.

We could repeat the above analysis using bosonic prepotentials rather than
fermionic prepotentials. However, it proves impossible in that case to use gauge
invariant superfield combinations to build a bosonic action analogous to (6.22)
which involves canonical kinetic terms for the component fields. The diligent
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reader can verify that the same arguments and computations would then apply,
but the bosonic and fermionic components would be switched. The resulting
action (6.22) would then be trivial. Altering (6.21) turns out not to help, and
this fact can be seen from dimensional arguments.

We have seen that the lowest component of Ψ corresponds to the gauge-
invariant physical fermions. We notice that the gauge-invariant physical bosons
are the lowest components of the anti self-dual part of DI F . Accordingly, we
define

ΦI := 1
2
( δIJ − i εIJ )DJ F . (6.23)

We then notice that

Ψ = −εIJ DI ΦJ . (6.24)

as is readily verified using (6.7) along with the identity DIDJ = D[IDJ ] +
i δIJ ∂τ . Equations (6.23) and (6.24) describe the gauge-invariant superfield
analogs of the physical component fields described by the prepotential F . The
map from F to ΦI is described Adinkrammatically in Figure 7. The ΦI Adinkra
contains precisely the physical degrees of freedom in this supermultiplet. The
Ψ Adinkra, by way of contrast, is missing the zero mode of the physical bosons.

7 Scalar Prepotentials for General N

The strategy employed in the previous section ought to generalize to cases
where N > 2. To determine how, it is helpful to reflect on how we managed to
succeed in that case. This is made transparent by looking at Figure 5, which
we can re-write in more streamlined form as follows:

+ =

.

.

2

2

2 2

22

4 4

..
.
.

. .
.

(7.1)

where the first term on the left-hand side is the Adinkra corresponding to
D2 F (0), the second term is the Adinkra corresponding to F (1), ignoring for
the moment numerical coefficients. We have distinguished one fermionic vertex
by adding a yellow spot, which manifests the de facto orientation of the vertex
chain. This is helpful for purposes of enabling inter-term vertex comparisons.
(The spotted vertex is the source of the F (0) Adinkra; the fact that this vertex
appears at the top of the D2 F Adinkra rather than at the bottom reflects
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the fact that the operator D2 swivels the F Adinkra 180◦ about its hook.)
Now we see that the vertex-wise addition of the Adinkras on the left-hand
side of (7.1) exhibits a promising feature: the same two terms appear in the
vertex sum at the lowest level as appear in the vertex sum at the highest level,
albeit with one extra dot at the higher level. This suggests that one might be
able to choose the relative numerical coefficient between the two superfields
corresponding to these Adinkras in just such a way that their sum includes
precisely the same information at two different levels of the superfield. This
would then render the highest vertex of the Adinkra sum superfluous. This
would also necessarily implement a gauge projection, since the sum of two fields
containing two degrees of freedom can carry only two degrees of freedom itself.
Furthermore, since supersymmetry automatically ensures a balance between
fermionic and bosonic degrees of freedom, the gauge projection on the fermionic
vertices would necessarily be accompanied by a similar gauge projection on the
bosonic vertices. What we showed above, via explicit computation, was that
all of this is, in fact, tractable.

Let’s examine how this reasoning might generalize to higher N . In general,
a Top Adinkra, which corresponds to a real prepotential superfield, say F (0),
spans N + 1 distinct height assignments. We can attempt to reduce the span
of this Adinkra by adding F (N/2) = ∂

N/2
τ F (0) to a swiveled version of F (0),

corresponding to DNF (0), where DN = 1
N !
εI1···INDI1 · · ·DIN . The purpose

of the N/2 derivatives on F (N/2) is to ensure that the engineering dimension
of this term coincides properly with that of DNF (0). Based on our previous
analysis, we suspect that this could succeed only if we used instead at least a
pair of real superfields F1 and F2, or, to be more general, some set of superfields
Fn where n = 1, ..., λ, rather than a single real superfield F . But the best we
could realistically hope for in this case would be to find a suitable coefficient
between each F (N/2)

n term and the corresponding DNF (0)
n term so as to reduce

the span from N + 1 distinct height assignments to N , whereas if we want to
describe a Scalar supermultiplet, we have to reduce the span all the way to
two.

The problem then is how to include more terms in our Γ expansion (5.3)
in such a way that not only do the engineering dimensions of each term match
up properly, but so too do the SO(N) tensor structures. For example, both
F (N/2) and DNF (0) are SO(N) invariant, but none of the other possible terms
D[I1 · · ·DIp] F (N−p)/2, where 0 < p < N , are SO(N) invariant, nor are contrac-
tions of these with the Levi-Civita symbol εI1···IN . It is here that the garden
algebra saves the day. Objects precisely of the sort defined in (4.4) are indi-
cated for this purpose. These are p-forms on SO(N) that are also operators
on ∧GR(d, N). We can use these objects to add tensorial balance to more
possible terms. But if we do this, it becomes necessary that the prepoten-
tials take values in VR or VL, since elements of ∧GR(d, N) act on elements of
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VL⊕VR. This, of course plays right into our hand, since, ultimately, the com-
ponent fields of the Scalar supermultiplets should take their values in precisely
these vector spaces. In this way, we could, for instance, form an SO(N) singlet
superfield by adding up terms of the following sort:

εI1···IN DIN · · ·DI2 s+2 ( fI2 s+1···I1 )i
ı̂ ∂sτSı̂ . (7.2)

to define a superfield Φi := (Oφ )i
ı̂Sı̂ which would include only the fields of the

Scalar supermultiplet. Alternatively, we could add up terms of the following
sort:

εI1···IN DIN · · ·DI2 s+1 ( f̃I2 s···I1 )ı̂
ĵ ∂sτSĵ . (7.3)

to define another superfield Ψı̂ := (Oψ )ı̂
ĵSĵ which would also include only

the fields of the Scalar supermultiplet albeit organized differently than in the
field Φi. It is natural (and ultimately successful) to assume that there exist
superfields Φi and Ψı̂, defined precisely in this way, with the properties that
the lowest components coincide precisely with the component fields φi and ψı̂
defined in (5.1).

Based on the above discussion, we presuppose that a Scalar supermultiplet
is described by a set of d unconstrained prepotential superfields Sı̂. For reasons
similar to those described in Section 6, it turns out that when N is an even
integer, the prepotential will be fermionic while in cases where N is an odd
integer, the prepotential will be bosonic. Accordingly, when N is even we will
write Sı̂ := Fı̂ and when N is odd we will write Sı̂ := Bı̂. In terms of the
prepotentials, we define related superfields by

Φi = (Oφ )i
ı̂ Sı̂

Ψı̂ = (Oψ )ı̂
ĵ Sĵ . (7.4)

where (Oφ )i
ı̂ and (Oψ )ı̂

ĵ are operators determined such that Φi | = φi and
Ψı̂ | = ψı̂, where φi and ψı̂ are the particular component fields appearing
in (5.1). By making this definition, we imply that the supersymmetry trans-
formation rules induced on φi and ψı̂ by virtue of the fact that these are the
lowest components of the superfields defined in (7.4), via the realization of a
supersymmetry transformation on superspace, correspond precisely with the
component transformation rules given in (5.1). Among other things, this also
implies

DI Φi = −i (LI )i
ı̂ Ψı̂

DI Ψı̂ = (RI )ı̂
i ∂τ Φi . (7.5)
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Using (7.5), it is straightforward to determine

D[I1 · · ·DIp] Ψı̂ =

⎧⎨
⎩

(−i)p/2 ( f̃Ip···I1 )ı̂
ĵ ∂

p/2
τ Ψĵ ; p even ,

(−i)(p−1)/2 ( f̃Ip···I1 )ı̂
j ∂

(p+1)/2
τ Φj ; p odd .

(7.6)

By substituting the definitions (7.4) into (7.5), and using the fact that the
prepotentials Sı̂ are unconstrained, we obtain the following operator equations
as corollaries of (7.5),

−i (LI )i
k̂ (Oψ )k̂

ĵ = DI (Oφ )i
ĵ

(RI )ı̂
k ∂τ (Oφ )k

ĵ = DI (Oψ )ı̂
ĵ . (7.7)

Now, if we contract the first of these equations from the left with (RJ )l̂
i and

then symmetrize on the indices I and J , and use the garden algebra (4.2), we
determine

(Oψ )ı̂
ĵ = −i 1

N
(RI )ı̂

kDI (Oφ )k
ĵ . (7.8)

Operating with (7.8) on the prepotential Sı̂ allows us to re-write this consis-
tency condition as

Ψı̂ = −i 1
N

(RI DI Φ )ı̂ . (7.9)

Thus, the superfields Ψı̂ can be expressed in a simple way, in terms of the
superfields Φi.

How, then, can we determine the superfield Φi, or, equivalently, the opera-
tor (Oφ )i

ı̂? As it turns out, this problem is part and parcel of the problem of
finding an invariant action. That problem, in turn, can be solved by straight-
forward computation, by postulating that the logical choice for a manifestly
supersymmetric action, expressed as an integration over superspace of a par-
ticular locally-defined superfield expression built using the Sı̂, is equivalent
to a demonstrably supersymmetric component action built using the scalar
component fields φi and ψı̂. Details are given presently.

7.1 Invariant Actions

A manifestly supersymmetric action can be written as

S =

∫
dτ dNθL (7.10)

where L is a locally-defined superfield Lagrangian, built using the available
superfields Sı̂, Φi and/or Ψı̂. We seek a free action, which implies that L is
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bilinear in these fields. Furthermore, our action should also be invariant under
∧GR(d, N), so that indices i and ı̂ must be contracted. There are exactly three
possible terms in this regard which also provide for a dimensionless action. The

first is proportional to Φi∂
4−N

2
τ Φi, the second is proportional to S ı̂ ∂

2+N
2

τ Sı̂, and
the third is proportional to S ı̂ ∂τ Ψı̂. In each case the appropriate power of ∂τ is
determined by dimensional analysis.14 The first two possibilities will, in general
involve too many τ derivatives to provide for a canonical kinetic component
action. Accordingly, as a well-motivated ansatz, we write the following,

S = i1−α · i
⌊
N
2

⌋ ∫
dτ dNθ

(
1
2
S ı̂ ∂τ Ψı̂

)
. (7.11)

where α = 0 if N is even and α = 1 if N is odd, and where Ψı̂ = (Oψ S )i, as
described above. The purpose of the N -dependent phase in (7.11) is to ensure
that the action is real. Now impose that (7.11) is equivalent to

S =

∫
dτ

(
1
2
φ̇i φ̇i − 1

2
i ψ ı̂ ψ̇ı̂

)
, (7.12)

which is demonstrably invariant under (5.1), owing to the relationship LI =
−RT

I .15 It is straightforward, using standard superspace techniques, and a
little bit of algebra, to re-write (7.11) as

S =

∫
dτ

(
− 1

2
(Oφ S )i Φ̈i − 1

2
i (Oψ S )ı̂ Ψ̇ı̂

) ∣∣∣ . (7.13)

where (Oφ )i
ĵ and (Oψ )ı̂

ĵ are determined as

(Oφ )i
ı̂ = i1−α · i

⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N−1

2

⌋∑
s=0

(
N

2 s+ 1

)
DIN · · ·DI2 s+2 ( fI2 s+1···I1 )i

ı̂ ( i ∂τ )
s

(O ψ )ı̂
ĵ = i2−α · i

⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N
2

⌋∑
s=0

(
N

2 s

)
DIN · · ·DI2 s+1 ( f̃I2 s···I1 )ı̂

ĵ ( i ∂τ )s . (7.14)

14Since [ dτ ] = −1 and [ dNθ ] = 1
2 N , it follows that [S ] = 0 only if [L ] = 1 − 1

2 N . The
engineering dimensions of Φi and Ψı̂ follow from the requirements Φi | = φi and Ψı̂ | = ψı̂,
coupled with the fact that the engineering dimension of a propagating boson is [φi ] = − 1

2
and that of a propagating fermion is [ψı̂ ] = 0, as explained in footnote 10. Since (Oφ )i ı̂

and (Oψ )ı̂ ĵ are built using terms of the sort (7.2) and (7.3), respectively, it follows that
[Sı̂ ] = − 1

2 N . These facts suffice for determining the appropriate power of ∂τ appearing in
the superfield products involving Sı̂, Ψı̂, and Φi.

15The requirement that (7.11) be invariant under (5.1) is the underlying motivation for
the criterion LI = −RTI .
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N 1 2 3 4 5 6 7 8

dN 1 2 4 4 8 8 8 8
gN 0 4 24 56 240 496 1008 2032

Table 1: The number of gauge degrees of freedom gN included in the Scalar
supermultiplet superfields grows large as N increases.

An explicit derivation of this is shown explicitly in Appendix A. It is grat-
ifying to check that the operators in (7.14) properly satisfy the consistency
condition (7.8).

A graphical depiction which illustrates how it is that the projectors (Oψ )ı̂
ĵ

and (Oφ )i
ĵ can work their magic is given in Figures 8 and 9, in the case where

N is even and the prepotentials Sı̂ := Fı̂ are fermionic. To (superficially) see
how this works, consider Figure 8. The very first and the very last terms
in on the left-hand side of this figure correspond (schematically) to DNF (0)

and F (N/2). We explained above how the relative coefficient between these
terms can be tuned so that the degrees of freedom corresponding to the sum
of the uppermost vertices is merely a differentiated version of the same sum
appearing in the sum of the lowermost vertices. Therefore, the uppermost
vertices are projected out upon summation. As an extra bonus, bosons at
the second to the top level are also projected away automatically as a con-
sequence of supersymmetry. The puzzle facing us previously was how could
we continue to diminish the span of the summed Adinkra. This is resolved
by looking at the second term and the second to last term on the left-hand

side of the figure. These correspond to DN−2 F (1) and D2F (
N−2

2
), respectively.

These Adinkra terms already have their spans reduced by two as compared to
the outside terms considered previously. As a consequence, when these new
inside terms are included in the sum they cannot undo any of the projections
already accomplished at the highest Adinkra levels. But the second Adinkra
and the second to last Adinkra can now have their relative coefficient tuned
to as to implement a projection on fermionic and bosonic vertices at lower
heights. Continuing this process inward, the coefficients can be tuned so as
to implement a zippering action, removing vertices all the way down to the
lowest two levels, precisely what is needed to describe the Scalar Adinkra.

7.2 Gauge Transformations

The supersymmetric action (7.11) can be re-written as

S =

∫
dτ dNθ 1

2
S ı̂ K̃ı̂

ĵ Sĵ , (7.15)
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Figure 8: An Adinkrammatic picture of the Ψ projection in the case where
N is even. (The odd-N diagram is similar.) This is a generalization of the
N = 2 version appearing in Figure 5. A yellow dot has been placed in a
vertex to distinguish one end of the chain, for purposes of vertex comparison.
Most of the vertices in this Figure should have dots, illustrating that they
have some number of τ derivatives. But these have been suppressed in this
rendering so as to minimize clutter. Similarly, all of the ∧GR(d, N) indices
and vertex multiplicities have been suppressed. (In addition to the binomial
coefficient vertex multiplicities corresponding to the groupings into p-forms,
each of the Adinkras on the left hand side appears with an overall multiplicity
of d, corresponding to the d dimensions of VR.) The purpose of this diagram
is to give a course-grained picture of how vertices line up, level-by-level, when
the various terms in (7.14) are added together, taking an appropriate linear
combination of the corresponding fields.
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Figure 9: An Adinkrammatic picture of the Φ projection in the case where
N is even. (The odd-N diagram is similar.) A yellow dot has been placed in a
vertex to distinguish one end of the chain, for purposes of vertex comparison.
Most of the vertices in this Figure should have dots, illustrating that they
have some number of τ derivatives. But these have been suppressed in this
rendering so as to minimize clutter. Similarly, all of the ∧GR(d, N) indices
and vertex multiplicities have been suppressed. (In addition to the binomial
coefficient vertex multiplicities corresponding to the groupings into p-forms,
each of the Adinkras on the left hand side appears with an overall multiplicity
of d, corresponding to the d dimensions of VR.) The purpose of this diagram
is to give a course-grained picture of how vertices line up, level-by-level, when
the various terms in (7.14) are added together, taking an appropriate linear
combination of the corresponding fields.
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where K̃ = Oψ ∂τ or, more specifically,

K̃ı̂
ĵ = i1−α · i

⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N
2

⌋∑
s=0

(
N

2 s

)
DIN · · ·DI2 s+1 ( f̃I2 s···I1 )ı̂

ĵ ( i ∂τ )s+1 (7.16)

is the superspace kinetic operator acting on Salam-Strathdee superfields which
are elements of VR.

A given Scalar supermultiplet includes d+d degrees of freedom. These are
explicitly seen in equation (7.12). It is also seen from this expression that there
are no gauge symmetries associated with this component action. Nevertheless,
as we shall now show, the action in (7.11) describes a gauge theory. We have
shown how the component fields can be packaged using a set of d unconstrained
prepotential superfields Sı̂. However, each prepotential includes 2N−1 + 2N−1

degrees of freedom. Thus, each Scalar supermultiplet prepotential construction
includes

gN = ( 2N − 2 ) d (7.17)

gauge degrees of freedom which do not appear in the action. The corresponding
gauge structure can be described by the transformation Sı̂ → Sı̂ + δ Sı̂, where

K̃ı̂
ĵ δ Sĵ = 0 . (7.18)

Thus, there is a portion of Sı̂ which is annihilated by the kinetic operators
K̃ı̂

ĵ. It is possible to use the gauge freedom parametrized by δ Sı̂ to choose
a gauge in which the only component fields that occur in Sı̂ are the d bosons
and d fermions in (7.12). This defines the so-called “Wess-Zumino” gauge for
the prepotentials. With the realization that Sı̂ is a gauge field, it follows that
the superfields Φi and Ψı̂ defined in (7.4) are field strength superfields (i.e.
invariants under the transformation Sı̂ → Sı̂ + δ Sı̂).

These kinetic energy operators also lead to the construction of projection
operators (see appendix B for a simple and well-known example of this pro-
cess). The construction of these projection operators begins by noting that

K̃î
ĵ K̃ĵ

k̂ = [∂τ ]
1
2
N+1 K̃î

k̂ (7.19)

(and the similarity between (B.2) and (7.19) is obvious). Thus, it is natural
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to define a projection operator via

[ P̃(SM)]̂i
k̂ = [∂τ ]

−1
2
N−1 K̃î

k̂

= i1−α · i
⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N
2

⌋∑
s=0

(
N

2 s

)
DIN · · ·DI2 s+1 ( f̃I2 s···I1 )ı̂

ĵ ( i ∂τ )s−
1
2
N . (7.20)

This projection operator permits another characterization of the gauge varia-
tion of the prepotential. The gauge variation can be written in the form

δ Sĵ = { δĵ k̂ − [P̃ (SM)]ĵ
k̂ }Λk̂ ≡ { [P̃ (nSM)]ĵ

k̂ }Λk̂ . (7.21)

where Λk̂ is a superfield not subject to any restrictions. The condition in (7.18)
is satisfied due to the equations in (7.19) and (7.20).

We thus reach the conclusion that the projection operator defined by (7.16)
and (7.20) is associated with the general N version of the Adinkra that appears
in (5.2). The general version of this Adinkra has a number ofN distinct colored
links connecting dN bosonic vertices and dN fermionic vertices. All the bosonic
vertices have a common height and all the fermionic vertices have a common
height.

The operator (7.16) is clearly defined to act upon any Salam-Strathdee
superfield element of VR. On the other hand, a similar kinetic energy operator
Kı

j and projection operator [P(SM) ]̂i
k̂ defined by

Kı
j = i1−α · i

⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N
2

⌋∑
s=0

(
N

2 s

)
DIN · · ·DI2 s+1 ( fI2 s···I1 )ı

j ( i ∂τ )s+1 (7.22)

[P(SM)]i
k = i1−α · i

⌊
N
2

⌋
1

N !
εI1···IN

×

⌊
N
2

⌋∑
s=0

(
N

2 s

)
DIN · · ·DI2 s+1 ( fI2 s···I1 )ı

j ( i ∂τ )s−
1
2
N . (7.23)

can act upon any Salam-Strathdee superfield element of VL.
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8 Conclusions

We have illustrated quite explicitly how the dynamics associated with arbitrary-
N Scalar supermultiplets can be described using superspace actions involving
unconstrained prepotential superfields. The prepotentials typically include
many spurious degrees of freedom upon which their action (7.15) does not de-
pend, and which describe an inherent gauge structure. We have also described
a methodology, based on these developments, which should, in principle, en-
able one to construct prepotential descriptions of any one-dimensional super-
multiplet. This methodology associates one prepotential superfield to each
hook, i.e., sink, on the Adinkra corresponding to the supermultiplet, where
the GR(d, N) or SO(N) assignments of these supermultiplets correlate with
the corresponding assignments of the Adinkra hooks.

The discovery of the explicit forms of the operators [P̃ (SM)]ĵ
k̂ and [P̃(nSM)]ĵ

k̂

are new results and among the most important in our longer program of us-
ing the mathematical structure of garden algebras and Adinkras to penetrate
the still unknown complete structure of irreducible representations of Salam-
Strathdee superspace. The former of these operators yields an irreducible rep-
resentation while the latter does not. It remains a major task to understand
completely the structure of the representations which remain after projection
with [P̃ (nSM)]ĵ

k̂. These operators are examples of 1D superprojectors similar
to those introduced in [12]. In fact, we may specialize to the case of 1D, N =

4, the superprojector [P̃ (SM)]ĵ
k̂ above. This result may then be compared with

the dimensional reduction on a 0-brane of the 4D, N = 1 superprojectors given
in equation (3.11.18) of [8]. Such an investigation will be undertaken at some
future date in order, at least in this special case, to unravel the representations
contained in [P̃ (nSM)]ĵ

k̂. Summarizing this aspect of the present work, we may
say that we have presented the first existence proof for extending the concept
of superprojectors to 1D arbitrary N -extended Salam-Strathdee superfields.
Further exploration of this topic is of vital importance to our future studies.

Our work can also be used to highlight another issue for future study. We
have shown by starting from an action of the form of (7.11), it is possible to

reach one of the form of (7.15). In the first of these actions, S î represents a
Top Adinkra while Ψî represents a Base Adinkra. This two objects have other
names in the conventional discussion of superfield theories. The former are
known as “unconstrained prepotentials” while the latter are called “superfield
field strengths”. It is a fact, that in every successful quantization of a su-
persymmetrical theory in which supersymmetry is manifest in all steps, there
always occur Top Adinkras that allow the passage from the analogs of (7.11)
to (7.15). Thus, Top Adinkras are vital in all known manifestly supersymmet-
rical quantization procedures. This naturally raises a question, “If the Base
Adinkra is replaced by some other Adinkra, is it always possible to begin with
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the analog (7.11) and arrive at the analog of (7.15)?” If the answer is “No”,
then such a theory cannot be quantized in a manner that keeps supersym-
metry manifest by any known method. We believe that such a question is
very relevant to the issue of off-shell central charges, a very old topic in the
supersymmetry literature.

“The heart’s a startin’,
And this crown comment, the action so meant
To be used but could not, now spry to foment!”
— Shawn Benedict Jade
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tional Science Foundation Grant PHY-0354401. T.H. is indebted to the gener-
ous support of the Department of Energy through the grant DE-FG02-94ER-
40854.

A Explicit Computation

This Appendix includes an explicit derivation of the projection operators ap-
pearing in (7.14), in the specific case where N is even, so that the prepotentials
are fermionic. Thus Sı̂ := Fı̂. The calculation for odd N is similar.

It is well known that a superspace integration
∫
dNθ is equivalent to taking

the θI → 0 limit of the Nth superspace derivative,

∫
dNθL = (−1)�N/2�DN L | , (A.1)

where DN := 1
N !
εI1···IN DI1 · · ·DIN . Accordingly, we can re-write (7.11) as

S =
∫
dτ L, where the component Lagrangian is given by

L = (−1)�N/2� i1−α i
⌊
N
2

⌋
1
2
DN (S ı̂ Ψ̇ı̂ ) | . (A.2)

Now, if we distribute the N derivatives in DN by operating to the right, we
obtain

L = i1−α i
⌊
N
2

⌋
1
2

1
N !
εI1···IN

×
N∑
p=0

(−1)p (1−α)

(
N

p

)
(DIN · · ·DIp+1 S ı̂ ) (DIp · · ·DI1 Ψ̇ı̂ )

∣∣∣ . (A.3)
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If we then use the results (7.6), we can re-write this as

L = i1−α i
⌊
N
2

⌋
1
2

1
N !
εI1···IN

×
( ∑

p odd

(−1)1−α
(
N

p

)
(DIN · · ·DIp+1 S ı̂ ) (−i) (p−1)/2 ( f̃I1···Ip )ı̂

i∂(p+1)/2
τ Φ̇i

+
∑
p even

(
N

p

)
(DIN · · ·DIp+1 S ı̂ ) (−i)p/2 ( f̃I1···Ip )ı̂

ĵ ∂p/2τ Ψ̇ĵ

) ∣∣∣ . (A.4)

Integrating by parts, this becomes

L ∼= i1−α i
⌊
N
2

⌋
1
2

1
N !
εI1···IN

(
(−1)1−α

×
∑
p odd

i(p−1)/2

(
N

p

)
( ∂(p−1)/2

τ DIN · · ·DIp+1 S ı̂ ) ( f̃I1···Ip )ı̂
i Φ̈i

+
∑
p even

ip/2
(
N

p

)
( ∂p/2τ DIN · · ·DIp+1 S ı̂ ) ( f̃I1···Ip )ı̂

ĵ Ψ̇ĵ

) ∣∣∣ . (A.5)

Using a symmetry property, ( f̃I1···Ip )ı̂
j = −( fIp···I1 )j ı̂, which follows from the

definitions (4.4) and the property LI = −RT
I , this becomes

L = i1−α i
⌊
N
2

⌋
1
2

1
N !
εI1···IN

×
(
− (−1)1−α ∑

p odd

i(p−1)/2

(
N

p

)
( ∂(p−1)/2

τ DIN · · ·DIp+1 S ı̂ ) ( fIp···I1 )i ı̂ Φ̈i

+
∑
p even

ip/2
(
N

p

)
( ∂p/2τ DIN · · ·DIp+1 S ı̂ ) ( f̃Ip···I1 )ĵ ı̂ Ψ̇ĵ

) ∣∣∣ . (A.6)

Redefining the dummy indices which are summed over, we can re-write this as

L = i1−α i
⌊
N
2

⌋
1
2

1
N !
εI1···IN

×
(
− (−1)1−α

⌊
N−1

2

⌋∑
s=0

is
(

N

2 s+ 1

)
( ∂sτ DIN · · ·DI2 s+2 S ı̂ ) ( fI2s+1···I1 )i ı̂ Φ̈i

−i

⌊
N
2

⌋∑
s=0

is+1

(
N

2 s

)
( ∂sτ DIN · · ·DI2 s+1 S ı̂ ) ( f̃I2s···I1 )ĵ ı̂ Ψ̇ĵ

) ∣∣∣ . (A.7)

This form is organized as

L =
(
− 1

2
(Oφ S )i Φ̈i − 1

2
i (Oψ S )ı̂ Ψ̇ı̂

)
| . (A.8)
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By comparing (A.7) to (A.8), we can read off the definitions of (Oφ )i
ĵ and

(Oψ )ı̂
ĵ, with the result given in (7.14).

B From Maxwell Theory to Projectors

The purpose of this appendix is to demonstrate within the simplest known
gauge theory–Maxwell theory–that the presence of the kinetic energy term in
the action of necessity leads to the existence of projection operators. In order
to illustrate this property, it may be useful to review this process in the more
familiar arena of 4D non-supersymmetric Maxwell theory. The usual action
can be written in the form

SMaxwell = − 1
4

∫
d4x F a b Fa b = 1

2

∫
d4x Aa[ δa

b ∂c ∂c − ∂a ∂
b ]Ab

≡ 1
2

∫
d4x AaKa

bAb (B.1)

and a simple calculation reveals

Ka
bKb

c = ∂d ∂dKa
c = �Ka

c . (B.2)

This implies that a new operator may be defined

P(T )
a
b =

1

�
Ka

b → P(T )
a
bP(T )

b
c = P(T )

a
c , (B.3)

and it is also well known that there exist solutions δAa which satisfy Ka
b δAb

= 0. These solutions can be written as

δAb =
[
δb
c − P(T )

b
c
]
Λc ≡ P(L)

b
c Λc , (B.4)

which can be seen to be solution upon using the second result in (B.3). Upon
use of the definition of P(T ), this takes the form

δAb =
[
δb
c − [ δb

c − 1

�
∂b ∂

c ]
]
Λc = ∂b

{ 1

�
∂c Λc

}
, (B.5)

After making a field definition Λc = ∂c Λ, this takes the familiar form of a
Maxwell gauge transformation δAb = ∂bΛ. The operators P(T ) and P(L) are
projection operators since

P(L)
a
bP(L)

b
c = P(L)

a
c , P(L)

a
bP(T )

b
c = 0 = P(T )

a
bP(L)

b
c ,

P(L)
a
b + P(T )

a
b = δa

b . (B.6)
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The first projector P(T ) is known as the “transverse” projector and the second
P(L) is known as the “longitudinal” projector. The usual Maxwell action can
thus be written as

SMaxwell = 1
2

∫
d4x Aa � P(T )

a
bAb (B.7)

Although we picked Maxwell theory to show the relation between the ki-
netic energy operator in a gauge theory and the presence of projection op-
erators, any theory defined over an ordinary manifold may be chosen as the
starting point of a similar discussion. Projection operators are a ubiquitous
feature of gauge theory. The only feature that may surprise the reader is that
in the context of a supersymmetrical theory, even if none of the component
fields in the theory (as those in the Scalar supermultiplet) are gauge fields,
none the less, these fields are the components of a gauge superfield.
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