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Abstract An off-shell representation of supersymmetry is a representation of the super
Poincaré algebra on a dynamically unconstrained space of fields. We describe such repre-
sentations formally, in terms of the fields and their spacetime derivatives, and we interpret
the physical concept of engineering dimension as an integral grading. We prove that
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formal graded off-shell representations of one-dimensional N -extended supersymmetry,
i.e., the super Poincaré algebra p1|N , correspond to filtered Clifford supermodules over
Cl(N). We also prove that formal graded off-shell representations of two-dimensional
(p, q)-supersymmetry, i.e., the super Poincaré algebra p1,1|p,q , correspond to bifiltered Clif-
ford supermodules over Cl(p + q). Our primary tools are Rees superalgebras and Rees
supermodules, the formal deformations of filtered superalgebras and supermodules, which
give a one-to-one correspondence between filtered spaces and graded spaces with even
degree-shifting injections. This generalizes the machinery used by Gerstenhaber to prove
that every filtered algebra is a deformation of its associated graded algebra. Our treatment
extends the notion of Rees algebras and modules to filtrations which are compatible with
a supersymmetric structure. We also describe the analogous constructions for bifiltrations
and bigradings.

Keywords Off-shell supersymmetry · Supersymmetric quantum mechanics · Super
Poincaré · Clifford algebra · Spinor · Adinkra · Filtration · Bifiltration

Mathematics Subject Classification (2010) Primary: 81Q60; Secondary: 15A66 ·
16W70

1 Introduction

In mathematics, the term “supersymmetry” is used to describe algebraic structures which
possess a Z2-grading and obey standard sign conventions related to that grading. In physics,
the term “supersymmetry” is much more specific, referring to structures which are equiv-
ariant with respect to the super Poincaré group, the super Poincaré algebra, or their many
variants. The Poincaré group is the Lie group of isometries of Minkowski space, or more
precisely its double cover, replacing SO(1, d − 1) with Spin(1, d − 1). The super Poincaré
group is the Lie supergroup obtained by extending the Poincaré group by infinitesimal
odd elements, called supersymmetry generators, which square to spacetime derivatives,
the infinitesimal generators of translations. At the Lie algebra level, the supersymmetry
generators span the odd component of the super Poincaré algebra.

The physical representations of the super Poincaré group and super Poincaré algebra
come in two forms. Both are representations on spaces of fields, i.e., maps from Minkowski
space to a finite-dimensional Z2-graded representation of Spin(1, d − 1). The Z2-grading
decomposes the fields into bosons and fermions, and the Lorentz action decomposes the
fields into irreducible components, each corresponding to a different type of particle. The
assembly of several such particles into a representation of supersymmetry is called a super-
multiplet. The Poincaré group acts naturally on such spaces of fields, and the question which
remains is how the supersymmetry generators in the super Poincaré algebra will act.

In off-shell representations, the super Poincaré algebra acts on dynamically uncon-
strained spaces of fields, while on-shell representations restrict the action to fields which
satisfy the equations of motion, usually coming from a Lagrangian via the Euler-Lagrange
equations. Although on-shell representation are more complicated physically, they are more
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natural from the point of view of representation theory. In particular, the irreducible unitary
representation of the super Poincaré algebra are all on-shell representations, which can be
classified via a supersymmetric version of Wigner’s methods (see, for example, [5]). In off-
shell representations, the supersymmetry is manifest from the description of the particles
in the supermultiplet, allowing us to separate the representation theory from the physics,
i.e., the Lagrangian, and facilitating quantization. However, most supersymmetric theories,
including covariant fields for string theory and M-theory, are known only in on-shell for-
mulations, in which the action of the supersymmetry generators satisfies the relations of the
super Poincaré algebra only once we additionally impose the equations of motion.

Given an off-shell representation, one can restrict it to obtain various on-shell representa-
tions corresponding to different masses and Lagrangians. In [7], Gates et al. remind the high
energy physics community that the “fundamental supersymmetry challenge” is to reverse
this process, showing when and how a given on-shell representation admits an off-shell
extension. In order to address this challenge, we are working towards a classification of off-
shell supersymmetric theories, a problem which has been left unsolved for over 30 years. In
[6], Gates et al. propose studying off-shell supersymmetric representations in terms of their
dimensional reductions to one time-like dimension, noting that off-shell representations of
one-dimensional supersymmetry can be constructed using Clifford algebras. The purpose
of this article is to give a mathematically rigorous study of the role of Clifford algebras in
low-dimensional off-shell supersymmetry.

The main result of this article is that off-shell supersymmetric representations for one-
dimensional and two-dimensional Minkowski space correspond to filtered and bifiltered
Clifford supermodules, respectively. More precisely, off-shell representations of the d = 1,
N -extended super Poincaré algebra correspond to filtered Cl(N)-supermodules, while off-
shell representations of the d = 2, (p, q)-extended super Poincaré algebra correspond to
bifiltered Cl(p + q)-supermodules. Under this correspondence, the filtrations on these Clif-
ford supermodules give rise to gradings on the off-shell representations, which encode the
physical concept of engineering dimension. In order to extend a representation of the Clif-
ford algebra to an off-shell representation of the one-dimensional super Poincaré algebra,
one needs to additionally specify the action of the infinitesimal generator ∂t of time transla-
tions. Our arguments show that this additional information corresponds precisely to a choice
of filtration on the Clifford supermodule. In two dimensions, Minkowski space decomposes
into a sum of two complementary Lorentz invariant light-cone subspaces. To extend a repre-
sentation of the Clifford algebra to an off-shell representation of the two-dimensional super
Poincaré algebra, we therefore require two compatible filtrations, which allow us to specify
the action of the infinitesimal generators of translations along each of these two light-cone
subspaces.

In Section 2, we describe off-shell and on-shell representations algebraically rather than
analytically, viewing the fields and their derivatives as formal objects, rather than as func-
tions on Minkowski space. We introduce supersymmetric filtrations in Section 3, and in
Section 4 we generalize the notion of Rees algebras and Rees modules, which Gerstenhaber
used in [8] to prove that every filtered algebra is a deformation of its associated graded
algebra. We describe formal deformations of filtered spaces, extending Gerstenhaber’s dis-
cussion to filtrations which are compatible with the supersymmetric structure. We use these
results in Section 5, where we prove that the universal enveloping superalgebra of the one-
dimensional super Poincaré algebra is the formal deformation of the Clifford algebra with
respect to its standard filtration. It then follows that formal graded off-shell representations
of one-dimensional supersymmetry are the formal deformations of filtered Clifford super-
modules. In Section 6, we reprise the discussion of Sections 3 and 4 for bifiltrations and
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bigradings, which allows us to prove in Section 7 that formal graded off-shell representa-
tion of two-dimensional supersymmetry are the formal deformations of bifiltered Clifford
supermodules.

The authors would like to thank Aravind Asok, who pointed out the reference [8]. The
final author would like to thank the Institut Henri Poincaré for their support and hospitality.

2 Off-Shell Representations

2.1 The Super Poincaré Algebra

In non-supersymmetric field theory one considers theories which are invariant under the
action of the Poincaré group

P d = Spin(1, d − 1) �R
1,d−1

of isometries of Minkowski space. Here Spin(1, d − 1) acts by Lorentz transformations
and R

1,d−1 acts by translations of Minkowski space. Infinitesimally, the translations are
generated by spacetime derivative operators. In supersymmetric field theory, one extends
the Lie algebra of the Poincaré group by introducing odd operators, the supersymmetry
generators Qi , whose squares are spacetime derivatives.

We first consider the special case where d = 1, with arbitrarily many odd supersymmetry
generators all squaring to the single time-like derivative operator ∂t , denoted formally by
H . This setting corresponds to the infinitesimal symmetries of supersymmetric quantum
mechanics. Since the group Spin(1) ∼= Z2 is discrete, there are no infinitesimal generators
of Lorentz symmetry here.

Definition 1 The d = 1, N -extended super Poincaré algebra is the real Lie superalgebra

p1|N = RH ⊕ � Span{Q1, . . . , QN },
with even generator H and odd generators Q1, . . . , QN satisfying

{Qi, Qj } = 2 δijH

for i, j = 1, . . . , N .

Here we use the parity reversal operator � to remind ourselves that
� Span{Q1, . . . , QN } is an odd vector space. We note that it follows from the definition
that [H, H ] = 0 and [H, Qi] = 0 for all i = 1, . . . , N . More generally, we can replace the
span of the odd generators with an inner product space S, defining

p(1, S) = RH ⊕ �S (2.1)

with brackets
{s, t} = 2〈s, t〉H (2.2)

for s, t ∈ �S, where 〈·, ·〉 is a positive definite symmetric bilinear form on S.

2.2 Engineering Dimension

In physical systems, measurements usually come with units. For instance, a mass is not
simply a number, but rather a quantity such as 9.11 × 10−31 kilograms. The International
System of Units (SI) consists of basic units, such as meter, kilogram, second, kelvin, ampere,
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and so on, and derived units, such as the Joule (= kilogram · meter2/second2). In fact, we
can use fundamental constants to eliminate most of the basic units. For instance, multiply-
ing measurements of temperature in kelvin by Boltzmann’s constant k ∼= 1.380 × 10−23

Joule/kelvin we can express temperatures not in kelvins, but rather in terms of kilograms,
meters, and seconds. Equivalently, we can replace kelvin with a unit of temperature such
that Boltzmann’s constant is 1. Similarly, we can define a unit of charge so that the con-
stant k in Coulomb’s law F = kq1q2

r2
is 1, and thus eliminate amperes. We can eliminate

meters by setting the speed of light c = 1. Planck’s constant � in quantum mechanics then
has units kilogram · second, and by setting � = 1 we can eliminate seconds. The only basic
unit remaining is that of mass, expressed as kilograms in SI units, or more commonly as
electron-volts/c2 in the particle physics literature.

Writing [M] to indicate our choice of units for mass, all other units will then be of the
form [M]n for some n. The exponent n is called the engineering dimension (also referred
to as mass dimension or canonical dimension). In these units, time is measured in units of
[M]−1, and thus the derivative operator d/dt carries units of [M]. Since the supersymmetry
generators Qi correspond to square roots of derivatives, the units of Qi should be [M]1/2.
In other words, the generator H has engineering dimension 1, while the supersymmetry
generators Qi have engineering dimension 1/2.

Fields can also be expressed in units of [M]n. The action is dimensionless, with units
[M]0, and thus a Lagrangian in d dimensions has units [M]d . Bosonic fields typically
enter the Lagrangian via terms of the form k ‖dφ‖2 or k ‖φ‖2, where k has integral engi-
neering dimension, while fermionic fields typically enter the Lagrangian via terms of the
form k 〈ψ, dψ〉. When d is even, bosonic fields have integral engineering dimension and
fermionic fields have half-integral engineering dimension, and when d is odd, the reverse is
true. From a mathematical perspective, the engineering dimension corresponds to an inte-
gral grading on the super Poincaré algebra and spaces of fields. For notational convenience,
and to align this terminology with mathematical conventions for integral gradings, we define
the degree to be twice the engineering dimension, replacing “integral” and “half-integral”
engineering dimensions with “even” and “odd” degrees, respectively.

Definition 2 The graded super Poincaré algebra is the Z-graded real Lie superalgebra

p
1|N
Z

= RH(2) ⊕ � Span{Q1, . . . , QN }(1),
with the same underlying Lie superalgebra as p1|N , but with the generators graded by:

degH = 2, degQ1 = · · · = degQN = 1.

2.3 Off-Shell and On-Shell Fields

Physicists consider two distinct types of representations of the Poincaré algebra and the
super Poincaré algebra. Both act on fields, spaces of functions (or sections) the form

H = Map
(
R
1,d−1, V

)
, (2.3)

where V is a representation of Spin(1, d − 1). If we are considering representations of the
super Poincaré algebra or graded super Poincaré algebra, then V is furthermore Z2-graded
or Z-graded, respectively, in order to keep track of bosons and fermions and their engineer-
ing dimensions. The spaceH carries a natural action of the Poincaré group and the Poincaré
algebra, with Spin(1, d − 1) acting by conjugation and R

1,d−1 acting by translation. The
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problem of finding representations of supersymmetry therefore amounts to determining how
the supersymmetry generators Qi can act so as to square to the generators of translations.

In an off-shell representation, we have no dynamical conditions on our fields. On the
other hand, in an on-shell representation, we restrict our attention to the subset of fields
φ(x) satisfying the equations of motion, usually related to the Klein-Gordon equation

(� − m2) φ(x) = 0.

Here � is the d’Alembertian operator, i.e., the Minkowski space Laplacian, and m is the
mass, a non-negative real constant. If φ̂ is the Fourier transform of our field φ, then the
Klein-Gordon equation becomes

(|k|2 − m2) φ̂(k) = 0,

and the solution set consists of all fields φ(x) whose Fourier transforms φ̂(k) are supported
along the mass shells

Om = {k ∈ (R1,d−1)∗ : |k|2 = m2}
These shells are generally hyperboloids, with the exception of the trivial shell at 0 and
the light-cone, and correspond to the covector orbits of Spin(1, n − 1) acting on momen-
tum space (R1,d−1)∗. Given an off-shell representation H as in (2.3), we obtain on-shell
representations for each mass shellOm,

Hm = {
φ(x) ∈ H : φ̂(k) = 0 for |k|2 	= m2},

by restrictingH to those fields whose Fourier transforms are supported on Om.
When d = 1, a shell is simply a single point k, and the corresponding on-shell fields are

functions of the form f (t) = eikt v with v ∈ V . The even generator H = ∂t of the super
Poincaré algebra then acts on this on-shell representation by the constant ik Id, as

Hf (t) = ∂t eikt v = ik eikt v = ik f (t) (2.4)

for fields on the shell k. (Note that the standard physics convention is to take H = i∂t , in
which case the eigenvalues of H are real-valued and correspond to energy). In this case,
a d = 1 off-shell representation can be viewed as a smooth family of d = 1 on-shell
representations parameterized by the shells k ∈ R.

2.4 Formal Representations of Supersymmetry

We now give formal algebraic definitions of the physical concepts of on-shell and off-shell
representations. We begin with on-shell representations, as they are simpler to describe.

Definition 3 A formal on-shell representation of the super Poincaré algebra is a p1|N -
supermodule on which the even generator H acts by a multiple of the identity operator.

From Eq. 2.4, we see that in a physical on-shell representation, the generator H acts by
an imaginary multiple of the identity. By our definition, we can also consider formal on-
shell representations in which H acts by a real multiple of the identity, and in particular
our definition of on-shell does not require any complex structures. Since the generator H

is central, it follows from Schur’s lemma that H must act by a constant multiple of the
identity on any complex irreducible p1|N -supermodule. Therefore, all irreducible complex
p1|N -supermodules are on-shell representations.

On an off-shell representation H given by Eq. 2.3, the even generator H acts by the
operator ∂t generating time translations. Physicists typically require the odd generators Qi
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to act by local operators, which by Peetre’s theorem implies that they act by differential
operators. We can therefore write the action of each supersymmetry generator in the form

Q 
→
∑

n≥0

an ∂t
n,

and since we have [H, Q] = 0, the coefficients an ∈ EndV are constant in t . The supersym-
metry generators Qi thus act on an off-shell representation by elements of the superalgebra
EndV ⊗ R[∂t ]. Returning to the even generator H acting by ∂t , we note that the algebra
R[H ] acts faithfully on unconstrained off-shell field by elements of IdV ⊗R[∂t ]. This leads
us to the following definition:

Definition 4 A formal off-shell representation of the graded super Poincaré algebra is a
Z-graded representation of p1|N

Z
on a finitely generated, free R[H ]-supermodule.

In other words, a formal off-shell representation is of the form

V ∼= V ⊗ R[H ],
where V = ⊕

j∈Z Vj is a finite-dimensional Z-graded vector space. Note that we could

alternatively define a formal off-shell representation as a Z-graded representation of p1|N
Z

on which the even generator H acts injectively. Given a formal off-shell representation V ,
we can extract the corresponding finite-dimensional Z-graded vector space V by taking the
quotient

V := V / HV . (2.5)

Since V is finite-dimensional and degH = +2, we note that such a representation neces-
sarily has a minimum overall degree, given by the minimum degree appearing in V , which
we typically normalize to be 0 or 1, depending whether the lowest degree subspace has even
or odd degree.

Using this definition of a formal off-shell representation, we view our fields not as func-
tions, but rather as abstract symbols valued in the finite-dimensional vector space V , graded
according to the engineering dimension. This viewpoint is implicit in much of the physics
literature. Indeed, when physicists talk about a “basis” for fields, they typically do not
mean an infinite-dimensional basis for a space of functions, but rather a basis for the finite-
dimensional vector space V . From this point of view, the derivatives of fields give additional
degrees of freedom within an off-shell representation. For instance, a Lagrangian is a formal
expression built from the fields and their derivatives, treated as independent parameters.

Remark 1 We can, in fact, embed any formal off-shell representation as a dense subspace of
a Hilbert space of fields H = L2(R, V ). Let �(t) = e−t2/2 denote the Gaussian function.
Given a formal off-shell representation V ∼= V ⊗ R[H ], we can construct an embedding

v ⊗ p(H) ∈ V 
−→ p(∂t ) �(t)v ∈ H,

for a vector v ∈ V and a polynomial p(H) ∈ R[H ]. Here we treat the Gaussian as a
“vacuum” state in L2(R) and build a Fock space isomorphic to V by acting on �⊗V by the
operator ∂t ⊗ 1. This is clearly a homomorphism of R[H ]-modules, where H acts by ∂t ⊗ 1
on H. The kernel of this map is trivial since the algebra R[∂t ] acts freely on the “vacuum”
�(t). Furthermore, recalling thatR[∂t ] �(t) = R[t] �(t), we observe that the image of V is
dense in H, since any smooth function, and consequently any element of the Hilbert space
L2(R), can be approximated by a polynomial times e−t2 .
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Given a formal off-shell representation, we can construct corresponding formal on-shell
representations for any shell k ∈ R. Perturbing (2.5) for the finite-dimensional Z-graded
vector space V , we define

VH−k := V ⊗R[H ] Rk
∼= V / (H − k Id)V, (2.6)

where Rk is the one-dimensional representation of R[H ] on which the generator H acts
by multiplication by the constant k ∈ R. Since degH = 2 while deg Id = 0, the ideal
generated by H −k · Id is inhomogeneous (one could make it homogeneous by inserting the
appropriate units for k or the appropriate power of �), and thus the quotient VH−k no longer
possesses a Z-grading, that is unless k = 0, in which case VH−0 = V . On the other hand,
since both H and Id have even degree, we obtain a residual Z2-grading, making VH−k a
super vector space. In addition, we obtain a residual integral filtration on VH−k , which we
discuss in the following section.

3 Filtered Supermodules

We begin this section with a few algebraic definitions.

Definition 5 An (increasing) filtration on a super vector space V = V0 ⊕ V1 is a collec-
tion of even subspaces F2q(V ) ⊂ V0 for q ∈ Z and odd subspaces F2q+1(V ) ⊂ V1 for
q ∈ Z such that Fp(V ) ⊂ Fp+2(V ) for all p ∈ Z and so that

⋃
q∈Z F2q(V ) = V0 and⋃

q∈Z F2q+1(V ) = V1. We normalize filtrations so that Fp(V ) = 0 for p < 0.

In other words, a filtration of a super vector space consists of two separate filtrations
for the even and odd degree components. Alternatively, we could consider a more conven-
tional (increasing) filtration of Z2-graded subspaces F ′

p(V ) ⊂ V for p ∈ Z with F ′
p(V ) ⊂

F ′
p+1(V ) for all p ∈ Z, with

⋃
q∈Z F ′

q(V ) = V , together with the supersymmetric
condition

F ′
p(V )p mod 2 = F ′

p+1(V )p mod 2 for allp ∈ Z.

These two types of super filtrations are related to each other by taking

F ′
p(V ) = Fp(V ) ⊕ Fp−1(V ) andFp(V ) = F ′

p(V )p mod 2.

In the following, we use the convention given in Definition 5.

Definition 6 A filtered superalgebra is a Z2-graded algebra A = A0 ⊕ A1 together with a
filtration on A satisfying the multiplicative property

Fp(A) · Fq(A) ⊂ Fp+q(A)

for all p, q ∈ Z.

Example 1 Let g = g0 ⊕ g1 be a Lie superalgebra. Then the universal enveloping superal-
gebra U(g) is a filtered superalgebra. Since U(g) is generated as an algebra by the elements
of the Lie superalgebra g, we obtain a super filtration on U(g) by assigning the odd compo-
nent g1 filtration degree 1 and the even component g0 filtration degree 2. We observe that
the relations for the universal enveloping superalgebra,

XY − (−1)|X| |Y |YX = [X, Y ]
for X, Y ∈ g homogeneous elements of Z2-degrees |X| and |Y |, respectively, respect this
super filtration.
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Definition 7 A filtered supermodule over a filtered superalgebraA is a supermodule V over
A together with a filtration satisfying the multiplicative property

Fp(A) · Fq(V ) ⊂ Fp+q(V )

for all p, q ∈ Z.

In particular, by comparing these two definitions, we see that a filtered superalgebra is a
filtered supermodule over itself.

Definition 8 Let V be a Z-graded vector space, algebra, or module. The Z-grading on V
then induces a natural increasing super filtration on V by degree, given by

FpV :=
⊕

j≤p
j≡p mod 2

Vj , (3.1)

with respect to the Z2-grading V = Veven ⊕ Vodd. If Vp = 0 for p < 0, then FpV = 0
for p < 0. If A is a graded algebra, this construction gives A the structure of a filtered
superalgebra. A filtered supermodule over a graded algebraA is then a filtered supermodule
with respect to the natural induced super filtration on A.

We now return to representations of the super Poincaré algebra. Given a formal graded
off-shell representation V , we can view it as a filtered p

1|N
Z

-supermodule provided that we
filter V according to its integral degree by Eq. 3.1. For any fixed shell k ∈ R, we can project
the filtration on the formal off-shell representation V down to the corresponding formal
on-shell representation VH−k given by Eq. 2.6 by taking

FpVH−k = FpV / (H − k Id)Fp−2V .

This gives us a finite increasing filtration on VH−k , giving the formal on-shell representation
VH−k the structure of a filtered supermodule over p1|N

Z
.

4 Deformations of Filtered Supermodules

The discussion in this section is based on [8]. Our treatment differs in that we consider
increasing rather than decreasing filtrations, we consider superalgebras rather than algebras,
and we extend the discussion to supermodules. Although we work here with vector spaces
and algebras over a field (which we will later take to be R or C), one can just as easily
modify our discussion to consider modules and algebras over an arbitrary coefficient ring k.

Definition 9 Given a (increasingly) filtered super vector space V = V0 ⊕ V1, its formal
deformation Defs V is the subspace of V [s] consisting of finite polynomials of the form

Defs V :=
{∑

p∈Zvp sp ∈ V [s] : vp ∈ FpV
}

.

The formal deformation Defs V is naturally Z-graded by powers of s.

In other words, given a filtered space V , we construct a corresponding graded space
Defs V (not to be confused with the associated graded space) whose homogeneous graded
subspaces are the filtration levels of V :

(Defs V )p ∼= FpV. (4.1)
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We introduce the formal parameter s in order to keep track of the grading on Defs V .
Going in the other direction, let V be a Z-graded vector space. This grading induces

a natural (increasing) super filtration on V given by Eq. 3.1. A shift σ ∈ End(V) is an
(even) endomorphism such that σVp ⊂ Vp+2. In terms of the filtration, this implies that
σFpV ⊂ Fp+2V . Let (σ − 1)V denote the subspace of V given by the image of the map
σ − 1 : x 
→ σx − x for all x ∈ V . The quotient

Vσ−1 := V/(σ − 1)V
is no longer Z-graded, but since the operator σ − 1 preserves the degree mod 2, we obtain
a Z2-grading, making Vσ−1 a super vector space. We also have the compatible (increasing)
filtration given by

Fp(Vσ−1) := FpV / (σ − 1)Fp−2V, (4.2)

the image of the natural induced filtration (3.1) under the projection V � Vσ−1.

If in addition the shift σ is injective, then we can use it to identify Vp with its image
σVp ⊂ Vp+2. Taking the quotient by the subspace (σ − 1)V , we obtain by a telescoping
construction (see the discussion leading to Eq. 4.8 below) that

FpVσ−1 ∼= Vp. (4.3)

This quotient construction therefore takes a graded space with an injective shift and turns its
homogeneous graded components into the filtration levels of a corresponding filtered space.

Taking V = Defs V , we can consider the shift σ = s2. We observe that multiplication
by s2 on Defs V is injective. Considering the corresponding filtered super vector space,

Def1 V := (Defs V )s2−1 = (Defs V ) / (s2 − 1)(Defs V ), (4.4)

we show in the following lemma that Def1 V ∼= V , and that in general these formal
deformation and quotient constructions are inverses of each other.

Lemma 1 If V is a filtered super vector space, then the filtered super vector space Def1 V

given by Eq. 4.4 is canonically isomorphic to V . Conversely, if V is a graded vector space
with an injective degree 2 shift σ , then Defs(Vσ−1) is isomorphic to V , identifying σ with
s2.

Proof It follows from Eqs. 4.1 and 4.3 that Def1 V ∼= V and Defs(Vσ−1) ∼= V . Here we
construct these canonical isomorphism explicitly, and we describe in detail the “telescoping
construction” which gives (4.3). We will require this machinery for the proofs of Lemma 2
and Lemma 3below.

Let V be a filtered super vector space and consider the evaluation homomorphism

ev1 :
∑

p

vp sp ∈ Defs V 
−→
∑

p

vp ∈ V, (4.5)

where vp ∈ FpV . Since
⋃

q∈Z F2qV = V0 and
⋃

q∈Z F2q+1V = V1, this map is surjective,

and we will show that its kernel is the subspace (s2 − 1)Defs V . Since Vp ⊂ Vp+2 for all
p, we observe that if

ev1 : x = v0s
0 + v1s

1 + · · · + vn−1s
n−1 + vns

n 
−→ 0,

then vn ∈ Fn−2V and vn−1 ∈ Fn−3V , and thus we can rewrite x in the form

x = x′ + (s2 − 1)(vn−1s
n−3 + vns

n−2),
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where x′ is the lower degree polynomial

x′ = v0s
0 + v1s

1 + · · · + (vn−3 + vn−1)s
n−3 + (vn−2 + vn)s

n−2.

Repeating this process for x′, it follows by induction that

x = (s2 − 1)

(∑

p

∑

j≤p
j≡p mod 2

vj sp−2
)

, (4.6)

and thus x ∈ (s2 − 1)Defs V . Conversely, if x ∈ (s2 − 1)Defs V , then clearly ev1(x) =
0. We therefore obtain Ker ev1 = (1 − s2)Defs V , and thus ev1 descends to a canonical
isomorphism Def1 V = Defs V /(1 − s2)Defs V ∼= V .

Restricting the evaluation map ev1 to either purely even or purely odd polynomials of
degree at most n, we obtain a homomorphism

ev1 : Fn(Defs V ) 
→ FnV,

and it follows from Eq. 4.6 that the kernel is (s2 − 1)Fn−2(Defs V ). The canonical iso-
morphism therefore identifies the filtration (4.2) on Def1 V with the original filtration on
V .

Conversely, let V be a graded vector space with an injective degree 2 shift σ . Let π :
V → Vσ−1 be the projection onto the quotient by (σ − 1)V . Given vp ∈ Vp , we have
π(vp) ∈ FpVσ−1. We may therefore consider the map

f :
∑

p

vp ∈ V 
−→
∑

p

π(vp) sp ∈ Defs(Vσ−1). (4.7)

This map is clearly a homomorphism of graded vector spaces. Suppose that f (
∑

p vp) = 0.
It follows that π(vp) = 0 for all p. However, we note that Vp ∩ (σ − 1)V = 0 for all p,
and thus all vp must vanish. The map f is therefore injective. To establish the surjectivity
of f , we must show that the maps πp : Vp → FpVσ−1 are surjective for all p. Given any
w ∈ FpVσ−1, it is π(v) for some v ∈ FpV , which by Eq. 3.1 can be written in the form

v =
∑

j≤p
j≡p mod 2

vj

However, applying the identity π ◦ σ = π , we find that w = π(v) = π(v′), where

v′ =
∑

j≤p
j≡p mod 2

σ (p−j)/2vj ∈ Vp.

In other words, we have
FpVσ−1 = π(FpV) = π(Vp). (4.8)

It follows that the maps πp , and in turn the map f , are surjective.

We can also consider the formal deformations of superalgebras and supermodules,
sometimes called Rees superalgebras and Rees supermodules.

Lemma 2 Let A be a filtered superalgebra, and let M be a filtered supermodule over A.

1. The formal deformation Defs A is a Z-graded subalgebra of A[s].
2. The formal deformation Defs M ⊂ M[s] is a Z-graded module over Defs A.
3. Via (4.4), Def1 A is a filtered superalgebra canonically isomorphic to A.
4. Via (4.4), Def1 M is a filtered Def1 A-supermodule canonically isomorphic to M .
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Proof Since A is a filtered supermodule, we have

(Defs A)p (Defs A)q = FpA sp FqA sq ⊂ Fp+qA sp+q = (Defs A)p+q .

Likewise, if M is a filtered supermodule over A, then

(Defs A)p (Defs M)q = FpA sp FqM sq ⊂ Fp+qM sp+q = (Defs M)p+q,

and thus Defs M is a graded supermodule over Defs A.
In order to show that Def1 A is canonically isomorphic to A, we first note that

(s2 − 1)Defs A is an ideal in Defs A, thereby giving the quotient Def1 A the structure of
a filtered superalgebra. Secondly, we note that the canonical evaluation homomorphism
ev1 : Defs A → A given by Eq. 4.5 is a homomorphism of filtered superalgebras, which
therefore descends to a filtered superalgebra isomorphism Def1 A ∼= A.

Similarly, in order to show that Def1 M is canonically isomorphic to M , we first note
that (s2 − 1)Defs M is an invariant Defs A-submodule of Defs M , which gives the quotient
Def1 A the structure of a filtered Defs A-supermodule. Secondly, we note that the canonical
evaluation isomorphism ev1 : Defs M → M is a homomorphism of Defs A-modules, where
Defs A acts on the filtered A-supermodule M via the homomorphism ev1 : Defs A → A.
We therefore obtain an isomorphism Def1 M ∼= M as filtered A-supermodules.

Going in the opposite direction, we can take quotients of graded algebras and modules
to obtain corresponding filtered superalgebras and supermodules, provided that we have
injective degree 2 shift maps which respect the product and module structures.

Lemma 3 Let A be a Z-graded algebra, and M a Z-graded A-module. Suppose futher
that we have injective even shift maps σA : Ap → Ap+2 and σM : Mp → Mp+2 which
satisfy the identities

σA(ab) = (σAa)b = a(σAb), (4.9)

σM(am) = (σAa)m = a(σMm) (4.10)

with respect to the product of a, b ∈ A and the action of a ∈ A on m ∈ M.

1. The quotientAσ−1 is a filtered superalgebra.
2. The quotientMσ−1 is a filtered supermodule over both A andAσ−1.
3. The formal deformation Defs Aσ−1 is a graded algebra isomorphic to A.
4. The formal deformation Defs Mσ−1 is a graded Defs Aσ−1-module isomorphic toM.

Proof For (1), it follows from Eq. 4.9 that (σ − 1)A is a two-sided ideal, as we have

a(σb − b) = a(σb) − ab = σ(ab) − ab,

(σa − a)b = (σa)b − ab = σ(ab) − ab,

for a, b ∈ A. Since the product on A respects the Z-grading, it also respects the filtration
given by Eq. 3.1. It follows that the product on the quotient Aσ−1 likewise respects the
projected filtration (4.2) and residual Z2-grading. ThereforeAσ−1 is a filtered superalgebra.

Similarly, for (2) it follows from Eq. 4.10 that (σ − 1)M is an A-invariant subspace of
M , as

a(σm − m) = a(σm) − am = σ(am) − am

for a ∈ A and m ∈ M . In addition, since the action of A on M respects the gradings,
it respects the filtrations (3.1), and so the action of A on Mσ−1 likewise respects the
projected filtration (4.2) on Mσ−1 and the residual Z2-grading. Thus Mσ−1 is a filtered
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A-superalgebra. Furthermore, the ideal (σ − 1)A acts trivially onMσ−1, since by Eq. 4.10
we have

(σAa − a)m = (σAa)m − am = σM(am) − am

for a ∈ A and m ∈ M. Therefore, the A-action on Mσ−1 descends to an Aσ−1-action on
Mσ−1, makingMσ−1 a filtered Aσ−1-supermodule.

For (3) and (4), we note that the map f given by Eq. 4.7 is a homomorphism of algebras
when applied to A and a homomorphism ofA-modules when applied toM.

Finally, our main result for this section is the equivalence of filtered supermodules and
graded supermodules with injective degree 2 shifts. This is simply a restatement of the above
lemmas in the form which we will use in later sections.

Corollary 1 Let A be a filtered superalgebra and A a graded algebra with injective
degree 2 shift σ satisfying (4.9) which is isomorphic to the formal deformation Defs A.
Then the formal deformation construction M 
→ Defs M and the quotient construction
M 
→ Mσ−1 give inverse one-to-one correspondences between isomorphism classes of fil-
tered A-supermodules and isomorphism classes of gradedA-modules with injective degree
2 shifts satisfying (4.10).

Example 2 Let g = g0 ⊕ g1 be a Lie superalgebra. We can define an integral filtration
on g by taking Fpg = gp mod 2 for p > 0 and Fpg = 0 for p ≤ 0. This filtration is
clearly multiplicative. The corresponding formal deformation Defs g is isomorphic to g1
in odd degrees starting with 1 and g0 in even degrees starting with 2. If g is perfect, i.e.,
[g, g] = g, for instance, if g is semi-simple, then Defs g is the Z-graded Lie superalgebra
generated by g1t and g0t

2. We note that the graded super Poincaré algebra p1|N
Z

is a graded
Lie sub-superalgebra of the formal deformation Defs p1|N of the super Poincaré algebra.

Remark 2 Mapping our notation to Gerstenhaber’s [8], we have

FpA −→ F−pA, s −→ t−2, Defs A −→ AppA

Also, our filtrations, which generally satisfy Fp = 0 for p < 0, correspond to non-positive
filtrations in Gerstenhaber’s notation. Finally, Gerstenhaber defines the filtration on the quo-
tient Vσ−1 by taking the image of the the homogeneous graded components Vp under the
projection π : V → Vσ−1. In contrast we use the Z-grading on V to define a filtration first
on V , and then take the images of the filtration levels FpV via π to obtain the filtration on
Vσ−1. These two definitions are equivalent by Eq. 4.8, provided that the shift is injective.

5 Filtered Clifford Supermodules

In this section, we apply the general results of the previous section to the correspondence
between graded off-shell and filtered on-shell representations.

Definition 10 The Clifford algebra Cl(N) is the real superalgebra generated by the odd
Clifford generators γ1, . . . , γN , subject to the anti-commutation relations

{γi, γj } = 2 δij Id .

The Clifford algebra is a filtered superalgebra with respect to the filtration

Fp

(
Cl(N)

) := Span
{
γi1 · · · γij : j ≤ p andj ≡ p mod 2

}
,
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given by assigning each of the Clifford generators γ1, . . . , γN filtration degree 1.

In other words, the p-th filtration degree of the Clifford algebra consists of everything
obtained by taking products of up to p Clifford generators, while also restricting to the
Z2-homogeneous subspace of the same parity as p. We have canonical isomorphisms:

F0
(
Cl(N)

) = R Id ∼= R,

F1
(
Cl(N)

) = Span{γ1, . . . , γN } ∼= R
N,

F2
(
Cl(N)

) = R Id⊕ Span
{
γiγj : 1 ≤ i < j ≤ N

} ∼= R ⊕ �2(RN).

More generally, given an inner product space S, we can define the Clifford algebra as the
quotient of the free tensor algebra T ∗(S) by an inhomogeneous even ideal,

Cl(S) := T ∗(S) /
(
u ⊗ v + v ⊗ u = 2 〈u, v〉 1).

The Z-grading on the free tensor algebra descends to a Z2-grading on Cl(N), making it
an associative superalgebra. In addition, the natural induced filtration the free tensor alge-
bra given by Eq. 3.1 descends to a filtration on the quotient Cl(N), making it a filtered
superalgebra. The canonical isomorphisms above then become

F0 Cl(S) ∼= R, F1 Cl(S) ∼= S, F2 Cl(S) ∼= R ⊕ �2(S).

See [1] or [10] for further discussion of Clifford algebras.

Lemma 4 The filtered Lie superalgebra homomorphism p
1|N
Z

→ Cl(N) given by

Qi 
→ γi, H 
→ 1 (5.1)

induces an isomorphism

U
(
p
1|N
Z

)
H−1 = U

(
p
1|N
Z

)
/ (H − 1)U

(
p
1|N
Z

) ∼= Cl(N) (5.2)

of filtered superalgebras. Conversely, the map

Qi 
→ γis, H 
→ s2 (5.3)

induces a graded algebra isomorphism U(p
1|N
Z

) ∼= Defs Cl(N).

Proof We see that the map given by Eq. 5.1 is indeed a Lie superalgebra homomorphism
p1|N → Cl(N) by comparing the brackets in Definition 1 for the super Poincaré algebra and
Definition 10 for the Clifford algebra. This homomorphism therefore extends to an associa-
tive algebra homomorphism U(p1|N) → Cl(N) by the universal property of U(p1|N). It is
clearly surjective, and its kernel is the ideal generated by H − 1, so it induces the isomor-
phism (5.2). In addition, the map (5.1) preserves the Z2-grading and filtration, so we obtain
an isomorphism of filtered superalgebras.

Applying Lemma 3, it follows from Eq. 5.2 that the formal deformation Defs Cl(N) is
isomorphic to the universal enveloping superalgebra U(p

1|N
Z

) as graded algebras. The map
(5.3) is a graded homomorphism which takes generators to generators, and so it must there-
fore be an isomorphism. We note that the composition of the map (5.3) with the evaluation
homomorphism ev1 : Defs Cl(N) → Cl(N) given by Eq. 4.5, is the map (5.1).

We can now state our main theorem, which in light of the above Lemma is a special case
of Corollary 1.



Off-Shell Supersymmetry and Filtered Clifford Supermodules 389

Theorem 1 The formal deformation construction V 
→ Defs V and the quotient construc-
tion V 
→ VH−1 give inverse one-to-one correspondences between the isomorphism classes
of filtered Cl(N)-supermodules and the isomorphism classes of graded formal off-shell
representations of the graded super Poincaré algebra p1|N

Z
.

Proof We established in Lemma 4 that the universal enveloping algebra U(p
1|N
Z

) is iso-
morphic to the formal deformation Defs Cl(N) of the Clifford algebra, with the generator
H mapping to the shift s2. We recall that a formal off-shell representation of p1|N

Z
, the

shift operator H acts injectively, and it automatically satisfies the identity (4.10). We can
therefore apply Corollary 1.

We now construct explicitly this identification of graded off-shell representations and
filtered on-shell representations. Let V be a formal graded off-shell representation of the
graded super Poincaré algebra p

1|N
Z

. Since off-shell representations are finitely generated
freeR[H ]-supermodules, we can write V ∼= R[H ]⊗V , where degH = 2 and V = V/HV is
a finite-dimensional Z-graded vector space. Since V is finite-dimensional, it has a minimum
degree, which we typically normalize to be either 0 or 1, and in particular we require that
Vp = 0 for p < 0. Identifying V with the subspace 1 ⊗ V ⊂ R[H ] ⊗ V ∼= V , the
homogeneous degree subspaces of V are then of the form:

V0 = V0, V1 = V1,

V2 = HV0 ⊕ V2, V3 = HV1 ⊕ V3,

V2p = HpV0 ⊕ Hp−1V2 ⊕ · · · ⊕ V2p, V2p+1 = HpV1 ⊕ Hp−1V3 ⊕ · · · ⊕ V2p+1.

In general, we have Vp
∼= HVp−2 ⊕ Vp . However, the finite-dimensional graded vector

space V must also have a maximal degree m, giving us Vp = 0 for p > m. It follows that
Vp = HVp−2 for p > m. In other words, the grading stabilizes above degree m, giving us
a stable super vector space with even and odd components:

Vm−1 ∼= Vm+1 ∼= Vm+3 ∼= · · · ∼= lim−→ Vm−1+2p,

Vm
∼= Vm+2 ∼= Vm+4 ∼= · · · ∼= lim−→ Vm+2p,

where the isomorphisms are given by the action of H . We note that the super vector space
Vm−1 ⊕ Vm is isomorphic to the Z2-reduction of the graded vector space V . The action of
the super Poincaré algebra on V descends to an action of the Clifford algebra on the stable
space Vm−1 ⊕Vm, with the action of H descending to the identity operator. More precisely,
the Clifford generators γ1, . . . , γN ∈ Cl(N) act by:

γi : Vm−1 ⊕ Vm
Qi−−→ Vm ⊕ Vm+1

(
0 H−1

Id 0

)

−−−−−−→ Vm−1 ⊕ Vm.

In fact, the stable space Vm−1 ⊕ Vm is a filtered Clifford supermodule, with filtration

Fp(Vm−1 ⊕ Vm) := H

⌊
m−p
2

⌋

Vp
∼= Vp. (5.4)

In other words, we use the appropriate power of the injection H to identify Vp with a
subspace of Vm ⊕ Vm+1.

Going in the other direction, suppose that V is a finite-dimensional filtered Cl(N)-super-
module. The corresponding formal graded off-shell representation of p1|N

Z
is then

V =
⊕

p∈Z
Vp withVp := FpV. (5.5)
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The even generator H and supersymmetry generators Q1, . . . , QN of p1|N
Z

then act on V
according to the following commutative diagrams:

Vp
H �� Vp+2

FpV
� � �� Fp+2V

Vp
Qi �� Vp+1

FpV
γi �� Fp+1V

with actions induced by the inclusion of adjacent filtration levels and the Clifford actions of
the Clifford generators γ1, . . . , γN ∈ Cl(N).

Since we identify the action ofH with the identity map on the filtered Clifford supermod-
ule Vm−1 ⊕ Vm, we see that it is isomorphic to the formal on-shell representation VH−1. In
addition, the formal graded off-shell representation V given by Eq. 5.5 is clearly isomorphic
to Defs V , and all that is missing is the formal parameter s to keep track of the gradings. It
then follows from Theorem 1 that these two constructions are inverses of each other, which
we can see at the level of vector spaces by comparing (5.4) with Eq. 5.5. We therefore have
a one-to-one correspondence between formal graded off-shell representations and formal
filtered on-shell representations of one-dimensional supersymmetry.

6 Bifiltrations

In this section we consider results analogous to those of Sections 3 and 4 where we consider
filtrations and gradings with respect to Z × Z.

Definition 11 An (increasing) bifiltration on a Z2-bigraded vector space

V = V00 ⊕ V01 ⊕ V10 ⊕ V01

is a collection of subspaces Fp,qV ⊂ Vp mod 2, q mod 2 for p, q ∈ Z such that

Fp,qV ⊂ Fp+2,qV , Fp,qV ⊂ Fp,q+2V.

We normalize bifiltrations so that Fp,qV = 0 if p < 0 or q < 0.

In other words, a bifiltration on a bi-super space is a collection of four separate Z × Z

filtrations corresponding to each of the four homogeneous Z2×Z2-degree components. Our
positivity condition means that we are considering first quadrant bifiltrations.

Definition 12 A bifilteredZ2-bigraded algebra is an algebraAwithZ2-bigraded bifiltration
satisfying the multiplicative property

Fp,qA · Fm,nA ⊂ Fp+m,q+nA

for p, q,m, n ∈ Z. A bifiltered Z2-bigraded module over a bifiltered Z2-bigraded algebra
A is an A-module M with a Z2-bigraded bifiltration satisfying

Fp,qA · Fm,nM ⊂ Fp+m,q+nM

for p, q,m, n ∈ Z.

When presented with bifiltrations, we can construct formal deformations involving two
parameters rather than one.
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Definition 13 Given a (increasingly) bifiltered Z2-bigraded vector space V , its formal
deformation Defs,t V is the subspace of V [s, t] consisting of finite polynomials in two
variables of the form

Defs,t V :=
⎧
⎨

⎩

∑

p,q∈Z
vp,q sptq ∈ V [s, t] : vp,q ∈ Fp,qV

⎫
⎬

⎭
. (6.1)

The formal deformation Defs,t V is naturally Z-bigraded by powers of the variables s and
t , with homogeneous Z-bidegree components

(Defs,t V )p,q = Fp,qV sptq (6.2)

for p, q ∈ Z

Alternatively, we can construct the formal deformation Defs,t V in two stages. Given a
bifiltered super vector space V , we can view it as a single filtered space with respect to the
left filtrations degree by taking the direct limits with respect to the right filtration degree:

FpV := lim
q→∞ Fp,qV .

The grading on the formal deformation Defs V corresponds to the left filtration degree on
V , but Defs V also admits a residual filtration induced by the right filtration degree. We can
therefore take a second formal deformation, and we obtain Defs,t V = Deft (Defs V ).

Going in the reverse direction, suppose that V is a Z-bigraded algebra together with two
injective even shifts

σ : Vp,q → Vp+2,q , τ : Vp,q → Vp,q+2 (6.3)

such that
σ ◦ τ = τ ◦ σ : Vp,q → Vp+2,q+2.

Consider the subspace

(σ − 1, τ − 1)V := (σ − 1)V + (τ − 1)V
= {σx − x + τy − y : x, y ∈ V}.

In particular, we note that

στz − z = σ(τz) − (τz) + τz − z ∈ (σ − 1, τ − 1)V,

σz − τz = σz − z + τ(−z) + (−z) ∈ (σ − 1, τ − 1)V,

for any z ∈ V . We can then define the quotient

Vσ−1,τ−1 := V / (σ − 1, τ − 1)V (6.4)

Performing this quotient in two steps, we have equivalently

Vσ−1,τ−1 = (Vσ−1)τ−1.

where we note that (σ − 1)V is invariant under τ , since

τ(σx − x) = τσx − τx = σ(τx) − (τx).

In addition, the natural bifiltration on V given by

Fp,qV :=
⊕

j≤p
j≡p mod 2

⊕

k≤q
k≡q mod 2

Vj,k,
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descends to a bifiltration on Vσ−1,τ−1 given by

Fp,qVσ−1,τ−1 := Fp,qV /
(
(σ − 1)Fp−2,qV + (τ − 1)Fp,q−2V

)
.

By the analogue of the telescoping construction described in (4.8), we obtain

Fp,qVσ−1,τ−1 ∼= Vp,q . (6.5)

Comparing (6.2) with (6.5), we see that the formal deformation construction (6.1) and the
quotient construction (6.4) are inverses of one another. We have therefore established the
following lemma:

Lemma 5 If V is a bifiltered super vector space, then the bifiltered super vector space
(Defs,t V )s2−1,t2−1 is canonically isomorphic to V . Conversely, if V is a bigraded vec-
tor space with a commuting pair of injective degree 2 shifts σ, τ as in (6.3), then
Defs,t (Vσ−1,τ−1) is isomorphic to V , identifying the shifts (σ, τ ) with (s2, t2).

We now reprise Lemma 2 and Lemma 3 in the bifiltered and bigraded setting. We state
these results without proof, as our arguments from Section 4 generalize with only minor
modifications. We leave the details to the reader.

Lemma 6 Let A be a bifiltered superalgebra, and let M be a bifiltered A-supermodule.

1. The formal deformation Defs,t A is a Z-bigraded subalgebra of A[s, t].
2. The formal deformation Defs M ⊂ M[s, t] is a Z-bigraded module over Defs,t A.
3. The quotient (Defs,t A)s2−1,t2−1 is a bifiltered superalgebra canonically isomorphic to

A.
4. The quotient (Defs,t M)s2−1,t2−1 is a bifiltered (Defs,t A)s2−1,t2−1-supermodule

canonically isomorphic to M .

Lemma 7 LetA be a Z-bigraded algebra, andM a Z-bigradedA-module. Suppose futher
that we have commuting pairs of injective even shift maps σA : Ap,q → Ap+2,q , τA :
Ap,q → Ap,q+2 and σM : Mp,q → Mp+2,q , τM : Mp,q → Mp,q+2 which satisfy the
identities

σA(ab) = (σAa)b = a(σAb), τA(ab) = (τAa)b = a(τAb), (6.6)

σM(am) = (σAa)m = a(σMm) τM(am) = (τAa)m = a(τMm) (6.7)

with respect to the product of a, b ∈ A and the action of a ∈ A on m ∈ M.

1. The quotientAσ−1,τ−1 is a bifiltered superalgebra.
2. The quotientMσ−1,τ−1 is a bifiltered supermodule over both A andAσ−1,τ−1.
3. The formal deformation Defs,t Aσ−1,τ−1 is a bigraded algebra isomorphic to A.
4. The formal deformation Defs,t Mσ−1,τ−1 is a bigraded Defs,t Aσ−1,τ−1-module iso-

morphic toM.

Finally, we conclude this section with the bifiltered and bigraded version of Corollary 1,
summarizing the results which we will need in our application in the next section.

Corollary 2 LetA be a bifiltered superalgebra andA a bigraded algebra with a commuting
pair of injective degree 2 shifts σ, τ satisfying (6.6) which is isomorphic to the formal defor-
mationDefs,t A. Then the formal deformation constructionM 
→ Defs,t M and the quotient
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construction M 
→ Mσ−1,τ−1 give inverse one-to-one correspondences between the iso-
morphism classes of bifiltered A-supermodules and the isomorphism classes of bigraded
A-modules with commuting pairs of injective degree 2 shifts satisfying (6.7).

7 Two-dimensional Supersymmetry

In 1 + 1 dimensions, the vector representation of Spin(1, 1) decomposes as the direct sum
of two complementary light-cone representations R

1,1 ∼= R
+ ⊕ R

−, known as the left-
movers and right-movers. Likewise, there are two chiral spin representations S+ and S

−,
with Sym2(S±) = R

±. When constructing the 1+1-dimensional super Poincaré algebra, we
can decompose the supersymmetry generators into chiral generators squaring to multiples
of H + P and anti-chiral generators squaring to multiples of H − P .

Definition 14 The d = 2, (p, q)-extended super Poincaré algebra is the real Lie
superalgebra

p1,1|p,q = RL ⊕ Span{H, P } ⊕ � Span{Q+
1 , . . . , Q+

p , Q−, . . . , Q−
q }

with non-vanishing super brackets

[L, H ± P ] = ±2 (H ± P), [L,Q±
i ] = ±Q±

i , {Q±
i ,Q±

j } = 2 δij (H ± P).

It is a Z-graded Lie superalgebra, with degrees given by

degL = 0, degH = degP = 2, degQ±
i = 1.

(We will use the same notation for the Z-graded and Z2-graded version.)

We obtain an alternative description of the d = 2 super Poincaré algebra by explicitly
splitting up the left-movers and right movers as follows:

p1,1|p,q ∼= RL ⊕̃ (
p1|p ⊕ p1|q

)
. (7.1)

Here, the chiral and anti-chiral summands are

p1|p ∼= R(H + P) ⊕ � Span{Q+
1 , . . . , Q+

p }, (7.2)

p1|q ∼= R(H − P) ⊕ � Span{Q−
1 , . . . , Q−

q−}, (7.3)

respectively. The degree 0 generator L acts as an auxiliary grading operator, with eigenvalue
called the helicity. Given a Z-graded representation of p1,1|p,q , such as the adjoint action on
itself, we can combine the degree and helicity into a Z-bigrading given by

deg+ x = deg x + h

2
, deg− x = deg x − h

2
. (7.4)

for a homogeneous degree L-eigenvector x with L(x) = h(x). We note that deg+ is the
chiral degree with respect to the p1|p summand (7.2), while deg− is the anti-chiral degree
with respect to the p1|q summand (7.3). Conversely, for a homogeneous bigraded element x
of bidegree (deg+ x, deg− x) = (m, n), we have

deg x = m + n, L(x) = (m − n)x,

and in particular the generator L has bidegree (0, 0).
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Definition 15 A formal off-shell representation of the d = 2 super Poincaré algebra is
a Z-graded representation of p1,1|p,q on a finitely generated, free R[H, P ]-supermodule.
Furthermore, we require that it obeys spin-statistics, with helicities h ≡ deg (mod 2).

In light of our discussion above of the bigrading on the super Poincaré algebra, we obtain
the following lemma:

Lemma 8 Via the decomposition (7.1), formal off-shell representations of p1,1|p,q are
equivalent to Z-bigraded representations of the direct sum p1|p ⊕p1|q on finitely generated,
free R[H + P ] ⊗ R[H − P ]-supermodules.

Proof All we need to verify is that the bigrading (deg+, deg−) is indeed integral. However,
this follows from the spin-statistics condition and Eq. 7.4.

In other words, we consider Z-bigraded representations V with two injective even shifts

H + P : Vm,n → Vm+2,n, H − P : Vm,n → Vm,n+2.

Using the techniques of the previous sections, we obtain the following correspondence:

Definition 16 The twisted tensor product A ⊗̃ B of two superalgebras A and B is the
superalgebra whose underlying vector space is the conventional tensor product, which has
Z2-bidegree given by

deg(a ⊗̃ b) = (deg a, deg b)

for a ∈ A and b ∈ B, and which has multiplication

(a1 ⊗̃ b1)(a2 ⊗̃ b2) := (−1)|b1| |a2|a1a2 ⊗̃ b1b2

for homogeneous elements a1, a2 ∈ A and b1, b2 ∈ B. If in addition A and B are filtered
superalgebras, then A ⊗̃ B is a bifiltered superalgebra, with

Fm,n(A ⊗̃ B) = FmA ⊗̃ FnB (7.5)

for m, n ∈ Z.

Our main use for such twisted products is the following definition:

Definition 17 A bifiltered Clifford algebra is the twisted tensor product

Cl(p + q) := Cl(p) ⊗̃ Cl(q)

of two Clifford algebras, with bifiltration given by Eq. 7.5.

Alternatively, we could define Cl(p + q) to be the Clifford algebra determined by two
sets of Clifford generators:

γ +
1 , . . . , γ +

p with filtration degree(1, 0),

γ −
1 , . . . , γ −

q with filtration degree(0, 1).

It is well known (see, for example, [10]) that Cl(p + q) ∼= Cl(p) ⊗̃ Cl(q) as superalgebras.
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Theorem 2 The formal deformation construction V 
→ Defs,t V and the quotient construc-
tion V 
→ VH+P−1, H−P−1 give inverse one-to-one correspondences between the isomor-
phism classes of formal graded off-shell representations of p1,1|p,q and the isomorphism
classes of bifiltered Cl(p + q)-supermodules.

Proof By Lemma 8, formal graded off-shell representations of p1,1|p,q are equivalent to
bigraded representations of the direct sum p1|p ⊕ p1|q . Considering universal enveloping
superalgebras, we obtain an isomorphism of graded superalgebras

U
(
p1|p ⊕ p1|q

) ∼= U
(
p1|p

) ⊗̃ U
(
p1|q

)

∼= (
Defs Cl(p)

) ⊗̃ (
Deft Cl(q)

)

∼= Defs,t
(
Cl(p) ⊗̃ Cl(q)

) ∼= Defs,t Cl(p + q),

using Lemma 4. Here, the degree 2 generators H +P and H −P in the universal enveloping
superalgebra map to the shifts s2 and t2 in the formal deformation Defs,t . The commuting
pair of shifts H +P and H −P act injectively on formal off-shell representations, and their
actions automatically satisfy the identities (6.7). We obtain our result by applying Corollary
2.

8 Higher Dimensional Supersymmetry

Finally, one can ask how these methods may be applied to the classification of off-shell
representations of higher-dimensional supersymmetry. In one and two dimensions, the fil-
tration or bifiltration on a Clifford supermodule gives us precisely the information we need
to reconstruct how the Minkowski space translations act on the corresponding off-shell rep-
resentation. In higher dimensions, we do not obtain tri-filtrations or d-filtrations, as they
violate Lorentz invariance. Our arguments are possible in two dimensions only becauseR1,1

decomposes as the sum of two one-dimensional light-cone Lorentz invariant subspaces.
In higher dimensions, Minkowski space R

1,d−1 is irreducible. On the other hand, it is be
possible to use the Lorentz invariance to our advantage, and we show that off-shell represen-
tations of supersymmetry in any dimension correspond precisely to filtered (or bifiltered)
Clifford supermodules possessing an additional compatible Lorentz action. This is the math-
ematical version of the claim in [6] that off-shell supersymmetric theories can be classified
in terms of their dimensional reduction “shadows” in one (or possibly two) dimension.

9 Conclusions

In light of Theorem 1 and Theorem 2, the problem of classifying off-shell representations of
one-dimensional and two-dimensional supersymmetry becomes the problem of classifying
filtered and bifiltered Clifford supermodules. Even though Clifford modules and supermod-
ules have been a part of the mathematical literature for over 40 years (see [1]), most of the
standard references mention the natural filtration on the Clifford algebra only in passing
(see [10]). To our knowledge, there has not yet been any systematic study of filtered Clifford
supermodules.

Given a Clifford supermodule V = V0 ⊕ V1, a filtration is a pair of flags:

F0V ⊂ F2V ⊂ · · · ⊂ V0, F1V ⊂ F3V ⊂ · · · ⊂ V1,
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with the added property that the Clifford generators γ1, . . . , γN act according to

γi · FpV ⊂ Fp+1V. (9.1)

What are the invariants of such filtrations? The most obvious invariant is the sequence of
dimensions of each of the filtration levels:

(dimF0V, dimF1V, dimF2V, dimF3V, . . .) .

Alternatively, one could list the sequence of dimensions of the associated graded algebra

GrV =
⊕

p∈Z
Fp/Fp−2,

giving us

(dimF0V, dimF1V, dimF2V − dimF0V, dimF3V − dimF1V, . . .) . (9.2)

Indeed, [9] discusses the invariant (9.2) in the context of classifying irreducible representa-
tions appearing in N -extended supersymmetric quantum mechanics.

On the other hand, a simple dimension count of the form (9.2) does not completely
classify off-shell representations of one-dimensional supersymmetry. In [3], starting with
the unique irreducible real Z2-graded spin representation of Cl(5), we construct a family of
distinct filtrations, or equivalently a family of distinct off-shell representations, all with the
invariant (9.2) given by the dimensions (2, 8, 6). On the other hand, we can show that for
N ≤ 4, the invariant (9.2) does indeed completely classify the filtrations on an irreducible
Cl(4)-supermodule.

To classify these filtrations, one must also take into account the spaces

FpV / Span{γ1, . . . , γN } · Fp−1V. (9.3)

In other words, at each filtration degree, one must include the subspaces given by the Clif-
ford action (9.1), but one is then free to add any complementary subspace of the appropriate
parity. To fully classify these filtrations, we need to consider not only the dimensions of the
subspaces (9.3), but also how they are related via the Clifford action.

In [4], Faux and Gates introduced a combinatorial notation for off-shell representations
of one-dimensional supersymmetry, using Coxeter graphs whose vertices correspond to a
suitable basis of the Clifford supermodule, and whose edges correspond to the actions of the
Clifford generators. The filtration (or corresponding engineering dimension) is then denoted
either by directing the edges, or equivalently by placing the vertices at the corresponding
height in the graph. In [2], we prove that the possible height assignments on such graphs are
completely determined by the set of sources (or sinks). However, the choices of sources (or
sinks) correspond precisely to the possible subspaces (9.3).
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