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Abstract: An explicit formula is derived for the generating function of vertical D4–
D2–D0 bound states on smooth K3 fibered Calabi–Yau threefolds, generalizing previous
results of Gholampour and Sheshmani. It is also shown that this formula satisfies strong
modularity properties, as predicted by string theory. This leads to a new construction of
vector valued modular forms which exhibit some of the features of a generalized Hecke
transform.
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1. Introduction

The main goal of this paper is to derive an explicit formula for all BPS degeneracies
of vertical D4–D2–D0 bound states on K3 fibered Calabi–Yau threefolds X , subject
to certain genericity conditions. Counting D4–D2–D0 BPS states is a natural problem
in the context of IIA and M-theory compactifications, as well as IIA/heterotic duality.
This problem is closely related to black hole entropy [13,14,16,41,53,62,63], as well
as BPS algebras [28,29]. Further ramifications include connections with quantum two
dimensional Yang–Mills theory and topological strings [1,2,31,64], as well as wall-
crossing phenomena [50–52]. As pointed out in [35,48,63] and studied in more depth in
[17], a different connection with topological strings is provided by the Fourier–Mukai
transform on elliptic fibrations. This problem is also firmly rooted in gauge theory, since
it can be regarded as a string theoretic generalization of Vafa–Witten theory [65] on
a K3 surface. Exact results for this case have been obtained in [40,48]. At the same
time, this problem has received a fair amount of attention in the mathematical literature
[22–24,59–61], in the framework of Dolandson–Thomas invariants of stable sheaves on
Calabi–Yau threefolds.

As shown in [15,16,20,65], on physics grounds the generating function for D4–D2–
D0BPS indices is expected to have strongmodularity properties. This has been confirmed
by many explicit computations for stable torsion-free sheaves supported on rational
surfaces [21,25–27,42,44,45,59,60,68–71]. These results can be placed in the context
of Donaldson–Thomas theory if such sheaves are viewed as two dimensional torsion
modules supported on rigid divisors in Calabi–Yau threefolds. For two dimensional
sheaves supported on the fibers of a K3 pencil, modularity has been shown in certain
cases in [22], as discussed in more detail below.

1.1. Partition functions. The geometric framework for this paper is that of lattice po-
larized K3 fibered projective Calabi–Yau threefolds satisfying certain natural genericity
assumptions. In particular all fibers are assumed to be irreducible algebraic K3 surfaces
with at most simple nodal singularities. In addition, one also assumes the existence of
a lattice polarization defined as in [36,46] in terms of an auxiliary smooth K3 fibration
obtained by extremal transitions. Very briefly, a lattice polarization is defined by specify-
ing a sublattice� of the Picard group of X satisfying certain conditions listed in Sect. 3.
This is a sublattice of the middle cohomology lattice H2(S,Z) of a smooth generic K3
surface such that the restriction of the intersection form to� is a non-degenerate bilinear
form of signature (1, rk� − 1). Moreover, for the class of threefolds under consider-
ation, � will be naturally identified with the Picard lattice of any sufficiently generic
smooth K3 fiber of X . As explained in Sect. 2, Poincaré duality then leads to a natural
identification of the lattice of vertical curve classes on X with the dual lattice �∨.
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For further reference note that � is naturally identified with a finite index sublattice
of �∨ using the given bilinear pairing. Since �∨ is contained in �Q = � ⊗Z Q, the
same bilinear pairing induces a Q-valued pairing on �∨, which will be denoted by
(d, d ′) �→ d · d ′ ∈ Q. Moreover, as the symmetric bilinear form is diagonalizable
over R, any element d ∈ � admits a canonical decomposition d = d+ + d−, with
d+, d− ∈ �R = � ⊗Z R, such that (d+)2 ≥ 0, (d−)2 ≤ 0 and d+ · d− = 0.

In this context, the main object of study of this work is the thermal partition function
constructed byDenef andMoore and [16] forD4–D2–D0bound states,which is reviewed
in Sect. 2. Alternative constructions in M-theory fivebranes have been carried out in
[15,20]. The approach of [16] will be adopted in this paper since it is based on D-
brane effective actions, hence can be readily generalized to higher rank theories. The
framework employed in [16] is an Euclidean IIA compactification on X where the time
direction is periodic with period T . Given the decomposition H2(X,Z) 
 � ⊕ Z〈D〉,
the background B-field will be an element −B ∈ �R. Similarly, the background RR
3-form field will be given by C3 = −Cdt/T,C ∈ �R, where 0 ≤ t < T is the
Euclidean time coordinate. The vertical components have been set to zero since they
have trivial restriction to the K3 fibers, and the signs are included for later convenience.
Let also C1 = C0dt/T be the expectation value of the RR 1-form, with C0 ∈ R, and
τ = C0 + iT/gs where gs is the IIA string coupling.

The discrete topological invariants of vertical D4–D2–D0 configurations on X are
triples γ = (r, d, n)where r, n ∈ Z are D4 and anti-D0multiplicities respectively, while
d ∈ �∨ is the D2 charge. The BPS indices counting such states will be denoted by�(γ ).
By analogy with [16], it is shown in Sect. 2.2 that the thermal partition function can be
written as a finite sum

Z B P S(X, r; τ, τ̄ , B,C) =
∑

δ∈�∨/r�

Z B P S(X, r, δ; τ)�∗
r,δ(τ, τ̄ ; C, B) (1.1)

over equivalence classes δ ∈ �∨/r�. For each such equivalence class,

Z B P S(X, r, δ; τ) =
∑

n

�(γ )e2π iτ(n+d2/2r−1).

and

�∗
r,δ(τ, τ̄ ; C, B) =

∑

α∈�
e−2π iτ(d+rα+r B/2)2−/2r−2π i τ̄ (d+rα+r B)2+/2r+2π i(d+rα+r B/2)·C .

where d ∈ �∨ is any representative of δ. Note that the above sum is actually the complex
conjugate of a Siegel Jacobi theta function of a coset of the rescaled lattice

√
r� ⊂ �R.

As shown in Sect. 2 the above series are independent of the choice of d.
As pointed out in [3], note that such an expression does not hold in general for arbitrary

D4–D2–D0 BPS states on Calabi–Yau threefolds. The fact that it holds here relies on the
invariance of vertical BPS indices under endomorphisms of the charge lattice of the form
(2.3), which is proven in Sect. 2.3. Moreover, a similar decomposition of the thermal
partition function occurs in [16, Sect. 2.2] with one significant difference. In the cases
studied in loc. cit. the generic supersymmetric D4–D2–D0 configuration consists of a
single D4-brane wrapping a smooth very ample divisor in X bound to some D2 and anti-
D0 branes. In the present case, a generic stable configuration consists of a rank r stable
vector bundle supported on a smooth K3 fiber, and cannot be deformed to a single D4-
brane wrapping a smooth surface. This is reflected in the presence of the cosets�∨/r�
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with r ≥ 1 in the right hand side of (2.10), as opposed to the analogous formulas in [16,
Sect. 2.2]. This will turn out to have some important arithmetic consequences.

Mathematically, the BPS indices �(γ ) are generalized Donaldson–Thomas invari-
ants [32,38,58] counting semistable vertical sheaves on X supported on K3 fibers. More
precisely, the formalism of [32,38] yields rational invariants DT (γ ) ∈ Q that are con-
jecturally related to the integral ones �(γ ) by the multicover formula

DT (γ ) =
∑

k∈Z, k≥1
γ=kγ ′

1

k2
�(γ ′).

Some aspects of generalized Donaldson–Thomas invariants are reviewed in Sect. 2.3.
The importance of rational invariants in this context was emphasized by Manschot

in [43], where it is shown that partition functions of rational as opposed to integral
invariants are expected to exhibit modular properties. This is indeed the case for the
explicit formulas derived in this paper, as explained below.

The partition function of rational invariants is obtained by summing overmulticovers.
In order to write an explicit formula, note that for any r, r ′ ∈ Z, r, r ′ ≥ 1, such that
r = kr ′ with k ∈ Z there is an injective morphism

fr ′,k : �∨/r ′� → �∨/r�, fr ′,k([d]r ′) = [kd]r for all d ∈ �∨.

Here [d]s ∈ �∨/s� denotes the equivalence class of d ∈ �∨ mod s� for any s ∈ Z,
s ≥ 1. Then the rank r ≥ 1 partition function for rational invariants reads

Z DT (X, r; τ, τ̄ , B,C) =
∑

δ∈�∨/r�

Z DT (X, r, δ; τ)�∗
r,δ(τ, τ̄ ; C, B) (1.2)

where

Z DT (X, r, δ; τ) =
∑

k∈Z, k≥1
(r,δ)=(kr ′, fr ′,k (δ′))

1

k2
Z B P S(X, r ′, δ′; kτ).

1.2. The main formula. The main result of this paper is an explicit conjectural formula
for the partition function (1.2). This formula will be written in terms of a certain vector
valued modular form 
̃ associated to an irreducible nodal K3 pencil X → C via the
construction of [36,46]. As explained in detail in Sect. 3, this form encodes the Noether–
Lefschetz numbers of an associated smooth pencil X̃ over a double cover of C . The
form 
̃ takes values in the Weil representation determined by the lattice � equipped
with the intersection form, and has weight 11 − rk(�)/2. Leaving the technical details
for Sect. 3.3, note that the latter is a representation of the metaplectic cover of SL(2,Z)
on the vector space V = C[�∨/�]. The components of 
̃ with respect to the natural
basis of (eg), g ∈ �∨/� will be denoted by 
̃g . Note also that for any l ≥ 1 there is a
Q/Z-valued quadratic form θl on �∨/ l� by

θl([d]l) = d2

2l
mod Z.
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Then the main formula reads

Z DT (X, r, δ; τ) = 1

2r2
∑

k,l∈Z, k,l≥1
kl=r, δ= fl,k(η)

l−1∑

s=0

le−2π isθl (η)
(
−1
̃[η]1

) (
kτ + s

l

)
, (1.3)

where (τ) = η(τ)24. Note that in the right hand side η ∈ �∨/ l� is uniquely de-
termined by δ since the morphism fl,k : �∨/ l� → �∨/r� is injective. Moreover,
[η]1 ∈ �∨/� denotes the image of η under the natural projection �∨/ l� � �∨/�.

Special cases of the above formula have been rigorously proven by Gholampour and
Sheshmani [22] for K3 fibrations without singular fibers and primitive charge vectors as
well as for rank r = 1 invariants on irreducible nodal K3 pencils. Other special cases for
arbitrary r ≥ 1 were obtained in [17] for elliptic K3 pencils in Weierstrass form using
the Fourier–Mukai transform.

Astring theoretic derivationofEq. (1.3) is given inSect. 4 using adiabatic IIA/heterotic
duality. The main idea is that for the purpose of vertical BPS index the K3 pencil can be
regarded as a family of world sheet conformal field theories for a T 4 compactification of
the E8 × E8 heterotic string. Such an identification is not canonical because the restric-
tion of the Calabi–Yau threefold metric to a K3 surface is not in general hyper-Kähler.
Nevertheless it can be used as a very efficient tool since the BPS index of D4–D2–D0
supported on a K3 fiber is invariant under metric perturbations. The conclusion is that
counting D4–D2–D0 bound states supported on nodal fibers is equivalent to counting
Dabholkar–Harvey states [14] in a smooth heterotic conformal field theory. Then one
can use the general formulas for the degeneracies of such states obtained in [12].

At the same time, a mathematical derivation of the same formula is given in Sect. 5
using previous results of Gholampour, Sheshmani and Toda [24]. Using recursive meth-
ods, Sect. 5 gives a rigorous proof of Eq. (1.3) provided that one assumes the Gromov–
Witten/stable pair correspondence [55] to hold. This proof is based on the explicit results
obtained by Maulik and Pandharipande [46] for vertical Gopakumar–Vafa invariants of
K3 pencils, as well as a remarkable combinatorial identity for the Fourier coefficients
of a certain meromorphic Jacobi form of negative index.

1.3. Modularity results. The rank r partition function is expected tobe anon-holomorphic
modular form of weight (−3/2, 1/2), as predicted in [15,16,20] on physics grounds. In
order to show this for the explicit results derived in this paper, note that formula (1.3)
yields the following expression

Z DT (X, r; τ, τ̄ , B,C) = 1

2r2
∑

k,l∈Z≥1
kl=r

∑

η∈�∨/ l�

l−1∑

s=0

l
(
−1
̃[η]1

) (
kτ + s

l

)
�∗

1,[η]1

×
(

kτ + s

l
,

kτ̄ + s

l
; kC + s B, l B

)
. (1.4)

This is proven in Sect. 4.4. Since Z DT (X, 1; τ, τ̄ , B,C) is a non-holomorphic modular
function ofweight (−3/2, 1/2) in (τ, τ̄ ), the above formula is an order r Hecke transform
of the rank one result. Recall that the partition function of Vafa–Witten theorywith gauge
group U (r) was previously shown in [48] to be given precisely by an order r Hecke
transform of its U (1) counterpart. The above formula generalizes this construction to
vertical D4–D2–D0 partition functions for K3 fibered Calabi–Yau threefolds.
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As further discussed in Sect. 6, an important consequence of this result is that for fixed
r ≥ 1 the collection

(
Z DT (X, r, δ; τ)), δ ∈ �∨/r�, forms a vector valuedmodular form

for a certain representation of themetaplectic group Mp(2,Z) ofweight (−1−rk(�)/2).
The representation in question is the dual Weil representation of the rescaled lattice√

r� ⊂ �R. Since the above argument is rather indirect, a second direct proof of this
statement is given in Sect. 6.2 for the skeptical reader.

It is also worth noting that these results yield a new transformation acting on vector
valued modular forms, which is somewhat similar to a construction carried out in [56,
Thm. 3.1]. Given the present context, this construction could be regarded as a generaliza-
tion of the Hecke transform to vector valued modular forms in the Weil representation.
An interesting open question is whether this construction is related to the existing one
in the mathematical literature [11]. These issues are currently under investigation in [8].

2. Vertical D4–D2–D0 Bound States on K3 Fibrations

This section will review some basic facts on vertical supersymmetric D4–D2–D0 bound
states on K3 fibered Calabi–Yau threefolds. The presentation will follow closely the
treatment in Sections 2.1 and 2.2 of [16], adapting the construction of loc. cit. to K3
fibers rather than very ample divisors. Below X will be a smooth projective Calabi–Yau
threefold equipped with a projection map π : X → P

1 and a section σ : P1 → X . The
Calabi–Yau condition implies that the generic fibers of π will be smooth K3 surfaces.
Singular fibers will be in general present, but throughout this paper it will be assumed
that all such fibers have only isolated simple nodal points. It will be also assumed for
simplicity that the integral cohomology of X is torsion free and that h1,0(X) = 0. These
assumptions are easily satisfied for sufficiently generic models.

2.1. The vertical charge lattice. For a type IIA compactification on X , the lattice of
electric and magnetic charges of four dimensional BPS particles is isomorphic to the
degree zero K-theory of X . In the absence of torsion, the lattice of charges can be
identified with the even integral homology of X using the Chern character and Poincaré
duality. In particular the charges of D4–D2–D0 bound states supported on the fibers of
π take values in the sublattice

Z〈D〉 ⊕ H2(X,Z)π ⊕ H0(X,Z) ⊂ Heven(X,Z),

where D ∈ H4(X,Z) is the K3 fiber class and H2(X,Z)π ⊂ H2(X,Z) is the kernel of
the pushforward map π∗ : H2(X,Z) → H2(P

1,Z).
Since one assumes the existence of a section, there are direct sum decompositions

H4(X,Z) 
 Z〈D〉 ⊕ �, H2(X,Z) 
 Z〈C〉 ⊕ H2(X,Z)π

where C, D are the section class and the K3 fiber class respectively. Moreover � ⊂
H4(X,Z) is the sublattice generated by horizontal 4-cycles relative to the map π , i.e. 4-
cycles which project surjectively to P1. Poincaré duality yields a nondegenerate bilinear
pairing

H2(X,Z)π × � → Z

which identifies H2(X,Z)π with the dual lattice �∨. In conclusion, the charges of
vertical D4–D2–D0 bound states take values in a lattice of the form in

� = Z ⊕ �∨ ⊕ Z.
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A typical charge vector will be denoted by γ = (r, d, n) where r ≥ 1 is the D4 brane
multiplicity, d is the effective D2 charge and n the anti-D0 brane charge, not including
gravitational corrections.

Moreover, for any smooth fiber X p, p ∈ P
1, one has a natural restriction map

H2(X,Z) → H2(X p,Z)

whose image is contained in the sublattice of (1, 1) classes, H1,1(X p) ∩ H2(X,Z).
Using Poincaré duality, this yields a natural restriction map

� → H1,1(X p) ∩ H2(X,Z) (2.1)

which is furthermore injective for any smooth fiber X p. For sufficiently generic models
thismap is in fact an isomorphism for any sufficiently generic smooth fiber X p . However,
it fails to be surjective at special points p ∈ P

1, where the rank of H1,1(X p)∩ H2(X,Z)

jumps. This jumping phenomenon is studied in detail in the mathematics literature on
Noether–Lefschetz loci [36,46]. The results used in this paper are reviewed in detail
in Sect. 3. For the purpose of this section, note that the map (2.1) will be assumed
to be a primitive lattice embedding for all smooth fibers X p. Moreover, note that the
intersection pairing on H2(X p,Z) determines by restriction a nondegenerate symmetric
bilinear form on�. Throughout this paper this form will be assumed to be independent
of the point p ∈ P

1. These conditions are part of the definition of a lattice polarized
family of K3 surfaces, which is reviewed in detail in Sect. 3. In addition one also requires
the signature of the induced form on � to be (1, rk(�) − 1).

In conclusion,�will be endowed from this point on with a nondegenerate symmetric
bilinear formwhich agrees with the intersection product on each smooth fiber. This form
will be denoted by

(α, α′) �→ α · α′

for any α, α′ ∈ �. By construction, this pairing is integral and even, but not unimodular.
Therefore it determines an embedding� ↪→ �∨ which will not be in general surjective.
The quotient�∨/� is a finite abelian group which will play a central part in this paper.
Using this embedding � will be identified in the following with a sublattice of �∨.
Furthermore, the symmetric nondegenerate bilinear form on � determines a Q-valued
symmetric nondegenerate bilinear form on�Q = �⊗Z Q, hence also on�∨, which is
contained in �Q. This form will be similarly written as

(d, d ′) �→ d · d ′

for any d, d ′ ∈ �∨. Note that d · α = d(α) ∈ Z for any d ∈ �∨, α ∈ �.
The main goal of this paper is to derive explicit formulas for the supersymmetric

indices of vertical D4–D2–D0 BPS configurations of fixed charge γ , for an arbitrary
fixed Kähler class ω on X .

2.2. BPS indices and partition functions. For each charge vector γ there is a Hilbert
space of four dimensional massive BPS particles Hω(X, γ ) which carries an action of
the three dimensional rotation group SO(3) ⊂ SO(1, 3). On general symmetry grounds
this space is of the form

Hω(X, γ ) 
 2 ((0) + (1/2)) ⊗ Hint
ω (X, γ )
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where Hint
ω (X, γ ) is obtained by quantizing the internal degrees of freedom of these

particles. The BPS index �ω(γ ) is then defined as the Witten index

�ω(γ ) = TrHint
ω (X,γ )(−1)2J3 (2.2)

where J3 ⊂ SO(3) is the Cartan generator of the four dimensional little group.
Note that a simple application of the Kontsevich–Soibelman wallcrossing formula

[38] shows that for vertical configurations the indices �ω(γ ) are independent of the
Kähler class ω. This follows from the observation that (γ, γ ′) = 0 for any two vertical
charge vectors with respect to the natural symplectic pairing on Heven(X,Z). Therefore
the subscript ω will be omitted in the following.

One more important observation is that the BPS degeneracies�(r, d, n) are invariant
under transformations of the form

(r, d, n) �→ (
r, d + rα, n − d · α − 1

2
rα2), (2.3)

for any element α ∈ �. This is proven at the end of Sect. 2.3 using the mathematical
construction of BPS degeneracies as Donaldson–Thomas invariants.

As explained in Sections 2.1 and 2.2 of [16], there is a natural construction for
generating functions of these indices derived from the natural DBI action on D4-branes.
A central element in this construction is the jumping phenomenon associated toNoether–
Lefschetz loci for K3 fibrations, which was briefly explained above. As opposed to the
current case, the treatment of [16] is focused on a rank one D4-brane wrapping a smooth
very ample divisor in X . However, their considerations can be easily adapted to the
situation at hand.

Suppose first the D4-brane rank is r = 1. In this case a generic supersymmetric
D4–D2–D0 configuration of charge γ = (1, d, n) will be a bound state of one D4 brane
and k anti-D0 branes supported on an arbitrary smooth fiber X p. One also has an U (1)
flux β ∈ H2(X p,Z) on the D4-brane such that

β · α = d · α (2.4)

for any α ∈ �. By supersymmetry, F has to be a (1, 1) class. Note also that

n = k − β2

2
(2.5)

by an easy application of the Grothendieck–Riemann–Roch theorem.
Recall that under the current assumptions� is a sublattice of H1,1(X p)∩H2(X p,Z),

which is in turn a sublattice of H2(X p,Z). Let �⊥ ⊂ H2(X p,Z) denote the sublat-
tice consisting of all elements which are orthogonal to � with respect to the natural
intersection pairing. Then note that there is a direct sum decomposition

H2(X p,Q) 
 �Q ⊕ �⊥
Q. (2.6)

Let β = β‖ + β⊥ be the corresponding decomposition of β. Using the natural inclusion
�∨ ⊂ �Q Eq. (2.4) yields an identification β‖ = d.

The construction of the string theoretic generating function for the BPS degeneracies
will follow closely Sections 2.1 and 2.2 of [16]. The generating function will be a
thermal partition function working in an euclidean four dimensional background of the
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form R
3 × S1, where the time direction is periodic, with period T . The background

B-field will be an element −B ∈ � while the background RR fields will be set to

C3 = −Cdt/T, C1 = C0dt/T

whereC ∈ �R,C0 ∈ R, and 0 ≤ t < T is the Euclidean time coordinate. As in equation
(2.9) of loc. cit. the contribution of all such supersymmetric configurations supported
on a fixed smooth fiber X p to the partition function will be given by

TrHint(X p,1;β,k)(−1)2J3e−T H+2π iC0

(
k−(β+B)2/2−χ(X p)/24

)
+2π i(β+B)·C

where H is the Hamiltonian acting on the internal Hilbert space Hint(X p, 1;β, k). For
any cohomology class α ∈ H2(X p,R) let α+, α− ∈ H2(X p,R) denote the self-dual,
respectively anti-self-dual parts of α with respect to the restriction ω|X p of the Kähler
form. Then, evaluating this trace as in equations (2.10)–(2.14) of loc. cit. results in an
expression of the form

c(X p, 1, β, k)e2π iτ
(

k−(β−+B−)2/2−χ(X p)/24
)
−2π i τ̄ (β++B+)

2/2+2π i(β+B)·C

where

τ = C0 +
iT

gs
, c(X p, 1, β, k) = TrHint(X p,1;β,k)(−1)2J3 .

Next recall that by assumption ω|X p ∈ �R, hence β+ = β
‖
+. This yields

k − β2−/2 = n + β2
+/2 = n +

(
β

‖
+
)2
/2 = n +

(
β‖)2/2 − (

β
‖
−)2/2,

where β‖ = d. Moreover, since B ∈ �R, note that B−, B+ ∈ �R, hence

β− · B− = β
‖
− · B−.

Similarly,

(β + B) · C = (β‖ + B) · C.

Since χ(X p) = 24, one obtains

e2π iτ
(

k−(β−+B−)2/2−χ(X p)/24
)
−2π i τ̄ (β++B+)

2/2

= e2π iτ(n+d2/2−1)e−2π iτ(d−+B−)2/2−2π i τ̄ (d++B+)
2/2

which depends only on (d, n) and B. Then, summing over (β, k), one obtains

∑

β,k

c(X p, 1, β, k)e2π iτ
(

k−(β+B)2−/2−χ(X p)/24
)
−2π i τ̄ (β+B)2+/2+2π i(β+B)·C

=
∑

d,n

�(X p, 1, d, n)e2π iτ(n+d2/2−1)e−2π iτ(d+B)2−/2−2π i τ̄ (d+B)2+/2+2π i(d+B)·C , (2.7)

where

�(X p, 1, d, n) =
∑

β,β‖=d

c(X p, 1, β, n + β2/2).
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Moreover, note that�(X p, 1, d, n) and n + d2/2 are invariant under transformations
of the form (2.3) with r = 1. Therefore for any d ∈ �∨, the sum

∑

n

�(X p, 1, d, n)e2π iτ(n+d2/2−1)

depends only on the equivalence class δ = [d]1 ∈ �∨/� of d mod �. Hence it will be
denoted by Z(X p, 1, δ; τ). At the same time, for any fixed d ∈ �∨, B,C ∈ �R note
that

∑

α∈�
e−2π iτ(d+B+α)2−/2−2π i τ̄ (d+B+α)2+/2+2π i(d+B+α)·C = e−π i B·C�∗

δ (τ, τ̄ ; C, B)

where �δ(τ, τ̄ ; C, B) is a Siegel Jacobi theta function, which also depends only on the
equivalence class δ of d mod �. In conclusion for any smooth fiber X p, the sum (2.7)
can be written as

∑

δ∈�∨/�
Z(X p, 1, δ; τ)�∗

δ (τ, τ̄ ; C, B)

up to the constant phase factor e−π i B·C , which can be omitted by a suitable choice of
normalization of the partition function.

In order to compute the full degeneracies�(γ ) one has to integrate over all possible
locations of the fiber X p , including singular fibers. Themathematical framework for such
a computation is the theory developed by Behrend [5] which allows one to write �(γ )

as the integral of a certain constructible function on the moduli space of supersymmetric
D4–D2–D0 configurations. Leaving the details for Sects. 2.3 and 4.1, it suffices to
note here that the effect of integrating over all fibers is to convert �(X p, 1, d, n) into
�(1, d, n) leaving the general form of the partition function unchanged. In conclusion
the partition function for rank r = 1 invariants will take the form

Z B P S(X, 1; τ, τ̄ , B,C) =
∑

δ∈�∨/�
Z B P S(X, 1, δ; τ)�∗

δ (τ, τ̄ ; C, B) (2.8)

where

Z B P S(X, 1, δ; τ) =
∑

n

�(1, d, n)e2π iτ(n+d2/2−1)

and d ∈ �∨ is an arbitrary fixed representative of δ for each δ ∈ �∨/�. Note that
Z B P S(X, 1, δ; τ) is a power series in q1/2m = eπ iτ/m for any δ ∈ �∨/�, where m is
the absolute value of the determinant of the intersection form on �.

The next goal is to generalize the above construction to higher rank r ≥ 1. Thiswill be
carried out in this section for primitive charge vectors γ = (r, d, n). The general case can
then be obtained by summation using the multicover formula for Donaldson–Thomas
invariants, as shown in Sect. 4.3. For primitive charge vectors the generic supersymmetric
D4–D2–D0 configuration is a D4-brane supported on a smooth fiber X p equipped with
an U (r) gauge field A. The topological invariants of A are the first Chern class

β = Tr(F)
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and the second Chern class, or instanton number,

k = β2

2
− Tr(F2)

2
,

where F is the field strength of A. Note again that

n = k − β2

2
and β · α = d · α

for any α ∈ �. Moreover, d = β‖ with respect to the decomposition (2.6).
By supersymmetry theU (r) gauge field must satisfy the Donaldson–Uhlenbeck–Yau

equations. Therefore the field strength F of A must be a (1, 1) form on X p such that

ωp ∧ F = λω2
p (2.9)

where ωp = ω|X p is the restriction of the ambient Kähler class, and λ = (ωp · β)/ω2
p

is constant. Now let A0 = A − Tr(A)/r be the traceless part of A. This is a PU (r) 

SU (r)/μr gauge field on X p with field strength

F0 = F − β

r
Ir .

Equation (2.9) implies that

ωp ∧ F0 = 0,

that is A0 is an antiself-dual field configuration. Hence one has

F− = F0 + β−, F+ = β+ Ir .

Let k0 = −Tr(F2
0 )/2, which is a rational number in (1/r)Z ⊂ Q. Since F0 is traceless,

it follows that

n = k0 − β2

2r
.

The contribution of all such supersymmetric configurations to the thermal partition
function will be given by

TrHint(X p,1;β,k)(−1)2J3e−T H+2π iC0

(
k−(β+r B)2/2−χ(X p)/24

)
+2π i(β+r B)·C

Evaluating this trace by analogy with equations (2.10)–(2.14) in [16] yields in this
case

c(X p, r, β, k)e2π iτ
(

k0−(β+r B)2−/2r−rχ(X p)/24
)
−2π i τ̄ (β+r B)2+/2r+2π i(β+r B)·C

.

By analogy with the rank one case, this expression is further equal to

c(X p, r, β, k)e2π iτ(n+d2/2r−r)−2π iτ(d+r B)2−/2r−2π i τ̄ (d+r B)2+/2r+2π i(d+r B)·C .
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Again, the BPS index �(X p, γ ) is obtained by summing over all pairs (β, k) with
β‖ = d and k = n + β2/2:

�(X p, γ ) =
∑

β,β‖=d

c(X p, r, β, n + β2/2).

Moreover,�(X p, γ ) and n+d2/2r are invariant under transformations of the form (2.3).
Therefore for any d ∈ �∨, the sum

∑

n

�(X p, γ )e
2π iτ(n+d2/2r−r)

depends only on the equivalence class δ = [d]r ∈ �∨/r� of d mod r�. Hence it will
be denoted by Z(X p, r, δ; τ). At the same time, for any d ∈ �∨, the sum

∑

α∈�
e−2π iτ(d+r B+rα)2−/2r−2π i τ̄ (d+r B+rα)2+/2r+2π i(d+r B+rα)·C

also depends only on the equivalence class of d mod r�. As shown in Sect. 6, this sum
is in fact equal to e−π ir B·C�∗

r,δ(τ, τ̄ ; C, B), where the complex conjugate for a Siegel
Jacobi theta function for a coset of the rescaled lattice

√
r� ⊂ �R. Choosing again a

suitable normalization, one obtains a final expression for the rank r partition function
of the form

Z B P S(X, r; τ, τ̄ , B,C) =
∑

δ∈�∨/r�

Z B P S(X, r, δ; τ)�∗
r,δ(τ, τ̄ ; C, B) (2.10)

where

Z B P S(X, r, δ; τ) =
∑

n

�(γ )e2π iτ(n+d2/2r−1)

and d ∈ �∨ is a fixed arbitrary representative for each equivalence class δ ∈ �∨/r�.
Note that Z B P S(X, r, δ; τ) is a power series in q1/2mr = eπ iτ/mr for any δ ∈ �∨/�,
where m is the absolute value of the determinant of the intersection form on �.

2.3. Mathematical approach via Donaldson–Thomas invariants. Mathematically, su-
persymmetric D4–D2–D0 bound states on X are Bridgeland stable objects in the de-
rived category of X . In this paper it will be assumed that for fixed numerical invariants
Bridgeland stability reduces at large radius to Gieseker-stability for coherent sheaves.
Therefore a supersymmetric D4–D2–D0 configuration will be a Gieseker semistable
torsion coherent sheaf E with respect to a certain polarization ω on X . For vertical
D4–D2–D0 configurations E will be also required to be set theoretically supported on a
finite union of K3 fibers. Using the isomorphism H2(X,Z)π 
 �∨ found in the previous
section, such a sheaf has numerical invariants γ = (r, d, n) ∈ Z≥1 × �∨ × Z where

ch1(E) = r D, ch2(E) = d, ch3(E) = −nch3(Ox ). (2.11)

For completeness recall Gieseker stability for pure dimension two sheaves on X .
Given a real ample class ω on X , for any such nonzero sheaf E let

μω(E) = ω · ch2(E)

ω2 · ch1(E)/2
, νω(E) = χ(E)

ω2 · ch1(E)/2
.
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Then Gieseker (semi)stability with respect to ω is defined by the conditions

μω(E ′) (≤) μω(E) (2.12)

for any proper nonzero subsheaf 0 ⊂ E ′ ⊂ E , and

νω(E ′) (≤) νω(E) (2.13)

if the slope inequality (2.12) is saturated.
For any γ = (r, d, n) let Mω(γ ) denote the coarse moduli space of ω-semistable

sheaves E with discrete invariants (2.11). In the absence of semistable objects, the
Donaldson–Thomas invariants DTω(γ ) are defined in terms of virtual cycles; a special
case of [58]. This is for example the case if γ is primitive. Moreover in this case, there
exists a constructible function ν : Mω(γ ) → Z constructed by Behrend [5] such that

DTω(γ ) = χ(Mω(γ ), ν). (2.14)

By definition, given a constructible function φ : S → Z on any scheme of finite type,
the weighted Euler characteristic χ(S, φ) is defined by

χ(S, φ) =
∑

n∈Z
nχ(φ−1(n)),

where χ( ) denotes the topological Euler characteristic.
The value of ν at a point m ∈ Mω(γ ) is determined by the local scheme structure of

the moduli space nearm. According to [9], the moduli space admits a local presentation
as a critical locus of a polynomial function W defined on the space of infinitesimal
deformations of the corresponding sheaf E on X . Then

ν(m) = (−1)d(1 − χ(M Fm(W )) (2.15)

where d is the dimension of the space of infinitesimal deformations and M Fm(W ) is the
Milnor fiber of W at m. Note that if the moduli space is smooth at m,

ν(m) = (−1)dim(TmMω(γ )). (2.16)

In particular, if themoduli space is a smooth projective variety, the constructible function
ν takes the constant value (−1)dim(Mω(γ )), hence

χ(Mω(γ ), ν) = (−1)dim(Mω(γ ))χ(Mω(γ )).

From a physical perspective, the infinitesimal deformations of E are associated to
complex chiral superfields in the low energy effective action of the corresponding D4–
D2–D0 configuration, and W is a superpotential interaction. The moduli space is locally
identified with the critical locus of W . For an isolated critical point, Milnor’s result [47]
shows that ν(m) is the same as the dimension of the chiral ring of W . Formula (2.15)
provides a suitable generalization for non-isolated vacua.

In the presence of semistable objects, one has to employ the formalism of Kontsevich
and Soibelman [38] or Joyce and Song [32] to construct generalized Donaldson–Thomas
invariants DTω(γ ) ∈ Q. For sufficiently generic ω there are conjectural integral invari-
ants �ω(γ ) ∈ Z related to the rational ones by the multicover formula

DTω(γ ) =
∑

k∈Z, k≥1
γ=kγ ′

1

k2
�ω(γ

′). (2.17)
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According to [18,19] the integral invariants�ω(γ ) are mathematical avatars of the BPS
indices defined in (2.2). This justifies using the same notation in both cases. Moreover,
as noted in the previous section, the wallcrossing formulas of [32,38] show that these
invariants are in fact independent of the Kähler class, therefore the subscript ω can be
omitted.

Finally, to conclude this section, the following is a detailed proof of invariance of
Donaldson–Thomas invariants under the automorphisms (2.3) of the charge lattice.

First note that the transformations (2.3) are obtained by taking a tensor product by
a line bundle L on X . More precisely for any vertical sheaf E one has the Chern class
relations

ch1(E ⊗X L) = ch1(E), ch2(E ⊗X L) = ch2(E) + c1(L) · ch1(E),

ch3(E ⊗X L) = ch3(E) + c1(L) · ch2(E) +
1

2
c1(L)

2 · ch1(E).
(2.18)

For c1(L) = α, the numerical invariants of E change according to Eq. (2.3). Below it will
be shown that taking a tensor product as above yields an isomorphism of moduli spaces
for sufficiently generic Kähler classes. Since the vertical Donaldson–Thomas invariants
do not change underwallcrossing, this implies the invariance statement needed in Sect. 2.

Suppose F is a vertical pure dimension two sheaf with numerical invariants γ =
(r, d, n). Then F ⊗X L is also a vertical pure dimension two sheaf on X with the same
support as F and numerical invariants as in (2.3) i.e.

γ̃ = (
r, d + rα, n − d · α − 1

2
rα2).

Let ω = t D + η be an arbitrary Kähler class on X , where η ∈ �R is a relatively ample
class. Since D is orthogonal to all vertical curve classes with respect to the intersection
product on X , and D3 = 0 one can easily check that

μω(F) = 2d · η
rη2

, νω(F) = 4r − 2n

rη2
.

Note that χ(F) = 2r − n by Riemann-Roch. This yields

μω(F ⊗X L) = μω(F) +
α · η
η2

, νω(F ⊗X L) = νω(F) +
2d · α
rη2

+
α2

η2

Now let E be a vertical sheaf as above and 0 ⊂ E ′ ⊂ E be a nontrivial proper
subsheaf. Then E ′ has to be vertical as well, hence it will have numerical invariants
γ ′ = (r ′, d ′, n′). Using the above formulas it follows that

μω(E ⊗X L) − μω(E ′ ⊗X L) = μω(E) − μω(E ′) (2.19)

and

νω(E ⊗X L) − νω(E ′ ⊗X L) = νω(E) − νω(E ′) + 2

η2

(
d

r
− d ′

r ′

)
· α. (2.20)

Suppose E is ω-stable. This implies

μω(E) − μω(E ′) > 0
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or

μω(E) − μω(E ′) = 0 and νω(E) − νω(E ′) > 0.

In the first case, Eq. (2.19) implies that

μω(E ⊗X L) − μω(E ′ ⊗X L) > 0.

In the second case, note that

μω(E) − μω(E ′) = 2

η2

(
d

r
− d ′

r ′

)
· η.

For sufficiently generic η ∈ �R, equality of the slopes implies d/r − d ′/r ′ = 0.
For example, if η is a linear combination of lattice generators with sufficiently generic
irrational coefficients. Then Eq. (2.20) further implies

νω(E ⊗X L) − νω(E ′ ⊗X L) = νω(E) − νω(E ′) > 0.

To cover all cases, suppose E is strictly ω-semistable and let 0 ⊂ E ′ ⊂ E be a proper
nontrivial subsheaf. If E ′ does not saturate the stability condition, the proof is identical
to the one given above. Hence suppose that

μω(E ′) = μω(E), νω(E ′) = νω(E).

Then, under the same genericity assumption, the first equality implies again that d/r =
d ′/r ′, which yields

μω(E ′ ⊗X L) = μω(E ⊗X L), νω(E ′ ⊗X L) = νω(E ⊗X L).

The map E ′ �→ E ′ ⊗X L is a bijection between the proper nontrivial subsheaves of E
and those of E ⊗X L . Moreover, one can run the above argument in reverse taking a
tensor product by L−1. Therefore, for sufficiently generic η ∈ �R it follows that E is
ω-(semi)stable if and only if E ⊗X L is ω-(semi)stable.

The plan for the rest of the paper is to provide two derivations for the expression
(1.3) encoding all the above invariants. The first is a string theoretic derivation based on
adiabatic IIA/heterotic duality while the second is based on the mathematical results of
[24]. Both derivations rely heavily on a detailed understanding of lattice polarizations
and Noether–Lefschetz loci, which is the subject of the next section.

3. Lattice Polarization and Noether–Lefschetz Loci

This section is a review of lattice polarized K3 fibrations and Noether–Lefshetz numbers
mainly following [36,46]. The presentation will be fairly technical by necessity, since it
lies the groundwork for the following sections.

Let π : X → P
1 be a K3 fibered smooth projective Calabi–Yau threefold with a

section σ : P1 → X satisfying the following conditions:

(a) All K3 fibers are irreducible, reduced. The generic fiber is smooth and there are
finitely many singular fibers, each of them with exactly one simple node. In order to
simplify the presentation, it will also be assumed that the number of singular fibers is
even, although this is not an essential assumption. All the following considerations
extendwithminormodifications to the fibrationswith odd numbers of singular fibers.
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Let Sπ ⊂ P
1 be the set of critical values of π . Under the above assumptions, Sπ is a

finite set consisting of an even number of points. Let f : � → P
1 be a smooth generic

double cover with branch locus Sπ . Hence � is a hyperelliptic curve of genus

g(�) = |Sπ |/2 − 1.

Note that there is a unique ramification point of f mapping to σ ∈ Sπ . Abusing notation,
it will be denoted by σ as well, the distinction being clear from the context. The set of
ramification points of f will be denoted by R f ⊂ �. Note also that if |Sπ | is odd one has
to choose an extra point σ∞ ∈ P

1 parameterizing a generic smooth fiber, and consider
a double cover with branch locus Sπ ∪ {σ∞}. All the following considerations will go
through with minor modifications.

Let X ′ = X ×P1�. Then X ′ is a singular threefold with finitelymany ordinary double
points corresponding to the nodal points in the fibers of π . Under the current assumption
there is one nodal point x ′

σ ∈ X ′ for each σ ∈ Sπ . Let X̃ → X ′ be a small crepant
resolution of singularities. Let π̃ : X̃ → � and p̃ : X̃ → X be the natural projections.
The exceptional locus consists of finitely many disjoint (−1,−1) curves C̃σ on X̃ , in
one-to-one correspondence with points σ ∈ Sπ . These are projective lines on X̃ with
normal bundles isomorphic to O(−1) ⊕ O(−1). Each such curve is at the same time a
(−2)-curve on the fiber X̃σ = π̃−1(σ ), which is an embedded resolution of the nodal
surface Xσ .

LetU denote the Lorentzian rank two lattice generated by two null vectors u, u∗ with
u · u∗ = 1. Let�K3 
 U⊕3 ⊕�E8(−1)⊕2 be the middle homology lattice of a smooth
generic K3 surface, where the �E8(−1) denotes the E8 root lattice equipped with a
bilinear pairing given by the negative of the Cartan form. Let � ⊂ �K3 be a sublattice
of rank 1 ≤ � ≤ 20 and signature (1, � − 1), and let (v1, . . . , v�) be an integral basis of
�. Let also �∨ be the dual lattice and (v̌i ), 1 ≤ i ≤ � be the dual basis with respect to
(vi ).

Thepencilπ : X → P
1 will be assumed to satisfy the following additional conditions,

which are easily satisfied for generic complete intersections in toric varieties.

(b) There exists a collection of divisor classes H1, . . . , H� ∈ Pic(X), m ≥ 1 such
that the data

(
X̃ → �, p̃∗ H1, . . . , p̃∗ H�

)
is a family of�-polarized K3 surfaces as

defined in [36, Sect. 0.2.1]. In particular for any closedpoint s ∈ � there is a primitive
embedding� ↪→ Pic(X̃s)mapping vi to H̃i,s = p̃∗Hi |X̃s

for all 1 ≤ i ≤ �. One also
requires the existence of an element λ ∈ � which is mapped to a quasi-polarization
of X̃s for each s ∈ �.
A stronger conditionwill be assumed here, namely that Pic(X) 
 H2(X,Z) is freely
generated by H1, . . . , H� and the K3 fiber class D. Moreover, there is a relatively
ample class on X over P1 which restricts to λ on each smooth fiber of π .

(c) For each point σ ∈ Sπ there is an orthogonal decomposition

Pic(X̃σ ) 
 � ⊕ Z〈C̃σ 〉 (3.1)

with respect to the intersection product.
(d) For any sufficiently generic point s ∈ �\R f the primitive embedding� ↪→ Pic(X̃s)

is an isomorphism.

3.1. Noether–Lefschetz numbers. Next recall the definition of Noether–Lefschetz num-
bers for the family π̃ : X̃ → �. Let h ∈ Z and d = ∑�

i=1 di v̌
i ∈ �∨. Since the bases
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(vi ), (v̌i ) are fixed, d will be often written as d = (di )1≤i≤�. Informally the Noether
Lefschetz number Ñ Lh,d ⊂ � is the number of points s ∈ �, counted with multiplicity,
such that there exists a divisor class β ∈ Pic(X̃s) satisfying

β2 = 2h − 2, β · H̃i,s = di , 1 ≤ i ≤ �. (3.2)

A rigorous definition of Noether–Lefschetz numbers involves excess intersection
theory, as shown in [46, Sect. 1.4] and [36, Sect. 0.2.2, 0.2.3]. Following [46, Sect. 1.4],
consider the local system Ṽ = R2π̃∗Z on� and let h : H̃ → � be the π̃ -relative moduli
space of Hodge structures of type (1, 20, 1) on Ṽ ⊗Z C. For any pair (h, d) ∈ Z × Z

�

there exists a countable union of divisors Dh,d ⊂ H̃ parameterizing Hodge structures
which contain a classβ ∈ Ṽs satisfying conditions (3.2). One also has a canonical section
φ : � → H̃ such that φ(s) = [H0(X̃s,C)] ∈ H̃s for any s ∈ �. Then

Ñ Lh,d =
∫

�

φ∗Dh,d . (3.3)

According to [46, Prop. 1] the right hand side of Eq. (3.3) is finite although Dh,d may
have infinitely many components. The proof of [46, Prop. 1] shows that the image φ(�)

intersects only finitely many of them.

3.2. Local systems and jump loci. Given a pair (h, d) ∈ Z × �∨ and a point s ∈ �

let Bπ̃
s (h, d) denote the set of classes β ∈ Pic(X̃s) satisfying conditions (3.2). This is a

finite set by [46, Prop. 1]. The union Bπ̃ (h, d) = ∪s∈�Bπ̃
s (h, d) ⊂ Ṽ decomposes as

Bπ̃ (h, d) = B̃iso(h, d) ∪ B̃∞(h, d) (3.4)

where B̃iso(h, d) projects to a finite subset of �, while B̃∞(h, d) ⊂ Ṽ is a local system
over �. For any pair (h, d) let J π̃

h,d ⊂ � be the projection of B̃iso(h, d) to �. This
finite subset of � will be called the jump locus of type (h, d). The Noether–Lefschetz
numbers decompose accordingly as

Ñ Lh,d = N L iso
h,d + N L∞

h,d . (3.5)

The first term in the right hand side of (3.5) is a finite sum of the form

N L iso
h,d =

∑

s∈J π̃
h,d

∑

β∈B̃iso
s (h,d)

μ̃(h, d, β) (3.6)

where μ̃(h, d, β) ∈ Z is the intersection multiplicity of the section φ(�) with D(h, d)
at the closed point corresponding to β.

By definition, the second term in the right hand side of (3.5) is computed as follows.
Note that there is a line bundle K = R0π̃∗ωπ̃ on �, where ωπ̃ is the relative dualizing
sheaf. Then

N L∞
h,d = −

∫

B̃∞(h,d)
c1(K). (3.7)



1086 V. Bouchard, T. Creutzig, D.-E. Diaconescu, C. Doran, C. Quigley, A. Sheshmani

Using the natural inclusion � ↪→ �∨ determined by the intersection form, condition
(d) in this section implies that

B̃∞
s (h, d) =

⎧
⎨

⎩

{α} ⊂ �, if d = α for some α ∈ � and h = 1 + α2/2,

∅, otherwise.
(3.8)

for any s ∈ �. Therefore B∞(h, d) is either empty or a rank one local system on �.
Since X is K -trivial, one then obtains

N L∞
h,d =

⎧
⎨

⎩

−4, if d = α for some α ∈ � and h = 1 + α2/2,

0, otherwise.
(3.9)

For future reference consider the following example. Let σ ∈ � be a ramification
point of f . Using the isomorphism (3.1), any class β ∈ Pic(X̃σ ) is written as

β = α + lC̃σ

with l ∈ Z and α ∈ �. This implies that β · H̃i,σ = α · H̃i,σ for 1 ≤ i ≤ � and
β2 = α2 − 2l2. Therefore, under the current assumptions, for any ramification point
σ ∈ R f , the component B̃iso

σ (h, d) is empty unless

(h, d) = (1 + α2/2 − l2, α)

for some α ∈ �, l ∈ Z\{0}, in which case

B̃iso
σ (1 + α2/2 − l2, α) 
 {α − lCσ , α + lCσ }.

Furthermore, [36, Lemma 2], implies that

μ̃(1 − l2, 0,±lCσ ) = 2 (3.10)

for any σ ∈ R f , l ∈ Z\{0}. More generally, by analogy with loc. cit., using condition
(d) it can also be proved that

μ̃(1 + α2/2 − l2, α ± lCσ ) = 2 (3.11)

for any σ ∈ R f , α ∈ �, l ∈ Z\{0}.
One can similarly define local systems and jump loci for the restriction of the family

π : X → P
1 to the open subsetUπ = P

1\Sπ . For any p ∈ Uπ and any (h, d) ∈ Z×�∨
let Bπ

p (h, d) be the subset of classes β ∈ Pic(X p) such that

β2 = 2h − d, β · Hi |X p = di , 1 ≤ i ≤ �. (3.12)

By construction, Bπ
p (h, d) 
 Bπ̃

s1(m, h, d) 
 Bπ̃
s2(m, h, d) for any p ∈ Uπ and any

(h, d), where f −1(p) = {s1, s2} ⊂ �. In particular all Bπ
p (h, d) are finite and the union

Bπ (h, d) = ∪p∈UπBπ
p (h, d) decomposes again as

Bπ (h, d) = Biso(h, d) ∪ B∞(h, d)

by analogy with (3.4). Clearly, Biso
p (h, d) 
 B̃iso

s1 (h, d) 
 B̃iso
s2 (h, d) and B∞

p (h, d) 

B̃∞

s1 (h, d) 
 B̃∞
s2 (h, d) for any p ∈ Uπ . Again, the jump locus Jπ

h,d ⊂ Uπ is the
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projection of Biso(h, d). Obviously, J π̃
h,d\R f = f −1(Jπ

h,d). Moreover, one can again

define the intersection multiplicityμ(h, d, β) for any β ∈ Biso(h, d). This will coincide
with the multiplicity of the corresponding classes βi ∈ B̃iso

si
(h, d), 1 ≤ i ≤ 2. Then

Eq. (3.11) yields

N L iso
h,d =

⎧
⎪⎨

⎪⎩

2
∑

p∈Jπ
h,d

∑
β∈Biso

p (h,d) μ(h, d, β) + 2|Sπ |, if d = α, h = 1 + α2/2 − l2

for some α ∈ �, l ∈ Z\{0},
2

∑
p∈Jπ

h,d

∑
β∈Biso

p (h,d) μ(h, d, β) otherwise,

(3.13)

which will be used in the computation of vertical D4–D2–D0 degeneracies in Sect. 4.2.

3.3. Noether–Lefschetz numbers and modular forms. According to [7,39] any smooth
lattice polarized K3 pencil determines a vector valued modular form which encodes all
its Noether–Lefschetz numbers. This is briefly reviewed in [36, Sect. 0.2.4].

Let m = |det(M)|, where Mi j = vi · v j is the intersection matrix of the basis of
�. Let G1 = �∨/�, where the injection � ↪→ �∨ is determined by the intersection
form. As explained in Appendix A there is a canonical representation ρ� : Mp(2,Z) →
End(C[G1]) constructed by Weil [67], where Mp(2,Z) is the metaplectic double cover
of SL(2,Z).

Using the isomorphism (A.2), the main result of [7] yields the following mod-
ularity statement for Noether–Lefschetz numbers. For each pair (h, d) ∈ Z × �∨,
d = (d1, . . . , d�), let

(h, d) = (−1)�det

(
M dt

d 2h − 2

)
.

Note that

(h, d)

2m
= 1 +

d2

2
− h.

Then there is a vector valued modular form


̃(q) =
∑

δ∈G1


̃δ(q)eδ ∈ C[[q1/2m]] ⊗ C[G1]

of weight w = (22 − �)/2 and type ρ� such that

Ñ Lh,d = 
̃δ [(h, d)/2m] . (3.14)

where [d]1 = ±δ. Here �[s], s ∈ (1/2m)Z ⊂ Q, s ≥ 0 are the Fourier coefficients of
the series �(q) ∈ C[[q1/2m]], that is

�(q) =
∑

s∈(1/2m)Z,
s≥0

�[s]qs .

As immediate consequence, this implies

h ≤ d2

2
+ 1 (3.15)

for any class β ∈ Bπ̃ (h, d), which can be proved directly using the algebraic Hodge
theorem.
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Note that in its original form [7, Thm 4.5] implies the existence of such a vector
valued modular form with values in ρ∗

�⊥ , where�
⊥ ⊂ �K3 is the sublattice consisting

of all elements u ∈ �K3, u ·� = 0. The above statement follows from the isomorphism
(A.2).

4. Vertical BPS Indices from Adiabatic IIA/Heterotic Duality

This section consists of a string theoretic derivation of the main formula (1.3) from
adiabatic IIA/heterotic duality for K3 fibrations.

4.1. Primitive charge vectors. Using the notation of Sect. 2.3, recall that the topological
invariants of vertical two dimensional sheaves are given by triples γ = (r, d, n) ∈
Z×�∨×Zwhere� is the polarizing lattice of theK3pencilπ : X → P

1. The dual lattice
�∨ is naturally identified with the sublattice H2(X,Z)π ⊂ H2(X,Z) parameterizing
vertical curve classes. In this section, γ = (r, d, n) will be assumed to be primitive. In
this case all semistable vertical sheaves with invariants γ are stable. According to [22,
Lemma 3.1], any such sheaf E must be the extension by zero of a stable torsion sheaf F
on a reduced fiber X p of π . For any p ∈ P

1 let Mp(γ ) denote the closed subspace of the
coarse moduli space parameterizing isomorphism classes of stable sheaves E supported
on X p. Recall that Uπ = P

1\Sπ is the open subset parameterizing smooth fibers. Let
MUπ (γ ) denote the open subset of the moduli space parameterizing stable sheaves E
supported on X p with p ∈ Uπ . Then using Eq. (2.14) one has

�(γ ) = χ(MUπ (γ ), ν) +
∑

σ∈Sπ
χ(Mσ (γ ), ν). (4.1)

The first term in the right hand side of Eq. (4.1) can be explicitly evaluated using
the results of [22]. To explain this in some detail, let X p be a smooth fiber of π and
ιp : X p ↪→ X denote the natural embedding. Then any stable sheaf E supported on X p
is the extension by zero, E 
 ιp∗(F), of an ω|X p -stable sheaf F on X p. The numerical
invariants of F are related to those of E by the Grothendieck–Riemann–Roch formula:

rk(F) = r, ι∗β = d, k − β2

2
= n, (4.2)

where β = c1(F) and k = ∫
X p

c2(F). This implies that Mp(γ ) has disjoint components
Mp,β(γ ) in one-to-one correspondence with classes β ∈ Pic(X) such that ι∗β = d.
Using the definition and the main properties of Noether–Lefschetz loci reviewed in
Sects. 3.1, respectively 3.2 and 3.3, the set of all such classes is a union

⋃

d∈�∨, h∈Z
h≤1+d2/2

Bπ
p (h, d).

where h = 1 + β2/2.
For each β ∈ Bπ

p (h, d), k ∈ Z, let M(X p, r, β, k) be the moduli space ofω|X p -stable
torsion free sheaves on X p with numerical invariants (r, β, k), where k = n + β2/2 =
n + h − 1. This is smooth and projective, of dimension

dim M(X p, r, β, k) = 2
(

rk − (r − 1)β2/2 − r2 + 1
)

= 2(rn − r2 + h). (4.3)



Vertical D4–D2–D0 Bound States on K3 Fibrations and Modularity 1089

In fact, according to [49] and [30, Sect. 6], for primitive invariants (r, β, k), the moduli
space M(X p, r, β, k) is a smooth deformation of a Hilbert scheme of points
Hdim(M(X p,r,β,k))/2(S) on a smooth algebraic K3 surface S.

One can easily construct a closed embedding M(X p, r, β, k) ↪→ Mp,β(γ ) which
yields an isomorphism between the two sets of closed points. This implies that the
reduced scheme Mp,β(γ )

red is isomorphic to M(X p, r, β, k), hence Mp,β(γ ) has the
same dimension as M(X p, r, β, k). In particular Mp,β is nonempty if and only if

h ≥ r(r − n). (4.4)

Therefore the disjoint components of Mp(γ ) are in one-to-one correspondence with
elements of

⋃

d∈�∨, h∈Z
r(r−n)≤h≤1+d2/2

Bπ
p (h, d),

which is a finite set for fixed γ = (r, d, n), possibly empty. Note however that in general
Mp,β(γ ) will not be isomorphic to M(X p, r, β, k) as a scheme since its structure sheaf
can in principle contain nilpotent elements. The different scheme structure of Mp,β(γ )

will lead to nontrivial values of the Behrend function, as explained below Eq. (4.10).
To summarize, one has a decomposition

χ(Mp(γ ), ν) =
∑

h∈Z
r(r−n)≤h≤1+d2/2

∑

β∈Bπ
p (h,d)

χ(Mp,β(γ ), ν), (4.5)

where the sum in the right hand side is finite. Next recall that for any p ∈ Uπ = P
1\Sπ

the set Bπ
p (h, d) decomposes as Bπ

p (h, d) = B∞
p (h, d)∪Biso

p (h, d). Note that Mp,β(γ )

is an isolated closed component of the moduli space for each β ∈ Biso
p (h, d). Using

the results of [5], its contribution to the right hand side of (4.5) follows from [22, Thm.
3.18],

χ(Mp,β(γ ), ν) = μ(h, d, β)χ(M(X p, r, β, k)) = μ(h, d, β)c(r(n − r) + h)),

(4.6)

where

c(r(n − r) + h) =
{
χ(Hr(n−r)+h(S)), if h ≥ r(r − n),
0 otherwise.

In the above formula Hk(S) denotes the Hilbert scheme of k points on a smooth generic
algebraic K3 surface S. The coefficients c(r(n − r) + h) are determined by Göettsche’s
formula [25] applied to K3 surfaces,

q−1
∞∑

k=0

χ(Hk(S))qk = 1

η(q)24
. (4.7)

The coefficient μ(h, d, β) is the same as the contribution of the isolated class β to the
Noether–Lefschetz number in (3.6).
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Furthermore, according to condition (e) in Sect. 3.2,

B∞
p (h, d) =

{B∞
p (α) = {α} ⊂ �, if (h, d) = (h(α), α) for some α ∈ �,

∅, otherwise,

where h(α) = 1 + α2/2. Therefore, if d �= α for some α ∈ �, the moduli space
MUπ (γ ) will be a finite union of isolated closed components whose contributions are
given by (4.6). If d = α for some α ∈ �, according to [22, Lemma 3.7], there is a
smooth connected component M∞

Uπ (γ ) of MUπ (γ )whose set of closed points coincides
with the union ∪p∈Uπ Mp,α(γ ). Moreover for each p ∈ U , there is an isomorphism
Mp,α(γ ) 
 M(X p, r, α, k), with k = n + α2/2. Since M(X p, r, α, k) is smooth and
projective of dimension (4.3), this implies that

χ(Mp,α(γ ), ν) = −χ(Mp,α(γ )) = −c(r(n − r) + h(α)) (4.8)

and

χ(M∞
U (r, α, n), ν) = −χ(Uπ )c(r(n − r) + h(α)). (4.9)

Therefore, for any γ = (r, d, n), the contribution of MUπ (γ ) to the Donaldson–Thomas
invariant �(γ ) is

χ(MUπ (γ ), ν) = − χ(Uπ )c(r(n − r) + d2/2 + 1)δd,�

+
∑

h∈Z
r(r−n)≤h≤d2/2+1

∑

β∈Biso(h,α)

μ(h, d, β)c(r(n − r) + h), (4.10)

where

δd,� =
{
1, if d ∈ �,

0, otherwise.

For completeness note that the weights μ(h, d, β) in Eq. (4.6) have a clear physical
interpretation. This was first observed in a similar context in [16, App. G]. Namely,
one can easily check that any vertical stable D4–D2–D0 configuration has exactly one
normal infinitesimal deformation corresponding to translations along the base of the
K3 fibration. More precisely, given a stable vertical sheaf E = ιp∗(F) supported on a
reduced K3 fiber X p one can easily check that the space Ext1X (E, E) of infinitesimal
deformations splits as

Ext1X (E, E) 
 Ext1X p
(F, F) ⊕ Ext0X p

(F, F).

The first summand parameterizes infinitesimal deformations of F as a sheaf on X p,
while the second parameterizes normal deformations in the Calabi–Yau threefold X .
Moreover, stability implies that Ext0X p

(F, F) 
 C is one dimensional. This means
that the low energy effective action of the corresponding D4–D2–D0 configuration will
contain a complex chiral fields X1, . . . ,Xd−1 associated to tangent fluctuations and
an additional chiral field 
 associated to normal fluctuations to the fiber. Here d =
dim Ext1X (E, E) ≥ 1. Since the moduli space M(X p, r, β, k) is smooth, the tangent
deformations parameterized by X1, . . . ,Xd−1 are unobstructed. However, if β = c1(F)

is an isolated curve class on X p, the normal deformations of E will be obstructed. This
will be encoded in a superpotential interaction W (X1, . . . ,Xd ,
) such that the critical
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scheme defined by dW = 0 is locally isomorphic to a nilpotent extension of the moduli
space M(X p, r, β, k). Then using Eq. (2.15), the value of the Behrend function ν([E])
at the point [E] will be determined by the resulting nilpotent extension. In principle,
ν([E])may jump as [E] moves in the moduli space. However, it is natural to conjecture
it is constant along Mp,β(γ ) and takes value ν([E]) = μ(h, d, β) at all points. This is
certainly in agreement with Eq. (4.6). While a rigorous proof would be quite difficult,
intuitively one expects this to be the case since the only obstructions to the normal
deformations of E come from obstructions to normal deformations of the curve class β,
which are independent of E .

4.2. Singular fibers and adiabatic IIA/heterotic duality. In order to finish the computa-
tion one has to evaluate the contributions of the singular fibers Xσ , σ ∈ � to the right
hand side of Eq. (4.1). The presence of singularities makes a direct geometric approach
difficult. However one can gain important insight using fiberwise heterotic/IIA duality
for the K3 fibration π : X → P

1. Since the Donaldson–Thomas invariants are indepen-
dent of the Kähler class ω, the latter can be chosen such that the volume of the section
of π is much larger than that of the K3 fibers. In this regime, it is natural to define a
constructible function μ : P1 → Z,

μ(p) = χ(Mp(γ ), ν). (4.11)

Clearly, the value ofμ at p represents the contribution of the fiber X p to the Donaldson–
Thomas invariant. More concretely, one can write

�(γ ) = χ(P1, μ). (4.12)

Themain idea emerging from heterotic/IIA duality is that the value ofμ at a point p ∈ P
1

must be related to degeneracies of perturbative BPS states for a T 4 compactification of
the E8 × E8 heterotic string. A concrete conjecture will be formulated below.

First recall that six dimensional heterotic/IIA duality identifies a T 4 compactifi-
cation of the E8 × E8 heterotic string to a K3 compactification of the IIA string.
The heterotic Narain lattice �4,20 is isomorphic to a direct sum U ⊕ �K3, where
�K3 
 U⊕3 ⊕ �E8(−1)⊕2 is the middle homology lattice of a smooth generic K3
surface. This identification singles out a topologically nontrivial circle S1

A ⊂ T 4 corre-
sponding to the first U summand.

The conformal field theory moduli space Mhet of the E8 × E8 heterotic string on
T 4 is a quotient of the form

Mhet = Aut(�4,20)\M̃het

where M̃het = O+(4, 20)/SO(4) × O(20) and Aut(�4,20) is the automorphism group
of the Narain lattice, acting naturally on the coset space. The latter is isomorphic to the
grassmannian of space-like 4-planes � ⊂ �4,20 ⊗Z R, hence it is a smooth complex
manifold. The quotient by the T -duality group will have orbifold singularities.

According to [4, Thm. 6], a certain open subspace of this moduli space is precisely
identified with the moduli space of conformally invariant nonlinear sigma models with
target space K3, including metric and B-field moduli. Hence Mhet is in fact a com-
pactification of the sigma model moduli space. As explained for example in [4, Sect.
4.3] certain points in Mhet correspond to nonperturbative IIA compactification on K3
surfaces with ADE quotient singularities. Such points are associated to six dimensional
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gauge symmetry enhancement. More precisely, for a generic point in the moduli space,

the six dimensional gauge group isU (1)24. Let D̃ ⊂ M̃het be the locus where the space-
like 4-plane� is orthogonal to some vector β ∈ �4,20, β2 = −2. Then the abelian gauge
group is enhanced to SU (2) × U (1)23 at generic points on D = O(�4,20)\D̃ ⊂ Mhet.
For the purposes of the present discussion, it should be emphasized that the points on
D parameterize smooth well behaved heterotic conformal field theories, although the
corresponding K3 surfaces in IIA theory develop A1 singularities.

The duality also leads to a precise identification of the Hilbert spaces of six dimen-
sional BPS states in the two string theories, as explained for example in [13,29]. As
shown in [12], [13, Sect. 6.2], D4–D2–D0 BPS states with charge vector γ = (r, β, k)
supported on S are in one-to-one correspondence with certain perturbative heterotic
string states with momentum k and winding number r on the circle S1

A. These states
are obtained by tensoring the ground state of the right moving superconformal sector
with a level N state of the bosonic left moving sector, where N is determined by level
matching:

N = r(k − r) − (r − 1)β2/2 + 1. (4.13)

These are the Dabholkar and Harvey states considered in [14] in relation to black hole
entropy. A general formula for the degeneracies of such states is derived in [12, Sect 3].

Assuming S to be algebraic, note that N is half the dimension of the moduli space
of stable torsion free sheaves on S. Since the left moving sector consists of 24 bosons,
it follows that the degeneracy of these states is the N -th coefficient cN in the expansion
of q/η(q)24, in agreement with Goettsche’s formula (4.7). This follows from [12, Sect.
3] as well as [13, Sect. 6].

Finally, suppose S is a singular algebraic K3 surfacewith a single node corresponding
to a generic point in D̃, and let S̃ be its minimal crepant resolution. Let βC ⊂ H2(S̃,Z)
denote the Poincaré dual of the exceptional (−2)-curveC ⊂ S̃. Note that βC is identified
with a root vector of one of the E8 sublattices of H2(S̃,Z). As explained above, the
dual heterotic conformal field theory associated to S is still smooth, except that the six
dimensional gauge group of the corresponding six dimensional vacuum is enhanced to
SU (2). The extramassless W -bosons correspond to heterotic vertex operators associated
to the root βC . In particular the six dimensional theory exhibits a gauge symmetry which
maps βC �→ −βC . This is the action of the generator of the Weyl group of the enhanced
SU (2) gauge group.

The degeneracies of DH states in the conformal theory associated to the nodal surface
S are exactly the same as those computed in the conformal field theory associated to
the blow-up S̃. This is manifest from the counting algorithm, which is independent of
deformations of conformal field theory as long as the theory remains smooth. However,
since the reflection βC �→ −βC is a gauge symmetry, any two states DH related by this
reflection are physically identical, so such a pair should be counted only once in the six
dimensional BPS spectrum.

Returning to the family of�-polarized algebraic K3 surfaces π : X → P
1, note that

this family cannot be canonically identified with a family of heterotic conformal field
theories since the restriction of the Calabi–Yau threefold metric to a K3 fiber need not
be hyper-Kähler. However, the BPS index for D4–D2–D0 states supported on a fiber is
independent of metric perturbations, hence one can still derive a precise conjecture for
the constructible function μ : P1 → Z by counting perturbative heterotic string states.

Using Eqs. (4.5), (4.6) and (4.8), the contribution of the fiber X p, p ∈ Uπ , to the
four dimensional BPS index of charge γ = (r, d, n) is given by
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μ(p) = −c(r(n − r) + d2/2 + 1)δd,�

+
∑

h∈Z,
r(r−n)≤h≤d2/2+1

∑

β∈Biso(h,d)

μ(h, d, β)c(r(n − r) + h). (4.14)

The sum in the right hand side represents the contribution of all charge vectors β ∈
H2(X p,Z) which yield the same charge vector α with respect to the four-dimensional
abelian gauge group i.e. ι∗β = α. Aside from the weights μ(h, d, β), the contribution
of each class β is given by the corresponding degeneracy of heterotic DH states. As
explained below (4.10), for any class β ∈ Biso

p (h, d), the weight μ(h, d, β) represents
the vacuummultiplicity of the corresponding BPS D4–D2–D0 configurations supported
on X p.

Moreover, recall that the components Mp,α(γ ) of the moduli space of D4–D2–D0
branes on X p fit in the smooth family M∞

Uπ (γ ) overUπ . Therefore, according to formula
(2.16), the contribution of degeneracies of states with β = α to the four dimensional
index should be weighted by (−1), which encodes their four dimensional spin quantum
number.

Employing heterotic/IIA duality as above, it follows that the contribution μ(σ), σ ∈
Sπ , of a singular fiber can be inferred from counting D4–D2–D0 bound states supported
on its blow-up X̃σ . The main point is that, choosing appropriate hyper-Kähler metrics
on Xσ , X̃σ , one obtains smooth heterotic conformal field theories related by a smooth
deformation. Hence the DH degeneracies as well as the four dimensional spin quantum
number will be the same in the two theories. The only difference is the gauge symmetry
βC �→ −βC in the six dimensional vacuum associated to the nodal surface, which
implies that DH states with charge α + lβC are physically indistinguishable from DH
states with charge α − lβC . Working under the genericity assumptions formulated in
Sect. 3, the multiplicity of all curve classes supported on X̃σ is given by Eq. (3.11).
Therefore, collecting the facts, one is led to the following conjectural expression

μ(σ) = −c(r(n − r) + d2/2 + 1)δd,�

+
∑

l∈Z, l≥1
l2≤r(n−r)+d2/2+1

c(r(n − r) + d2/2 + 1 − l2)δd,� (4.15)

for the contribution of a singular nodal fiber to the BPS index. Using Eqs. (4.14) and
(4.15) in Eq. (4.12), one then obtains

�(γ ) = −χ(P1)c(r(n − r) + d2/2 + 1)δd,�

+
∑

h∈Z
r(r−n)≤h<d2/2+1

∑

β∈Biso(h,d)

μ(h, d, β)c(r(n − r) + h)

+|Sπ |
∑

l∈Z, l≥1
l2≤r(n−r)+d2/2+1

c(r(n − r) + d2/2 + 1 − l2)δd,�.

Finally, using Eqs. (3.9), (3.13) the above formula can be rewritten as

�(γ ) = 1

2

∑

h∈Z
r(r−n)≤h≤d2/2+1

c(r(n − r) + h)Ñ Lh,d (4.16)
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where Ñ Lh,d are the Noether–Lefschetz numbers of the threefold X̃ constructed in
Sect. 3.

4.3. Generating functions for primitive charge vectors . Suppose the pair (r, δ) ∈ Z≥1×
�∨/r� is primitive. This means there is no integer k ∈ Z, k ≥ 1, such that k|r and
δ = [kd ′]r with d ′ ∈ �∨. Then any charge vector γ = (r, d, n) with δ = [d]r will be
primitive. Recall that the rank r partition function of vertical D4–D2–D0 invariants is
an expression of the form (2.10), where

Z B P S(X, r, δ; τ) =
∑

n∈Z
�(r, d, n)qn+d2/2r−r .

In the above formula d ∈ �∨ is a fixed arbitrary representative of δ ∈ �∨/r�. For any
r ≥ 1 let Gr = �∨/r� and let [d]r ∈ Gr denote the equivalence class of d ∈ �∨. Let
h(d) ∈ Z be defined by

d2

2
+ 1 = h(d)

2m

where m = |det(M)|. Recall that the Noether–Lefschetz numbers Ñ Lh,d are identified
in Eq. (3.14) with the Fourier coefficients of a vector valued modular form 
̃(q) with
values in the Weil representation of �. Then Eqs. (3.14) and (4.16) yield

Z B P S(X, r, δ; τ) = 1

2

∑

n∈Z
r(r−n)≤h(d)/2m

qn+d2/2r−r

×
∑

r(r−n)≤h≤h(d)/2m

c(r(n − r) + h)
̃[d]1[h(d)/2m − h],

Let

l

2m
= r(n − r) +

h(d)

2m
, k = r(n − r) + h

with k, l ∈ Z. In particular

n − r = l − h(d)

2rm
∈ Z.

Then the right hand side of the above equation can be written as

1

2
qd2/2r

∑

l∈Z, l≥0,
(l−h(d))/2rm∈Z

q(l−h(d))/2rm
∑

k∈Z
0≤k≤l/2m

c(k)
̃[d]1 [l/2m − k]

= 1

4rm
qd2/2r

∑

l∈Z, l≥0

q(l−h(d))/2rm
2rm−1∑

s=0

e2π i(l−h(d))s/2rm
∑

k∈Z
0≤k≤l/2m

c(k)
̃[d]1 [l/2m − k].

Let (q) = η(q)24, which is a modular form of weight (−12). Note that −1(q) =
q−1 ∑

k≥0 c(k)qk by Goettsche’s formula (4.7). Then one has a series identity
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∑

l∈Z, l≥0

ql/2rme2π ils/2rm
∑

k∈Z
0≤k≤l/2m

c(k)
̃[d]1 [l/2m − k]

= q1/r e2π is/r (−1
̃[d]1
) (τ + s

r

)
.

Therefore

Z B P S(X, r, δ; τ) = 1

4rm
qd2/2r q(1−h(d)/2m)/r

2rm−1∑

s=0

e2π is(1−h(d)/2m)/r (
−1
̃[d]1

) ( τ + s

r

)

= 1

4rm

2rm−1∑

s=0

e−π isd2/r (
−1
̃[d]1

) ( τ + s

r

)
. (4.17)

Since −1
̃(q) is a vector valued modular form of weight (−1 − �/2) with values in
the Weil representation ρ�, one has

(
−1
̃[d]1

) (
τ + s + kr

r

)
= eπ ikd2(

−1
̃[d]1
) (τ + s

r

)
.

At the same time

e−π i(s+kr)d2/r = e−π ikd2
e−π isd2/r .

Therefore each term in the right hand side of Eq. (4.17) is invariant under s �→ s + kr ,
k ∈ Z. Then Eq. (4.17) reduces to

Z B P S(X, r, δ; τ) = 1

2r

r−1∑

s=0

e−π isd2/r (−1
̃[d]1
) (τ + s

r

)
. (4.18)

In particular, for r = 1one obtains Z B P S(X, 1, δ; τ) = (
−1
̃δ

)
(τ ) for any δ ∈ �∨/�,

in agreement with the results of [22]. As required by physical arguments [15,16,20],
the collection (Z B P S(X, 1, δ; τ))δ∈�∨/� determines a weight (−1−�/2) vector-valued
modular form with values in the Weil representation.

4.4. Non-primitive charge vectors and multicover contributions. To conclude this sec-
tion suppose γ is not primitive. Then in general there will exist strictly semistable objects
in the moduli space of stable sheaves, making the theory of Donaldson–Thomas invari-
ants more difficult. In particular one has the rational invariants DT (γ )which are related
to the integral ones �(γ ) by the multicover formula (2.17),

DT (r, d, n) =
∑

k∈Z, k≥1
(r,d,n)=k(r ′,d ′,n′)

1

k2
�(r ′, d ′, n′).

For any pair (r, δ), δ ∈ �∨/r�, let

Z DT (X, r, δ; τ) =
∑

n∈Z
DT (r, d, n)qn+d2/2r−r ,



1096 V. Bouchard, T. Creutzig, D.-E. Diaconescu, C. Doran, C. Quigley, A. Sheshmani

where d ∈ �∨ is an arbitrary representative of δ. Again, the right hand side of the
above equation depends only on the equivalence class δ of d mod r� since the rational
Donaldson–Thomas invariants are invariant under transformations (2.3) as well. In order
to evaluate this series, first note that for any pair (k, r ′)with kr ′ = r there is an injective
morphism

fr ′,k : �∨/r ′� → �∨/r�, fr ′,k([d]r ′) = [kd]r , for all d ∈ �∨.

Then, using the above multicover formula, the generating functional is written as

Z DT (X, r, δ; τ) =
∑

k∈Z, k≥1
(r,d)=k(r ′,d ′)

1

k2
∑

n′∈Z
qk(n′+d ′2/2r ′−r ′)�(r ′, d ′, n′)

=
∑

k∈Z,k≥1
r=kr ′, δ= fr ′,k (δ′)

1

k2
Z B P S(X, r ′, δ′; kτ).

(4.19)

In the right hand side, δ′ ∈ �∨/r ′� is uniquely determined by (k, δ) since fr ′,k is
injective.

For the next step one needs a generalization of the conjectural formula (4.17) to all
pairs (r, δ), not just primitive ones. On physics grounds, the natural conjecture at this
point is that (4.17) is in fact valid for all such pairs, including non-primitive ones. The
main physical argument for this conjecture is based on modularity constraints. Physics
arguments based on S-duality [16] or M5-brane elliptic genus [15,20] imply that the
collection of partition functions Z DT (X, r, δ; τ), δ ∈ �∨/r� must be a meromorphic
vector valued modular form of weight (−1 − �/2). This vector valued modular form
must take values in a finite dimensional unitary representation of the metaplectic cover
of SL(2,Z) on the C-linear span C[�∨/r�].

Granting this statement, it follows that the whole generating function Z DT (X, r, δ; τ)
is completely determined by the Donaldson–Thomas invariants for primitive charges.
The main point is that although (r, δ) is non-primitive, for any representative d ∈ �∨
of δ, there are infinitely many values of n ∈ Z such that γ = (r, d, n) is primitive.
By the arguments of the previous section, the conjectural formula (4.16) will apply to
all such values. Then the generating function Z B P S(X, r, δ; τ) will be given by Eq.
(4.17) for all pairs (r, δ) since the vector space of weight (−1 − �/2) vector valued
modular forms is finite dimensional. As shown below this leads to the final expression
(4.20) for the partition function of rational invariants. In Sect. 6, it will be shown that
these generating functions are indeed the coefficients of a weight (−1 − �/2) vector
valued modular form with values in the Weil representation associated to the lattice√

r� ⊂ �R. Moreover, the vector space of such vector valued modular forms is indeed
finite dimensional. Further confirmation of this conjecture will be obtained in Sect. 5.3
employing a more mathematical approach.

Granting formula (4.17) for all charge vectors, one obtains

Z DT (r, δ; τ) =
∑

k∈Z, k≥1
r=kr ′, δ= fr ′,k (δ′)

1

k2
1

2r ′
r ′−1∑

s=0

e−π is(d ′)2/r ′(
−1
̃[d ′]1

) (
kτ + s

r ′

)
.

Now note that for any l ∈ Z, l ≥ 1, the Q-valued symmetric bilinear pairing of �∨
induces a Q/Z-valued symmetric bilinear pairing ( , )l on �∨/ l� given by
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([d]l , [d ′]l)l = d · d ′

l
mod Z.

Moreover, since the intersection pairing on� is even, there is a well definedQ/Z-valued
quadratic form θl : �∨/ l� → Q/Z,

θl(η) = (η, η)l

2
.

Then the formula can be further rewritten as

Z DT (X, r, δ; τ) = 1

2r2
∑

k∈Z, k≥1
r=kl, δ= fl,k (η)

l−1∑

s=0

le−2π isθl (η)
(
−1
̃[η]1

) (
kτ + s

l

)
, (4.20)

where [η]1 ∈ �∨/� is the equivalence class of η ∈ �∨/ l� mod �. This is precisely
Eq. (1.3).

Finally, the total rank r ≥ 1 generating function for Donaldson–Thomas invariants
is obtained by summing over all d ∈ �∨. As shown in Sect. 2, this yields a sum of the
form

Z DT (X, r; τ, τ̄ , B,C) =
∑

δ∈�∨/�
Z DT (X, r, δ; τ)�∗

r,δ(τ, τ̄ ; C, B),

where

�∗
r,δ(τ, τ̄ ) =

∑

α∈�
e−2π iτ(d+r B+rα)2−/2r−2π i τ̄ (d+r B+rα)2+/2r+2π i(d+r B+rα)·C .

In the right hand side of the above expression d ∈ �∨ is an arbitrary representative of
δ. Using the multicover formula for Donaldson–Thomas one obtains

Z DT (X, r; τ, τ̄ , B,C) =
∑

δ∈�∨/r�

∑

k∈Z, k≥1
r=kr ′, δ= fr ′,k (δ′)

1

k2
Z B P S(X, r ′, δ′; kτ)�∗

r,δ(τ, τ̄ ; C, B).

Moreover

�∗
r,δ(τ, τ̄ ; B,C) = �∗

r ′,δ′(kτ, kτ̄ ; kC, B).

Then, using Eq. (4.18), one then obtains by straightforward computations

Z DT (X, r; τ) = 1

2r2
∑

k,l∈Z, k,l≥1
kl=r

∑

η∈�∨/ l�

l−1∑

s=0

l
(
−1
̃[η]1

)

×
(

kτ + s

l

)
�∗

l,η (kτ + s, kτ̄ + s; kC, B) . (4.21)

Next recall that there is an exact sequence of finite abelian groups

0 → �/ l� → �∨/ l� → �∨/� → 0.
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Given an element η ∈ �∨/ l� one can first sum over all classes of the form η + γ with
γ ∈ �/ l� in the right hand side of (4.21). By a simple computation, this sum turns out
to be

∑

γ∈�/ l�

�∗
l,η+γ (kτ + s, kτ̄ + s; B, kC) = �∗

1,[η]1

(
kτ + s

l
,

kτ̄ + s

l
; kC + s B, l B

)
,

which depends only on the equivalence class [η]1 ∈ �∨/�. Therefore formula (4.21)
for the partition function can be rewritten as

Z DT (X, r; τ) = 1

2r2
∑

k,l∈Z, k,l≥1
kl=r

∑

ρ∈�∨/�

l−1∑

s=0

l
(
−1
̃ρ

)

×
(

kτ + s

l

)
�∗

1,ρ

(
kτ + s

l
,

kτ̄ + s

l
; kC + s B, l B

)
. (4.22)

For B = 0 and C = 0 one can immediately recognize this formula as an order r Hecke
transform of the rank 1 result, as stated in Sect. 1.2. For nonzero B,C this formula is a
Hecke transform for Jacobi forms, as discussed in more detail in [8]. For completeness,
a brief definition of Hecke operators for modular forms is given below, following for
example [66, Ch. 4, Part 2].

Let Mn be the set of 2 × 2 matrices with entries in Z, of determinant n, and note
that there is a finite set of orbits �1\Mn under left multiplication by �1 = P SL(2,Z).
Then the order n Hecke operator [66, Ch. 4, Part 2] is an endomorphism of the space of
the space of holomorphic modular forms of fixed weight w defined by

Tn f (τ ) = nw−1
∑

γ∈�1\Mn

(cτ + d)−w f (γ · τ)

where

(
a b
c d

)
∈ Mn is a representative of γ . The right hand side does not depend on

the choice of representative. Moreover, one can prove that the above operator can be
written as

Tn f (τ ) = nw−1
∑

a,d,∈Z,
a,d>0, ad=n

d−1∑

b=0

d−w f

(
aτ + b

d

)
. (4.23)

This is a consequence of Theorem 1 in [66, Ch. 4, Part 2]. The same construction applies
analogously to non-holomorphic modular forms and Jacobi forms.

5. Recursive Derivation from Stable Pair Invariants

The goal of this section is to provide an alternative derivation for the main formula
(1.3) based on the mathematical results of [24]. Using wallcrossing techniques, vertical
Donaldson–Thomas invariants for nodal K3 pencils are related in loc. cit. to the stable
pair invariants defined by Pandharipande and Thomas in [55]. It will be shown in this
section that this relation determines the Donaldson–Thomas invariants in terms of stable
pair ones by a recursive algorithm. Moreover, assuming Gromov–Witten/stable pair
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correspondence and the multicover formula (2.17), this algorithm yields a proof of the
main formula (1.3). Using the results ofMaulik and Pandharipande on Gopakumar–Vafa
invariants of K3 pencils, the recursive algorithm reduces the proof of the main formula
to a remarkable combinatorial identity which is proven in Sect. 5.4.

5.1. Background. Let X be a nonsingular projective threefold, υ ∈ H2(X,Z) a curve
class, and n ∈ Z. According to [55], the moduli space of stable pairs PTn(X, υ) parame-
trizes the pairsOX

s−→ F whereF is a pure 1-dimensional sheaf on X with ch2(F) = υ

and χ(F) = n such that the cokernel of s is 0-dimensional. It was shown by the authors
that PTn(X, υ) is a locally complete moduli space of complexes in the derived category,
which enabled them to construct a perfect obstruction theory on PTn(X, υ). In the case
where the virtual dimension of the moduli space is zero, the stable pair invariants Pn,υ
are defined by taking the degree of the virtual cycle obtained from this obstruction theory.

Now suppose X has a K3 fibration structure π : X → C over a smooth projective
curve C with at most nodal fibers. The sublattice of vertical classes will be denoted by
H2(X,Z)π = Ker(π∗) ⊂ H2(X,Z). Since the canonical class of X is vertical, it is easy
to show that the virtual dimension of the moduli space of stable pairs is zero for any
υ ∈ H2(X,Z)π and any n ∈ Z. Such stable pairs, will be called “vertical stable pairs”.
The vertical stable pair series of X is then defined by

PT vert(X) =
∑

n∈Z,
υ∈H2(X,Z)π

Pn,υ qntυ.

Note that in the above formula one has to sum only over nonzero, effective curve classes.
This condition will be written as υ > 0.

For X a smooth Calabi–Yau threefold, one of the main results of [24] relates the
vertical stable invariants of X to the vertical DT invariants DT (r, υ, n) introduced in
Sect. 2.3. Recall that the latter are virtual counting invariants for semistable sheaves E
on X with numerical invariants

ch0(E) = 0, ch1(E) = r D, ch2(E) = υ, ch3(E) = −nch3(Ox ),

where x ∈ X is an arbitrary closed point. Therefore they are related to the invariants used
in [24, Thm. 2] by DT (r, υ, n) = J (r, υ,−n). Assuming a certain technical conjecture,
[24, Conjecture 2.3], the authors of [24] proved the following identity [24, Thm. 2] using
wall-crossing techniques:

PTvert(X) =
∏

r≥0,υ>0,n≤0

exp
(
(−1)n−1DT (r, υ, n)q−ntυ

)−n+2r

·
∏

r>0,υ>0,n<0

exp
(
(−1)n−1DT (r, υ, n)qntυ

)−n+2r
. (5.1)

In order to make contact with the set up of Sects. 3 and 2.3 suppose the K3 fibration
π : X → C satisfies conditions (a)–(d) in Sect. 3. Then Poincaré duality yields an
isomorphism H2(X,Z)π 
 �∨, where� is the polarizing lattice for the pencil X̃ . Recall
that � is a rank � sublattice of the middle cohomology lattice �K3 of a smooth generic
K3 surface. Moreover, the natural intersection form on�K3 restricts to a nondegenerate
symmetric bilinear form on � of signature (1, � − 1). Therefore the vertical classes υ
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will be identified with dual lattice vectors d ∈ �∨. Using the given bilinear form, � is
identified with a sublattice of �∨. Furthermore the integral bilinear form on � extends
to a Q-valued bilinear form on �∨, which will be denoted by (d, d ′) �→ d · d ′. By
construction, α · d = d · α = d(α) ∈ Z for any α ∈ �, d ∈ �∨. Finally note that for
any such pair (α, d), the lattice product d · α is the same as the intersection product of
α and d viewed as homology classes on X as explained above. Therefore no notational
distinction between such cases will be made in this section.

The next subsection will provide a recursive method for computing the invariants
DT (r, d, n) on the right hand side of (5.1) directly from the partition function PT(X)

of Pn,d invariants on the left hand side.

5.2. A recursive algorithm for DT (r, d, n). The recursive algorithm for the invariants
{DT (r, d, n)} is based on the following two key properties.

1. DT (r, d, n) �= 0 implies either r = 0, or

d2 + 2rn ≥ 0. (5.2)

2. For any (r, d, n) there is an identity

DT (r, d, n) = DT (r, d + rα, n − rα2/2 − rd · α),
where α is a divisor class of X restricted to the fiber of π .

The first property follows from the Bogomolov inequality. In more detail, the proof
proceeds in several steps, as follows. Suppose first E is a stable sheaf on X supported
on a smooth K3 fiber ιp : X p ↪→ X , with invariants (r, d, n). Then E is the extension
by zero of a stable sheaf F on X p with invariants

rk(F) = r, c1(F) = β, c2(F) = k

such that

ιp∗(β) = d, k − β2

2
= n.

If r > 0, F must be torsion free and the Bogomolov inequality reads

k − r − 1

2r
β2 ≥ 0,

which is equivalent to

β2 + 2rn ≥ 0.

As explained in Sect. 3.3, the algebraic Hodge theorem yields a second inequality,

β2 ≤ d2.

This proves inequality (5.2).
Next suppose E is a stable sheaf scheme theoretically supported on a nodal fiber

ισ : Xσ → X . In that case inequality (5.2) is proven by analogy with Lemmas 4.3 and
4.4 in [17]. Finally, suppose E is semistable. Then inequality (5.2) is determined by
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from the above results for stable shaves using a Jordan-Hölder filtration by analogy with
Lemma 4.5 in [17].

As noted in Sect. 2.3, the second property follows from the observation that the tensor
product by the line bundleOX (α) yields an isomorphism of moduli stacks of semistable
sheaves for any α ∈ � ⊂ Pic(X).

In order to construct the recursive algorithm for DT (r, d, n), note that Eq. (5.1) yields

log(PT(X)) =
∑

r≥0,d>0,n≤0

(−1)n−1(−n + 2r)DT (r, d, n)q−ntd

+
∑

r>0,d>0,n<0

(−1)n−1(−n + 2r)DT (r, d, n)qntd . (5.3)

Then one proceeds inductively by r ∈ Z, r ≥ 0.
Step 1. r = 0. According to property (2) above, DT (0, d, n) = DT (0, d, n − d · α)

for any divisor H ∈ � ⊂ Pic(X). Now note that if H is sufficiently relatively ample
with respect to the projection map π : X → P

1, the coefficient of q−n+d·αtd on the right
hand side of (5.3) does not contain any r > 0 terms. Indeed if otherwise it does, then
inequality (5.2) implies

d2 + 2r(n − d · α) ≥ 0.

Since d > 0, this leads to a contradiction for sufficiently relatively ample α, keeping
(d, n) fixed. Therefore the invariant DT (0, d, n) is determined by the coefficient of
q−n+d·αtd for α � 0 in the left hand side of (5.3).

Step 2. Induction on r > 0 and computation of DT (r, d, n) invariants: Now apply
the induction on r . Suppose that r > 0 and every DT (r ′, d, n) is expressed with respect
to the stable pair invariants for r ′ < r . By property (2) above,

DT (r, d, n) = DT (r, d + rα, n − rα2/2 − d · α)
for any α ∈ �. Let γ = (r, d, n) and N (γ, α) = −n + rα2/2 + d · α. Again, the key
observation is that if α is sufficiently relatively ample, the coefficient of q N (γ,α)td+rα in
the right hand side of (5.3) does not contain any invariants

DT (R, d + rα,−N (γ, α))

with R > r . Indeed if it does otherwise, then property (2) implies that

(d + rα)2 + 2R
(
n − rα2/2 − d · α) ≥ 0

Keeping (r, d, n) fixed, this leads to a contradiction for any R > r , if α is sufficiently
relatively ample. Therefore for such divisors α, the sum (5.3)

(−1)N (γ,α)−1
r∑

s=0

(N (γ, α) + 2s)DT (s, d + rα,−N (γ, α))

is identified with the coefficient of q N (γ,α)td+rα in the left hand side of (5.3). Using the
induction, one can then express DT (r, d, n) in terms of stable pair invariants.



1102 V. Bouchard, T. Creutzig, D.-E. Diaconescu, C. Doran, C. Quigley, A. Sheshmani

5.3. Vertical Donaldson–Thomas invariants from Gopakumar–Vafa invariants. Thegoal
of this section is to show that the conjectural formula (4.16) follows from the above re-
cursive algorithm assuming the Gromov–Witten/stable pair correspondence to hold in
the current setup. If this is the case, the vertical stable pair partition function can be
written in terms of vertical Gopakumar–Vafa invariants, which have been computed in
[46]:

log(PT(X)) =
∑

g≥0

∑

d∈�∨
d>0

∞∑

k=1

(−1)g−1

k
ng,d(X)

(
(1 − (−q)k)2

(−q)k

)g−1

tkd (5.4)

where ng,d(X) are the vertical Gopakumar–Vafa invariants of X . According to [46, Thm.
1],

ng,d(X) = 1

2

∞∑

h=g

rg,h Ñ Lh,d (5.5)

where rg,h are the local Gopakumar–Vafa invariants of a smooth K3 surface and Ñ Lh,d

are the Noether–Lefschetz numbers of the K3 pencil π̃ : X̃ → � constructed in Sect. 3.
An explicit conjecture for the invariants rg,h was formulated by Katz, Klemm and Vafa
[34], and proven by Pandharipande and Thomas [54]. This reads

∑

g≥0

∑

h≥0

(−1)grg,h

(
(1 − y)2

y

)2g

qh =
∏

n≥1

1

(1 − qn)20(1 − yqn)2(1 − y−1qn)2
.

(5.6)

The above formula implies in particular that rg,h = 0 for g > h.
According the inductive step in the previous section, for a given triple γ = (r, d, n),

one has to choose a sufficiently relatively ample divisor α ∈ � ⊂ Pic(X). Then the
linear combination

(−1)N (γ,α)−1
r∑

s=0

(N (γ, α) + 2s)DT (s, d + rα,−N (γ, α)) (5.7)

is identified with the coefficient L N (γ,α),d+rα of q N (γ,α)td+rα in (5.4), and N (γ, α) =
−n + rα2/2 + d · α. Note that L N (γ,α),d+rα can be written as

L N (γ,α),d+rα = L0
N (γ,α),d+rα + L≥2

N ,d+rα

where L0
N (γ,α),d+rα is the contribution of genus g = 0 terms while L≥2

N ,d+rα encodes
the terms with g ≥ 2. Genus g = 1 terms are obviously absent for sufficiently large
N (γ, α) > 0. Expanding the right hand side of (5.4) in powers of q yields

L0
N (γ,α),d+rα = (−1)N (γ,α)−1N (γ, α)

∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

1

k2
n0,(d+rα)/k (5.8)
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and

L≥2
N (γ,α),d+rα = (−1)N (γ,α)

∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

×
∑

g≥1+N (γ,α)/k

(−1)N (γ,α)/k

k
ng,(d+rα)/k

(
2g − 2

g − 1 − N (γ, α)/k

)
. (5.9)

Note that for r = 0, the expression (5.7) reduces to

(−1)N (γ,α)−1N (γ, α)DT (0, d + rα,−N (γ, α))

Using the multicover formula for Donaldson–Thomas invariants, this is further equal to

(−1)N (γ,α)−1N (γ, α)
∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

1

k2
�(0, (d + rα)/k,−N (γ, α)/k).

Moreover, as conjectured in [33], for any υ ∈ H2(X,Z) and any N ∈ Z, one has
�(0, υ, N ) = n0,υ . Therefore L0

N (γ,α),d+rα in Eq. (5.8) equals the s = 0 term in (5.7).

Next, using (5.5), the higher genus contributions L≥2
N (γ,α),d+rα can be written in terms

of the local invariants rg,h and Noether–Lefschetz numbers. Note that Ñ Lh,d = 0 for
h > d2/2 + 1 and rg,h = 0 for g > h. This implies that

N (γ, α)

k
+ 1 ≤ g ≤ h ≤ (d + rα)2

2k2
+ 1 (5.10)

for any rg,h occurring by substitution in the right hand side of Eq. (5.9). Then Eqs. (5.5),
(5.9), yield

L≥2
N (γ,α),d+rα =

∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

(−1)(k+1)N (γ,α)/k

2k

×
∑

h∈Z
N (γ,α)/k+1≤h≤(d+rα)2/2k2+1

Ñ Lh,(d+rα)/k

×
h∑

g=1+N (γ,α)/k

rg,h

(
2g − 2

g − 1 − N (γ, α)/k

)
.

(5.11)

At the same time, using the multicover formula for Donaldson–Thomas invariants, the
s ≥ 1 part of the sum in (5.7) becomes

(−1)N (γ,α)−1
r∑

s=0

(N (γ, α) + 2s)
∑

k∈Z, k≥1
k|(s,d+rα,N (γ,α))

1

k2
�(s/k, (d + rα)/k,−N (γ, α)/k)

= (−1)N (γ,α)−1
∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

∑

u∈Z
1≤u≤r/k

1

k

(
N (γ, α)

k
+ 2u

)
�(u, (d + rα)/k,−N (γ, α)/k).

(5.12)
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Now recall the conjectural formula (4.16) for the vertical D4–D2–D0 degeneracies. For
any triple γ = (r, d, n), r ≥ 1, one has

�(γ ) = 1

2

∑

h∈Z
r(r−n)≤h≤d2/2+1

c(r(n − r) + h)Ñ Lh,d (5.13)

where

∑

n≥0

c(n)qn = 1∏
n≥1(1 − qn)24

.

Note that by comparison with Eq. (5.5), it follows that c(n) = r0,n for any n ≥ 0. Using
Eq. (5.13), one obtains

�(u, (d + rα)/k,−N (γ, α)/k) = 1

2∑

h∈Z
u(u+N (γ,α)/k)≤h≤(d+rα)2/2k2+1

c(h − u(u + N (γ, α)/k))Ñ Lh,(d+rα)/k (5.14)

Next note that for u ≥ 1 the inequality

u

(
u +

N (r, α)

k

)
≤ (d + rα)2

2k2
+ 1 (5.15)

is equivalent to

u ≤ − N (γ, α)

2k
+

1

2k

(
N (γ, α)2 + 2(d + rα)2 + 4k2

)1/2
.

Moreover note that one must have k ≤ r for all nonzero terms in the right hand side of
(5.12) since u ≥ 1. Keeping inmind that N (γ, α) = −n+rα2/2+d ·α, a straightforward
series expansion shows that for fixed γ = (r, d, n) there exists a sufficiently relatively
ampleα such that inequality (5.15) is equivalent to u ≤ r/k. The latter is in turn precisely
the upper bound on u in the sum (5.12).

At the same time, since u ≥ 1, for any nonzero term in the right hand side of Eq.
(5.14) one must clearly have

N (γ, α)

k
+ 1 ≤ h ≤ (d + rα)2

2k2
+ 1.

Therefore expression (5.12) can be further written as

(−1)N (γ,α)−1
∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

1

2k

∑

h∈Z
N (γ,α)/k+1≤h≤(d+rα)2/2k2+1

Ñ Lh,(d+rα)/k

∑

u∈Z, u≥1
u(u+N (γ,α)/k)≤h

(
N (γ, α)

k
+ 2u

)
r0,h−u(u+N (γ,α)/k).

(5.16)
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In order to facilitate comparison with (5.11), note that the latter reads

L≥2
N (γ,α),d+rα =

∑

k∈Z, k≥1
k|(d+rα,N (γ,α))

(−1)(k+1)N (γ,α)/k

2k

×
∑

h∈Z
N (γ,α)/k+1≤h≤(d+rα)2/2k2+1

Ñ Lh,(d+rα)/k

×
h∑

g=1+N (γ,α)/k

rg,h

(
2g − 2

g − 1 − N (γ, α)/k

)
.

Therefore it follows that the two expressions are in agreement provided that the following
identity holds for any h, n ∈ Z, n ≥ 1, h ≥ n + 1:

h∑

g=n+1

rg,h

(
2g − 2

g − n − 1

)
= (−1)n−1

∑

s∈Z, s≥1
s(s+n)≤h

(n + 2s)r0,h−s(s+n). (5.17)

This is rigorously proven in the next subsection.
In conclusion, formula (4.16) derived in Sect. 4.2 on physics grounds indeed follows

from the wallcrossing identity (5.1). The above mathematical derivation holds for all
charge vectors, not just primitive ones, confirming the string theoretic conjecture made
in Sect. 4.4 below Eq. (4.19).

5.4. Proof of the combinatorial identity. Identity (5.17) is equivalent to

∞∑

s=1

(n + 2s)r0,h−s(s+n) = (−1)n−1
h∑

g=n+1

(
2g − 2

g − n − 1

)
rg,h . (5.18)

for any n ∈ Z, 0 ≤ n ≤ |h|, provided that, by convention, r0,k = 0 for k < 0.
In order to prove this, first recall the relevant statements of [46]. The rg,h are given

by
∑

g≥0

∑

h≥0

(−1)grg,h

(
y

1
2 − y− 1

2

)2g
qh =

∏

n≥0

1

(1 − qn)20 (1 − yqn)2
(
1 − y−1qn

)2

where the right-hand side is a meromorphic function on H × C and this identity only
holds if |qy| < 1 and |y−1q| < 1. Suppose in addition |y| < 1. Then this formula has
two consequences, first rg,h = 0 if g > h and also in the specialization y = 1 it reduces
to

∑

h≥0

r0,hqh =
∏

n≥1

1

(1 − qn)24
.

Secondly we recall the meromorphic index minus two Jacobi form
2(y, q) of [10],
actually its rescaled version, rescaled by η(q)−18 is


2(y, q)

η(q)18
= − 1

q
(

y
1
2 − y− 1

2

)2
∏

n≥0

1

(1 − qn)20 (1 − yqn)2
(
1 − y−1qn

)2 .
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The main result of that article are Fourier expansions of meromorphic negative index
Jacobi forms and in that case Theorem 1.3 of [10] yields


2(y, q)

η(q)18
= − 1

η(q)24
∑

n∈Z

(2n + 1)yqn(n+1)

(1 − yqn)
+

y2qn(n+2)

(1 − yqn)2
.

Define the Fourier coefficients an,h as


2(y, q)

η(q)18
=

∑

n∈Z
h≥−1

an,h ynqh,

where |qy| < 1 and |y−1q| < 1 and also |y| < 1. These coefficients can be computed
in two fashions and the comparison will yield the theorem. First, using the formula of
[46] we get


2(y, q)

η(q)18
= − 1

q
(

y
1
2 − y− 1

2

)2
∏

n≥0

1

(1 − qn)20 (1 − yqn)2
(
1 − y−1qn

)2

= − 1

q
(

y
1
2 − y− 1

2

)2
∑

h≥0

h∑

g=0

(−1)grg,h

(
y
1
2 − y− 1

2

)2g
qh

= −
∑

h≥−1

h+1∑

g=0

(−1)grg,h+1

(
y
1
2 − y− 1

2

)2(g−1)
qh

= −
∑

h≥−1

r0,h+1
(

y
1
2 − y− 1

2

)−2
qh −

∑

h≥−1

h+1∑

g=1

(−1)grg,h+1

(
y
1
2 − y− 1

2

)2(g−1)
qh

= −
∑

h≥−1

∞∑

n=0

r0,h+1nynqh −
∑

h≥−1

h+1∑

g=1

(−1)g+krg,h+1

(
2(g − 1)

k

)
yg−k−1qh .

In the last equality we have expanded
(

y
1
2 − y− 1

2

)−2
in the domain |y| < 1 and used

the binomial formula for
(

y
1
2 − y− 1

2

)2(g−1)
. It follows that

−an,h = nr0,h+1 + (−1)n+1
h+1∑

g=1

(−1)g+krg,h+1

(
2(g − 1)
g − n − 1

)
. (5.19)

Second, we will compute these coefficients using Theorem 1.3 of [10] together with the
expression of η(q)−24 in terms of the r0,h , namely


2(y, q)

η(q)18
= − 1

η(q)24
∑

n∈Z

(2n + 1)yqn(n+1)

(1 − yqn)
+

y2qn(n+2)

(1 − yqn)2

= −
∑

h≥0

r0,hqh
∑

n∈Z

(2n + 1)yqn(n+1)

(1 − yqn)
+

y2qn(n+2)

(1 − yqn)2

= −
∑

h≥0

r0,hqh
∑

n∈Z

∞∑

m=0

(2n + 1)ym+1qn(n+m+1) + (m + 1)ym+2qn(n+m+2)
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and hence the Fourier coefficients are

−an,h =
∞∑

s=0

(2s + n)r0,h+1−s(s+n) = nr0,h+1 +
∞∑

s=1

(2s + n)r0,h+1−s(s+n). (5.20)

So that comparing an,h−1 in (5.19) and (5.20) yields identity (5.18).

6. Modularity of Partition Functions

The goal of this section is to summarize the main modularity results obtained in this
paper.

6.1. The statement. In order to fix ideas and notation, the following is a brief self-
contained presentation of the construction carried in the previous sections.

• Let� be a rank � ≥ 1 lattice equipped with an integral even nondegenerate symmet-
ric bilinear form of signature (1, � − 1) written as (α, α′) �→ α · α′. This form will
be often referred to as the intersection form on � because of its geometric origin.
Let (vi )1≤i≤� be a basis in �. The matrix (vi · v j ) will be denoted by M = (Mi j ).
Let m = |det(M)|.

• Let �∨ = HomZ(�,Z) be the dual lattice. Using the bilinear form, � is identified
with a sublattice of �∨. For any r ∈ Z, r ≥ 1, the quotient �∨/r� is denoted by
Gr . The equivalence class of an element d ∈ �∨ in Gr will be denoted by [d]r .
Furthermore for any r ≥ 1 there is a natural projection Gr � G1. The image of an
element δ ∈ Gr in G1 will be denoted by [δ]1.

• Note that �∨ ⊂ �Q and there is a Q-valued nondegenerate symmetric bilinear
form pairing on �∨ induced by the given intersection form on �. In terms of the
dual basis (v̌i )1≤i≤� this pairing is given by (v̌i , v̌ j ) �→ (M−1)i j . Moreover, for any
l ∈ Z, l ≥ 1, the induced form descends to aQ/Z-valued nondegenerate symmetric
bilinear form ( , )l on Gl given by

([d]l , [d ′]l)l = d · d ′

l
mod Z.

In particular one obtains a Q/Z-valued quadratic form θl : Gl → Q/Z,

θl(δ) = (δ, δ)l

2
(6.1)

for all δ ∈ Gl .
• As shown byWeil in [67], the above data determines a representation ρ� : Mp(2,Z)

→ End(C[G1]) of the metaplectic group Mp(2,Z). The detailed construction is
presented in Appendix A for completeness. For the purposes of this section, note
that for a fixed τ in the upper half plane, the metaplectic group consists of pairs

(γ,
√

cτ + d) where γ =
(

a b
c d

)
∈ SL(2,Z) and is generated by T̃ = (T, 1) and

S̃ = (S,
√
τ). The Weil representation ρ� is given by

ρ�(T̃ )(eδ) = e2π iθ1(δ)eδ, ρ�(S̃)(eδ) = eπ i(�−2)/4

√
m

∑

δ′∈G1

e−2π i(δ,δ′)1eδ′ , (6.2)
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where (eδ)δ∈G1 is a basis of C[G1]. Note that this is a unitary symmetric repre-
sentation, hence the dual representation ρ∗

� is naturally isomorphic to its complex
conjugate. This identification will be implicit throughout this section.

• A scaled form of the Weil representation will be needed below. Namely for any
r ∈ Z, r ≥ 1, let �̃ ⊂ �R = � ⊗Z R be the sublattice

�̃ = {√rα |α ∈ �}.
Clearly, the intersection form on � induces an intersection form on �̃. The dual
lattice �̃∨ ⊂ �R is naturally identified with the sublattice

�̃∨ = {d/√r | d ∈ �∨}.
Then note that there is a lattice isomorphism

f : � ∼−→ �̃, f (α) = √
rα

which yields an isomorphism of finite abelian groups

φ : Gr
∼−→ �̃∨/�̃, φ([d]r ) = [d/√r ]1. (6.3)

Using this isomorphism, the Weil representation associated to �̃ with the induced
bilinear form yields a representation ρ�,r : Mp(2,Z) → End(C[Gr ]) given by

ρ�,r (T̃ )(eδ) = e2π iθr (δ)eδ, ρ�,r (S̃)(eδ) = eπ i(�−2)/4

r�/2
√

m

∑

δ′∈Gr

e−2π i(δ,δ′)r eδ′ (6.4)

where (eδ)δ∈Gr is a basis of C[Gr ].
• For completeness recall some basic facts on vector valued modular forms, also

needed below. Given a representation ρ : Mp(2,Z) → End(V ), with V a finite
dimensional complex vector space, a weight (w+, w−) vector valued modular form
of type ρ is a V -valued function 
(τ, τ̄ ) defined on the upper half plane such that


(γ · τ, γ · τ̄ ) = (cτ + d)w+ (cτ̄ + d)w− ρ
(
γ,

√
cτ + d

)

(τ, τ̄ ).

for any γ =
(

a b
c d

)
∈ SL(2,Z), where, as usual, γ · τ = aτ+b

cτ+d . An important

class of examples to be used in the construction below are the Siegel theta functions
constructed in [6, Thm. 4.1].

• For any r ∈ Z, r ≥ 1 and for any δ ∈ Gr there is a partition function for vertical
Donaldson–Thomas invariants of a�-polarized K3 pencil given in Eq. (4.22). This
formula is written in terms of a vector valuedmodular form−1(q)
̃(q)with values
in the Weil representation of �. Since the geometric details are not important for
modularity questions, it will be convenient to consider the following abstract variant
of this construction.
Let�(τ) = ∑

δ∈G1
�δ(τ)eδ be a weightw = −1−�/2 holomorphic vector valued

modular form of type ρ�. Note that for any k, l ∈ Z, k, l ≥ 1, there is an injective
morphism of abelian groups

fl,k : Gl → Gkl , fl,k([d]l) = [kd]kl
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for any d ∈ �∨. Hence any δ ∈ Im( fl,k) determines a unique element η = f −1
l,k (δ) ∈

Gl . Then for any r ∈ Z, r ≥ 1 and for any δ ∈ Gr let

Zr,δ(τ ) = 1

2r2
∑

k,l∈Z, k,l≥1
r=kl, δ= fl,k(η)

l−1∑

s=0

le−2π isθl (η)�[η]1
(

kτ + s

l

)
. (6.5)

where [η]1 ∈ G1 denotes the projection of η ∈ Gl onto G1.

In this framework, the main modularity result obtained in this paper reads:
For any r ∈ Z, r ≥ 1, the vector valued series

Zr (τ ) =
∑

δ∈Gr

Zr,δ(τ )eδ

is a holomorphic vector valued modular form of weight (−1 − �/2) and type ρ�,r .
A quick proof of this statement follows from the identification of the rank r partition

function (1.4) with a Hecke transform of a Jacobi form. The above claim follows from
the observation that the series�∗

r,δ(τ, τ̄ ,C, B) are in fact complex conjugates of Siegel
Jacobi functions for the lattice �̃ = √

r� ⊂ �R. In more detail, using the isomorphism
(6.3),

�∗
r,δ(τ, τ̄ ,C, B) =

∑

α̃∈�̃
e−2π i τ̄ (d̃+α̃+B̃/2)2−/2−2π iτ(d̃+α̃+B̃/2)2+/2+2π i(d̃+α̃+B̃/2)·C̃ ,

where d̃ = d/
√

r , B̃ = √
r B, C̃ = √

rC . Therefore they form a vector valued modular
form of weight ((� − 1)/2, 1/2) with values in the complex conjugate representation
ρ∗
�,r , and they satisfy the required linearly independence conditions. For the skeptical

reader, a second proof of the above statement will be provided below in a separate
subsection.

To conclude this section, note that this modularity statement yields the finite di-
mensionality result needed in the derivation of final expression (4.20) for the partition
function. In order to employ modularity arguments, one has to know that the vector
space of all possible partitions functions allowed by modularity constraints is finite di-
mensional. Given the above statement, this follows from the results of [37] on the finite
dimensionality of spaces of vector valued modular forms.

6.2. A second proof of modularity. The goal of this section is to give a direct proof of
the main modularity statement. The standard notation e(x) = e2π i x will be used for
brevity. To prove modularity, one needs to show that

Zr,δ

(
−1

τ

)
= τ−1−�/2e

(
�−2
8

)
√

mr�/2

∑

δ′∈Gr

e(−(δ, δ′)r )Zr,δ′(τ ). (6.6)

Recall that Zr,δ(τ ) is given by

Zr,δ(τ ) = 1

2r2
∑

k,l∈Z≥1, kl=r
δ= fl,k(η)

l−1∑

s=0

le(−sθl(η))�η1

(
kτ + s

l

)
. (6.7)
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where for any k, l ∈ Z, k, l ≥ 1

fl,k : �∨/ l�−→�∨/(kl)�

is the injective morphism of lattices defined by fl,k([d]l) = [kd]kl . In addition the
surjective morphism of lattices

gk,l : �∨/(kl)�−→�∨/ l�, gk,l([d]kl) = [d]l
will be also used in the proof. For any δ ∈ �∨/(kl)� let δl = gk,l(δ).

On needs to distinguish between the s = 0 and s > 0 cases. For s > 0, let p =
gcd(s, l) and s̃ = s/p, l̃ = l/p. Note that 0 < s̃ < l̃. Then (6.7) can be rewritten as

Zr,δ(τ ) = 1

2r2
∑

k,l∈Z≥1, kl=r
δ= fl,k(η)

l�η1

(
kτ

l

)

+
1

2r2
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ= f pl̃,k (η)

pl̃
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

e(−s̃θl̃(ηl̃))�η1

(
kτ + ps̃

pl̃

)
. (6.8)

Using the above formula, one can calculate Zr,δ(−1/τ) as follows. For the s = 0
terms note that

�η1

(
− k

lτ

)
= l−1−�/2k1+�/2τ−1−�/2e

(
�−2
8

)
√

m

∑

μ∈G1

e(−(η1, μ)1)�μ

(
lτ

k

)
. (6.9)

since�(τ) is a vector valued modular form of weight (−1− �/2) and type ρ�. In order
to evaluate the s ≥ 1 terms, one has to compute

�η1

(
− k

pl̃τ
+

s̃

l̃

)

using the modular properties of �. Let

τ ′ = p

kl̃
τ +

s′

l̃
, (6.10)

where s′ ∈ {0, . . . , l − 1} is uniquely defined by the requirement that s′s̃ = −1 mod l̃.
Then, it is easy to check that

− k

pl̃τ
+

s̃

l̃
= aτ ′ + b

cτ ′ + d
, (6.11)

for the SL(2,Z) transformation

(
a b
c d

)
=

(
s̃ − s̃s′+1

l̃
l̃ −s′

)
. (6.12)

Now note that Shintani’s formula [57], reviewed in Appendix B, yields an identity:
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�η1

(
− k

pl̃τ
+

s̃

l̃

)
= p−1−�/2τ−1−�/2k1+�/2l̃−�/2e

(
�−2
8

)
√

m
(6.13)

×
∑

σ∈G1

h̄l̃,−s′,s̃(η1, σ )�σ

(
p

kl̃
τ +

s′

l̃

)
. (6.14)

where h̄l̃,−s′,s̃ : G1 × G1 → C is a function defined as follows. Pick any lift μ ∈ Gl̃ of
σ , such that μ1 = σ . Then

h̄l̃,−s′,s̃(η1, σ ) =
∑

u∈�/l̃�

e

(
− s′

2
(μ + u, μ + u)l̃ − (μ + u, ηl̃)l̃ +

s̃

2
(ηl̃ , ηl̃)l̃

)
.

As shown in Appendix B, the right hand side of the above equation does not depend on
the chosen lift μ.

Combining (6.9) and (6.13), one gets

Zr,δ

(
−1

τ

)
= τ−1−�/2e

(
�−2
8

)

2r2
√

m

(
S0(τ ) + S≥1(τ )

)
, (6.15)

with

S0(τ ) =
∑

k,l∈Z≥1, kl=r
δ= fl,k (η)

l−�/2k1+�/2
∑

σ∈G1

e(−(η1, σ )1)�σ

(
lτ

k

)
, (6.16)

and

S≥1(τ ) =
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ= f pl̃,k (η)

p−�/2l̃1−�/2k1+�/2
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

e(−s̃θl̃(ηl̃))

×
∑

σ∈G1

h̄l̃,−s′,s̃(η1, σ )�σ

(
p

kl̃
τ +

s′

l̃

)
.

Now note that

e(−s̃θl̃(ηl̃))h̄l̃,−s′,s̃(η1, σ ) =
∑

u∈�/l̃�

e

(
− s′

2
(μ + u, μ + u)l̃ − (μ + u, ηl̃)l̃

)

where μ ∈ Gl̃ is an arbitrary lift of σ ∈ G1. Again, as observed in Appendix B, the
function hl̃,−s′,ηl̃

: Gl̃ → C,

hl̃,−s′,ηl̃
(μ) =

∑

u∈�/l̃�

e

(
− s′

2
(μ + u, μ + u)l̃ − (μ + u, ηl̃)l̃

)
(6.17)

is invariant under shifts μ �→ μ + x , x ∈ �/l̃�. Hence it descends to a function
h̄l̃,−s′,ηl̃

: G1 → C. Therefore

S≥1(τ ) =
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ= f pl̃,k (η)

p−�/2l̃1−�/2k1+�/2
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

∑

σ∈G1

h̄l̃,−s′,ηl̃
(σ )�σ

(
p

kl̃
τ +

s′
l̃

)
.

(6.18)
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Returning to Eq. (6.6), one now has to prove that

1

r�/2
∑

δ′∈Gr

e(−(δ, δ′)r )Zr,δ′(τ ) = 1

2r2
(
S0(τ ) + S≥1(τ )

)
. (6.19)

First, using (6.8) the left-hand-side can be written as

1

r�/2

∑

δ′∈Gr

e(−(δ, δ′)r )Zr,δ′(τ ) = 1

2r2r�/2

∑

δ′∈Gr

e(−(δ, δ′)r )
( ∑

k,l∈Z≥1, kl=r
δ′= fl,k (η)

l�η1

(
kτ

l

)

+
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ′= f pl̃,k (η)

pl̃
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

e(−s̃θl̃ (ηl̃ ))�η1

(
kτ + ps̃

pl̃

))

= 1

2r2
(
Q0(τ ) + Q≥1(τ )

)
,

where

Q0(τ ) = 1

r�/2
∑

k,l∈Z≥1, kl=r
η∈Gl

le(−(δl , η)l)�η1

(
kτ

l

)
, (6.20)

and

Q≥1(τ ) = 1

r�/2
∑

η∈Gl

e(−(δl , η)l)
∑

k,l̃,p∈Z≥1, kl̃ p=r

pl̃
∑

1≤s̃≤l̃1
(s̃,l̃)=1

e(−s̃θl̃(ηl̃))�η1

(
kτ + ps̃

pl̃

)
.

(6.21)
It will be shown below that Q0(τ ) = S0(τ ) and Q≥1(τ ) = S≥1(τ ).

In order to compute Q0(τ ) note that there is an exact sequence of finite abelian groups

0 → �/ l� → Gl → G1 → 0.

Given any element σ ∈ G1, let μ ∈ Gl denote an arbitrary lift of σ . Then one has
∑

η∈Gl
η1=σ

e(−(δl , η)l) =
∑

u∈�/ l�

e(−(δl , μ + u)l) = e(−(δl , μ)l)
∑

u∈�/ l�

e(−(δl , u)l).

Now note that

∑

u∈�/ l�

e(−(δl , u)l) =
{

l� if δ = fk,l(ξ) for some ξ ∈ Gk,

0 otherwise.
(6.22)

Moreover if δ = fk,l(ξ) for some ξ ∈ Gk , then e(−(δl , μ)l) = e(−(ξ1, μ1)1) =
e(−(ξ1, σ )1). Therefore,

Q0(τ ) =
∑

k,l∈Z≥1, kl=r
δ= fk,l (ξ)

k−�/2l1+�/2
∑

σ∈G1

e(−(ξ1, σ )1)�σ

(
kτ

l

)
. (6.23)
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Comparing with S0(τ ) in (6.16), exchanging the summation variables l ↔ k and the
symbols ξ ↔ η yields

Q0(τ ) = S0(τ ), (6.24)

as claimed above.
The computation of Q≥1(τ ) is similar. Recall that

Q≥1(τ ) = 1

r�/2

∑

η∈Gl

e(−(δl , η)l )
∑

k,l̃,p∈Z≥1, kl̃ p=r

pl̃
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

e(−s̃θl̃ (ηl̃ ))�η1

(
kτ + ps̃

pl̃

)
.

(6.25)

The right hand side of Eq. (6.25) can be written as

1

r�/2
∑

k,l̃,p∈Z≥1, kl̃ p=r

pl̃
∑

η∈Gl

e(−(δl , η)l)A(ηl̃)

where

A(ηl̃) =
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

e(−s̃θl̃(ηl̃))�η1

(
kτ + ps̃

pl̃

)

depends only on l̃, ηl̃ . In order to compute the sum over η ∈ Gl with fixed projection
γ = ηl̃ ∈ Gl̃ , note that there is an exact sequence of finite abelian groups

0 → �/p�
i−→Gl → Gl̃ → 0.

Given an element v ∈ �/p�, one has i(v) = [l̃α]l where α ∈ � is an arbitrary
representative of v. The right hand side, [l̃α]l ∈ Gl is clearly independent of the choice
of α. Then let γ0 ∈ Gl denote an arbitrary lift of γ and note that

∑

η∈Gl
ηl̃=γ

e(−(δl , η)l) = e(−(δl , γ0)l)
∑

v∈�/p�

e(−(δp, v)p) (6.26)

since l = pl̃. As before,

∑

v∈�/p�

e(−(δp, v)p) =
{

p� if δ = fkl̃,p(ξ) for some ξ ∈ Gkl̃ ,

0 otherwise.
(6.27)

Moreover, if δ = fkl̃,p(ξ) then

e(−(δl , γ0)l) = e(−(ξl̃ , γ )l̃).

Therefore,

Q≥1(τ ) =
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ= fkl̃,p(ξ)

k−�/2 p1+�/2l̃1−�/2
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

×
∑

γ∈Gl̃

e(−(ξl̃ , γ )l̃ − s̃θl̃(γ ))�γ1

(
kτ + ps̃

pl̃

)
. (6.28)
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Finally, using again the exact sequence

0 → �/l̃� → Gl̃ → G1 → 0,

note that

∑

γ∈Gl̃
γ1=ρ

e(−(ξl̃ , γ )l̃ − s̃θl̃(γ )) =
∑

v∈�/l̃�

e

(
− s̃

2
(ρ0 + v, ρ0 + v)l̃ − (ρ0 + v, ξl̃)l̃

)
.

where ρ0 ∈ Gl̃ is an arbitrary lift of ρ ∈ G1. Therefore

∑

γ∈Gl̃
γ1=ρ

e(−(ξl̃ , γ )l̃ − s̃θl̃(γ )) = hl̃,−s̃,ξl̃
(ρ0)

where hl̃,−s̃,ξl̃
: Gl̃ → C is the function defined in (6.17), which descends to the function

h̄l̃,−s̃,ξl̃
: G1 → C. Hence one obtains

∑

γ∈Gl̃
γ1=ρ

e(−(ξl̃ , γ )l̃ − s̃θl̃(γ )) = h̄l̃,−s̃,ξl̃
(ρ),

independent of the choice of ρ0. In conclusion the final expression for Q≥1(τ ) is

Q≥1(τ ) =
∑

k,l̃,p∈Z≥1, kl̃ p=r
δ= fkl̃,p(ξ)

k−�/2 p1+�/2l̃1−�/2
∑

1≤s̃≤l̃−1

(s̃,l̃)=1

∑

ρ∈G1

h̄l̃,−s̃,ξl̃
(ρ)�ρ

(
kτ + ps̃

pl̃

)
.

(6.29)

Comparing with (6.18), note that exchanging the summation variables p ↔ k, s′ ↔ s̃,
and the symbols ξ ↔ η yields

Q≥1(τ ) = S≥1(τ ), (6.30)

concluding the proof.

A. Weil Representations and Sublattices of the K3 Lattice

This section contains some basic facts on Weil representations with applications to
sublattices of the middle cohomology lattice H2(S,Z) of a smooth generic K3 surface
S.

First recall the definition of the Weil representation associated to any lattice ϒ

equipped with an integral even nondegenerate symmetric bilinear form ( , )ϒ of signa-
ture (b+, b−). Let κ ∈ Z denote the absolute value of the determinant of the bilinear form
and let ϒ∨ = Hom(ϒ,Z) be the dual lattice. For brevity let ϒQ = ϒ ⊗Z Q. Moreover
the natural extension of ( , )ϒ to ϒQ by Q-linearity will be also denoted by ( , )ϒ . The
distinction will be clear from the context.

The given bilinear form determines a lattice embedding ϒ ↪→ ϒ∨ such that Q =
ϒ∨/ϒ is a finite abelian group of rank κ . Note that the bilinear form ( , )ϒ extends by
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Q-linearity to ϒ∨ ⊂ ϒQ, hence it descends to a Q/Z-valued bilinear pairing ( , )Q on
Q. For any two equivalence classes δ1, δ2 ∈ Q one has

(δ1, δ2)Q = (ξ1, ξ2)ϒ mod Z,

where ξ1, ξ2 ∈ ϒ∨ are arbitrary representatives of δ1, δ2 respectively.
According to [67] the pair ϒ , ( , )ϒ determines a unitary symmetric representation

of the metaplectic group Mp(2,Z). For completeness, recall that in order to define the
metaplectic group one has to pick a complex number τ with Im(τ ) > 0. Then Mp(2,Z)
is the double cover of SL(2,Z) consisting of pairs

(σ,
√

cτ + d), σ =
(

a b
c d

)
∈ SL(2,Z).

This group is generated by

T̃ = (T, 1), S̃ = (S,
√
τ),

satisfying the relations (S̃)2 = (S̃T̃ )3 = (−I2, i), which are independent of the choice
of τ .

Let C[ϒ∨/ϒ] be the complex vector space generated by the basis elements eδ
with δ ∈ Q. Then the pair ϒ , ( , )ϒ determines a representation ρϒ : Mp(2,Z) →
End(C[ϒ∨/ϒ]) given by

ρϒ(T̃ )(eδ) = e2π i(δ,δ)Q/2eδ, ρ�(S̃)(eδ) = eπ i(b−−b+)/4

√
κ

∑

δ′∈Q

e−2π i(δ,δ′)Q eδ′ .

(A.1)

This representation is unitary symmetric, which implies that the dual representation ρ∗
ϒ

is isomorphic to its complex conjugate.
Now let�K3 be the middle cohomology lattice of a smooth generic K3 surface. This

lattice has rank 22 and is equipped with the natural intersection form ( , )K3 which is an
integral even nondegenerate symmetric bilinear form of determinant 1. Let� ⊂ �K3 be
a rank 1 ≤ � ≤ 20 sublattice such that the intersection form restricts to a nondegenerate
symmetric bilinear form ( , )� on� of signature (1, �− 1). Let�⊥ ⊂ �K3 denote the
sublattice consisting of all elements u ∈ �K3, u ·� = 0, and ( , )�⊥ denote the induced
nondegenerate symmetric bilinear form on �⊥. The later has signature (2, 20 − �).
Then the lattices �, �⊥ equipped with the induced bilinear forms determine the Weil
representations ρ�, ρ�⊥ . Below it will be shown that there is an isomorphism

ρ∗
�⊥ 
 ρ� (A.2)

of representations of the metaplectic group.
Let G = �∨/�, G⊥ = (�⊥)∨/�⊥. It suffices to prove that there is an isomorphism

of finite abelian groups f : G⊥
∼−→G such that

(ξ1, ξ2)G⊥ + ( f (ξ1), f (ξ2))G = 0 (A.3)

in Q/Z for any ξ1, ξ2 ∈ G⊥. The starting point is the observation that the natural
projections

p : (
�K3

)
Q

� �Q p⊥ : (
�K3

)
Q

� �⊥
Q
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with respect to the intersection form determine lattice isomorphisms

φ : �K3/�
⊥ ∼−→�∨, φ⊥ : �K3/�

∼−→ (�⊥)∨.

This follows easily since the intersection form on �K3 is unimodular. Then one further
obtains isomorphisms of finite abelian groups

φ̄ : �K3/(� ⊕ �⊥) → G, ψ̄ : �K3/(� ⊕ �⊥) → G⊥.

In particular there is an isomorphism f = φ̄ ◦ ψ̄−1 : G⊥ → G.
Next let u1, u2 ∈ �K3 be arbitrary elements. Note that

(p(ui ), p(ui ))� = (p(ui ), p(ui ))K3, (p⊥(ui ), p⊥(ui ))�⊥ = (p⊥(ui ), p⊥(ui ))K3

for i ∈ {1, 2}. Since
(
�K3

)
Q

= �Q ⊕ �⊥
Q.

one has ui = p(ui ) + p⊥(ui ), for i ∈ {1, 2}, which yields

(p(u1), p(u2))� + (p⊥(u1), p⊥(u2))�⊥ = (u1, u2)K3 ∈ Z.

This implies relation (A.3).

B. Shintani’s Formula

This section is a brief review of Shintani’s explicit formula [57, Prop. 1.6] for the matrix
elements of the Weil representation. As in Sect. 6, consider a lattice� equipped with an
integral even nondegenerate symmetric bilinear form. Let � denote the rank of� and m
denote the absolute value of the determinant of the given bilinear form. As explained in
the previous section, such a lattice determines a representation

ρ� : Mp(2,Z) → End(C[G1])
where Mp(2,Z) is the metaplectic double cover of SL(2,Z) and G1 = �∨/�. The
action of the generators of the metaplectic group is given in (A.1). Shintani’s result [57,
Prop. 1.6] provides an explicit formula for the matrix elements associated to an arbitrary
element

σ̃ = (σ,
√

cτ + d), σ =
(

a b
c d

)

of the metaplectic group with c > 0. In order to write this formula in detail consider
first the function

fc,a,d : �∨/c� × �∨/c� × �/c� → C

fc,a,d(γ, ζ, u) = e

(
a

2
(γ + u, γ + u)c − (γ + u, ζ )c +

d

2
(ζ, ζ )c

)

Next define a function

gc,a,d : �∨/c� × �∨/c� → C
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gc,a,d(γ, ζ ) =
∑

u∈�/c�

fc,a,d(γ, ζ, u). (B.1)

Then one checks as follows that the function ga,c,d satisfies the invariance conditions

gc,a,d(γ + x, ζ ) = gc,a,d(γ, ζ + y) = gc,a,d(γ, ζ )

for any (γ, ζ ) ∈ �∨/c� × �∨/c� and any (x, y) ∈ �/c� × �/c�.
Invariance under γ �→ γ + x is easily proven by changing the summation variable u

to u − x in the right hand side of (B.3).
Invariance under ζ �→ ζ + y requires more work. Recall that the pairing ( , )c

takes integral values on �∨/c� × �/c� and restricts to an even integral form on
�/c� × �/c�. Then, using the basic relation ad − bc = 1, one has the following
sequence of congruences mod 2Z:

a(γ + u, γ + u)c − 2(γ + u, ζ + y)c + d(ζ + y, ζ + y)c

≡ a(γ + u, γ + u)c − 2ad(γ + u, y)c + ad2(y, y)c − 2(γ + u − dy, ζ )c + d(ζ, ζ )c

≡ a(γ + u − dy, γ + u − dy)c − 2(γ + u − dy, ζ )c + d(ζ, ζ )c. (B.2)

Now invariance reduces again to a shift u �→ u + dy of the summation variable in (B.3).
In conclusion ga,c,d descends to a function

ḡc,a,d : �∨/� × �∨/� → C

Then Shintani’s formula reads

ρ�(σ̃ )δ1,δ2 = e
(
�−2
8

)

c�/2m1/2 ḡc,a,d(δ1, δ2).

A slightly different presentation of Shintani’s formula will be needed for the modu-
larity proof in Sect. 6.2. Namely let

f ′
c,a,d : �∨/c� × �∨/c� × �/c� → C

be the function defined by

f ′
c,a,d(γ, ζ, u) = e

(
a

2
(γ, γ )c − (γ, ζ + u)c +

d

2
(ζ + u, ζ + u)c

)

Let

hc,a,d : �∨/c� × �∨/c� → C

be defined by

hc,a,d(γ, ζ ) =
∑

u∈�/c�

f ′
c,a,d(γ, ζ, u). (B.3)

Then by analogy with the above argument for gc,a,d , the function hc,a,d also descends
to a function

h̄c,a,d : �∨/� × �∨/� → C.
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Furthermore it will be shown below that

hc,a,d(γ, ζ ) = gc,a,d(γ, ζ )

for any (γ, ζ ).
By analogy with Eq. (B.2) one has

a(γ, γ )c − 2(γ, ζ + u)c + d(ζ + u, ζ + u)c

≡ a(γ − du, γ − du)c − 2(γ − du, ζ )c + d(ζ, ζ )c mod 2Z.

Hence

hc,a,d(γ, ζ ) =
∑

u∈�/c�

fc,a,d(γ, ζ,−du).

Now note that c, d are coprime since ad − bc = 1. Since �/c� 
 (Z/cZ)×�, this

implies that multiplication by d gives an isomorphism �/c�
d−→�/c�. Therefore

∑

u∈�/c�

fc,a,d(γ, ζ,−du) =
∑

u∈�/c�

fc,a,d(γ, ζ, u),

which proves the claim.
Finally, note that a closely related function h̄c,d,γ : �∨/� → C is also used in

Sect. 6.2. For any fixed element γ ∈ �∨/c�, define

hc,d,γ : �∨/c� → C

by

hc,d,γ (ζ ) =
∑

u∈�/c�

e

(
d

2
(ζ + u, ζ + u)c − (ζ + u, γ )c

)

Then it follows again that hc,d,γ (ζ + y) = hc,d,γ (ζ ) for any ζ ∈ �∨/c�, y ∈ �/c�.
Hence hc,d,γ descends to a function h̄c,d,γ : �∨/� → C.
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