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1. Introduction

In this paper, along with its predecessor [6], we take the first steps towards a sys-
tematic study of threefolds fibred by K3 surfaces, with a particular focus on Calabi–Yau 
threefolds. Our aim in this paper is to gain a complete understanding of a relatively sim-
ple case, where the generic fibre in the K3 fibration is a mirror quartic, to demonstrate 
the utility of our methods and to act as a test-bed for developing a more general theory.

We have chosen mirror quartic K3 surfaces (here “mirror” is used in the sense of 
Nikulin [17] and Dolgachev [5]) because, from a moduli theoretic perspective, they may 
be thought of as the simplest non-rigid lattice polarized K3 surfaces. Indeed, mirror 
quartic K3 surfaces are polarized by the rank 19 lattice

M2 := H ⊕E8 ⊕ E8 ⊕ 〈−4〉,

so move in a 1-dimensional moduli space. By [5, Theorem 7.1], this moduli space is 
isomorphic to the modular curve Γ0(2)+ \H, we denote its compactification by MM2 .

Our first main result (Theorem 2.3) will show that an M2-polarized family of K3 
surfaces (in the sense of [6, Definition 2.1]) over a quasi-projective base curve U is 
completely determined by its generalized functional invariant map U → MM2 , which 
may be thought of as a K3 analogue of the classical functional invariant of an elliptic 
curve. This also explains why we choose to polarize our K3 surfaces by M2 instead of 
M1 := H⊕E8⊕E8⊕〈−2〉, which at first would seem like a more obvious choice. Indeed, 
M1-polarized K3 surfaces admit an antisymplectic involution that fixes the polarization, 
which means that the analogue of Theorem 2.3 does not hold for them; in analogy 
with elliptic curves again, the presence of an antisymplectic involution that fixes the 
polarization means that to uniquely determine an M1-polarized family of K3 surfaces 
we would also need a generalized homological invariant, to control monodromy around 
singular fibres, whereas for M2-polarized families the lack of such automorphisms means 
that the generalized functional invariant alone suffices.

A second reason for choosing mirror quartic K3 surfaces is the fact that the mirror 
quintic Calabi–Yau threefold admits a fibration by mirror quartics [6, Theorem 5.10]. 
This makes fibrations by mirror quartic K3 surfaces particularly interesting for the study 
of Calabi–Yau threefolds; the majority of this paper is devoted to this study. Indeed, our 
second main result (Corollary 2.8) provides a complete explicit description of all Calabi–
Yau threefolds that admit M2-polarized K3 fibrations, and we compute Hodge numbers 
in all cases. Throughout this study we present the mirror quintic as a running example, 
thereby demonstrating that many of its known properties can be easily recovered from 
our theory, although we would like to note that our methods apply to a significantly 
broader class of examples of Calabi–Yau threefolds, many of which do not have known 
descriptions as complete intersections in toric varieties. Finally, we note that mirror 
symmetry for the Calabi–Yau threefolds constructed here is explored in [7].
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The structure of this paper is as follows. In Section 2 we begin by proving Theorem 2.3, 
which shows that any M2-polarized family of K3 surfaces is uniquely determined by its 
generalized functional invariant. In particular, this means that any M2-polarized family 
of K3 surfaces is isomorphic to the pull-back of a fundamental family of M2-polarized 
K3 surfaces, introduced in Section 2.1, from the moduli space MM2 . The remainder of 
Section 2 is then devoted to showing how this theory can be used to construct Calabi–
Yau threefolds, culminating in Corollary 2.8, which gives an explicit description of all 
Calabi–Yau threefolds that admit M2-polarized K3 fibrations.

In Section 3 we begin our study of the properties of the Calabi–Yau threefolds 
constructed in Section 2, by computing their Hodge numbers. The main results are 
Proposition 3.5, which computes h1,1, and Corollary 3.9, which computes h2,1.

Section 4 is devoted to a brief study of the deformation theory of the Calabi–Yau 
threefolds constructed in Section 2. The main result is Proposition 4.1, which shows that 
any small deformation of such a Calabi–Yau threefold is induced by a deformation of the 
generalized functional invariant map of the K3 fibration on it. In particular, this allows 
us to relate the moduli spaces of such Calabi–Yau threefolds to Hurwitz spaces describing 
ramified covers between curves, and gives an easy way to study their degenerations.

2. Construction

We begin by setting up some notation. Let X be a smooth projective threefold that 
admits a fibration π : X → B by K3 surfaces over a smooth base curve B. Let NS(Xp)
denote the Néron–Severi group of the fibre of X over a general point p ∈ B. In what 
follows, we will assume that NS(Xp) ∼= M2, where M2 denotes the rank 19 lattice M2 :=
H ⊕E8 ⊕E8 ⊕ 〈−4〉.

Denote the open set over which the fibres of X are smooth K3 surfaces by U ⊂ B and 
let πU : XU → U denote the restriction of X to U . We suppose further that XU → U is 
an M2-polarized family of K3 surfaces, in the sense of the following definition.

Definition 2.1. [6, Definition 2.1] Let L be a lattice and πU : XU → U be a smooth 
projective family of K3 surfaces over a smooth quasiprojective base U . We say that XU

is an L-polarized family of K3 surfaces if there is a trivial local subsystem L of R2π∗Z

so that, for each p ∈ U , the fibre Lp ⊆ H2(Xp, Z) of L over p is a primitive sublattice of 
NS(Xp) that is isomorphic to L and contains an ample divisor class.

To any such family, we can associate a generalized functional invariant map g : U →
MM2 , where MM2 denotes the (compact) moduli space of M2-polarized K3 surfaces. g is 
defined to be the map which takes a point p ∈ U to the point in moduli corresponding 
to the fibre Xp of X over p.

[6, Theorem 5.10] gives five examples of Calabi–Yau threefolds admitting such fibra-
tions, arising from the Doran–Morgan classification [8, Table 1]. In each of these cases, 
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the family πU : XU → U is the pull-back of a special family of K3 surfaces X2 → MM2 , 
by the generalized functional invariant map.

Remark 2.2. In addition to the five examples from [6, Theorem 5.10], the authors are 
aware of many more Calabi–Yau threefolds which admit such fibrations. Indeed, the toric 
geometry functionality of the computer software Sage may be used to perform a search 
for such fibrations on complete intersection Calabi–Yau threefolds in toric varieties that 
have small Hodge number h2,1, yielding dozens of additional examples; details will appear 
in future work.

Our first result will show that this is not a coincidence: in fact, any M2-polarized 
family of K3 surfaces πU : XU → U is determined up to isomorphism by its generalized 
functional invariant, so we can obtain any such family by pulling back the special fam-
ily X2. We will therefore begin our study of threefolds fibred by M2-polarized K3 surfaces 
by studying the family X2.

Theorem 2.3. Let XU → U denote a non-isotrivial M2-polarized family of K3 surfaces 
over a quasi-projective curve U , such that the Néron–Severi group of a general fibre of 
XU is isometric to M2. Then XU is uniquely determined (up to isomorphism) by its 
generalized functional invariant map g : U → MM2 .

Proof. Suppose for a contradiction that XU and YU are two non-isomorphic M2-polarized 
families of K3 surfaces over U , that satisfy the conditions of the theorem and have the 
same generalized functional invariant g : U → MM2 .

Let {Ui} denote a cover of U by simply connected open subsets and let XUi
(resp. YUi

) 
denote the restriction of XU (resp. YU ) to Ui for each i. On each Ui, Ehresmann’s Theo-
rem (see, for example, [21, Section 9.1.1]) shows that we can choose markings compatible 
with the M2-polarizations on the families of K3 surfaces XUi

and YUi
. Thus, by the Global 

Torelli Theorem [17, Theorem 2.7’], the families XUi
and YUi

are isomorphic for each i.
Therefore, since we have assumed that XU and YU are non-isomorphic, they must 

differ in how the families XUi
and YUi

glue together over the intersections Ui ∩ Uj . Let 
V ⊂ Ui ∩ Uj be a connected component of such an intersection, such that the gluing 
maps differ over V . As XU and YU are isomorphic over V , the gluing maps over V
must differ by composition with a nontrivial fibrewise automorphism ψ. Moreover, by 
the polarization condition, ψ must preserve the M2-polarizations on the fibres over V .

Now consider the action of ψ on the fibre Xp of XU over a point p ∈ V . Since XU

is not isotrivial, we may choose p so that the Néron–Severi lattice of Xp is isometric 
to M2 and so, as X is an M2-polarized family of K3 surfaces, ψ∗ ∈ O(H2(Xp, Z)) fixes 
Pic(Xp) ∼= M2. Now, according to [17, Section 3.3], there is an exact sequence

0 −→ HXp
−→ Aut(Xp) −→ O(M2),
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where HXp
is a finite cyclic group of automorphisms of Xp which act nontrivially on 

H2,0(Xp). Since ψ ∈ Aut(Xp) maps to the trivial element of O(M2), we thus see that ψ
must act non-symplectically on Xp.

Thus, by [18, Proposition 1.6.1], ψ∗ descends to an element of the subgroup O(M⊥
2 )∗

of O(M⊥
2 ) which induces the trivial automorphism on the discriminant group AM⊥

2
. 

Furthermore, since Xp is general, M⊥
2 supports an irreducible rational Hodge structure, 

so ψ∗ must act irreducibly on M⊥
2 . Therefore, by [17, Theorem 3.1], it follows that the 

order n of ψ∗ must satisfy ϕ(n)| rank(M⊥
2 ) = 3, where ϕ(n) denotes Euler’s totient 

function. Using Vaidya’s [20] lower bound for ϕ(n),

ϕ(n) ≥
√
n for n > 2, n = 6

we see that ϕ(n)|3 implies that n ≤ 9. A simple check then shows that n = 2 or n = 1. 
If n = 2 then, by irreducibility, ψ∗ would have to act as −Id on M⊥

2 and as the identity 
on M2. However, since the discriminant group of M⊥

2 is AM⊥
2

∼= Z/4Z, such ψ∗ would 
not descend to the identity on AM⊥

2
, so this case cannot occur. Therefore, ψ∗ must be 

of order 1. But then ψ must be the trivial automorphism, which is a contradiction. �
2.1. A fundamental family

The family X2 → MM2 is described in [6, Section 5.4.1]. It is given as the minimal 
resolution of the family of hypersurfaces in P3 obtained by varying λ in the following 
expression

λw4 + xyz(x + y + z − w) = 0. (1)

This family has been studied extensively by Narumiya and Shiga [16], we will make 
substantial use of their results in the sequel (note, however, that our λ is not the same 
as the λ used in [16], instead, our λ is equal to μ4 or u

256 from [16]).
Recall from [5, Theorem 7.1] that MM2 is the compactification of the modular curve 

Γ0(2)+ \ H. In [6, Section 5.4.1] it is shown that the orbifold points of orders (2, 4, ∞)
in MM2 occur at λ = ( 1

256 , ∞, 0) respectively, and the K3 fibres of X2 are smooth away 
from these three points. Let UM2 denote the open set obtained from MM2 by removing 
these three points. Then the restriction of X2 to UM2 is an M2-polarized family of K3 
surfaces (in the sense of Definition 2.1).

As noted in the previous section, it follows from Theorem 2.3 that any M2-polarized 
family of K3 surfaces XU → U can be realized as the pull-back of X2 by the generalized 
functional invariant map g : U → MM2 .

2.2. Constructing Calabi–Yau threefolds

In the remainder of this paper, we will use this theory to construct Calabi–Yau three-
folds fibred by M2-polarized K3 surfaces and study their properties. We note that, in 
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this paper, a Calabi–Yau threefold will always be a smooth projective threefold X with 
ωX ∼= OX and H1(X , OX ) = 0. We further note that the cohomological condition in this 
definition implies that any fibration of a Calabi–Yau threefold by K3 surfaces must have 
base curve P1, so from this point we restrict our attention to the case where B ∼= P1.

Recall that, by [6, Theorem 5.10], we already know of several Calabi–Yau threefolds 
with h2,1 = 1 that admit fibrations by M2-polarized K3 surfaces. It is noted in [6, Section 
5.4] that the generalized functional invariant maps determining these fibrations all have 
a common form, given by a pair of integers (i, j): the map g is an (i + j)-fold cover 
ramified at two points of orders i and j over λ = ∞, once to order (i +j) over λ = 0, and 
once to order 2 over a point that depends upon the modular parameter of the threefold, 
where i, j ∈ {1, 2, 4} are given in [6, Table 1].

The aim of this section is to extend this construction of Calabi–Yau threefolds to a 
more general setting. Let g : P1 → MM2 be an n-fold cover and let [x1, . . . , xk], [y1, . . . , yl]
and [z1, . . . , zm] be partitions of n encoding the ramification profiles of g over λ = 0, 
λ = ∞ and λ = 1

256 respectively. Let r denote the degree of ramification of g away from 
λ ∈ {0, 1

256 , ∞}, defined to be

r :=
∑
p∈P

1

g(p)/∈{0, 1
256 ,∞}

(ep − 1),

where ep denotes the ramification index of g at the point p ∈ P1.
Let π2 : X̄2 → MM2 denote the threefold fibred by (singular) K3 surfaces defined by 

Equation (1); then X̄2 is birational to X2. Let π̄g : X̄g → P1 denote the normalization of 
the pull-back g∗X̄2.

Proposition 2.4. The threefold X̄g has trivial canonical sheaf if and only if k + l + m −
n − r = 2 and either l = 2 with y1, y2 ∈ {1, 2, 4}, or l = 1 with y1 = 8.

Proof. We begin by noting that a simple adjunction calculation shows that X̄2 has 
canonical sheaf ωX̄2

∼= π∗
2OMM2

(−1). We need to study the effects of the map X̄g → X̄2

on this canonical sheaf.
It is an easy local computation using Equation (1) to show that the pull-back g∗X̄2 is 

normal away from the fibres over g−1(∞). To see what happens on the remaining fibres, 
suppose that p ∈ P1 is a point with g(p) = ∞ and let yi denote the order of ramification 
of g at p. Then the fibre over p is contained in the non-normal locus of g∗X̄2 if and only if 
yi > 1. Away from the fibre over p the normalization map X̄g → g∗X̄2 is an isomorphism, 
whilst on the fibre over p it is an hcf(yi, 4)-fold cover.

With this in place, we perform two adjunction calculations. The first is for the map 
of base curves g : P1 → MM2 . As MM2

∼= P1, we find that we must have

k + l + m− n− r − 2 = 0. (2)
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Next, we compute ωX̄g
. We find:

ωX̄g

∼= π̄∗
gOP1

(
n + r − k −m +

l∑
i=1

(
yi

hcf(yi, 4) − 1
))

.

Putting these equations together, we see that the condition that ωX̄g
is trivial is equiv-

alent to

l − 2 +
l∑

i=1

(
yi

hcf(yi, 4) − 1
)

= 0.

Since l ≥ 1 and ( yi

hcf(yi,4) − 1) is nonnegative for any integer yi > 0, we must therefore 
have either l = 2 and yi = hcf(yi, 4), in which case yi|4, or l = 1 and y1 = 2 hcf(y1, 4), 
in which case y1 = 8. Together with Equation (2), this proves the proposition. �

Next we will show that we can resolve most of the singularities of X̄g.

Proposition 2.5. If Proposition 2.4 holds, then there exists a projective birational mor-
phism Xg → X̄g, where Xg is a normal threefold with trivial canonical sheaf and at worst 
Q-factorial terminal singularities. Furthermore, any singularities of Xg occur in its fibres 
over g−1( 1

256 ), and Xg is smooth if g is unramified over λ = 1
256 (which happens if and 

only if m = n).

Remark 2.6. There exist examples of maps g : P1 → MM2 , satisfying the conditions of 
this proposition and ramified over λ = 1

256 , for which the corresponding threefolds Xg

are not smooth; see Example 4.5.

Proof. We prove this proposition by showing that the singularities of X̄g may all be 
crepantly resolved, with the possible exception of some Q-factorial terminal singularities 
lying in fibres over g−1( 1

256 ).
The threefold X̄2 has six smooth curves C1, . . . , C6 of cA3 singularities which form 

sections of the fibration π2. These lift to the cover X̄g so that, away from the fibres over 
g−1{0, 1

256 , ∞}, the threefold X̄g also has six smooth curves of cA3 singularities which 
form sections of the fibration. These can be crepantly resolved, so Xg is smooth away 
from its fibres over g−1{0, 1

256 , ∞}.
Now let Δ0 be a disc in MM2 around λ = 0 and let Δ′

0 be one of the connected 
components of its preimage under g. Then g : Δ′

0 → Δ0 is an xi-fold cover ramified 
totally over λ = 0, for some xi. The threefold X̄2 is smooth away from the curves Ci over 
Δ0 and the fibre of π2 : X̄2 → MM2 over λ = 0 has four components meeting transversely 
along six curves D1, . . . , D6, with dual graph a tetrahedron.

After pulling back to Δ′
0 we see that, after resolving the pull-backs of the six curves 

Ci of cA3 singularities, the threefold X̄g is left with six curves of cAxi−1 singularities in 
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its fibre over g−1(0), given by the pull-backs of the curves Dj. Friedman [9, Section 1]
has shown how to crepantly resolve such a configuration using toric geometry, so Xg is 
smooth over Δ′

0.
Next let Δ∞ be a disc in MM2 around λ = ∞ and let Δ′

∞ be one of the connected 
components of its preimage under g. Then g : Δ′

∞ → Δ∞ is a yi-fold cover ramified 
totally over λ = ∞, for some yi ∈ {1, 2, 4, 8}.

The family π2 : X̄2 → MM2 has a fibre of multiplicity four over λ = ∞ and, in addition 
to the six curves Ci of cA3 singularities forming sections of the fibration π2, the threefold 
X̄2 also has four curves E1, . . . , E4 of cA3 singularities in its fibre over λ = ∞. The curves 
Ej intersect in pairs at six points, which coincide with the six points of intersection of 
the curves Ci with the fibre π−1

2 (∞). Thus, over Δ∞ the threefold X̄2 has ten curves of 
cA3 singularities, which meet in six triple points.

If yi = 1, then X̄g is isomorphic to X̄2 over Δ∞. The ten curves of cA3 singularities 
may be crepantly resolved by the toric method in [9, Section 1], so Xg is smooth over Δ′

∞. 
This resolution gives three exceptional components over each curve of cA3 singularities 
and three exceptional components over each point where three of these curves meet. The 
resulting singular fibre over g−1(∞) has 31 components (3 from each of the curves Ej, 
three from each of the six intersections between these curves, and the strict transform 
of the original component).

When yi = 2, the four curves Ej lift to four curves of cA1 singularities in X̄g. The 
threefold X̄g thus contains ten curves of singularities over Δ′

∞: six curves of cA3’s coming 
from the pull-backs of the Ci and four curves of cA1’s coming from the pull-backs of the 
Ej . Away from the six points Ci ∩Ej ∩Ek, these ten curves of singularities are smooth 
and may be crepantly resolved. It therefore suffices to compute resolutions locally around 
these six points.

We compute such resolutions using a modification of the toric method from [9, Section 
1]. Locally in a neighbourhood of a point Ci ∩ Ej ∩ Ek, the singularity of X̄g looks like 
{w4 + t2xy = 0} ⊂ C4. This corresponds to an affine toric variety with cone generated 
by the rays (1, 0, 0), (0, 1, 0), (−1, −2, 4). Its dual cone is generated by the rays (0, 0, 1), 
(4, 0, 1), (0, 2, 1), and can be resolved by adding in additional rays generated by (1, 0, 1), 
(3, 0, 1), (0, 1, 1), (2, 1, 1), (1, 1, 1), and (2, 0, 1), along with faces given by iterated stellar 
subdivision (with rays ordered as above). This subdivision is illustrated in Fig. 1a, which 
shows its intersection with the slice (a, b, 1). As all rays added are generated by interior 
lattice points on a height 1 slice, this resolution is crepant, and the iterated stellar 
subdivision process ensures that it will be projective.

The corresponding configuration of exceptional divisors is shown in Fig. 1b; divisors 
which are part of the fibre g−1(∞) are shaded. We thus see that the resulting singular 
fibre over g−1(∞) has 11 components: four from the four curves Ej and six from the six 
intersections Ci ∩ Ej ∩ Ek.

Finally, if 4|yi, the lifts of the four curves Ej are smooth in Xg. Over Δ′
∞, the threefold 

X̄g thus contains only the six curves of cA3 singularities coming from the pull-backs of 
the curves Ci. These may be crepantly resolved without adding any new components to 
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Fig. 1. Toric resolution in a neighbourhood of a point Ci ∩ Ej ∩ Ek when yi = 2.

the fibre of X̄g over g−1(∞). Thus we see that, in all cases, the threefold Xg is smooth 
over Δ′

∞.
Finally, let Δ 1

256
be a disc in MM2 around λ = 1

256 and let Δ′
1

256
be one of the 

connected components of its preimage under g. Then g : Δ′
1

256
→ Δ 1

256
is an zi-fold cover 

ramified totally over λ = 1
256 , for some zi.

The threefold X̄2 is smooth over Δ 1
256

away from the six curves Ci of cA3’s forming 
sections of the fibration, but its fibre over λ = 1

256 has an additional isolated A1 sin-
gularity. Upon proceeding to the zi-fold cover Δ′

1
256

→ Δ 1
256

, this becomes an isolated 

terminal singularity of type cAzi−1 in X̄g.
Thus Xg is smooth away from its fibres over g−1( 1

256 ), where it can have isolated ter-
minal singularities. By [12, Theorem 6.25], we may further assume that Xg is Q-factorial. 
To complete the proof, we note that if g is a local isomorphism over Δ 1

256
, then Xg is 

also smooth over g−1( 1
256 ) and thus smooth everywhere. �

Let πg : Xg → P1 denote the fibration induced on Xg by the map π̄g : X̄g → P1. By 
construction, the restriction of πg to the smooth fibres is an M2-polarized family of K3 
surfaces, in the sense of [6, Definition 2.1]. Moreover, we have:

Proposition 2.7. Let Xg be a threefold as in Proposition 2.5. Then the cohomology 
H1(Xg, OXg

) = 0.

Proof. Since H1(P1, OP1) = 0, the proposition will follow immediately from the Leray 
spectral sequence if we can prove that R1(πg)∗OXg

= 0.
To show this, we note that Xg is a normal projective threefold with at worst termi-

nal singularities and the canonical sheaf ωXg
∼= OXg

is locally free. So we may apply 
the torsion-freeness theorem of Kollár [11, Theorem 10.19] to see that R1(πg)∗OXg

is 
a torsion-free sheaf on P1. Moreover, since H1(X, OX) = 0 for a generic fibre X of 
πg : Xg → P1, the sheaf R1(πg)∗OXg

also has trivial generic fibre. We must therefore 
have R1(πg)∗OXg

= 0. �
Corollary 2.8. Let Xg be a threefold as in Proposition 2.5. If Xg is smooth, then Xg is a 
Calabi–Yau threefold.
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Conversely, let X → P1 be a Calabi–Yau threefold fibred by K3 surfaces, let U ⊂ P1

denote the open set over which the fibres of X are smooth and let XU denote the restriction 
of X to U . Suppose that XU is an M2-polarized family of K3 surfaces (in the sense of 
Definition 2.1) and that the Néron–Severi group of a general fibre of XU is isometric to 
M2. Then X is birational to a threefold Xg as in Proposition 2.5.

Proof. To prove the first statement note that, by Proposition 2.5, Xg has trivial canonical 
bundle. Moreover, H1(Xg, OXg

) = 0 by Proposition 2.7. So Xg is Calabi–Yau.
The converse statement follows from the fact that, if g : P1 → MM2 denotes the gener-

alized functional invariant of X , then Theorem 2.3 shows that X and Xg are isomorphic 
over the open set U . �
Example 2.9. We now explain how the five Calabi–Yau threefolds fibred by M2-polarized 
K3 surfaces from [6, Theorem 5.10] fit into this picture. As noted in [6, Section 5.4], in 
each of these cases the generalized functional invariant g : P1 → MM2 has the special 
form

g : (s : t) �→ λ = Asi+j

ti(s− t)j ,

where (s : t) are coordinates on P1, A ∈ C is a modular parameter for the threefold, and 
i, j ∈ {1, 2, 4} are as listed in [6, Table 1].

In our notation from above, this generalized functional invariant map g has 
(k, l, m, n, r) = (1, 2, i + j, i + j, 1), [x1] = [i + j], [y1, y2] = [i, j], and [z1, . . . , zi+j ] =
[1, . . . , 1]. It follows immediately from Proposition 2.5 and Corollary 2.8 that Xg is a 
smooth Calabi–Yau threefold for each choice of i, j, as we should expect. The reason for 
the special form of the generalized functional invariants g appearing in these cases will 
be discussed later in Remark 3.10.

In particular, we see that the M2-polarized K3 fibration on the quintic mirror threefold 
appears as a special case of this construction, with (i, j) = (1, 4). Its generalized func-
tional invariant g therefore has (k, l, m, n, r) = (1, 2, 5, 5, 1), [x1] = [5], [y1, y2] = [1, 4], 
and [z1, . . . , z5] = [1, 1, 1, 1, 1].

3. Hodge numbers

This enables us to construct a large class of Calabi–Yau threefolds Xg admitting 
fibrations by M2-polarized K3 surfaces. We next study the Hodge numbers of these 
Calabi–Yau threefolds.

Remark 3.1. It is easy to see here that the case l = 1, y1 = 8 is a smooth degeneration 
of the case l = 2, (y1, y2) = (4, 4), corresponding to restriction to a sublocus in moduli. 
Therefore, when discussing the Hodge numbers of the Calabi–Yau threefolds Xg, to avoid 
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pathological cases we will restrict to the case l = 2. In this case we have y1, y2 ∈ {1, 2, 4}
and k + m − n − r = 0.

3.1. Leray filtrations and local systems

We begin by developing some general theoretical results that apply to any K3-fibred 
threefolds, then specialize these to the case that interests us. So let π : X → B be a 
smooth projective threefold fibred by K3 surfaces over a smooth complete base curve B. 
Our aim is to compute the Betti numbers bi(X ) of X .

Let us set up some notation. Denote the fibre of X over p ∈ B by Xp, let Σ ⊂ B

denote the set of points p over which the fibre Xp is not smooth, and let U = P1 − Σ. 
Let j : U ↪→ B denote the natural embedding and let πU denote the restriction of π to 
π−1(U).

With this in place, our first lemma computes b2(X ) and b4(X ). It should be thought 
of as a version of the Shioda–Tate formula for K3 surface fibrations.

Lemma 3.2. With notation as above, let ρp denote the number of irreducible components 
of Xp and let ρh be the rank of the subgroup of H2(Xp, C), for p ∈ U , that is fixed by the 
action of monodromy. Then we have

b2(X ) = b4(X ) = 1 + ρh +
∑
p∈B

(ρp − 1).

Proof. We begin by assuming that each singular fibre of X is normal crossings. We 
address the non-normal crossings situation at the end of the proof.

We compute b4(X ) using the Leray spectral sequence. By [23, Corollary 15.15], this 
spectral sequence degenerates at the E2 term, so we may write

b4(X ) = h0(B,R4π∗C) + h1(B,R3π∗C) + h2(B,R2π∗C).

We will deal with each term in succession.
To compute these terms we will make repeated use of the following fact. By [23, 

Proposition 15.12], for each n ≥ 0 there is a surjective map of constructible sheaves

Rnπ∗C −→ j∗R
n(πU )∗C.

The kernel of this map is a skyscraper sheaf Sn supported on Σ, so we have a short exact 
sequence

0 −→ Sn −→ Rnπ∗C −→ j∗R
n(πU )∗C −→ 0 (3)

Now we begin by computing H0(B, R4π∗C). Since πU is a topologically trivial fi-
bration, we have that R4(πU )∗C is a constant sheaf with stalk C, so j∗R4(πU )∗C is 
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also. Taking cohomology in (3) (for n = 4), we thus obtain a short exact sequence of 
cohomology groups

0 −→ H0(B,S4) −→ H0(B,R4π∗C) −→ C −→ 0.

Since S4 is a skyscraper sheaf supported on Σ, it suffices to compute H0(B, S4) lo-
cally around each point of Σ. So choose a small neighbourhood Us around each s ∈ Σ. 
The Clemens contraction theorem implies that H0(Us, R4π∗C) = H4(π−1(Us), C) ∼=
H4(Xs, C).

Since Xs is normal crossings, the rank of H4(Xs, C) can be computed using the Mayer–
Vietoris spectral sequence, as described by Griffiths and Schmid in [10, Section 4], as 
follows. Let {Si} denote the set of irreducible components of Xs, then define (Xs)i1,...,ip =⋂

i0,...,ip
Sij for a disjoint set of indices i0, . . . , ip and let X [p]

s =
∐

i0<···<ip
(Xs)i0,...,ip . The 

E1 term of the Mayer–Vietoris spectral sequence is given by Ep,q
1 = Hq(X [p]

s , C).
This spectral sequence degenerates at E2 and converges to Hp+q(Xs, C). Computing 

H4(Xs, C) thus reduces to computing Ei,4−i
1 = H4−i(X [i]

s , C) for each 0 ≤ i ≤ 4. Note 
that this term vanishes for i = 0 for dimension reasons, so it follows that Ei,4−i

1 = 0 if 
i = 0 and E0,4

1 = H4(X [0]
s , C) ∼= Cρs . We therefore see that H4(Xs, C) ∼= Cρs , which 

gives H0(Us, S4) ∼= Cρs−1.
Putting everything together, we obtain an exact sequence

0 −→
⊕
s∈Σ

Cρs−1 −→ H0(B,R4π∗C) −→ C −→ 0,

and taking dimensions gives

h0(B,R4f∗C) = 1 +
∑
s∈Σ

(ρs − 1).

Next we compute H1(B, R3π∗C). Taking cohomology of the exact sequence (3) (for 
n = 3), we obtain an isomorphism

H1(B,R3π∗C) ∼= H1(B, j∗R
3(πU )∗C).

But R3(πU )∗C is trivial, since every fibre of πU is a smooth K3 surface, therefore 
j∗R

3(πU )∗C is the trivial sheaf on B and H1(B, j∗R3(πU )∗C) = 0.
To compute H2(B, R2π∗C), we use the following standard exact sequence

0 → j!R
2(πU )∗C → R2π∗C → i∗((R2π∗C)|Σ) → 0

where i : Σ ↪→ B denotes the inclusion. Again, i∗((R2π∗C)|Σ) is a skyscraper sheaf 
supported on Σ, so taking cohomology we deduce that

H2(B, j!R
2(πU )∗C) ∼= H2(B,R2π∗C).
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It is then known that H2(B, j!R2(πU )∗C) is just H2
c (U, R2(πU )∗C), where H2

c denotes 
compactly supported cohomology. Verdier duality can then be applied to give that

H2
c (U,R2(πU )∗C) ∼= H0(U,Hom(R2(πU )∗C,C)).

Finally, we recognize that classes in H0(U, Hom(R2(πU )∗C, C)) are in bijection with 
classes in R2(πU )∗C which are fixed by the monodromy representation. Therefore

h2(B,R2π∗C) = h2(Xp,C)π1(U,p) = ρh

as required. This completes the proof when all singular fibres of X have normal crossings.
If X does not have normal crossings singular fibres, Hironaka’s theorem on embedded 

resolutions says that we may repeatedly blow up smooth loci in X until its fibres are 
normal crossings. Let X̃ → X be such a blow-up, and assume that we have blown up r
times. Then h4(X̃ ) = h4(X ) + r. Furthermore, each blow-up adds only one component 
to a singular fibre, so if π̃ : X̃ → B is the induced fibration and σp is the number of 
irreducible components in π̃−1(p), then∑

p∈B

(ρp − 1) + r =
∑
p∈B

(σp − 1).

Therefore the result for X follows from the result for X̃ . �
Remark 3.3. This proof can be repeated for any fibration whose fibres are generically 
smooth and satisfy H1(Xp, C) = 0.

Next we use similar methods to prove a result that will allow us to compute b3(X ).

Lemma 3.4. With notation as above, if every fibre Xp of π is either:

1. a K3 surface with at worst ADE singularities, or
2. a normal crossings union of smooth surfaces Si, with H3(Si, C) = 0,

then b3(X ) = h1(B, j∗R2(πU )∗C).

Proof. As in the proof of Lemma 3.2, we use the degeneration of the Leray spectral 
sequence for the fibration π : X → B. This tells us that

b3(X ) = h0(B,R3π∗C) + h1(B,R2π∗C) + h2(B,R1π∗C).

As usual, we have the short exact sequence (3), which reads

0 −→ Sn → Rnπ∗C −→ j∗R
n(πU )∗C −→ 0.

Recall that Sn is a skyscraper sheaf supported on Σ.
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Since R1(πU )∗C is trivial, so is j∗R1(πU )∗C. Therefore, taking cohomology of the 
above sequence (for n = 1), we obtain that H2(B, R1π∗C) must also be trivial. A similar 
argument can be used to show that H1(B, R2π∗C) is isomorphic to H1(B, j∗R2(πU )∗C).

It remains to show that H0(B, R3π∗C) is trivial. Noting that j∗R3(πU )∗C is triv-
ial, taking cohomology in the exact sequence above (for n = 3) gives an isomorphism 
H0(B, R3π∗C) ∼= H0(B, S3) (this last group is called A in [23]).

Since S3 is a skyscraper sheaf on Σ, it suffices to show that H0(B, S3) is trivial 
locally around each point of Σ. So let s ∈ Σ and let Us ⊂ B be a small neighbourhood 
of s. The Clemens contraction theorem implies that H0(Us, R3π∗C) = H3(π−1(Us), C) ∼=
H3(Xs, C), which is trivial if Xs is a fibre satisfying case (1) of the lemma, so H0(Us, S3)
is also trivial for such fibres.

We may therefore restrict ourselves fibres satisfying case (2) of the lemma. Zucker 
[23, Section 15] shows how to compute H0(Us, S3) in a neighbourhood of such fibres, as 
follows. Let s ∈ Σ be a point over which the fibre satisfies the conditions of case (2) and 
let Δs ⊂ Us be a small closed disc around s. Let XΔs

= π−1(Δs) and let ∂XΔs
be the 

boundary of XΔs
. Then Zucker [23, Section 15] proves that H0(Us, S3) may be computed 

as the image of a morphism of mixed Hodge structures,

H0(Us,S3) = im
(
φs : H3(XΔs

, ∂XΔs
) → H3(Xs)

)
,

from which it follows that H0(Us, S3) admits a pure Hodge structure of weight 3. The 
exact definition of the map φs appearing here will not concern us, as we only need to 
use the fact that it is a morphism of mixed Hodge structures; the interested reader may 
refer to [23, Section 15] for more details.

To show that this image is trivial, we use the Mayer–Vietoris spectral sequence, as 
described in the proof of Lemma 3.2. Recall that this is a spectral sequence which 
degenerates to Hp+q(Xs, C) at the E2 term and satisfies Ep,q

1 = Hq(X [p]
s , C), where 

X
[p]
s is the disjoint union of all codimension p strata in Xs. Its graded pieces GrWi are 

the weight-graded pieces of the functorial mixed Hodge structure on Xs. Thus only 
H3(X [0]

s , C), H2(X [1]
s , C) and H1(X [2]

s , C) may contribute to H3(Xs, C). Moreover, by 
the condition that H3(Si, Q) = 0 we obtain GrW3 H3(Xs, C) = H3(X [0]

s , C) = 0.
Zucker [23, Section 15] notes that the weight filtration on H3(XΔs

, ∂XΔs
) has Wi = 0

for i ≤ 2. By strictness, we thus see that

im(φs) ∩W2(H3(Xs,C)) = 0

and

φs(WiH
3(XΔs

, ∂XΔs
)) = im(φs) ∩Wi(H3(Xs)) = im(φs) ∩W3(H3(Xs))

for all i ≥ 3. So in particular

im(φs) = φs(W3H
3(XΔs

, ∂XΔs
)) ⊂ W3(H3(Xs))
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and the map

W3(H3(Xs)) −→ GrW3 (H3(Xs))

is injective on the image of φs. Thus the image of the induced map

W3H
3(XΔs

, ∂XΔs
) φs−→ W3(H3(Xs)) −→ GrW3 (H3(Xs)) = 0

is equal to the image of φs, so H0(Us, S3) is trivial. �
3.2. The Hodge number h1,1

Using Lemma 3.2, the Hodge number h1,1 is relatively easy to compute.

Proposition 3.5. Let Xg be a Calabi–Yau threefold as in Corollary 2.8 and suppose that 
g−1(∞) consists of two points (so that l = 2). Then

h1,1(Xg) = 20 +
k∑

i=1
(2x2

i + 1) + c1 + c2,

where [x1, . . . , xk] is the partition of n encoding the ramification profile of g over λ = 0
and c1, c2 are given in terms of the partition [y1, y2] of n encoding the ramification profile 
of g over λ = ∞ by cj = 30 (resp. 10, 0) if and only if yj = 1 (resp. 2, 4).

Proof. Using Lemma 3.2 we see that

h1,1(Xg) = b2(Xg) = ρh + 1 +
∑
p∈P1

(ρp − 1).

We first compute ρh. Since Xg is a compactification of the pullback of X2 by g, it follows 
that ρh ≥ 19. Suppose for a contradiction that ρh = 20. Note that the monodromy group 
of Xg must be infinite, as it is a finite index subgroup of the monodromy group of X2, 
which is infinite by [16, Theorem 4.2]. So we may apply [22, Theorem 3.1] to see that 
every smooth fibre of Xg must have Picard rank 20. But this is clearly not the case. 
Therefore ρh = 19.

It remains to compute the number of irreducible components ρp of the fibre of Xg

over each choice of p ∈ P1. Such fibres are irreducible over all points p ∈ P1 with 
g(p) = λ /∈ {0, ∞}, so we only need to consider the points p outside this set. First 
suppose that p is a point with g(p) = 0 and let x denote the order of ramification of 
g at p. The fibre of X2 over λ = 0 is semistable, with four components arranged as a 
tetrahedron. So the fibre of Xg over p is isomorphic to the resolution of the pull-back of 
such a fibre by a base change t �→ tx, where t is a local coordinate around p ∈ P1.

Pull-backs of semistable fibres of this kind were computed by Friedman [9, Section 1]. 
By [9, Proposition 1.2], we see that the fibre of Xg over p has
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• 4 components that are strict transforms of the original 4,
• 6(x − 1) new components arising from the blow-ups of the six curves of cAx−1 sin-

gularities that occur along the pull-backs of the six edges of the tetrahedron, and
• 2(x − 1)(x − 2) new components arising from the blow-ups of the pull-backs of the 

four corners of the tetrahedron.

Summing, we obtain (2x2 + 2) components in the fibre over p.
Finally, we consider a fibre of Xg over a point p with g(p) = ∞. Let y denote the order 

of ramification of g at p; by Proposition 2.4 we have y ∈ {1, 2, 4}. In each case, the fibre 
of Xg over p was computed explicitly in the proof of Proposition 2.5. In particular, we 
found that it has 31 (resp. 11, 1) components when y = 1 (resp. 2, 4).

Summing over all fibres in Σ, we find that

∑
p∈Σ

(ρp − 1) =
k∑

i=1
(2x2

i + 1) + c1 + c2,

where xi and cj are as in the statement of the proposition. Adding in ρh + 1 = 20 gives 
the desired result. �
3.3. The Hodge number h2,1

Next we use Lemma 3.4 to compute the Hodge number h2,1. We begin by showing 
that this computation can be reduced to the calculation of the monodromy around the 
singular fibres.

Let V be an irreducible Q-local system on a quasi-projective curve U and let j : U ↪→ B

be the canonical injection of U into its smooth closure. Associated to V and a base point 
p ∈ U , we have a representation ρ : π1(U, p) → GL(Vp), where Vp is the fibre of V at p.

Denote the points in B−U by {q1, . . . , qs}. Via this representation, to each qi we may 
associate a local monodromy matrix γi, coming from a counterclockwise loop about qi. 
This allows us to associate an integer

R(qi) := rankVp − dim(Vγi
p )

to each qi, where Vγi
p is the subspace of elements of Vp that are fixed under the action 

of γi
With this in place, we may compute h1(B, j∗V) using the following variation on 

Poincaré’s formula in classical topology, due to del Angel, Müller-Stach, van Straten 
and Zuo [4, Proposition 3.6]:

h1(B, j∗V) =
n∑

R(qi) + 2(g(B) − 1) rank(V). (4)

i=1
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As a result of this formula and Lemma 3.4, if the singular fibres of π satisfy the 
assumptions of Lemma 3.4 and we know the local monodromy matrices, then we can 
easily deduce the Betti number b3(X ) of a K3 surface fibred threefold X . These conditions 
are satisfied by the examples discussed in Section 2.

Example 3.6. Let X2 → MM2 be the K3-fibred threefold discussed in Section 2.1. Recall 
that X2 has three singular fibres, over the points (q1, q2, q3) = (0, 1

256 , ∞), and that the 
family of K3 surfaces over UM2 := MM2 − {q1, q2, q3} is an M2-polarized family of K3 
surfaces (in the sense of [6, Definition 2.1]).

If πU denotes the restriction of the fibration X2 → MM2 to UM2 , then R2(πU )∗Q is 
a Q-local system on UM2 . It is easy to see from the explicit description in the proof of 
Proposition 2.5 that the singular fibres of X2 are either nodal K3 surfaces or normal 
crossings unions of smooth rational surfaces. Thus we may apply Lemma 3.4 to deduce 
that b3(X2) = h1(MM2 , j∗R

2(πU )∗C), where j : UM2 → MM2 denotes the inclusion.
It remains to compute this cohomology. The discussion of [6, Section 2.1] gives a 

splitting of R2(πU )∗Q as a direct sum of two irreducible Q-local systems

R2(πU )∗Q = NS(X2) ⊕ T (X2),

where NS(X2) consists of those classes which are in NS(Xp) ⊗Q for every smooth fibre 
Xp of X2, and T (X2) is the orthogonal complement of NS(X2). In our situation, NS(X2)
is a trivial rank 19 local system, and T (X2) is an irreducible local system of rank 3.

We therefore have

H1(MM2 , j∗R
2(πU )∗Q) = H1(MM2 , j∗T (X2)) ⊕H1(MM2 , j∗NS(X2)),

and triviality of NS(X2) gives

b3(X2) = h1(MM2 , j∗R
2(πU )∗C) = h1(MM2 , j∗T (X2)).

We will compute this last cohomology group using Equation (4). According to [16, 
Section 5], the Picard–Fuchs equation of the family of K3 surfaces X2 is hypergeometric 
of type 3F2(1

4 , 
2
4 , 

3
4 ; 1, 1; 256λ). From this, we may use a theorem of Levelt ([13, Theorem 

1.1], see also [1, Theorem 3.5]) to compute that the global monodromy representation of 
T (X2) ⊗ R is given by the monodromy matrices

A =

⎛⎜⎝ 0 0 −1
1 0 −1
0 1 −1

⎞⎟⎠ , B−1 =

⎛⎜⎝ 3 1 0
−3 0 1
1 0 0

⎞⎟⎠ , A−1B =

⎛⎜⎝ 1 0 −4
0 1 2
0 0 −1

⎞⎟⎠
around λ = ∞, λ = 0 and λ = 1

256 respectively (here the names of the matrices have 
been chosen to agree with [1]). Thus the local system T (X2) ⊗ C has local monodromy 
matrices given by
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γ∞ =

⎛⎝√
−1 0 0
0 −

√
−1 0

0 0 −1

⎞⎠ , γ0 =
(1 1 0

0 1 1
0 0 1

)
, γ 1

256
=

(−1 0 0
0 1 0
0 0 1

)

Using Equation (4), we can therefore compute that

b3(X2) = h1(MM2 , j∗T (X2)) = 3 + 1 + 2 − 2 · 3 = 0

Local systems V satisfying h1(P1, j∗V) = 0 are called extremal local systems in [2].

Remark 3.7. Note that we choose not to use the explicit monodromy matrices computed 
in [16, Section 4] for this calculation. This is because the method used to compute 
monodromy matrices in [16] contains a sign ambiguity, corresponding to the choice of 
primitive fourth root of unity in the transformation [16, (4.1)]. Making the opposite choice 
has the effect of applying an antisymplectic involution on the fibres, which multiplies 
the monodromy matrices γ∞ and γ0 by a factor of −1. As this sign is crucial in the 
computation of R(0) and R(∞), we choose to avoid ambiguity and instead compute the 
monodromy matrices directly from the Picard–Fuchs equation.

Next we consider the general case. Let πg : Xg → P1 be a K3 surface fibred Calabi–
Yau threefold as in Corollary 2.8 and suppose that g−1(∞) consists of two points (so 
that l = 2). Recall that Xg is defined by a degree n cover g : P1 → M2 with ramifica-
tion profiles [x1, . . . , xk], [y1, . . . , yl] and [z1, . . . , zm] over λ = 0, λ = ∞ and λ = 1

256
respectively, and ramification degree r away from these three points. Let U ⊂ P1 be the 
preimage g−1(UM2) and let j : U → P1 denote the inclusion.

Now, by the proof of Proposition 2.5, the singular fibres of Xg are all either nodal 
K3 surfaces or normal crossings unions of smooth rational surfaces, so the argument of 
Example 3.6 gives b3(Xg) = h1(P1, j∗T (Xg)). But, by construction, the local system on 
U given by T (Xg) is equal to g∗V, where V is the local system over UM2 given by T (X2). 
The cohomology of this local system is computed by:

Proposition 3.8. Let V be the local system over UM2 given by T (X2). We have

h1(P1, j∗g
∗V) = 2 + 2k + (modd − n),

where modd denotes the number of z1, . . . , zm which are odd.
In particular, if g is unramified over λ = 1

256 , then h1(P1, j∗g∗V) = 2 + 2k.

Proof. If g ramifies to order a at a point q in P1 − U , then the monodromy of the 
pulled-back local system g∗V about q is given by γa

g(q) where γg(q) is the monodromy 
matrix of T (X2) around g(q). Therefore we can compute, using the explicit expressions 
for local monodromy found in Example 3.6, that
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• if g ramifies to order y at a preimage of ∞, then R(q) = 4 − hcf(y, 4),
• if g ramifies to order z at a preimage of 1

256 , then R(q) = 2 − hcf(z, 2), and
• at any preimage of 0, we have R(q) = 2.

Thus we calculate

h1(P1, j∗g
∗V) =

l∑
i=1

(4 − hcf(yi, 4)) +
m∑
j=1

(2 − hcf(zj , 2)) + 2k − 6. (5)

Now we impose the conditions of Proposition 2.4. By assumption we have l = 2, and 
yi = hcf(yi, 4) for both y1 and y2. Equation (5) thus gives

h1(P1, j∗g
∗V) = (4 − y1) + (4 − y2) +

m∑
j=1

(2 − hcf(zj , 2)) + 2k − 6

= 2 + 2k + (modd − n) .

Note that (modd − n) ≤ 0 is an even number. �
Since Xg is a Calabi–Yau threefold, we therefore have:

Corollary 3.9. Let Xg be a Calabi–Yau threefold as in Corollary 2.8 and suppose that 
g−1(∞) consists of two points (so that l = 2). Then

h2,1(Xg) = k +
(
modd − n

2

)
,

where k denotes the number of ramification points of g over λ = 0, modd denotes the 
number of ramification points of odd order of g over λ = 1

256 , and n is the degree of g.
Moreover, if g is unramified over λ = 1

256 , then h2,1(Xg) = k = r, the degree of 
ramification of g away from λ ∈ {0, 1

256 , ∞}.

Remark 3.10. We can now explain the general form for the generalized functional invari-
ant maps g of the Calabi–Yau threefolds fibred by M2-polarized K3 surfaces listed in [6, 
Theorem 5.10] (see Example 2.9). Indeed, in these cases h2,1(Xg) = 1 by assumption so, 
if we assume that the map g is unramified over λ = 1

256 (which guarantees smoothness 
of Xg, by Proposition 2.5), then k = r = 1 by Corollary 3.9. From this, we see that 
g is totally ramified over λ = 0 and has a single ramification of degree 2 away from 
λ ∈ {0, 1

256 , ∞}. Moreover, if we write [y1, y2] = [i, j], for some i, j ∈ {1, 2, 4}, then we 
must have deg(g) = n = i + j.

This shows that, if g is unramified over λ = 1
256 and h2,1(Xg) = 1, then the generalized 

functional invariant map g : P1 → MM2 must have the form given in Example 2.9.
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To conclude this section, we demonstrate the application of this theory by calculating 
the Hodge numbers in our running example of the quintic mirror threefold:

Example 3.11. Recall from Example 2.9 that the fibration of the quintic mirror threefold 
by M2-polarized K3 surfaces has generalized functional invariant g with (k, l, m, n, r) =
(1, 2, 5, 5, 1), [x1] = [5], [y1, y2] = [1, 4], and [z1, . . . , z5] = [1, 1, 1, 1, 1]. The Hodge num-
bers of this threefold are well known; here we illustrate how to recover them from the 
results above.

Firstly, we have h2,1(Xg) = k = 1, by Corollary 3.9. Moreover, by Proposition 3.5, we 
have

h1,1(Xg) = 20 + (2x2
1 + 1) + c1 + c2 = 20 + 51 + 30 + 0 = 101

as expected.

4. Deformations and moduli spaces

Now consider the setting where g is unramified over the point λ = 1
256 and has only 

simple ramification points away from λ ∈ {0, 1
256 , ∞}. In this case Corollary 3.9 raises an 

obvious question. It is easy to see that, in this setting, r is equal to the number of simple 
ramification points of g away from λ ∈ {0, 1

256 , ∞}. Moreover, for the corresponding 
threefolds Xg, we also have h2,1(Xg) = r. So to what extent are small deformations of 
Xg determined by the locations of these simple ramification points?

In more generality, we may ask to what extent small deformations of the threefold Xg

are determined by deformations of the map g. In fact, we find:

Proposition 4.1. Let Xg be a Calabi–Yau threefold as in Corollary 2.8 and suppose that 
g−1(∞) consists of two points (so that l = 2). Moreover, suppose that g is unramified 
over λ = 1

256 . Then any small deformation of Xg is obtained by deforming the map g in 
a way that preserves the ramification profiles over λ ∈ {0, ∞}.

Proof. Suppose that πg : Xg → P1 and πg′ : Xg′ → P1 are two Calabi–Yau threefolds 
defined by maps g, g′ : P1 → MM2 satisfying the assumptions of the proposition. We say 
that an isomorphism ϕ : Xg → Xg′ is an isomorphism of fibrations between (Xg, πg) and 
(Xg′ , πg′) if there is a commutative diagram

Xg

πg

ϕ
Xg′

πg′

P1
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Such an isomorphism exists if and only if there is an automorphism φ : P1 → P1 so that

P1

g

φ
P1

g′

MM2

Assume that g has ramification profile [y1, y2] over λ = ∞ and [x1, . . . , xk] over λ = 0. 
By applying an automorphism φ of P1 as above, we may assume that the ramification 
points over λ = ∞ are (1 : 0) and (0 : 1), and that (1 : 1) is a ramification point over 
λ = 0 with ramification index x1. Then g may be written as

g : (s : t) �−→ a1(s− t)x1
∏k

i=2(s− ait)xi

sy1ty2
,

with parameters a1, . . . , ak ∈ (C×)k − Δ where Δ is the union of the big diagonals in 
(C×)k.

Thus there is an k-dimensional space of maps g : P1 → MM2 with the property that g
has ramification profile [y1, y2] over λ = ∞ and [x1, . . . , xk] over λ = 0. By the discussion 
above, this means that the space of local deformations of the fibration (Xg, πg) is also 
k-dimensional.

Now, by a result of Oguiso [19, Example 2.3], K3 fibrations on Xg correspond to 
certain rational rays in the nef cone of Xg so, in particular, there are at most countably 
many K3 fibrations on Xg. This means that we cannot continuously vary the K3 fibration 
on Xg without deforming Xg itself. Since the K3 fibration (Xg, πg) may be deformed in k
different directions and the deformation space of Xg is k-dimensional (by Corollary 3.9), 
the claim follows. �
Remark 4.2. From the proof of this proposition the reader may note that, under the 
assumptions that g−1(∞) consists of two points and g is unramified over λ = 1

256 , an 
open subset of the moduli space of K3-fibred Calabi–Yau threefolds (Xg, πg) is identified 
with a moduli space of maps g with fixed ramification profiles over {0, 1

256 , ∞}. Moduli 
spaces of such maps are called Hurwitz spaces and have been studied extensively in the 
literature.

Next, we will show that any Calabi–Yau threefold Xg is deformation equivalent to a 
Calabi–Yau threefold Xg′ defined by a map g′ : P1 → MM2 with only simple ramification 
away from λ ∈ {0, 1

256 , ∞}. In particular this shows that, if we are only interested in 
generic members of deformation classes, we can safely ignore the type of ramification 
away from λ ∈ {0, 1 , ∞}.
256
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Proposition 4.3. Let g : P1 → MM2 be a morphism. Then there exists a deformation 
g′ : P1 → MM2 of g that has the same ramification profiles as g over λ ∈ {0, 1

256 , ∞}
and only simple ramification away from these points.

Thus, if Xg is a Calabi–Yau threefold as in Corollary 2.8, then Xg is deformation 
equivalent to a Calabi–Yau threefold Xg′ defined by a map g′ : P1 → MM2 that is simply 
ramified away from λ ∈ {0, 1

256 , ∞}.

Remark 4.4. We note that this result is not unexpected: neither our computation of 
h1,1(Xg) nor our computation of h2,1(Xg) made any reference to the type of ramification 
away from λ ∈ {0, 1

256 , ∞}, so we should not expect such ramification to affect the 
deformation type of Xg.

Proof. Assume that g has degree n and let Σ = {p1, . . . , ps} be the set of branch points 
of g in MM2 . Choose a set of discs Δi around each pi ∈ Σ, small enough that no pair 
of discs intersects, and choose non-intersecting paths βi from a base-point p ∈ P1 to the 
boundary of each Δi. For each Δi, let γi be the path obtained by following the path βi

from p to the boundary of Δi, going around ∂Δi once counterclockwise, then traversing 
βi backwards to p.

The classes of γi generate π1(p , MM2 − Σ) and the concatenation γ1 · · · γs is a con-
tractible loop. Label the points above p by the integers {1, . . . , n}. Then to each point 
pi ∈ Σ, we may associate an element σi ∈ Sn which describes the action of monodromy 
around γi on the points over p. This monodromy representation determines g up to re-
ordering of the points over p. Since P1 is connected, the subgroup of Sn generated by 
{σ1, . . . , σs} is transitive.

If g is not simply ramified away from λ ∈ {0, 1
256 , ∞}, then there exists a pi /∈

{0, 1
256 , ∞} so that the corresponding σi is not a transposition. Let σi = τ1 · · · τs′

be a minimal decomposition of such a σi into transpositions. Then we claim that 
the set P ′ = {σ1, . . . , σi−1, τ1, . . . , τs′ , σi+1, . . . , σs} can be used to define a new cover 
g′ : P1 → MM2 , so that the points qj over which g′ ramifies with cycle structure τj have 
only simple ramification.

To define this cover, let t be a complex coordinate on the disc Δi, chosen so that 
Δi = {t ∈ C | |t| < 1} and pi lies at t = 0. Let q denote the point where the path βi

meets the boundary of Δi. Take points q1, . . . , qs′ ∈ Δi and define non-intersecting loops 
δj from q around each qj . Then let γ′

j denote the path obtained by following the path βi

from p to q, going around δj once counterclockwise, then traversing βi backwards to p. 
After relabelling if necessary, we may assume that γi = γ′

1 · · · γ′
s′ in π1(p , MM2 − Σ′), 

where Σ′ := {p1, . . . , pi−1, q1, . . . , qs′ , pi+1, . . . ps}.
By construction, the set {γ1, . . . , γi−1, γ′

1, . . . , γ
′
s′ , γi+1, . . . , γs} forms a basis for 

π1(p , MM2 − Σ′). Assign the set P ′ of elements of Sn to these loops by associating 
σi to γi and τj to γ′

j . This defines a representation ρ : π1(p , MM2 − Σ′) → Sn whose 
image is transitive by construction so, by the Riemann existence theorem, there is a 
unique connected curve C and morphism g′ : C → MM2 , such that g′ is branched over 
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Σ′ and ρ is the monodromy representation of the associated Galois cover of MM2 − Σ′. 
Using the Riemann–Hurwitz formula, it is easy to check that C ∼= P1.

Now take a deformation g′t of g′, obtained by multiplying q1, . . . , qs′ by the local 
coordinate t, and an appropriate deformation of the loops γ′

j. At t = 0, the points qj
all go to pi and the map g degenerates to a map g′0 whose monodromy about pi is 
τ1 · · · τs′ = σi. By the uniqueness part of the Riemann existence theorem, the map g′0 is 
exactly g.

We may now repeat this procedure for each pi = {0, 1
256 , ∞} over which the corre-

sponding ramification of g is not simple, to obtain a map g′ : P1 → MM2 that deforms 
to g and has simple ramification away from {0, 1

256 , ∞}.
Given this, the statement about the threefolds Xg and Xg′ follows from the fact that 

the deformation g � g′ induces a deformation Xg � Xg′ . As this deformation does not 
affect a neighbourhood of the fibres above λ ∈ {0, 1

256 , ∞}, we see that Xg′ must also be 
Calabi–Yau. �

We conclude this section by asking what happens to the threefolds Xg when the 
map g degenerates. Such degenerations occur when a ramification point away from λ ∈
{0, 1

256 , ∞} moves to one of these points. In this situation it is easy to see what occurs: the 
ramification profile defining Xg changes and the threefold becomes singular. If the new 
ramification profile defines a smooth Calabi–Yau (according to Corollary 2.8), then this 
singular threefold admits a Calabi–Yau resolution, with new Hodge numbers given by 
Proposition 3.5 and Corollary 3.9. Geometrically, the Calabi–Yau threefold Xg undergoes 
a geometric transition to a new Calabi–Yau threefold with different Hodge numbers.

Example 4.5. In our running example of the quintic mirror threefold, the generalized 
functional invariant g has one simple ramification away from λ ∈ {0, 1

256 , ∞}. As noted 
above, moving this ramification point corresponds to deforming the quintic mirror in its 
(1-dimensional) complex moduli space. This can also be seen from the explicit form of 
the generalized functional invariant given in Example 2.9, where varying the modular 
parameter A changes the location of this simple ramification point, whilst keeping the 
other ramification points fixed.

It is easy to see what happens when this simple ramification point moves to λ ∈
{0, 1

256 , ∞}. At λ = 1
256 (corresponding to A = 1

55 ), the proof of Proposition 2.5 shows 
that Xg acquires a single isolated cA1 (node) singularity. Moreover, by [15, Lemma 3.5]
and [14, Theorem 2.5], the resulting singular threefold is Q-factorial, so does not admit a 
crepant resolution. In particular, this degeneration provides an example of a map g that 
satisfies the conditions of Proposition 2.5 but does not give rise to a smooth Calabi–Yau 
threefold.

When the simple ramification point moves to λ = ∞ (corresponding to A = ∞), the 
map g becomes totally ramified over λ ∈ {0, ∞}. The degenerate threefold acquires an 
additional Z/5Z action, which acts to permute the sheets of this cover.
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Finally, when the simple ramification point moves to λ = 0 (corresponding to A = 0), 
we obtain a degeneration with maximally unipotent monodromy (see [3, Chapter 6]).

As we can see, we have obtained the three well-known boundary points in the complex 
moduli space of the quintic mirror threefold.
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