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MOTIVIC GEOMETRY OF TWO-LOOP FEYNMAN INTEGRALS

CHARLES F. DORAN(A,B,C), ANDREW HARDER(D), PIERRE VANHOVE(E)

(WITH AN APPENDIX BY ERIC PICHON-PHARABOD(E,F ))

Abstract. We study the geometry and Hodge theory of the cubic hypersurfaces attached to two-

loop Feynman integrals for generic physical parameters. We show that the Hodge structure attached

to planar two-loop Feynman graphs decomposes into mixed Tate pieces and the Hodge structures

of families of hyperelliptic, elliptic, or rational curves depending on the space-time dimension. For

two-loop graphs with a small number of edges, we give more precise results. In particular, we

recover a result of Bloch [4] that in the well-known double box example, there is an underlying

family of elliptic curves, and we give a concrete description of these elliptic curves.

We argue that the motive for the non-planar two-loop tardigrade graph is that of a K3 surface

of Picard number 11 and determine the generic lattice polarization. Lastly, we show that generic

members of the ice cream cone family of graph hypersurfaces correspond to pairs of sunset Calabi–

Yau varieties.
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B.3. Embedding the Néron-Severi lattice into the full K3 lattice 62

References 64

1. Introduction

1.1. Description of the problem. The goal of this paper is to understand the geometry of

certain hypersurfaces attached to two-loop Feynman graphs. We view this as a first step toward

understanding the motivic geometry of the associated Feynman integrals.

Definition 1.1. A Feynman graph Γ is a finite collection of vertices V (Γ), edges E(Γ), and half-edges

H(Γ) satisfying the usual definitions; edges are adjacent to two vertices, and half-edges are adjacent

to a single vertex, and allowing multiple edges between pairs of vertices. We let e(Γ) = |E(Γ)|. To
each edge of Γ there is a mass variable me ∈ R and to each half-edge there is a momentum vector

ph ∈ R1,D−1 in the D-dimensional Minkowski space equipped with a metric of signature (1,D− 1).

To each half edge of Γ attach a vector ph ∈ CD subject to the so-called momentum conservation

relation ∑

h∈H(Γ)

ph = 0. (1)

For physical processes these vectors belong to of the D-dimensional Minkowski space R1,D−1. The

analytic properties of the Feynman integrals are studied by using analytic continuation in the

multi-dimensional complex plane.

Henceforward, this general setup is simplified by the assumption that each vertex of Γ has a single

outgoing half-edge. Therefore, one may view Γ as a graph in the usual sense, allowing multiple

edges between vertices. To simplify notation, view momenta as being attached to vertices, and
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write pv instead of ph. Furthermore, we consider only the completely massive case with m2
e > 0

and all external vectors are of non-zero norm pv · pv 6= 0. Often, we will view me, pv as having

complex values instead of real values to simplify the algebro-geometric arguments in this paper.

We associate to the graph Γ two polynomials which are defined as follows [50,60]. Let {xe | e ∈
e(Γ)} be variables attached to all edges of Γ. A spanning tree of Γ is a subgraph T of Γ which

contains all vertices of Γ, and so that b1(T) = 0 and b0(T) = 1. For each spanning tree T of Γ we

attach the monomial xT =
∏

e/∈T xe. The first Symanzik polynomial is the polynomial

UΓ =
∑

Spanning
trees of Γ

xT . (2)

A spanning k-forest of Γ is a subgraph F of Γ containing all vertices of Γ and so that h1(F) = 0

and h0(F) = k. We attach the polynomial xF =
∏

e/∈F xi to each spanning 2-forest. A 2-forest is a

disjoint union of two sub-trees F = T1∪T2, and we define sF =
∑

(v1,v2)∈F=T1∪T2
pv1 · pv2 where the

· -product is the scalar product on CD. Then

VΓ;D =
∑

Spanning
2-forests of Γ

sFx
F, FΓ;D(~s, ~m) = UΓ


 ∑

e∈e(Γ)

m2
exe


−VΓ;D . (3)

The polynomial FΓ;D(~s, ~m) is called the second Symanzik polynomial of Γ. This is a homogeneous

polynomial of degree L + 1 in the variables xe : e ∈ e(Γ), where L = b1(Γ). This L is often called

the loop order of Γ. Henceforward, we will write instead FΓ;D to simplify our notation. We define

the vanishing loci for the Symanzik polynomials attached to the graph Γ:

XΓ;D = V (FΓ;D); YΓ = V (UΓ). (4)

Notice that the vanishing locus for FΓ;D depends on the space-time dimension D through the linear

relations between the external momenta.

For fixed dimension D to the graph Γ one attaches the Feynman integral (up to a normalising

constant)

IΓ(~s, ~m) =

∫

∆
ωΓ;D, ωΓ;D :=

U
e(Γ)−

(L+1)D
2

Γ

F
e(Γ)−LD

2
Γ;D

Ω0, Ω0 =
∑

e∈E(Γ)

∧

e′ 6=e

dxe′ . (5)

The integrand is a differential form representing a class of He(Γ)−1(Pe(Γ)−1 − ZΓ;D) where ZΓ;D is

the singular locus of the integrand. We see that if e(Γ) − (L+1)D
2 < 0, ZΓ;D = YΓ and that if and

e(Γ)− LD
2 > 0 then ZΓ;D = XΓ;D. If neither of these inequalities is satisfied, then ZΓ;D = XΓ;D∪YΓ.

The domain of integration is ∆ := {[x0 : · · · : xN ] | xi ∈ R≥0}. The Feynman integral is a function

of the mass parameters and kinematic invariants, respectively:

~m :=
{
m2

1, . . . ,m
2
e(Γ)

}
∈ Re(Γ)

>0 , ~s = {pi · pj, i, j ∈ v(Γ)}. (6)

When |V (Γ)| > D, not all the scalar products are independent, and the number of independent

variables satisfies certain Gram determinant conditions [2]. We will give a geometric interpretation

of this condition in this work in Section 7.2.

As defined in (5), the Feynman integral is not a “proper” period integral as the domain of inte-

gration usually intersects XΓ;D and YΓ. The works of Bloch–Esnault–Kreimer [5] and Brown [20],

which we review in Section 2.2 below, explain how to get around this issue by taking appropriate

linear blow ups of PN , and finally to interpret this integral as a period of a mixed Hodge structure
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related to H∗(ZΓ′;D;Q), where Γ′ ranges over all graph contractions of Γ. We use the notation

He(Γ)−1(PΓ − bZΓ;D;B − (B ∩ bZΓ;D)) (7)

to indicate this mixed Hodge structure.

To summarize: we are interested in the integral (5), which is a period of the mixed Hodge

structure (7). This mixed Hodge structure is in turn constructed from the mixed Hodge structures

on H∗(ZΓ′;D;Q) where Γ′ ranges over subgraphs of Γ. So a first step toward understanding (5) and

its motivic context is to describe the mixed Hodge structure on H∗(ZΓ′;D;Q).

As is likely obvious from the name, Feynman integrals defined in (5) arise as amplitudes in

quantum field theory. The relation between Feynman integrals and cohomology is relatively old,

first appearing in the 1960s (e.g. [32, 37, 53]), however the relationship to Hodge theory and the

theory of periods is considerably more modern, appearing only in the 1990s. For instance, in

1997, Kontsevich conjectured, based on the appearance of zeta-values in the evaluation of Feynman

integrals, that the cohomology of Pe(Γ)−1 − YΓ is mixed Tate. Kontsevich’s conjecture was stated

in combinatorial language, and garnered a significant amount of interest (see e.g. [57, 58]) but was

ultimately proven false by Belkale–Brosnan [3].

Mathematical interest in the subject has continued (e.g. [1,5,19,22,28,45]) with varying levels of

intensity since that point. The work of Bloch–Esnault–Kreimer in [5] is notable for solidifying the

link between the physical and mathematical literature. The authors of op. cit. focus on the case of

primitively divergent graphs, where D = 4 and e(Γ) = 2b1(Γ), and thus ωΓ;D = Ω0/U
2
Γ. We note

that UΓ is parameter independent. Therefore, their focus was upon understanding the geometry

of the vanishing locus YΓ = V (UΓ). Among other things, they show that if Γ is the wheel with

n-spokes graph, then H2n−1(YΓ;Q) is pure Tate, and they compute the class of the form ωΓ;D in

this case. Around the same time and shortly thereafter, Brown and collaborators obtained many

other beautiful results for graph polynomials of primitively divergent graphs (e.g. [21, 22,23]).

In the case where Γ is not primitively divergent, one is led to instead consider families of Feynman

integrals depending on mass and momentum parameters. Even in the most basic examples of

such integrals, for the n-sunset family of graphs, one observes that the vanishing locus of FΓ;D is

generically a Calabi–Yau (n−2)-fold. Therefore, the associated Feynman integral is in fact a period

of an extension class in a variation of mixed Hodge structure. Therefore, the Feynman integral

can be viewed as a solution to a particular class of inhomogeneous differential equations. Work of

Müller-Stach et al. [48,49] make this explicit for the two-loop sunset integral. Soon after, this was

followed by the detailed mathematical analysis of Bloch–Vanhove [8], and subsequently work of

Bloch–Kerr–Vanhove [6]. Work of Brown provided a general motivic structure to this more general

class of Feynman integrals [20].

Throughout the same period, physicists have continued to study Feynman integrals in a more

direct manner. It has become clear that, in certain families of examples with few edges and

vertices, the resulting Feynman integrals tend to be composed of a limited collection of building

blocks including multiple polylogarithms [9], elliptic functions, elliptic polylogarithms [14,18], and

more generally motivic periods of (singular) Calabi–Yau varieties [6, 7, 10, 11, 12, 13, 15, 16, 23, 24,

29, 31, 39, 47]. This suggests that the periods attached to the graphs studied in the works listed

above in this paragraph are, up to mixed Tate factors, related to elliptic curves and Calabi–Yau

varieties. This has been checked for the double box by Bloch [4], and in various other cases in

unpublished work of Kerr [38]. The purpose of this work is to describe the mixed Hodge structure
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Figure 1. A two-loop graphs with a = 4, b = 3 and c = 2.

one obtains for families of two-loop graphs and the multi-loop ice cream cone graphs, extending

the computations of Bloch and Kerr.

1.2. Main results. In this work, we focus our attention almost solely on two-loop Feynman graphs,

particularly those of (a, b, c) type as defined below. An example of such a graph is depicted in

Figure 1.

Definition 1.2. Let (a, b, c) denote a graph with a+ b+ c− 1 vertices and e(Γ) = a+ b+ c edges, so

that two of these vertices are trivalent and connected by three chains of edges containing a, b, and

c edges respectively.

In this case L = 2, if a + b + c ≤ D the vanishing locus of U(a,b,c) is a quadric hypersurface

in Pa+b+c−1, and the periods of the mixed Hodge structure in (7) are rather simple, in the sense

that the mixed Hodge structure is mixed Tate. In D = 4 dimensions this was shown by Brown

in [23]. On the other hand, if a+ b+ c > D then the denominator of the integrand in (5) is FΓ;D,

which is a cubic hypersurface. The cohomology of a cubic hypersurface need not have mixed Tate

cohomology, so from the perspective of Hodge theory, this is a more complicated situation. The

first step toward understanding this is to study the mixed Hodge structure on H∗(X(a,b,c);D;Q)

when a+ b+ c > D. Our main result is about the graphs of the type (a, 1, c). The mixed Hodge

structures of (a, 1, c) graph hypersurfaces are simple, in the sense that they come from hyperelliptic

curves.

Definition 1.3. (1) Let MHSQ denote the abelian category of Q-mixed Hodge structures.

(2) The largest extension-closed subcategory of MHSQ containing the Tate twists of H1(C;Q) for

every hyperelliptic curve C is called MHShyp
Q .

(3) The largest extension-closed subcategory of MHSQ containing the Tate twists of H1(E;Q) for

every elliptic curve E is called MHSell
Q .

Theorem (Theorem 5.1). For any positive integers a, c and any space-time dimension D,

Ha+c−1(X(a,1,c);D;Q) ∈MHShyp
Q .

It is interesting to compare this to the results of Marcolli–Tabuada for the two-loop sunset [46].

In other words, the cohomology of X(a,b,c);D is obtained by iterated extension involving Tate twists

of the cohomology of hyperelliptic curves, and the Tate Hodge structure.

Theorem (Theorem 7.5). If 3D/2 ≤ a+ c then

Ha+c(PΓ − bX(a,1,c);D;BΓ − (BΓ ∩ bX(a,1,c);D)) ∈MHShyp
Q .



6 C. F. DORAN, A. HARDER, P. VANHOVE (WITH AN APPENDIX BY E. PICHON-PHARABOD)

In particular, this means that the Feynman integrals in all of these cases can be constructed from

algebraic functions and periods of hyperelliptic curves.

In Section 5.3 we apply the techniques used to prove Theorem 5.1 to analyze the double box graph

hypersurface, X(3,1,3);D. Recall that for a projective algebraic variety X, H∗(X;Q) is equipped with

a canonical mixed Hodge structure, and that GrWj Hi(X;Q) ∼= 0 if j > i.

Theorem (Theorem 5.12). For arbitrary kinematic parameters, and arbitrary space-time dimension

D, W4H
5(X(3,1,3);D;Q) is mixed Tate.

(1) If D ≥ 6 then GrW5 H5(X(3,1,3);D;Q) ∼= H1(C;Q)(−2) for a curve C which has genus 2 for

generic kinematic parameters.

(2) If D = 4 then GrW5 H5(X(3,1,3);D;Q) ∼= H1(E;Q)(−2) for a curve E which is elliptic for

generic kinematic parameters.

(3) If D ≤ 4 then H5(X(3,1,3);E ;Q) is mixed Tate.

We get sharper results for the motive of the vanishing locus of F(a,1,c);D in the case where c = 1, 2

for graphs of type (a, 1, 1) in Figure 10 and (a, 1, 2) in Figure 7.

Theorem (Theorems 7.2 and 6.5). Suppose a ≤ 2 or c ≤ 2. Then

Ha+c−1(X(a,1,c);D;Q) ∈MHSell
Q .

Corollary 1.1. If 3D/2 ≤ a+ c and either a ≤ 2 or c ≤ 2 then

Ha+c(PΓ − bX(a,1,c);D;B − (BΓ ∩ bX(a,1,c);D)) ∈MHSell
Q .

This means that the mixed Hodge structure Ha+c(PΓ−bX(a,1,c);D;B−(B∩bX(a,1,c);D)) is constructed

by taking iterated extensions of H1(E;Q)(−a)r1 and Q(−b)r2 for different values of a, b, r1, and r2,

and with various possibly different elliptic curves. Therefore the Feynman integrals in these cases

are built from algebraic and elliptic functions.

Remark 1.2. All of the results in this paper are expressed in the category of mixed Hodge structures,

rather than the category of motives. This is done in order to make closer contact with discussions

of periods and Feynman integrals appearing in the physics literature. However, the geometric tools

used to obtain these results are compatible with motivic constructions.

1.3. Relation with work of Lairez–Vanhove [43]. This paper is partially written as a com-

panion to recent work of Lairez–Vanhove [43] which applies work of Lairez [40] to compute the

Picard–Fuchs differential equations attached to pencils of particular graph hypersurfaces. Namely,

they take the t-dependent family of graph hypersurfaces

FΓ;D(t) = UΓ


 ∑

e∈E(Γ)

m2
exe


− tVΓ;D.

This can be viewed as a particular choice of pencil in the family of all graph hypersurfaces attached

to (Γ,D). In this case we denote XΓ;D(t) = V (FΓ;D(t)).

As t varies, and for fixed kinematic parameters, we obtain a family of hypersurfaces over A1
t . For

each t, the algebraic differential form ωΓ;D(t) determines an element in H
e(Γ)−1
dR (Pe(Γ)−1−XΓ;D(t)).

There is a nonempty open subset M of A1
t over which Pe(Γ)−1 − XΓ;D(t) forms a locally trivial

family, therefore the cohomology groups ∪t∈MH
e(Γ)−1
dR (Pe(Γ)−1 − XΓ;D(t)) underlie a variation of

mixed Hodge structure which we denote HΓ,D. Observe that in fact we have a family of variations
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of mixed Hodge structure depending on mass and kinematic parameters, and ωΓ;D(t) forms a section

of HΓ;D ⊗OM . Given a flat family of homological cycles {γt : t ∈M} one obtains period functions

πγt(t) =

∫

γt

ωΓ;D(t) (8)

which are annihilated by a linear differential operator LΓ;D. In Section 3 we observe that the local

system Soℓ(LΓ;D) is a quotient of HΓ;D, and that factorizations of the operator LΓ;D are closely

related to the weight filtration on HΓ;D. Furthermore, if LΓ;D factors as a product of differential

operators, then the monodromy representation of LΓ;D is block-upper triangular, and its diagonal

blocks correspond to the monodromy representations of each individual factor (Propositions 3.2

and 3.3). This allows us to explain the appearance of certain factorisations of LΓ;D observed by

Lairez–Vanhove. In the next section, we will describe a collection of examples that we compute in

this paper and how they relate to [43]. Our main result in this direction is the following.

Theorem (Theorem 3.6). For any a, c, the operator L(a,1,c);D admits a factorisation

L(a,1,c);D = L1L2 . . .Lk

where Soℓ(Li) is either:

(a) a local system with finite order monodromy, or

(b) a subquotient of the local system underlying a family of hyperelliptic curves over a Zariski open

subset of A1.

In particular, if a or c is ≤ 2 then the monodromy representation of Soℓ(Li) is either

(a) finite, or

(b) a finite index subgroup of SL2(Z).

Remark 1.3. Since it is often difficult to detect whether a differential operator has finite monodromy,

we instead check whether an operator is Liouvillian. Liouvillian differential operators are those

whose differential Galois group is solvable, thus they admit factorisations L = L1L2 . . .Lk so

that Soℓ(Li) have abelian monodromy representations, since the monodromy representation of a

differential operator is a subgroup of the differential Galois group. Knowing that a differential

operator is Liouvillian implies that its monodromy group is not a finite index subgroup of SL2(Z).
Combining this with Theorem 3.6 allows us to conclude that if c ≤ 2, then any Liouvillian factor

of L(a,1,c);D in fact has finite order monodromy and corresponds to a subquotient of a mixed Tate

variation of Hodge structure.

1.4. Examples computed in this paper. In addition to the double box example listed above,

we obtain finer results in several specific cases. These results can be compared with the results

obtained by applying the extended Griffiths–Dwork algorithm presented in [43].

• (Section 5.4) We show, in the pentabox graph (3, 1, 4) case, that the mixed Hodge structure on

H6(X(3,1,4);D;Q) takes the shape

3 0 0 v ∗
2 0 0 ∗ v

1 0 ∗ 0 0

0 0 0 0 0

Ip,q 0 1 2 3

(9)

where v = 1 if D ≥ 4 and 0 otherwise. In particular, for a generic X(3,1,4);4, we see that

GrW5 H5(X(3,1,4);4;Q) ∼= H1(E;Q)(−2) for an elliptic curve depending on kinematic parameters.
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However, the Picard–Fuchs operator L(3,1,4);4 derived in [43] was found to be irreducible of order

4 and Liouvillian. Therefore it does not detect the elliptic curve in the middle cohomology (see

Remark 5.16).

• (Section 6.1) We show, in the house graph (2, 1, 3) case, that in the (2, 1, 3) case, the mixed

Hodge structure on H4(X(2,1,3);4;Q) is of the form

3 0 0 0 0

2 0 1 ∗ 0

1 0 0 1 0

0 0 0 0 0

Ip,q 0 1 2 3

(10)

The Picard–Fuchs operator L(2,1,3);4 derived using the extended Griffiths–Dwork algorithm [43]

is factorisable with a right factor given by the Picard–Fuchs operator of the elliptic curve attached

to the graph hypersurface X(2,1,3);4.

• (Section 6.2) We show, in the kite graph (2, 1, 2) case, that the mixed Hodge structure on

H3(X(2,1,2);4 ∪ Y(2,1,2);Q) is of the form

2 0 1 0

1 0 ∗ 1

0 ∗ 0 0

Ip,q 0 1 2

(11)

Here, Y(2,1,2) denotes the vanishing locus of U(2,1,2). A kite elliptic curve is found in the middle

cohomology in agreement with the analysis in [4] and [38]. A comparison with the Picard–Fuchs

operator derived in [43] suggests a splitting of the Hodge structure (see Remark 6.11).

• (Section 7.3) We show, in the ice cream cone graph (2, 1, 1) case, that the mixed Hodge structure

on H2(X(2,1,1);2;Q) is pure Tate of rank 4. Furthermore, we describe in detail the variation of

mixed Hodge structure on the varying family of cohomology attached to the family of hyper-

surfaces X(2,1,1);2(t), computing from first principles the underlying local systems. We compare

to Soℓ(L(2,1,1);2) computed in [43], and explain how L(2,1,1);2 can be constructed from a pair of

copies of L(1,1);2.

• (Section 8) We show, in the tardigrade graph (2, 2, 2) case, that the mixed Hodge structure on

H4(X(2,2,2);4;Q) is of the form

3 0 1 0 0

2 0 0 ∗ 0

1 0 0 0 1

0 0 0 0 0

Ip,q 0 1 2 3

(12)

Note that this example is distinct from the others presented above in the sense that it is not

related to the results of Theorems 5.1 or 6.5 and 7.2. However, the techniques used to prove

the results of Section 8 are similar to the proof of Theorems 6.5 and 7.2. Note that the (2, 2, 2)

graph is the graph with the fewest edges which is not assured to have Ha+b+c−2(X(a,b,c);D;Q) in

MHShyp
Q , and indeed GrW4 H4(X(2,2,2);4;Q) is isomorphic to a direct summand of H2(S;Q)(−1)

for a K3 surface S depending on kinematic and mass parameters, so Ha+b+c−2(X(a,b,c);D;Q) is

not in MHShyp
Q . The Picard–Fuchs operator annihilating the fundamental period of this K3

surface has the same order and singularities as the Picard–Fuchs operator derived using the
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extended Griffiths–Dwork algorithm [43]. In Appendix B, Eric Pichon–Pharabod shows that for

a generic choice of parameters, this K3 surface has Picard rank 11. For generic choices of the

physical parameters, the Picard lattice is determined using an numerical evaluation of the period

integrals of this K3 surface.

• (Section 9) We show that for the multi-scoop ice cream cone families, (2, [1]k) of graph hy-

persurfaces (See Figure 14(A) on pp. 56), there is a conic fibration on X(2,[1]k);D, and that

the discriminant locus this conic fibration is a union of two Calabi–Yau (k − 2)-folds associ-

ated to the (k − 1)-loop sunset graph (see Figure 14(B) on pp. 56). Therefore, we expect that

GrWk Hk(X(2,[1]k);2;Q) is in some sense constructed from

Hk−2
(
X

(1)

([1]k);2
;Q
)
⊕Hk−2

(
X

(2)

([1]k);2
;Q
)

(13)

where X
(1)

([1]k);2
and X

(2)

([1]k);2
are distinct (k−1)-loop sunset Calabi–Yau (k−2)-folds. In the k = 3

case, this is supported, for instance, by the numerical computations for generic physical param-

eters in Section 5.3 of [43] which shows that the rank of the Picard–Fuchs operator annihilating

ω(2,[1]3);2 is of rank 4. In this case X
(1)
([1]3);2

and X
(2)
([1]3);2

are elliptic curves, so the rank of L(2,[1]3);2

agrees with the rank of H1(X
(1)
([1]3);2

;Q)⊕H1(X
(2)
([1]3);2

;Q).

1.5. Further directions. The techniques used in this paper are very broadly applicable to the

graph hypersurfaces XΓ;D where Γ admits a chain of bivalent vertices. In this case, there is a

particular linear subspace L in XΓ;D so that if X̃Γ;D = BlLXΓ;D then there is a quadric fibration

π : X̃Γ;D → Pn (see Lemma 4.1 below). Without much effort, this observation leads to the following

consequences.

• For graphs of type (2n, 2, 2), and n an arbitrary positive integer, there is a motivic contribution

coming from a K3 surface. This is an extension of Theorem 8.1.

• For the extended family of ice cream cone graphs, studied in Section 9, (k, [1]n) there is a major

motivic contribution to HN−1(X(k,[1]n);D;Q) coming from a union of two sunset Calabi–Yau

(n− 2)-folds if k is even, and from a single sunset Calabi–Yau (n− 1)-fold if k is odd.

We intend to explore these families of examples further in future work.

Another main question that we have only begun to study is the behavior of the differential form

ωΓ;D with respect to quadric fibrations. This quadric fibration technique is somewhat reminiscent of

the denominator reduction techniques employed by Brown [21,23], so we expect that one can relate

the form ωΓ;D to a form on the base of the quadric fibration π with poles along the discriminant

locus of π.

1.6. Organisation of the paper. In Sections 2, 3, and 4 we introduce the major background

results necessary for to prove the main theorems in the paper. We introduce a very minimal

amount of Hodge theoretic background in Section 2.1, and we discuss the Bloch–Esnault–Kreimer

approach to Feynman integrals in 2.2. In Section 3 we discuss the relationship between Picard–

Fuchs equations and variations of mixed Hodge structure. In Section 4 we prove several results that

will be used in the rest of the paper. First, we show that chains of edges on Γ can be used to produce

quadric fibrations on XΓ;D, or more precisely, on a particular blow up of XΓ;D (Lemma 4.1). and

apply it in Section 4.2 to characterize the mixed Hodge structure on the cohomology of a quadric

fibration, with emphasis on the case where the base of the quadric fibration is smooth and has

dimension 1. Finally, we prove two auxilliary results on the cohomology of cubic hypersurfaces
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containing codimension 1 linear subspaces, and quartic double cover surfaces, proving that their

cohomology is in MHShyp
Q and MHSell

Q respectively.

In Section 5, we prove some of the main results of the paper for the graphs of type (a, 1, c).

In Section 5.1, we first prove Theorem 5.1. This is done by applying a well-chosen birational

transformation to X(a,1,c);D and observing its effects on cohomology, then applying some results

from Section 4. We extend these results to prove Corollary 1.2 in Section 5.2. We complete the

section by looking at the case of the double-box graph of type (3, 1, 3) in Section 5.3 and the

pentabox graph of type (4, 1, 3) in Section 5.4.

In Section 6, we analyze the case where c = 2 in great detail. One obtains directly a quadric

fibration on a mild blow up X̃(a,1,2);D of X(a,1,2);D, whose base is now P2 and we use this to prove

the main results of the section. We then look at two examples in Sections 6.1 and 6.2, of the (2, 1, 3)

and (2, 1, 2) graphs respectively, comparing with the computational results for the Picard–Fuchs

operators obtained in [43].

In Section 7, we analyze the case where c = 1 in great detail. In thise case, one obtains

directly a quadric fibration on a mild blow up X̃(a,1,1);D of X(a,1,1);D over P1. This allows us

to circumvent some of the complicated birational geometry of Section 5 and to give a concise

proof of the main result of this section. We then proceed in Section 7.2 to look at more specific

examples. First we show that in low space-time dimension, the quadric fibration on X̃(a,1,1);D is

degenerate (Proposition 7.3), forcing the relevant part of its mixed Hodge structure to be mixed

Tate. In the case where the quadric fibration is nondegenerate, we give a very precise description

of the cohomology of X̃(a,1,1);D (Theorem 7.5). Finally, we study the case of X(2,1,1);2 in great

detail, describing precisely the corresponding variation of Hodge structure, and its relations to the

Picard–Fuchs operators derived using the extended Griffiths–Dwork algorithm in [43].

In Sections 8 and 9, we analyze two examples to which Theorem 5.1 does not apply; the tardi-

grade, of type (2, 2, 2), and the multi-scoop ice cream cone of type (2, [1]n) respectively. In both

of these cases, an application of Lemma 4.1 and Proposition 4.5 allows us to obtain a partial de-

scription of the mixed Hodge structure on the corresponding graph hypersurface. In the tardigrade

case, in Section 8, we see clearly that there is a underlying K3 surface. This confirms the numerical

analysis done in [43]. In Appendix B, by Eric Pichon–Pharabod, presents a study of the Picard

lattice of the associated K3 surface using an algorithm to compute certified numerical approxima-

tions of periods of varieties. In the multi-scoop ice cream cone case, in Section 9, we see that there

are two sunset-type Calabi–Yau (n − 2)-folds whose cohomology is important for describing the

motive of X(2,[1]n);D. Both of these computations clarify some of the results obtained by applying

the extended Griffiths–Dwork algorithm in [43].
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2. Background

2.1. Hodge-theoretic notions and notation. Here we provide, with few explanations, back-

ground necessary for many of the Hodge theoretic computations later on in the paper. We deal
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only with mixed Hodge structures over Q in this paper. We assume that the reader has a basic fa-

miliarity with mixed Hodge structures. The reader may consult [52] for a comprehensive reference.

The main fact that we use repeatedly is the following.

Theorem 2.1 (Deligne [27], or Corollary 3.6, 3.8 in [52]). Morphisms of mixed Hodge structure

are strict. Consequently, given an exact sequence of mixed Hodge structures,

H1 → H2 → H3

for each k there is an exact sequence of pure Hodge structures

GrWk H1 → GrWk H2 → GrWk H3.

Definition 2.1. The Tate Hodge structure Q(−k) is the unique pure Hodge structure of weight 2k

whose underlying rational vector space is isomorphic to Q. A pure Hodge structure is called pure

Tate if it is Q(−k)⊕r for some non-negative integer r. A mixed Hodge structure is called mixed

Tate if it is an iterated extension of pure Tate Hodge structures or, alternatively, if GrW2k+1H
∼= 0

for all k, and GrW2k is pure Tate for all k.

Lemma 2.2 (Definition 5.52 in [52]). Let be a projective variety and suppose that Z is a closed

subvariety. Then there is a long exact sequence of mixed Hodge structures,

· · · −→ Hi
c(X − Z;Q) −→ Hi(X;Q) −→ Hi(Z;Q) −→ · · ·

Definition 2.2. We say that two mixed Hodge stuctures H1 and H2 agree up to mixed Tate factors

if there is a morphism of mixed Hodge structures ϕ : H1 → H2 so that the kernel and cokernel of

ϕ is mixed Tate.

Lemma 2.3. Suppose X is a complex projective variety, and that Z is a closed subvariety of X so

that H∗(Z;Q) is mixed Tate. Then H∗(X;Q) agrees with H∗
c(U ;Q) up to mixed Tate factors.

Corollary 2.4. Let X be a complex projective variety, and let L be a linear subspace of X. Let

E be the exceptional divisor of BlLX. If E has mixed Tate cohomology, then H∗(X;Q) agrees with

H∗(BlLX;Q) up to mixed Tate factors.

Lemma 2.5. Suppose X is a complex projective variety, and that Z is a closed subvariety of X.

If two of H∗(X;Q),H∗
c(U ;Q) or H∗(Z;Q) is in MHShyp

Q then the third is as well.

Proposition 2.6 (Mayer–Vietoris). If X is an algebraic set with components X1,X2, then there

is a long exact sequence of mixed Hodge structures,

· · · → Hi(X;Q)→ Hi(X1;Q)⊕Hi(X2;Q)→ Hi(X1 ∩X2;Q)→ · · ·
According to Griffiths [34] a rational algebraic N -form on PN can be expressed as

f

gm
Ω0, Ω0 =

N∑

i=0

(−1)ixi


∧

j 6=i

dxj


 (14)

where f and g are homogeneous polynomials so that deg(f) + n+ 1 = m deg g. Let X = V (g) the

vanishing locus of g. Such a form is automatically closed in ΩPN (∗V (g)), hence it defines a class in

HN
dR(P

N −X) ∼= HN (PN −X;C). By Poincaré duality we may identify

HN (PN −X;C) ∼= HN
c (PN −X;C). (15)

Since HN (PN ;C)→ HN (X;C) is injective we identify

HN
c (PN −X;C) ∼= HN−1

prim (X;C) = coker
(
HN−1(PN ;C)→ HN−1(X;C)

)
. (16)
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Therefore, HN (PN − X;Q) is isomorphic to Hn
prim(X;Q), up to a pure Tate factor. We are most

interested, in this paper, in studying the cohomology groups of HN
dR(P

N −XΓ;D) up to mixed Tate

factors. So it will be enough for us to study HN−1(XΓ;D;C).

2.2. Feynman integrals according to Bloch–Esnault–Kreimer and Brown. There is a

recipe provided by Bloch–Esnault–Kreimer [5] (generalized by Brown [20] to the case of most

interest to us) which provide a rigorous definition of the Feynman integral in terms of Hodge the-

ory. As discussed in the introduction we would like to define the Feynman integral in (5) however,

in general, the form ωΓ;D has poles along ∆. This is solved by blowing up Pe(Γ)−1 in coordinate

linear subspaces, and taking a subset ∆̃ of PΓ which maps surjectively onto ∆ but does not intersect

the polar locus of ωΓ,D. This is described as follows.

• To each subgraph Γ′ of Γ, attach a linear subspace HΓ′ = V (xe | e ∈ Γ′). If Γ′ contains a

cycle, then it is easy to see that HΓ′ is contained in XΓ,D. The converse is also true for generic

kinematic parameters; precisely, if a coordinate linear subspaces of Pe(Γ)−1 is contained in XΓ,D

then H = HΓ′ for a subgraph Γ′ with b1(Γ
′) ≥ 1.

• Define a motic subgraph of Γ to be a subgraph Γ′ so that for any edge e of Γ′, b1(Γ
′−e) < b1(Γ

′).

• Order the set of all motic subgraphs by inclusion. This ordering is such that for two maximal

subgraphs Γ′,Γ′′, the linear subspaces HΓ′ and HΓ′′ do not intersect.

• Blowing up, dimension-by-dimension, starting at the highest possible codimension, one obtains

a canonical birational morphism b : PΓ → Pe(Γ)−1. We note that this is an iterated toric blow

up, therefore it is itself toric.

• Furthermore b∗ωΓ,D does not have poles along the exceptional divisors of the blow up.

• Let BΓ be the preimage of the toric boundary of Pe(Γ)−1. There is a canonical choice of cycle

∆̃ in PΓ with boundary in BΓ which does not intersect the polar divisor of b∗ωΓ;D.

Then we have the following well-defined relative period integral

IΓ(~s, ~m; t) =

∫

∆̃
b∗ωΓ;D(t). (17)

The cycle ∆̃ is a well-defined element of He(Γ)−1(PΓ − bXΓ,D;BΓ ∩ (PΓ − bXΓ,D)), and b∗ωΓ;D

is a global section of ΩN
PΓ−bXΓ;D

. The relative de Rham cohomology of (PΓ − bXΓ;D, BΓ) can be

computed from the following complex of sheaves

Ω•(PΓ − bXΓ;D, BΓ) := Tot
(
Ω•
PΓ
(∗ bXΓ;D)→ a0∗Ω

•
B̃(0)(∗ bXΓ;D)→ a1∗Ω

•
B̃(1)(∗ bXΓ;D)→ . . .

)

where B(i) is the subvariety of BΓ consisting of points in the intersection of at least i+1 irreducible

components of BΓ, and ai : B̃
(i) → B(i) denotes the normalization map. Since ωΓ;D is a global

section of Ω
e(Γ)−1

PΓ−bXΓ;D
its restriction to a0∗Ω

•
B̃(0)

is trivial for dimension reasons. Therefore it defines

a global section of

He(Γ)−1(Ω•(PΓ − bXΓ;D, BΓ)) ∼= He(Γ)−1(PΓ − bXΓ,D;BΓ ∩ (PΓ − bXΓ,D))

for each t. Consequently, IΓ(~s, ~m; t) is a period of the mixed Hodge structure

Example 2.7. In the case of two-loop graphs, there are precisely three motic subgraphs, coming

from any cycle in Γ. The union of any two of these three subgraphs is the entire graph. Letting

x1, . . . , xc, y1, . . . , ya, z1, . . . , zb be variables corresponding to the edges in each distinct chain of
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edges, we see that P(a,b,c) is nothing but the blow up of Pa+b+c−1 at the three linear subspaces

Lx = V (y1, . . . , ya, z1, . . . , zb),

Ly = V (x1, . . . , xc, z1, . . . , zb), (18)

Lz = V (x1, . . . , xc, y1, . . . , ya).

Later on we will see in Lemma 4.1 that any two-loop graph admits three of quadric fibrations, one

attached to each of the three blow-ups involved in the map b : bX(a,b,c);D → X(a,b,c);D.

3. Variations of mixed Hodge structures and differential operators

If HQ is the local system underlying a variation of mixed Hodge structure over a 1-dimensional

base M , and s is a meromorphic section of HQ ⊗OM then there is a minimal differential equation

Ls annihilating the period functions attached to s. We explain this in detail below and study the

relationship between the solution sheaf of Ls and the weight-graded pieces of the variation of the

original mixed Hodge structure. To each Feynman graph, we attach an operator LΓ;D and we use

Theorem 5.1 to describe the irreducible factors of LΓ;D when Γ is a planar two-loop graph.

3.1. Variation of mixed Hodge structure and ODEs. We now give a brief description of

how one may obtain an ODE starting with a variation of mixed Hodge structure along with a

holomorphic section of the underlying local system.

Definition 3.1. A (Q-)variation of mixed Hodge structure of weight n consists of several pieces of

data

(1) A Q-local system HQ over a complex manifold M ,

(2) An increasing weight filtration by Q-local systems W0 ⊆ W1 ⊆ · · · ⊆ W2n = HQ,

(3) A decreasing Hodge filtration Fn ⊆ Fn−1 ⊆ · · · ⊆ F0 = HC = HQ ⊗Q
M

CM ,

(4) A flat connection ∇ : HC ⊗OM → HC ⊗ Ω1
M so that ∇(F i) ⊆ F i−1,

so that on each fibre HQ, the data (HQ,F•
t ,W•) is a mixed Hodge structure.

Given a local section s of HC ⊗ OM , and a local parameter t on M , we can construct local (or

multivalued) period functions

πs(t) = 〈s, γt〉 (19)

for a flat section γt of H∨
Q. For us, we will often take s = ωΓ;D(t) and let H∨

Q is the homology

bundle underlying the family of varieties Pe(Γ)−1−XΓ;D(t), in which case the pairing is integration.

Given a variation of mixed Hodge structure, (HQ,W•,F•) over M ⊆ A1 with Gauss–Manin

connection ∇, we have differential operators ∇∂t : H⊗OM →H⊗OM , [ω] 7→ ∇([ω])(∂t) where ∂t
denotes the vector field corresponding to a choice of variable t. The pairing satisfies

d

dt
〈s, γt〉 = 〈∇∂t(ω), γt〉. (20)

Consequently, there is a minimal collection of elements {f0(t), . . . , fn(t)} in the the C(t)-vector
space Γ(H⊗OM )⊗ C(t) so that

[
fn(t)∇n

∂t + fn−1(t)∇n−1
∂t

+ · · ·+ f1(t)∇∂t + f0(t)
]
s = 0 (21)

and thus there is a linear differential operator

Ls = fn(t)
dn

dtn
+ fn−1(t)

d(n−1)

dt(n−1)
+ · · ·+ f1(t)

d

dt
+ f0(t) (22)
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whose solutions are the period functions πs(t). The local system H∨
Q is equipped with a weight

filtration W∗
• dual to the weight filtration on HΓ;D(t) determined by W∗

i = (W−i−1)
∨. The pairing

(19) induces a map from H∨
Q to OM whose image is Soℓ(Ls), the local system of solutions of Ls.

Therefore, W∗
i induces a filtration on Soℓ(Ls).

Lemma 3.1. The local system Soℓ(Ls) is a quotient of the dual local system H∨
Q by a sub-local

system Ks. If s ∈ Wi ⊗OM then W∗
i ⊆ Ks.

Proof. The image of the induced map
∫
(−) s : H∨

Q → OM obtained by the pairing (19) is isomorphic

to Soℓ(Ls). This proves the first result. The second follows by definition. �

Recall from Definition 2.2 that a mixed Hodge structure is mixed Tate if it is an iterated extension

of the Tate Hodge structure. We will also say that a variation of mixed Hodge structure is mixed

Tate if all fibres are mixed Tate.

3.2. Filtrations and ODEs. We now discuss the relationship between filtrations on the local

system Soℓ(L ) and factorisations of L . The following Propositions are certainly well-known, but

we offer proofs for the sake of convenience.

Proposition 3.2. Let L be a differential operator on OM for M an open subset of A1. There is

a bijection between

(1) Increasing filtrations on Soℓ(L )

(2) Factorisations of L in C[M ]〈∂t〉.
Proof. Given a factorization of L = L1 . . .Lk we obtain a filtration of Soℓ(L ),

Soℓ(Lk) ⊆ Soℓ(Lk−1Lk) ⊆ · · · ⊆ Soℓ(L1 . . .Lk).

Given a filtrationW0 ⊆ · · · ⊆ Wk of Soℓ(L ), we obtain, forWk−1 a monodromy-invariant subspace

Vk−1 ⊆ Soℓ(L ). A monodromy invariant subspace of Soℓ(L ) provides a factorisation L = LkL
′

so that Soℓ(L ′) = Vk. Iterating this we obtain the desired factorisation. �

Proposition 3.3. Suppose L is an ODE on a Zariski open subset M ⊆ A1 and L = L1 . . .Lk.

The monodromy representation of L can be written in block upper-triangular form whose diagonal

blocks are the monodromy representations of Soℓ(Li).

Proof. We show that if L = L1L2 then the monodromy representation is an extension of Soℓ(L1)

by Soℓ(L2). As noted above, there is an injection Soℓ(L2) ⊆ Soℓ(L1L2). Near a point b ∈ M ,

choose a basis of solutions {f1(t), . . . , fk(t)} of L1, choose particular solutions {p1(t), . . . , pk(t)} of
L , so that L1pi(t) = fi(t). For any f(t) = a1f1(t)+ · · ·+akfk(t) let pf (t) = a1p1(t)+ · · ·+akpk(t).

Then

Soℓ(L )b = span{pf (t) | f ∈ Soℓ(L1)b}+ Soℓ(L2)b.

Given a loop γ ∈ π1(M, b) and multi-valued function h on M , let γ · h(t) denote the action of

monodromy on h(t). Then

L2 (γ · pf (t)) = γ · (L2pi(t)) = γ · fi(t)
Therefore γ · pf (t) ≡ pγ·f (t) mod Soℓ(L2). The claim follows by induction. �

The weight filtration on HΓ;D ⊗ CM may be extended to a maximal filtration, Wmax
• . The graded

pieces of this maximal filtration are local systems which we denote L1, . . . ,Ln. By the Jordan–

Hölder theorem, these are independent of the choice of maximal filtration on HΓ;D. In particular,

since Soℓ(Ls) is isomorphic to a quotient of HΓ;D ⊗ CM , we obtain the following result.
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Proposition 3.4. Suppose Ls = L1 . . .Lk is a factorisation of Ls so that each Li is irreducible.

Then for each i there is an index ji so that Soℓ(Li) ∼= Lji.

Precisely, we look at many variations of mixed Hodge structure in this paper where the graded

pieces GrWi are either isomorphic to polarized pure Tate variations of Hodge structure or variations

of Hodge structure underlying families of elliptic curves.

Proposition 3.5. (1) Suppose (HZ,F•,W•) is a polarized pure Tate variation of Hodge structure.

Then the monodromy representation of the local system is finite.

(2) Suppose (HZ,F•,W•) is a polarized variation of pure Hodge structure underlying a non-isotrivial

family of elliptic curves. Then H is a simple local system.

(3) Suppose (HZ,F•,W•) is a polarized variation of pure Hodge structure underlying an isotrivial

family of elliptic curves. Then H is has finite monodromy.

Proof. A pure Tate polarized variation of Hodge structure admits a flat, positive definite, symmetric

bilinear pairing (•, •) : HZ ⊗Z HZ → ZM . Therefore, its monodromy representation is a subgroup

of the orthogonal group of a positive definite lattice. Consequently, its monodromy group is finite.

If the monodromy representation of a non-isotrivial family of elliptic curves admits a nontrivial

subrepresentation on Z2, the rank implies that the monodromy group is solvable. The monodromy

representation of a non-isotrivial family of elliptic curves is a finite index subgroup of SL2(Z). Since
SL2(Z) is not solvable no finite index subgroup of SL2(Z) is solvable.

If a family of elliptic curves is isotrivial then it becomes trivial after a finite base-change and

hence the monodromy is finite. �

3.3. Differential operators attached to pencils of graph hypersurfaces. At points through-

out this paper, we have discussed how cohomology of the graph hypersurfaces relate to the ex-

ploratory and computational work done by Lairez–Vanhove [43]. In that article, Lairez and the

third author study particular pencils of graph hypersurfaces of the form

FΓ(t) = UΓ

(∑

e

mexe

)
− tVΓ (23)

varying with a parameter t and sometimes randomly chosen kinematic and parameters. Recall from

the introduction that, attached to this pencil, there is a variation of mixed Hodge structure over

an open subset M of A1
t which we denote HΓ;D, and that the differential form

ωΓ,D(t) =
U

e(Γ)−(L+1)D/2
Γ

(FΓ(t))e(Γ)−LD/2
Ω0, (24)

determines a section of HΓ;D ⊗OM .

Definition 3.2. Let LΓ;D denote the minimal differential operator in C[M ]〈∂t〉 which annihilates

the form ωΓ;D(t) in HΓ;D ⊗OM .

Many of the operators LΓ;D discovered by Lairez–Vanhove admit factorisations, as computed by

the factorisation algorithm of the Ore algebra package [25, 33] in SAGE [59]. The discussion in

Sections 3.2 and 3.1 allow us to interpret these factorisations. We summarize our discussion.

(1) The local systems Soℓ(LΓ;D) are quotients of H∨
Γ;D.

(2) The filtration induced by W∗
• corresponds to a factorisation of LΓ;D, however there may be

factorisations of LΓ;D which do not correspond to W∗
• (Proposition 3.2).
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(3) The monodromy representation of Soℓ(LΓ;D) is upper triangular with diagonal blocks equal to

the monodromy representations of the factors of LΓ;D (Proposition 3.3).

Combining these facts with Theorems 5.1, 6.5, 7.2, and Proposition 3.5 we obtain the following

result.

Theorem 3.6. For any a, c, the operator L(a,1,c);D admits a factorisation

L1L2 . . .Lk

where Soℓ(Li) is either:

(a) a local system with finite order monodromy or

(b) a subquotient of the local system underlying a family of hyperelliptic curves over a Zariski open

subset of A1.

In particular, if a or c is ≤ 2 then the monodromy representation of Soℓ(Li) is either

(a) finite, or

(b) a finite index subgroup of SL2(Z).

Remark 3.7. Starting with the definition of a Feynman integral given by [5] and [20] and explained

in Section 2.2, it need not be the case that the Feynman integral of a graph Γ satisfies an inhomo-

geneous differential equation LΓ;DIΓ;D(t) = h(t) where h(t) is a collection of periods taken on the

boundary BΓ. The form β will exist on Pe(Γ)−1, and its polar locus is contained XΓ;D but the polar

locus of b∗β may include the exceptional divisor E of b. If β has no poles on E then it is true that

we indeed have

LΓ;DΩΓ;D = dβ̃ (25)

and therefore

LΓ;∆

∫

∆̃
b∗ωΓ;D =

∫

∆̃
LΓ;Db

∗ωΓ;D =
∑

i

∫

(∂∆̃)i

b∗β =: h(t) (26)

where (∂∆̃)i denote the components of the boundary of ∆̃. However, if β has poles along some

component of E then the final integral is undefined. We suggest two possible solutions to this

problem. The first is to check directly that the form β ∈ Ωn
Pn(∗XΓ;D) computed by Lairez–Vanhove

in [43] does not acquire extra poles under the blow up map. The second is to use the methods

developed by Lairez [40] directly on the toric variety PΓ.

4. General computations

In this section we give some background results on the mixed Hodge structure on the cohomology

groups of quadric fibrations, quartic double covers, and cubic hypersurfaces containing a codimen-

sion 1 linear subvariety. These computations will be used in the main text of the paper. The reader

may prefer to start with Section 5 and refer back to this section as needed.

4.1. Quadric fibrations on graph hypersurfaces. The following lemma is the starting point

for some of the computations in this paper.

Lemma 4.1. Let Γ be a graph of loop order greater than 1 and assume that we have a chain of

edges in Γ, that is a sequence of edges e0, . . . , en so that for each i = 1, . . . , n there is a bivalent

vertex vi to which both ei−1 and ei are adjacent. Let L be the linear subspace determined by xe = 0

with e /∈ {e0, . . . , en}. Then L ⊆ XΓ;D and BlLXΓ;D admits a quadric fibration over Pe(Γ)−n−1.

Proof. We make the following observations.
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(1) If T is a spanning tree of Γ then E(Γ)− E(T) cannot contain more than one of e0, . . . , en,

(2) If T is a spanning 2-forest of Γ then E(Γ)−E(T) cannot contain more than two of e0, . . . , en.

An immediate consequence of this is that UΓ has at most degree 1 in xe0 , . . . , xen and that VΓ;D

has at most degree 2 in xe0 , . . . , xen . Since Γ has loop order greater than 1, the edge complement

of e0, . . . , en is connected, therefore there is a spanning tree of Γ which does not contain all of

e0, . . . , en, and consequently, FΓ;D is quadric in xe0 , . . . , xen . We then blow up along the linear

subspace V (xe | e 6= e0, . . . , en). The result of blowing up Pe(Γ)−1 along a linear subspace is

a projective bundle over the projective space of all linear subspaces of Pe(Γ)−1 containing L in

codimension 1. Let X̃Γ;D denote the blow up of XΓ;D along L. Then there is an induced map

π : X̃Γ;D → Pe(Γ)−n−1. Since FΓ;D is quadric in xe0 , . . . , xen we see that the fibres of the map π are

in fact quadrics of dimension n. �

Example 4.2. Any two-loop (a, b, c) graph hypersurfaces admit quadric fibration structures over

Pa+b−1,Pa+c−1 and Pb+c−1 obtained by first blowing up the linear subspaces

Lx = V (y1, . . . , ya, z1, . . . , zb),

Ly = V (x1, . . . , xc, z1, . . . , zb), (27)

Lz = V (x1, . . . , xc, y1, . . . , ya).

and taking the corresponding projection maps.

It will be shown (Proposition 4.5 below) that the main contribution to the cohomology of a variety

admitting a quadric fibration comes from the cohomology of a double cover of the degeneracy locus

of the quadric fibration when the relative dimension of the quadric fibration is odd, and from

the cohomology of a double cover of the base of the fibration when the relative dimension of the

fibration is even. This fact is well known; when the fibres of the quadric fibration are generically

smooth this goes back at least to the work of Reid [54]. However we were unable to locate precise

results when the general fibre is singular.

Remark 4.3. For the sake of completeness, we observe that, under specialization, there is another

structure associated to bivalent vertices on a Feynman graph Γ. Suppose v is a bivalent vertex

in a Feynman graph Γ, that is, v has two adjacent edges e1, e2 and a single adjacent half-edge h.

Suppose we let me1 = me2 and ph = 0. Let Γ′ be the graph in which e1 and e2 are replaced with a

single edge e′. Under this specialization, we observe that

FΓ;D|me1=me1 , ph=0 = FΓ′;D|xe′=xe1+xe2
. (28)

Consequently, if one specializes to me1 = me2 and ph = 0, the hypersurface XΓ;D becomes a cone

over XΓ′;D. One can compute without much difficulty that the cone structure is compatible with

the quadric fibration constructed in Lemma 4.1, in the sense that if X̃Γ;D is specialized so that

me1 = me2 and ph = 0 then the quadric fibration π is a quadric fibration whose fibres are cones

over the fibres of X̃Γ′;D.

4.2. Cohomology of quadric fibrations. For us, a quadric fibration will be a hypersurface Q
in a projective bundle PB(E) over a smooth variety B, so that all fibres are quadric hypersurfaces.

The morphism π : Q → B is therefore proper. The corank of the quadric fibres of π is constant

over a nonempty Zariski open subset of B. We call this the generic corank of π, and denote it sQ.

We let n denote the relative dimension of π. We may always find a local analytic equation for Q
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of the form ∑

1≤i≤j≤n+2−sQ

fij(t1, . . . , tc)yiyj (29)

where fij are analytic functions on B. The determinant of the symmetric (n+1−sQ)×(n+1−sQ)

matrix corresponding to this quadratic form describes points at which the corank of Qb increases

near b ∈ B.

The discriminant subscheme ∆ ⊆ B is the subscheme along which corank(Qb) is not equal to sQ.

Inside of ∆, there is a (possibly empty) Zariski open subset ∆(1) along which corank(Qb) is sQ+1.

In examples of interest, our base B will have low dimension, and we will be most interested in the

case where the generic corank is 0.

Our first result in this section concerns the structure of cohomology of quadric fibrations. We

recall that if a quadric has corank s then its cohomology groups have ranks given by the following

formula.

Hi(Q;Q) =





Q if i is even and i 6= n+ s,

Q2 if i is even and i = n+ s,

0 if i is odd.

(30)

We need a small result about the monodromy of quadric fibrations which is surely well known but

that we record and prove for the sake of completeness.

Lemma 4.4. Suppose π : Q → B is a quadric fibration of generic corank sQ and that b ∈ B is such

the corank of Qb is sQ+1, and the discriminant ∆Q vanishes to first order at b. If dimQb+sQ =: d

is even then the monodromy of Rdπ∗QQ
is represented by the matrix

(
0 1

1 0

)
.

Otherwise monodromy is trivial.

Proof. After choosing a transversal slice of ∆Q we may assume that B is a small complex disc and

b = 0. Under the conditions of the Lemma, we may choose local holomorphic coordinates for π

near b so that Q is determined by a diagonal quadric,

f1(t)y
2
1 + · · ·+ fn+1−sQ(t)y

2
n+1−sQ = 0 (31)

for holomorphic fi(t). Under our assumptions, exactly one of fi(t) vanishes at 0 therefore the

corank of Q0 is 1. This proves the first claim.

For the second claim, assume d is odd. After change of basis we may rewrite Q locally as

y1y2 + · · ·+ yd−2yd−1 + y2n−sQ
− ty2n+1−sQ

= 0. (32)

For t 6= 0 homological generators of Hd/2(Qt;Q) are given by the vanishing loci

V (y1, y3, . . . , yn−sQ −
√
tyn+1−sQ), V (y2, y4, . . . , yn−sQ +

√
tyn+1−sQ) (33)

which are exchanged under monodromy. �

Proposition 4.5. Suppose π : Q → B is a quadric fibration with fibres of dimension n and generic

corank s. Suppose that there is an open subset B of B and a smooth divisor ∆ in B along which

the corank of B increases to sQ + 1. Let π−1(B) = U and let π′ = π|U . Then the Leray spectral

sequence for Hi
c(U ;Q) has terms

Ep,q
2 = Hq

c(S,R
pπ′

∗QU
).
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The sheaves Rpπ′
∗QU

are constant of rank 1 except if p = sQ or p = sQ + 1 is even.

If p = sQ is even then Rpπ′
∗QU

∼= R0f∗QV
where f : V → B is a double cover of B ramified along

∆.

If p = sQ + 1 is even then Rpπ′
∗QU

∼= Q
B
⊕M− where M− is a rank 1 local system on ∆ obtained

as follows. There is an unramified double cover f : Z → ∆ determined by the monodromy of

Rn+sQπ∗QQ
|∆. The local system R0f∗QZ

has a Z/2 action and M− is the anti-invariant part of

this action.

Proof. For the sake of simplicity we write s instead of sQ in this proof. First we compute the com-

pactly supported cohomology of U , Hq
c(U ;Q) = Hq(Q, Rk!QU

). There is an obvious commutative

diagram

U Q

B B

π′

k

π

j

We apply the Leray spectral sequence for π to k!QU
. The sheaves involved in this spectral sequence

are Riπ∗k!QU
∼= j!R

iπ′
∗QU

where isomorphism follows by exactness and commutativity of k! and

j!. Precisely; we have that Rπ∗Rk! ∼= Rj!Rπ′
∗ since both π, π′ are proper, thus π∗ = π!, π

′
∗ = π′

!.

Since k and j are open embeddings j!, k! are exact and, Rj! = j! and Rk! = k!. By exactness again,

we obtain the final claim. Therefore, the Leray spectral sequence for π applied to k!QU
has terms

Ep,q
2 = Hq

c(S,R
pπ′

∗QU
). (34)

Now we may compute the local systems Rpπ′
∗QU

. Since we have assumed that ∆ is smooth, and

that fibres have corank increasing to s + 1 along ∆, the map π′ : U → B is locally homeomorphic

to

f = g × id∆ : Q×∆ −→ ∆2 (35)

where g : Q → ∆ is a one-parameter degeneration of quadrics of corank s whose central fibre has

corank s+ 1. Consequently, the sheaves Rpπ′
∗QU

are constant if p 6= n+ s.

If p = n+s+1 is even, then Rpπ′
∗QU

∼= Q
B
⊕ j∗L where L is a rank 1 rational local system on B.

This local system can be either trivial or non-trivial. If it is trivial, then it coincides with j∗Q∆
. If it

is not trivial, its monodromy group is contained in GL1(Z) = {±1} and therefore there is a double

cover h : ∆̃ → ∆ so that the monodromy representation of R0h∗Q∆
has decomposition Q

∆
⊕ L.

Therefore Hi
c(∆,L) is the direct summand of Hi

c(∆,Q) invariant under the quotient involution on

∆̃ which exchanges the two sheets in the covering map.

If p = n+ s is even then Rpπ′
∗QU

decomposes as a union of Q
B
⊕ i∗M for a rank 1 local system

M on B with non-trivial monodromy representation. If h : B̃ → B is a double cover ramified along

∆ then M is a direct summand of R0h∗QB̃
= Q

B̃
⊕ i∗M. It follows that Hi

c(B,M) is isomorphic to

the direct summand of Hi
c(S;Q) which is invariant under the covering involution.

In both cases, the identifications between cohomology groups are also identifications of mixed

Hodge structures, since the local systems in question carry the same underlying variation of rational

(pure) Hodge structures. The canonical mixed Hodge structure on the cohomology of the variation

of Hodge structures must coincide, and also coincide with the geometric cohomology groups with

which they are identified. �

We have the following important consequence.
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Corollary 4.6. Let π : Q → P1 be a quadric fibration of relative dimension n and generic corank

sQ

(1) If i = n+sQ+1 is odd then GrWi Hi(Q;Q) is isomorphic to H1(C;Q) where Q is a hyperelliptic

curve and Wi−1H
i(Q;Q) is Tate.

(2) Otherwise, Hi(Q;Q) is mixed Tate.

More coarsely, H∗(Q;Q) is contained in MHShyp
Q .

Proof. Removing fibres F1, . . . , Fn which do not have corank s + 1, we obtain a fibration over

V = P1 − {p1, . . . , pn}. By Proposition 4.2, we can compute the compactly supported cohomology

of the complement of
∐

Fi. The only non-mixed Tate Ep,q
2 = Hq

c(V ;Rpπ′
∗QU

) is H1
c(V ;Rsπ′

∗QU
)

when s is even, which is isomorphic to H1
c(C;Q) for C a double cover of V . This cohomology

group is an extension of H1(C;Q) by a Tate Hodge structure. Therefore, since the Leray spectral

sequence degenerates at the E3 term for dimension reasons, it follows that Hs+1
c (U ;Q) is a Tate

extension of H1(C;Q). Finally, applying the exact sequence in cohomology for compactly supported

cohomology, relating cohomology of U to that of Q, the result follows. �

Remark 4.7. If the discriminant locus of π : Q → P1 consists of 2 or fewer points, then the

cohomology of Q is mixed Tate regardless of n, s, and i.

4.3. Mixed Hodge structures of double quartic surfaces. In Section 6, we will need to

compute the cohomology of a quartic double cover. The following proposition will be useful. A

quartic double cover can be represented as a hypersurface in the projective bundle P(OP2⊕OP2(−1))
written in homogeneous coordinates in the form

y2 + w2Q(x1, x2, x3). (36)

where y,w are coordinates on the fibres of the projection map, and x1, x2, x3 are coordinates on

the base P2.

Proposition 4.8. Let SC be a double cover of P2 ramified along a quartic plane curve C.

(1) The surface SC is singular either at a union of isolated points, or at a union of rational curves.

(2) The cohomology of SC is mixed Tate unless C is a union of four lines meeting at a single point,

in which case GrW1 H2(SC ;Q) ∼= H1(E;Q) for E an elliptic curve, and GrW2 H2(SC ;Q) is Tate.

Proof. Singularities of SC correspond directly to the singularities of C, so the first statement follows

for degree reasons.

Assume that C has only isolated singular points. We can resolve singularities of SC by resolving

singularities of C, which can be done of course by repeated blow up of points in P2. Let φ : P → P2

be this iterated blow up.

The cohomology of SC is mixed Tate as long as this resolution does not introduce curves of genus

greater than 1. The exceptional divisors of each blow in SC up are double covers of the exceptional

divisors of φ ramified in their intersections with the proper transform of C. The singular points

of C have multiplicity at most 4 since C is quartic, and precisely 4 if and only if C is a union of

four lines meeting at a single point. Since blow up reduces multiplicity of singular points, the only

situation in which an exceptional divisor can intersect the proper transform of C in more than 3

points is if C is a union of four lines meeting at a single point. In this case, the exceptional curve

in the blow up is indeed elliptic and the last statement in (2) follows.

Assume that C has a curve of singularities. The curves of singularity of SC can be one of (a)

a line of double points (b) two double lines meeting in a point (c) a smooth double quadric (d) a
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quadruple line. In all of these cases, we first blow up along the singular curve to normalize. This

process replaces a rational curve with two or more rational curves, and the blow up is a double

cover of P2 ramified along a quadric. Repeating the argument above suffices to show that the

cohomology of a double cover of P2 ramified in a quadric has mixed Tate cohomology. �

Corollary 4.9. The cohomology of a quartic double cover is in MHSell
Q .

4.4. Cohomology of cubics containing a codimension 1 linear subspace. We assume now

that we have a cubic equation of the following form

x0Q1 + x1Q2. (37)

Then if X is the vanishing locus of this equation, X contains the linear subspace L = Z(x0, x1).

Furthermore, after blowing up at this linear subspace, we obtain a projection map onto P1 whose

fibres are quadrics. Formally, we have a birational morphism

f : BlLP
n −→ Pn. (38)

The blow up BlLPn is toric with toric variables x0, . . . , xn, w, in which the morphism is expressed

as a projection,

[x0 : · · · : xn : w] 7−→ [x0w : x1w : x2 : · · · : xn] (39)

The preimage of the linear subspace L under this map is the divisor determined by w = 0, which

we denote H. It is not difficult to see that H is a hypersurface in Pn−2 × P1 determined by the

equation

x0(Q1|x0,x1=0) + x1(Q2|x0,x1=0). (40)

Therefore, it is either a quadric bundle over P1 if Q1|x0,x1=0 and Q2|x0,x1=0 are not proportional,

and the vanishing locus of (ax0 + bx1)Q if they are proportional. Summarizing this discussion: X

can be blown up in a linear subspace to produce a quadric bundle over P1, and the exceptional

divisor of this blow up is itself a quadric bundle over P1 which we denote by Q in the proof of

Proposition 4.10 below. By the computations in the previous section, we have the following result.

Proposition 4.10. Suppose X is a cubic containing a codimension 1 linear subspace L. Then the

mixed Hodge structure on H∗(X;Q) is contained in MHShyp
Q .

Proof. The blow up map induces an isomorphism between X−L and Q−H, hence H∗
c(X−L;Q) ∼=

H∗(Q−H;Q). There are two long exact sequences in cohomology. First

· · · → Hi
c(X − L;Q)→ Hi(X;Q)→ Hi(L;Q)→ · · ·

implies that Hi
c(X −L;Q) is isomorphic to the cohomology of X up to mixed Tate factors, since L

is Pn−2. Second,

· · · → Hi
c(Q−H;Q)→ Hi(Q;Q)→ Hi(H;Q)→ · · ·

implies that Hi
c(Q−H;Q) is contained in MHShyp

Q , since H∗(Q;Q) and H∗(H;Q) are contained in

MHShyp
Q by Corollary 4.6. �

Remark 4.11. We are frequently interested in the cohomology group Hn−1(X;Q) where X is an

(n− 1)-dimensional variety. Suppose the quadratic fibrations on Q and H both have corank 0 (in

other words, their generic fibres are smooth). Then the proof above tells us that either

(a) If n− 1 is even, GrWi Hn−1(X,Q) is pure Tate except if i = n− 2.

(b) If n− 1 is odd, GrWi Hn−1(X,Q) is pure Tate except if i = n− 1.
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Remark 4.12. Suppose X is a cubic hypersurface of dimension (n− 1) containing a linear subspace

of codimension 1, which we may assume to be V (x0, x1). Then X is the vanishing locus of a

polynomial of the form

ax30 + bx31 + x0x1L1 + x20L2 + x21L3 + x0Q1 + x2Q2 = 0 (41)

for constants a, b, linear polynomials L1, . . . , L3 and quadratic polynomials Q1, Q2 in variables

x1, . . . , xn. The blow up, BlLX is a quadric bundle given by the vanishing locus of

(ax30 + bx31)w
2 + (x0x1L1 + x20L2 + x21L3)w + x0Q1 + x2Q2 (42)

in a projective bundle with toric coordinates [w : x0 : x1 : · · · : xn]. Therefore, the discriminant

locus of π : Q → P1 consists of at most n+3 points. The hypersurface H is a (1, 2) hypersurface in

Pn−2 × P1. Thus the discriminant of the quadric fibration π|H : H → P1 consists of at most n− 1

points. Therefore, the curves whose cohomology appears in H∗(X;Q) have genus at most g = n/2.

5. Hyperelliptic motives for general (a, 1, c) graph hypersurfaces

Figure 2. A two-loop graphs of type (a, 1, c) with a = 4 and c = 3

Here we address the general case of describing the motive of the hypersurfaceXa,1,c. We will begin

by proving Theorem 5.1. Later we will apply the techniques used to prove Theorem 5.1 to describe

the mixed Hodge structure on the cohomology of the double box and pentabox hypersurfaces.

5.1. Birational transformations on X(a,1,c);D and their effect on cohomology. Our main

theorem is the following, which will be proved later in this section.

Theorem 5.1. For any values of a, c, the cohomology groups of X(a,1,c);D are contained in MHShyp
Q .

The general form of the polynomial F(a,1,c);D is

U(a,1,c) =

(
z +

c∑

i=1

xi

)(
a∑

i=1

yi

)
+ z

(
c∑

i=1

xi

)
, (43)

V(a,1,c);D = z




c∑

i=1

a∑

j=1

r2ijxiyj


+

(
z +

a∑

i=1

yi

)
 ∑

1≤i<j≤c

p2ijxixj


+

(
z +

c∑

i=1

xi

)
 ∑

1≤i<j≤a

q2ijyiyj


 ,

F(a,1,c);D = U(a,1,c)

(
c∑

i=1

m2
i+axi +

a∑

i=1

m2
i yi +m2

a+c+1z

)
−V(a,1,c);D.

The mass parameters are non-vanishing real positive numbers m2
r ∈ R>0 with 1 ≤ r ≤ a + c + 1,

the coefficients r2ij, p2ij are q2ij are the norm squared of the linear combination of the external

momenta. These coefficients satisfy relations depending on the space-time dimension D which will

make precise in Section 7.2.
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We let X(a,1,c);D denote the vanishing locus of F(a,1,c);D. Observe that the codimension two linear

subspace

z =

c∑

i=1

xi =

a∑

i=1

yi, (44)

is contained in X(a,1,c);D, therefore the hyperplane sections z = 0,
∑c

i=1 xi = 0, and
∑a

i=1 yi = 0

are cubic hypersurfaces which contain codimension 1 linear subspaces determined by the remaining

two linear equations in the triple of linear equations above. We apply the birational transformation

φ : Pa+c
y,z,x 99K Pa+c

y,z,x,

yi = yiz, xi = xi


z +

c∑

j=1

xj


 , z = z

(
z +

c∑

i=1

xi

)
. (45)

Under this map, we see that the graph polynomials scale out a factor of z(z +
∑c

i=1 xi)
2 as

{
U(a,1,c),V(a,1,c);D,F(a,1,c);D

}
→ z

(
z +

c∑

i=1

xi

)2 {
U′

(a,1,c),V
′
(a,1,c);D,F

′
(a,1,c);D

}
(46)

and the proper transform of X(a,1,c);D is determined by equations

U′
(a,1,c) =

(
c∑

i=1

xi +

a∑

i=1

yi

)
, (47)

V′
(a,1,c);D =

(
c∑

i=1

xi +

a∑

i=1

yi

)
 ∑

1≤i<j≤c

p2ijxixj




+ z


 ∑

1≤i<j≤c

p2ijxixj +
∑

1≤i<j≤a

q2ijyiyj +
c∑

i=1

a∑

j=1

r2ijxiyj


 ,

F′
(a,1,c);D = U′

(a,1,c)

(
z

a∑

i=1

m2
i yi +

(
z +

c∑

i=1

xi

)(
m2

a+c+1z +
c∑

i=1

m2
i+axi

))
−V′

(a,1,c);D.

The vanishing locus of F′
(a,1,c);D is denoted X ′

(a,1,c);D. The following result is a direct consequence

of this discussion.

Lemma 5.2. Let U = Pa+c − V (z) ∪ V (z +
∑

xi). The map φ : Pa+c
99K Pa+c induces an

isomorphism from U to U . Therefore, φ induces an isomorphism between W = X(a,1,c);D ∩ U and

W ′ = X ′
(a,1,c);D ∩ U .

We notice that X ′
(a,1,c);D contains the codimension 1 linear subspace determined by equations

z =
c∑

i=1

xi +
a∑

i=1

yi. (48)

We now summarize the geometry of X(a,1,c);D and how it relates to that of X ′
(a,1,c);D. Roughly

speaking, X ′
(a,1,c);D is obtained from X(a,1,c);D by adding and removing either cubic hypersurfaces

containing codimension 1 linear subspaces, or unions of codimension 1 linear subspaces and quadric

hypersurfaces.

Proposition 5.3. (1) The hyperplane sections V (z) ∩X(a,1,c);D and V (z +
∑

xi) ∩X(a,1,c);D are

cubics containing a linear subspace of codimension 1.
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(2) The intersection V (z)∩V (z+
∑

xi)∩X(a,1,c);D is the union of a codimension 2 linear subspace

and a codimension 2 quadric hypersurface.

(3) The hyperplane section V (z) ∩X ′
(a,1,c);D is the union of a codimension 1 linear subspace and a

codimension 1 quadric hypersurface.

(4) The hyperplane section V (z+
∑

xi)∩X ′
(a,1,c);D is a cubic hypersurface containing a codimension

1 linear subspace.

(5) The intersection V (z+
∑

xi)∩V (z)∩X ′
(a,1,c);D is the union of a codimension 2 linear subspace

and a codimension 2 quadric hypersurface.

Now we prove Theorem 5.1.

Proof of Theorem 5.1. By Mayer–Vietoris (Proposition 2.6), and the fact that the cohomology of

any quadric hypersurface or projective space is Tate, we see that the cohomology of a union of a

hyperplane section and a quadric in Pn−1 is mixed Tate. Therefore it is in MHShyp
Q . By Propo-

sition 4.10, MHShyp
Q contains the cohomology of X ′

(a,1,c);D. Therefore, the compactly supported

cohomology long exact sequence implies that H∗
c(X

′
(a,1,c);D − V (z)) is contained in MHShyp

Q . The

same argument shows that H∗
c((V (z +

∑
xi) ∩ X ′

(a,1,c);D) − V (z)) is contained in MHShyp
Q . The

long exact sequence

· · · → Hi
c(W

′)→ Hi
c(X

′
(a,1,c);D − V (z))→ Hi

c((V (z +
∑

xi) ∩X ′
(a,1,c);D)− V (z))→ · · ·

then implies that Hi
c(W

′) is in MHShyp
Q .

Finally, the fact that X(a,1,c);D is isomorphic to the union of X ′
(a,1,c);D − V (z(z +

∑
xi)) and

(V (z)∪V (z+
∑

xi))∩X(a,1,c);D, along with the fact that V (z)∩X(a,1,c);D and V (z+
∑

xi)∩X(a,1,c);D,

and V (z, z +
∑

xi) ∩ X(a,1,c);D are either cubics containing codimension 1 subspaces or unions

of a quadric hypersurface and a hyperplane allows us to apply a similar argument to see that

Hi(X(a,1,c);D) is also contained in MHShyp
Q . �

Remark 5.4. The proof of Theorem 5.1 is valid for arbitrary kinematic parameters, even without

the restriction that m2
i > 0 for all i.

Remark 5.5. The proof of Theorem 5.1 makes use of the combination of Propositions 4.10 and 5.3.

In computations, it seems like for large enough values of space-time dimension D, all cubic hyper-

surfaces containing a codimension 1 linear subspace satisfy the conditions discussed in Remark 4.11.

In that case, it follows from the proof of Theorem 5.1 that either

(a) If a+c is odd, GrWi Ha+c(X(a,1,c);D;Q) is pure Tate except perhaps if i = a+c or i = a+c−2.
(b) If a + c is even, GrWi Ha+c(X(a,1,c);D;Q) is pure Tate except perhaps if i = a + c − 1 or

i = a+ c− 3.

Remark 5.6. Following 4.12, we can see that the curves whose cohomology groups appear as graded

components of Ha+c−1(X(a,1,c);D;Q) have genus at most (a+ c)/2. This upper bound is not sharp

in general. For instance, in the (3, 1, 3) case, the maximum genus obtained is 2, for D ≥ 6 (see

Section 5.3 for details). On the other hand, in computations, the genus of the curves contributing

to the cohomology of X(a,1,c);D appears to be unbounded when a and c are left to vary. Below (see

Figures 3 and 4) we list the genus of the curve C(a,1,c);D appearing in GrWa+c−1H
a+c−1(X ′

(a,1,c);D;Q)

and GrWa+c−2H
a+c−1(X ′

(a,1,c);D,Q). In our computations, the genus of C(2m−1,1,2m−1);4m−2 seems to

be generically equal to m.
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a c D = 2 D = 4 D = 6 D = 8 D = 10 D = 12 D = 14
3 3 0 1 2 2 2 2 2
4 4 0 0 1 2 2 2 2
5 3 ∗ 0 1 2 2 2 2
5 5 ∗ 0 1 2 3 3 3
6 4 ∗ 0 0 1 2 2 2
6 6 ∗ 0 0 1 2 3 3
7 3 ∗ ∗ 0 1 2 2 2
7 5 ∗ ∗ 0 1 2 3 3
7 7 ∗ ∗ 0 1 2 3 4
8 4 ∗ ∗ 0 0 1 2 2
8 6 ∗ ∗ 0 0 1 2 3
9 5 ∗ ∗ ∗ 0 1 2 3

Figure 3. Genus of curves determining Hodge numbers of
GrWa+c−1H

a+c−1(X ′
(a,1,c);D;Q) with a + c ≤ 14,D ≤ 14 and a + c even. The

notation ∗ indicates that the corresponding quadric fibration is degenerate.

a c D = 2 D = 4 D = 6 D = 8 D = 10 D = 12 D = 14
4 3 ∗ 0 1 1 1 1 1
5 4 ∗ 0 1 2 2 2 2
7 4 ∗ ∗ 0 1 2 2 2
7 6 ∗ ∗ 0 1 2 3 3
8 3 ∗ ∗ 0 0 1 2 2
8 5 ∗ ∗ 0 0 1 2 2
8 7 ∗ ∗ 0 0 1 2 3
9 4 ∗ ∗ ∗ 0 1 2 2
9 6 ∗ ∗ ∗ 0 1 2 3
10 3 ∗ ∗ ∗ 0 0 1 1
10 5 ∗ ∗ ∗ 0 0 1 2
11 4 ∗ ∗ ∗ ∗ 0 1 2

Figure 4. Genus of curves determining Hodge numbers of
GrWa+c−2H

a+c−1(X ′
(a,1,c);D;Q) with a + c ≤ 15,D ≤ 14 and a + c odd. The

notation ∗ indicates that the corresponding quadric fibration is degenerate.

5.2. Motives for (a, 1, c) graphs. As a consequence of Theorem 5.1, we may describe the motive

attached to an (a, 1, c) type graph of Figure 2, as described by Bloch–Esnault–Kreimer [5] and

Brown [20]. We will assume that a and c are chosen so that the numerator and denominator of

ω(a,1,c);D =
U

a+c+1−3D/2
(a,1,c)

Fa+c+1−D
(a,1,c);D

Ω0 (49)

have non-negative exponents, that is, that a+ c+ 1 ≥ 3D/2.

Lemma 5.7. Let a, 1, c be positive integers. The exceptional divisors of a blow up along Lx, Ly,

and Lz have mixed Tate cohomology. Therefore, Ha+c(bX(a,1,c);D;Q) agrees with Ha+c(X(a,1,c);D;Q)

up to mixed Tate factors. In particular, Ha+c(bX(a,1,c);D;Q) is in MHShyp
Q .
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Proof. Taking Equation (43) as our starting point, we may view the blow up along Lz as a hyper-

surface in the toric variety BlLzP
a+c with homogeneous equations

U′
(a,1,c) =

(
z + w

c∑

i=1

xi

)(
a∑

i=1

yi

)
+ z

(
c∑

i=1

xi

)
,

V′
(a,1,c);D =

(
z + w

a∑

i=1

yi

)
 ∑

1≤i<j≤c

p2ijxixj


+

(
z + w

c∑

i=1

xi

)
 ∑

1≤i<j≤a

q2ijyiyj




+ z




c∑

i=1

a∑

j=1

r2ijxiyj


 ,

F′
(a,1,c);D = U′

(a,1,c)

(
w

c∑

i=1

m2
i+axi + w

a∑

i=1

m2
i yi +m2

a+c+1z

)
− wV′

(a,1,c);D. (50)

where z has homogeneous weight (1, 0), w has homogeneous weight (1,−1), and xi, yi all have

homogeneous weight (0, 1). The exceptional divisor of the blow up is the vanishing locus of w, which

is precisely the vanishing locus of m2
a+c+1z0(

∑
xi +

∑
yi) in Pa+c−1 which has Tate cohomology.

Repeating similar arguments for Lx and Ly indicates that bX(a,1,c);D has cohomology in MHShyp
Q .

�

Recall the well-known fact (e.g., [20]) that if e is an edge of the graph polynomial FΓ;D(t) then

FΓ;D(t)|xe=0 = FΓ/e;D where Γ/e denotes graph contraction along the edge e. For instance, if Γ is

a two-loop graph (a, b, c) then the contractions of Γ are (a− 1, b, c), (a, b − 1, c), (a, b, c − 1).

Lemma 5.8. For arbitrary kinematic and mass parameters, bX(a,0,c);D has cohomology in MHShyp
Q .

Proof. We have the following expressions for the Symanzik polynomials of (a, 0, c)-graphs.

U(a,0,c) =

(
a∑

i=1

xi

)


c∑

j=1

zj


 ,

V(a,0,c);D =

(
a∑

i=1

xi

)
 ∑

1≤i<j≤c

p2ijzizj


+

(
c∑

i=1

zi

)
 ∑

1≤i<j≤a

q2ijxixj


 ,

F(a,0,c);D = U(a,0,c)




a∑

i=1

m2
ixi +

c∑

j=1

m2
j+azj


− tV(a,0,c);D. (51)

Note that this is a cubic containing a codimension 1 linear subspace
a∑

i=1

xi =
c∑

j=1

zj = 0. (52)

Therefore the cohomology of X(a,0,c);D is in MHShyp
Q by Proposition 4.10. To obtain bX(a,0,c);D, we

blow up in the disjoint linear subspaces La = V (xi | 1 ≤ i ≤ a) and Lc = V (zj | 1 ≤ j ≤ c). The

exceptional divisors of the first blow up is written as



c∑

j=1

zj





(

a∑

i=1

m2
ixi

)(
a∑

i=1

xi

)
+

∑

1≤i<j≤a

q2ijxixj


 = 0 (53)
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which is the union of a quadric and a hyperplane, thus its cohomology is mixed Tate. Therefore,

by Corollary 2.4, H∗(bX(a,0,c);D;Q) agrees with H∗(X(a,0,c);D;Q) up to mixed Tate factors and thus

it too is in MHShyp
Q . �

Theorem 5.9. Suppose Γ is an (a, 1, c) graph and that 3D/2 ≤ a+ c. The mixed Hodge structure

of Ha+c(PΓ − bXΓ;D, BΓ − bXΓ;D;Q) is contained in MHShyp
Q .

Proof. This is a straightforward application of the Mayer–Vietoris spectral sequence for the pair

(PΓ−bXΓ;D, BΓ∩(PΓ−bXΓ;D)) along with the lemmas above. First observe that, since PΓ is a toric

variety, H∗(PΓ;Q) is pure Tate, and hence by standard exact sequences of mixed Hodge structures,

H∗(PΓ − bX(a,1,c);D;Q) is also in MHShyp
Q . From the relative cohomology exact sequence for the

pair (PΓ − bXΓ;D, BΓ ∩ (PΓ − bXΓ;D)) it will suffice to show that H∗(BΓ ∩ (PΓ − bXΓ;D);Q) is in

MHShyp
Q .

The subschemeBΓ consists of a+c+4 divisors, D0, . . . Da+c+3 whereDi are the proper transforms

of xi, yi or zi = 0 in Pa+c under blow up if i = 0, . . . , a + c and Da+c+1,Da+c+2,Da+c+3 are the

exceptional divisors of b. For a subset I of {0, . . . , a+ c+3} let DI = ∩i∈IDi. The Mayer–Vietoris

spectral sequence for the cohomology of BΓ ∩ (PΓ − bXΓ;D) is a spectral sequence of mixed Hodge

structures with

Ep,q
2 =

⊕

|I|=p

Hq(DI ∩ bX(a,1,c);D;Q) (54)

so it suffices to see that Hq(DI ∩ bX(a,1,b);Q) are in MHShyp
Q .

(1) DI where a+ c+ 1, a + c + 2, a + c + 3 /∈ I. For such strata Z, the intersection Z ∩X(a,1,c);D

is simply X(a′,1,c′);D or X(a′,0,c′);D for a′ ≤ a and c′ ≤ c. By functoriality of the blow up, the

intersection of bX(a,1,c);D with the proper transform of Z under b : PΓ → Pa+c is bX(a′,1,c′);D or
bX(a′0,c′);D. Since DI is toric, Lemmas 5.7 and 5.8 show that H∗(bX(a,1,c) ∩DI ;Q) is in MHShyp

Q .

(2) DI where a+ c+1, a+ c+2, a+ c+3 ∈ I. Note that since the exceptional divisors of b do not

intersect, I contains at most one of a+ c+1, a+ c+2, or a+ c+3. Suppose a+ c+1 ∈ I without

loss of generality. In this case, we see that DI ∩ bX(a,1,c);D is is the exceptional divisor of the proper

transform of the intersection between X(a,1,c);D and the boundary divisors of Pa+c corresponding

to I − {a + c + 1} under the blow up map. We argued in the proofs of Lemmas 5.7 and 5.8 that

such varieties have mixed Tate cohomology. �

Remark 5.10. Theorem 5.9 applies nearly verbatim to the case where masses me : e ∈ e(Γ) are

allowed to vanish. In this case, the resolution PΓ taken in Section 2.2 is more subtle (see Section 3

of [20]). In this more general situation, one replaces the blow up b : PΓ → Pa+c along the three

linear subspaces Lx, Ly, Lz with blow ups along only a subset of Lx, Ly, Lz.

Remark 5.11. As a consequence of the arguments in the proof of Theorem 5.9, and Remark 5.6,

we see that, under the condition that 3D/2 ≤ a + c, the H∗(PΓ − bXΓ;D, BΓ ∩ (PΓ − bXΓ;D)) is

contained in the subcategory of MHShyp
Q generated by the Tate Hodge structure and H1(C;Q) of

hyperelliptic curves of genus ≤ (a+ c)/2.

As we saw in Figures 3 and 4 above, this bound is not particularly effective. As we see in

Sections 6 and 7, restricting to the case where c = 1, 2, produces much sharper bounds. We believe

that in general, the genus of curves which contribute to the motive attached to an (a, 1, c) graph is

bounded by a constant which depends only on min{a, c}.
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Figure 5. The double-box graph

5.3. The double box motive, (3, 1, 3). In this section we look at the double box graph depicted

in Figure 5 from the perspective of the discussion in the previous section. The graph polynomials

read

U(3,1,3) =

(
3∑

i=1

xi

)(
3∑

i=1

yi

)
+ z

(
3∑

i=1

xi +

3∑

i=1

yi

)
,

V(3,1,3);D =

(
z +

3∑

i=1

yi

)
(
p22x1x2 + (p2 + p3)

2x1x3 + p23x2x3
)

+

(
z +

3∑

i=1

xi

)
(
p26y1y2 + (p5 + p6)

2y1y3 + p25y2y3
)

+ z




3∑

i=1

3∑

j=1

(
6∑

s=7−i

ps +

j∑

r=1

pr

)2

xiyj


 ,

F(3,1,3);D = U(3,1,3)

(
3∑

i=1

m2
i yi +

3∑

i=1

m2
i+3xi +m2

7z

)
−V(3,1,3);D. (55)

where p1, p2, p3, p5, p6 are vectors of CD.

This example has been analyzed by Bloch in [4] where it is proven that there is a “motivic”

elliptic curve in the double box hypersurface when D = 4, however Bloch’s results shed no light on

the geometry of this curve. In this section we give a geometric realization of this family of elliptic

curves. Furthermore, we will prove the following theorem.

Theorem 5.12. Let X(3,1,3);D be the double box hypersurface, and assume that kinematic parame-

ters are chosen generically. If D > 4 then there is a genus 2 curve C so that GrW5 H5(X(3,1,3);D ;Q) ∼=
H1(C;Q)(−2). If D = 4 then there is a smooth elliptic curve E so that GrW5 H5(X(3,1,3);D ;Q) ∼=
H1(E;Q)(−2). If D < 4 then GrW5 H5(X(3,1,3);D ;Q) is trivial. In all cases, W4H

5(X(3,1,3);D;Q) is

mixed Tate.

Proof. We trace through the computations in the previous section in this particular example and

show that the only non-mixed Tate contribution to the cohomology of X(3,1,3);D is from a smooth

curve. We then show that this smooth curve has the appropriate genus and we provide a description

of it.

We summarize the geometric transformation involved in the proof of Theorem 5.1 by

X(3,1,3);D −99K X ′
(3,1,3);D

b←−−−− BlLX
′
(3,1,3);D =: Q (56)

where Q admits a quadric fibration over P1. The birational isomorphism between X(3,1,3);D and

X ′
(3,1,3);D replaces a pair of hyperplane sections H1 = V (z) and H2 = V (z+x1 + x2 +x3) with two
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distinct hyperplane sections H ′
1 = V (z),H ′

2 = V (z + x1 + x2 + x3). The blow-up map replaces a

codimension 2 linear subspace L = V (z,
∑c

i=1 xi+
∑

yi) in X ′
(3,1,3);4 with a projective hypersurface.

The goal of this proof is to show that all of the strata added and removed in this birational trans-

formation have mixed Tate cohomology, therefore there is an isomorphism between the cohomology

of X(3,1,3);D and that of Q up to mixed Tate factors.

(1) The cohomology of Q is determined by a curve C of the appropriate genus, up to mixed Tate

factors. Let X, z be parameters on the base P1 of the quadratic fibration on Q. The quadratic

fibration Q has discriminant locus of the form V (Xz3(A4X
4+A3X

3z+A2X
2z2+A1Xz3+A0z

4))

where A4, A3, A2, A1, A0 are complicated expressions in the kinematic parameters.1 For generic

choice of kinematic parameters the factor A4X
4 +A3X

3z +A2X
2z2 +A1Xz3 +A0z

4 is separable

and has roots distinct from 0 and ∞. Local analysis shows that monodromy on the cohomology of

the quadric fibres around each point in the discriminant locus is non-trivial, therefore H5(Q;Q) is

isomorphic to H1(C;Q) where C is a genus 2 curve, by Proposition 4.5. Specializing our kinematic

parameters to D = 6, we see that this situation persists; the genus of C remains 2. In doing this, we

notice that the coefficient A0 is precisely the classical Gram determinant factor [2] for the double

box

det




p21 p1 · p2 p1 · p3 p1 · p4 p1 · p5
p1 · p2 p22 p2 · p3 p2 · p4 p2 · p5
p1 · p3 p2 · p3 p23 p3 · p4 p3 · p5
p1 · p4 p2 · p4 p3 · p4 p24 p4 · p5
p1 · p5 p2 · p5 p3 · p5 p5 · p4 p25




= 0. (57)

Therefore, as D changes from 6 to 4, the genus of C changes from 2 to 1. Similarly, as D changes

from 4 to 2, the genus of C changes from 1 to 0.

(2) The blow up b replaces a line with a quadric fibration over P1 whose cohomology is mixed Tate.

This is a direct computation. We compute that the exceptional divisor of this blow up is a relative

hyperplane section E of the quadric fibration structure on Q, which is also fibred by quadrics

over P1. Direct computation shows that a generic fibre of π|E is smooth. Since dimE = 4, its

cohomology is mixed Tate (Proposition 4.5).

(3) H ′
1,H

′
2 and their intersection have mixed Tate cohomology. Computation shows that H ′

1 is

a union of a quadric and a hyperplane, so its cohomology is mixed Tate. Similarly, H ′
2 is a

cubic containing a codimension 1 linear subspace inherited from the fact that X ′
(3,1,3);D contains

a codimension 1 linear subspace. Their intersection is a union of a quadric and a hyperplane,

therefore it too has mixed Tate cohomology.

(4) H1,H2 and their intersection have mixed Tate cohomology. The computations here are similar;

for each of H1,H2 and H1∩H2 we obtain a cubic threefold. The cubic threefolds H1 and H2 contain

codimension 1 linear subspaces L1 : y1 + y2 + y3 = x1 + x2 + x3 = 0 and L2 : z = x1 + x2 + x3 = 0

respectively. We blow up these subspaces ci : H̃i → Hi to obtain quadric fibrations pi : H̃i →
P1, i = 1, 2. These quadric fibrations are nondegenerate, and H̃1, H̃2 are fourfolds, so it follows

that their cohomology groups are all mixed Tate (Corollary 4.6). Similarly, the exceptional divisors

of each blow up admit quadric fibrations over P1 by the induced projection. For these quadric

fibrations, we check that the generic fibre is smooth, and that the discriminant locus consists of

fewer than four points in each case. Therefore, again by Corollary 4.6 their cohomology groups are

1The computations that are involved in this proof may be found in the SAGE worksheet linked Double-Box.ipynb.

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Double-Box.ipynb
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mixed Tate. Consequently, H1,H2 have mixed Tate cohomology. Finally, H1 ∩H2 is a union of a

copy of P3 and a 3-dimensional quadric, thus its cohomology is mixed Tate. �

Remark 5.13. We notice that if D > 4 then the differential form ω(3,1,3);D has denominator which

contains a power of U(3,1,3);D. Therefore, in “physically interesting” situations, the curve C de-

scribed in the proof above is at worst an elliptic curve. On the other hand, in dimension D = 6 the

hypersurface X(3,1,3);D and its periods appear as boundary terms in the computation of Feynman

integrals attached to (a, 1, c) graphs where a+ c ≥ 3D/2.

Remark 5.14. The construction in Section 5 is symmetric in the sense that it can also be carried

out with the x- and y-variables exchanged. Note that this symmetry is not a symmetry of the

hypersurface itself. Carrying out the construction in Theorem 5.12 with the x- and y-variables ex-

changed produces another family of elliptic curves Ẽ so that H1(Ẽ;Q)(−2) ∼= GrW5 H5(X(3,1,3);4;Q).

Since H1(Ẽ;Q) ∼= H1(E;Q), it is guaranteed that E and Ẽ are isogenous. One can check that they

are in fact isomorphic.

5.3.1. Picard–Fuchs operators. We can make contact with the analysis of Picard–Fuchs operator

L(3,1,3);D derived in [43]. To the double-box graphs of type (3, 1, 3) in Figure 5 one associates the

differential form

ω(3,1,3);D(t) =
U

7− 3D
2

(3,1,3)

(F(3,1,3);D(t))7−D
Ω0 (58)

the graph polynomials are defined in eq. (55).

In four dimensionsD = 4, ω(3,1,3);4(t) defines a rational differential form in H6(P6−V (F(3,1,3);D))

on the complement of the vanishing locus of F(3,1,3);D. The five vectors are constrained by the

Gram determinant condition given in (57). The extended Griffiths–Dwork algorithm mentioned in

Section 3 applied to this case in Section 6.3 of [43] leads to a Picard–Fuchs operator L(3,1,3);4 such

that

L(3,1,3);4ω(3,1,3);4(t) = dβ(3,1,3);4. (59)

of second order

L(3,1,3);4 = q2(t)

(
d

dt

)2

+ q1(t)
d

dt
+ q0(t). (60)

For several generic choices of kinematic parameters, this Picard–Fuchs operator deduced by using

the extended Griffiths–Dwork reduction matches the Picard–Fuchs operator from the non-mixed

Tate contribution to the cohomology of X(3,1,3);4. The comparison is presented on this work-

sheet Double-Box.ipynb.

If one relaxes the condition from the Gram determinant in eq. (57) the resulting Picard–Fuchs

operator deduced by using the extended Griffiths–Dwork is found to be of order 4 in agreement

with the analysis of the cohomology of Q in Section 5.3.

5.4. The pentabox graph motive, (3, 1, 4). In this case we apply similar techniques to those

employed in the previous section to compute the relevant part of the cohomology of the pentabox

hypersurfaces. We note that the Feynman integral in question is with respect to the algebraic

differential form

ω(3,1,4);D(t) =
U

8−3D/2
(3,1,4)

(F(3,1,4);D(t))8−D
Ω0 (61)

so the only values of D for which X(3,1,4);D is the polar locus are 2 and 4.

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Double-Box.ipynb
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Figure 6. The pentabox graph

Theorem 5.15. Let X(3,1,4);D be the pentabox hypersurface, and assume that kinematic param-

eters are chosen generically. Then GrW6 H6(X(3,1,4);D;Q) is pure Tate and W4H
6(X(3,1,4);D;Q) is

mixed Tate. If D ≥ 4 then there is a smooth elliptic curve E, depending on kinematic and mass

parameters, so that GrW5 H6(X(3,1,4);D;Q) ∼= H1(E;Q)(−2). If D < 4 then GrW5 H6(X(3,1,4);D ;Q) is

trivial.

Proof. The proof is similar to that of Theorem 5.12, so we suppress the details and refer the reader

to the SAGE worksheet Pentabox-Graph.ipynb. �

Remark 5.16. In [43] it is shown that, in numerical examples, the differential equation L(4,1,3);4

is irreducible and Liouvillian, or in other words, the elliptic curve E in Theorem 5.15 does not

seem to be detected by L(3,1,4);4. According to Lemma 3.1, if [ω(3,1,4);4] ∈W7H
7(P6−X(3,1,4);4;Q),

then Soℓ(L(3,1,4);4) is a sub-local system of GrW0 H∨
(4,1,3);4, which is irreducible and is Liouvillian,

hence it has at worst abelian monodromy. This leads us to conjecture that [ω(3,1,4);4] ∈W7H
7(P6−

X(3,1,4);4;Q).

This conjecture is supported by discriminant computations (we refer to the worksheet

Pentabox-singularities.ipynb for some numerical checks). The quadric fibration on the six-fold

Q → P1 constructed in the proof of Theorem 5.1 has discriminant a set of five points located at

[1 : 0], [0 : 1], [1 : −1] and at the roots of a quadric polynomial whose coefficients depend on t. In

numerical examples, one can compute that the regular singular points of L(3,1,4);4 agree with the

values of t so that the discriminant of the map Q → P1 collapses to fewer than 5 points. Further-

more, despite the fact that there is a family of elliptic curves determining GrW5 H6(X(3,1,4);4;Q), the

degeneration of these elliptic curves is not detected by the regular singular points of L(3,1,4);4.

6. Elliptic motives for (a, 1, 2) graph hypersurfaces

Figure 7. A two-loop graph of type (a, 1, 2) with a = 4

In this section, we analyze the graphs of type (a, 1, 2) represented in Figure 7 and prove Theo-

rems 6.5, which states that motives of X(a,1,2);D come from elliptic curves or are mixed Tate. The

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Pentabox-Graph.ipynb
https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Pentabox-singularities.ipynb
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polynomial associated to such graphs are given by the following equations

U(a,1,2) = (z + x1 + x2)

(
a∑

i=1

yi

)
+ z (x1 + x2) , (62)

V(a,1,2);D = p2x1x2

(
z +

a∑

i=1

yi

)
+ (z + x1 + x2)


 ∑

1≤i<j≤a

q2ijyiyj


+ z




2∑

i=1

a∑

j=1

r2ijxiyj


 ,

F(a,1,2);D = U(a,1,2)

(
a∑

i=1

m2
i yi +m2

a+1x1 +m2
a+2x2 +m2

a+3z

)
−V(a,1,2);D,

where the mass parameters are real non-vanishing positive number mi ∈ R>0 for 1 ≤ i ≤ a + 3,

and q2ij =
(∑j−1

r=i qr

)2
with 1 ≤ i < j ≤ a, r21i =

(
k2 +

∑i−1
j=1 qj

)2
and r22i =

(
k + p+

∑i−1
j=1 qj

)2

for 1 ≤ i ≤ a.

Following the approach outlined in Lemma 4.1, we blow up Xa,1,2 along the codimension 2 linear

subspace z = x1 = x2 = 0 to obtain a hypersurface in P(Oa
P2 ⊕OP2(−1)) with equations given by

Ũ(a,1,2) = (z + x1 + x2)

(
a∑

i=1

yi

)
+ zw (x1 + x2) , (63)

Ṽ(a,1,2);D = p2wx1x2

(
wz +

a∑

i=1

yi

)
+ (z + x1 + x2)


 ∑

1≤i,j≤a

q2ijyiyj


+ zw




2∑

i=1

a∑

j=1

r2ijxiyj


 ,

F̃(a,1,2);D = Ũ(a,1,2)

(
a∑

i=1

m2
i yi +w(m2

a+1x1 +m2
a+2x2 +m2

a+3z)

)
− Ṽ(a,1,2);D

As a consequence of Lemma 5.7, we have the following observation.

Proposition 6.1. Up to mixed Tate factors, the cohomology of X(a,1,2);D agrees with that of

X̃(a,1,2);D.

The projection onto P2 induces a quadric bundle structure on X̃(a,1,2);D. The second step is to

describe precisely the discriminant locus of the map π : X̃(a,1,2);D → P2.

Proposition 6.2. For the quadric fibration π : X̃(a,1,2);D → P2, the discriminant curve is of the

form

D(a,1,2);D = (z + x1 + x2)
a−1G(a,1,2);D(z, x1, x2) (64)

where G(a,1,2);D(z, x1, x2) is a homogeneous quartic polynomial whose vanishing locus has geometric

genus either 0 or 1.

Proof. We can write the coefficients of the yiyj variables in F̃(a,1,2);D in (62) as coefficients of

(z + x1 + x2)


 ∑

1≤i<j≤a

q2ijyiyj +

(
a∑

i=1

m2
i yi

)(
a∑

i=1

yi

)
 . (65)

Let M denote the symmetric matrix whose coefficients are the coefficients of the constant quadratic

form
∑

q2ijyiyj +
(∑

m2
i yi
)
(
∑a

i=1 yi). We can write the coefficients of wyj in F̃(a,1,2);D as

Rj = z

(
2∑

i=1

r2ijxi

)
+m2

i z(x1 + x2) + (m2
a+1x1 +m2

a+2x2 +m2
a+3z)(z + x1 + x2). (66)
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Let R be the 1× a matrix with coefficients Ri. The coefficient of w2 in F̃a,1,2 is

S = z
[
(x1 + x2)(m

2
a+1x1 +m2

a+2x2 +m2
a+3z) + p2x1x2

]
. (67)

The quadratic form determining the fibres of X̃a,1,2 is then the matrix
(
(z + x1 + x2)M RT

R S

)
. (68)

It is straightforward to see that the determinant of such a matrix is of the form

(z + x1 + x2)
a−1


(z + x1 + x2)S detM +

∑

1≤i,j≤a

detM i,jRiRj


 (69)

where M i,j denotes the i, j minor of M . This proves that D(a,1,2);D has the required form.

Finally, we address the genus of the vanishing locus of the quartic factor. The equation for

D(a,1,2);D in (69) can be rearranged so that it is of the form

Az2 +BQz +Q2 (70)

for a quadric polynomial A, a linear polynomial B, and a quadric polynomial Q = p2x1x2 + (x1 +

x2)(m
2
a+1x1+m2

a+2x2). Such a hypersurface is birational to the intersection of quadrics in P3 given

by

A+BX +X2 = zX −Q = 0. (71)

Therefore it is either elliptic or it is rational. �

Remark 6.3. The quartic factor in (69) depends heavily on the structure of M . For instance, if

rankM = a then it is generically nonzero; if rankM = a − 1 then it is generically of the form∑
i,j detM

i,jRiRj ; and if rankM < a− 1 it is generically zero.

Remark 6.4. For arbitrary (a, 1, c) graph, the chain of a edges induces a quadratic fibration π :

X̃(a,1,c);D → Pc, following Lemma 4.1. The discriminant locus of this map is generally of the form

(z + x1 + · · ·+ xc)
a−1D(a,1,c);D(z, x1, . . . , xn) (72)

where D(a,1,c);D is a quartic polynomial in z, x1, . . . , xn. Furthermore, we can show that there are,

in general, quadratic polynomials A,Q and a linear polynomial B so that

D(a,1,c);D = Az2 +BQz +Q2. (73)

and hence that V (D(a,1,c);D) is birational to an intersection of quadrics in Pc+1. It is known that, at

least generically, the cohomology of the intersection of a pair of quadrics is either Tate or isomorphic

to the cohomology of a hyperelliptic curve, [54]. This provides an alternate approach to Theorem 5.1

starting with this fact but we believe that the proof presented in Section 5 is simpler.

Now we may prove the main theorem of this section.

Theorem 6.5. For any value of a and D, Ha+1(X(a,1,2);D;Q) is in MHSell
Q . Furthermore, suppose

that a+2 > 3D/2. Then the mixed Hodge structure on Ha+2(PΓ−X̃Γ, BΓ−(X̃Γ∩BΓ)) is contained

in MHSell
Q .

Proof. We are reduced to looking at the cohomology of X̃(a,1,2);D, since it is the same as that

of X(a,1,2);D up to mixed Tate factors by Proposition 6.1. If the fibration map π has generically

singular fibres then by Corollary 4.6 all cohomology of Ha+1(X̃(a,1,2);D ;Q) is mixed Tate and we

are done.
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We keep the notation of Proposition 6.2. We see that the fibres over the line x1 + x2 + z = 0 are

generically of rank 1, therefore consist of a pair of projective bundles over P1, one defined by w = 0

in homogeneous coordinates, and the other is V (w+
∑

Riyi). The rank of these fibres degenerates

to 0 precisely at the common vanishing locus of R1, . . . , Ra on V (z + x1 + x2). This consists of at

most 2 points, therefore by Remark 4.7 the cohomology of π−1V (z + x1 + x2) is mixed Tate.

There is a birational transformation

h : P(Oa
P2 ⊕OP2(−2)) −→ P(Oa

P2 ⊕OP2(−1)) (74)

defined by

h : (y1, . . . , ya, x1, x2, z, v) 7−→(y1, . . . , ya, x1, x2, z, v(x1 + x2 + z))

= (y1, . . . , ya, x1, x2, z, w). (75)

under which the proper transform of X̃(a,1,2);D , which we denote X(a,1,2);D, has generically smooth

fibres over the locus z + x1 + x2. An important observation is that, under the assumption that

the generic corank of π : X(a,1,2);D → P2 is 0, a linear change of variables in the yi-coordinates

expresses X(a,1,2);D as

y21 + y22 + · · ·+ y2a +G(z, x1, x2)w
2 = 0. (76)

Geometrically, this birational transform replaces π−1V (z + x1 + x2) with a generically smooth

quadric fibration Z over P1 = V (z + x1 + x2) ⊆ P2 with singular fibres only occurring at the

intersection of V (z + x1 + x2) and the discriminant curve D(a,1,2);D. Therefore, by Corollary 4.6,

(1) If a is even, then Hi(Z;Q) is mixed Tate,

(2) If a is odd, then GraWHa(Z;Q) ∼= H1(C;Q) where C is a double cover of P1 ramified in at

most four points. Therefore C is rational or elliptic, and the rest of Hi(Z;Q) is mixed Tate.

We may now complete the proof by induction on a. More precisely, we show, by induction, that a

hypersurface X of P(Oa
P2 ⊕ OP2(−2)) is in the form (76) with G(z, x1, x2) an arbitrary quartic of

geometric genus 0 or 1, then H∗(X;Q) is in MHSell
Q .

Our inductive step reduces a by 2, so our base step must be done for both a = 0 and a = 1.

Certainly, if a = 0, 1 then X is either V (G(z, x1, x2)) or V (y21+G(z, x1, x2)w
2), which is to say that

it is either a curve of geometric genus 0 or 1 by Proposition 6.2, or it is a double cover of P2 ramified

along a quartic curve, and we showed in Proposition 4.8 that such varieties have cohomology in

MHSell
Q .

We may rewrite (76), after a small change of variables, as

y1y2 + y23 + · · ·+ y2a +G(z, x1, x2)w
2 = 0. (77)

The map (X − V (y2))→ (P(Oa
P2 ⊕OP2(−2)) − V (y2)) projecting

[y1 : y2 : · · · : ya : z : x1 : x2 : w] 7→ [y2 : · · · : ya : z : x1 : x2 : w] (78)

is an isomorphism. Since (P(Oa
P2⊕OP2(−2))−V (y2)) is the complement of a toric divisor in a toric

variety, its compactly supported cohomology is mixed Tate. Therefore, up to mixed Tate factors,

Ha+1(X;Q) is isomorphic to Ha+1(X∩V (y2);Q). We will use the shorthand T to denote V (y2)∩X.

We see that T is stratified into subvarieties Y = V (y1) ∩ T and U = T − Y .

Observe that projection onto P(Oa
P2 ⊕ OP2(−2)) away from V (y1) makes U into an A1-bundle

over Y . By the Künneth formula for compactly supported cohomology, we have that Hi
c(U ;Q) ∼=

Hi−1(Y ;Q). Therefore, if H∗(Y ;Q) ∈ MHSell
Q then the same is true for H∗(X;Q). This finishes

the proof since Y is a hypersurface of P(Oa
P2 ⊕OP2(−2)) of the form (76). �
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Figure 8. The house graph

6.1. The house graph, (3, 1, 2). In this section we look at the house graph depicted in Figure 8

from the perspective of the discussion in the previous section. The graph polynomials read

U(3,1,2) = (x1 + x2) (y1 + y2 + y3) + z (x1 + x2 + y1 + y2 + y3) ,

V(3,1,2);D = (z + y1 + y2 + y3) p
2x1x2 + (z + x1 + x2)

(
k2y1y2 + (k + r)2y1y3 + r2y2y3

)

+ zx1
(
q2y1 + (k + q)2y2 + (k + q + r)2y3

)

+ zx2
(
(p − q)2y1 + (k − p+ q)2y2 + (k − p+ q + r)2y3

)

F(3,1,2);D(t) = U(3,1,2)

(
3∑

i=1

m2
i yi +

2∑

i=1

m2
i+3xi +m2

7z

)
− tV(3,1,2);D. (79)

where k, p, q, r are vectors of CD.

Proposition 6.6. Suppose D = 4. For generic kinematic parameters,

GrWi H4(X(3,1,2);4;Q) =





H1(E;Q) if i = 3

Q(−2)r if i = 4

0 otherwise

where E is an elliptic curve depending on kinematic parameters, and r is an integer.

Proof. We follow the two birational transformations described in the proof of Theorem 6.5 in detail

and describe the effects that they have in cohomology. The precise computations can be found in

the SAGE worksheet House.ipynb.

(a) There is first a blow up

f : X̃(3,1,2);D −→ X(3,1,2);D (80)

which replaces a copy of P2 with a union of P2×P1 and Q×P2 where Q is a quadric in P2 meeting

along Q× P1. Call the exceptional divisor Df . The cohomology of both the linear subspace L and

Df are pure Tate. Therefore the long exact sequence

· · · → H3(L;Q) ∼= 0→ H4
c(X(3,1,2);D −L;Q)→ H4(X(3,1,2);D;Q)→ H4(L;Q) ∼= Q(−2)→ · · · (81)

implies that:

H4(X(3,1,2);D;Q) has the properties quoted in the statement of the proposition if

H4
c(X(3,1,2);4 − L;Q) also has the same properties.

A similar long exact sequence, applied to X̃(3,1,2);D and Df , tells us that:

H4(X(3,1,2);D ;Q) has the properties quoted in the statement of the proposition if H4
c(X̃(3,1,2);4;Q)

also has the same properties.

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/House.ipynb
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(b) We analyze the effect on cohomology of the second birational transformation. The second

birational transformation

h : X(3,1,2);D −→ X̃(3,1,2);D (82)

replaces a union of a copy of P2 × P1 and a variety isomorphic to P2 × P1 meeting along a copy

of P1 × P1 with a quadric fibration ρ : Z → P1. Let Dh be the divisor removed from X̃(3,1,2);D.

One can see again that this divisor has only pure Tate cohomology, so a long exact sequence in

cohomology applied to the pair X̃(3,1,2);D and Dg

· · · → H3(Dg;Q) ∼= 0→ H4
c(X̃(3,1,2);D −Dg;Q)→ H4(X̃(3,1,2);D;Q)→ H4(Dg ;Q) ∼= Q(−2)r → · · ·

(83)

tells us that:

H4(X(3,1,2);4;Q) has the properties quoted in the statement of the proposition if

H4
c(X(3,1,2);4 − Z;Q) also has the same properties.

The following paragraphs compute H4(X(3,1,2);4 − Z;Q).

(c) Show that H3(Z;Q) ∼= H1(E;Q) for an elliptic curve E. We can compute that Z is generically

smooth, and that the quadric fibration ρ : Z → P1 has precisely four singular fibres which are

simple vanishing loci of the discriminant. Therefore, combining Corollary 4.6 and Lemma 4.4 we

see that Hi(Z;Q) is pure Tate except if i = 3 in which case H3(Z;Q) ∼= H1(E;Q) for an elliptic

curve E.

(d) Show that X(3,1,2);D has pure Tate cohomology. The hypersurface X(3,1,2);D also admits a

quadric fibration π : X(3,1,2);D → P2 whose discriminant locus is a quartic curve admitting two

A1 singularities. Furthermore, the variable transformations described in (77) allow us to write

X(3,1,2);D in the form

y1y2 + y33 +G(3,1,2);D(z, x1, x2)w
2 = 0. (84)

Following the same argument as before, we have that R := X(3,1,2);D − V (y2) is isomorphic to the

complement of V (y2) in an A2 bundle over P2 which is smooth and has pure Tate cohomology. The

hyperplane section T = X(3,1,2);D ∩ V (y2) is, as before, stratified into Y = X(3,1,2);D ∩ V (y1, y2)

and U = T − Y . We note that Y is a double cover of P2 ramified in a bi-nodal quartic curve.

A binodal quartic curve has only orbifold singularities thus it has at pure Tate cohomology. U is

an A1 bundle over Y . Therefore it too has only pure Tate cohomology and compactly supported

cohomology. Consequently, the cohomology of T is pure Tate. The cohomology of X(3,1,2);D sits in

a long exact sequence

· · · → Hi
c(R;Q)→ Hi(X(3,1,2);D;Q)→ Hi(T ;Q)→ · · · (85)

Since R and T have pure Tate cohomology, the same is true for X(3,1,2);D.

(e) Compute the cohomology of H4
c(X(3,1,2);D − Z;Q). This is a consequence of the long exact

sequence

· · · → H3(Z;Q)→ H4
c(X(3,1,2);4 − Z;Q)→ H4(X(3,1,2);4;Q)→ · · · (86)

along with (c) and (d). �

6.1.1. Picard–Fuchs operators. In D = 4 dimensions, to the house graph of type (3, 1, 2) in Figure 8

one associates the rational differential form in H5(P5 − V (F(3,1,2);D(t))) on the complement of the
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vanishing locus of F(3,1,2);D(t)

ω(3,1,2);4(t) =
Ω0

(F(3,1,2)(t))2
(87)

with Ω0 the differential form on P5[x1, x2, y1, y2, y3, z]. An application of the extended Griffiths–

Dwork algorithm of [43] to the differential form in four dimensions produces an order 8 Picard–Fuchs

operator of degree 99 such that

L(3,1,2);4ω(3,1,2);4(t) = dβ(3,1,2);4, (88)

where the poles of the differential form β(3,1,2);4 are already contained in the poles of ω(3,1,2);4 (see

the discussion in Section 3 of [43]).

The factorisation algorithm [25,33] gives a factorisation of the operator L(3,1,2);4 factors into

L(3,1,2);4 = L3L
2
1 L

3
1 L

4
1 L2 (89)

into a product of one third order L3, three first order operators L 2
1 , . . . ,L

4
1 and a second order

operator L2. For the numerical examples detailed on the SAGE worksheet House.ipynb, the order

3 operator has no monodromy and only rational solutions.

Therefore, the local system Soℓ(L(3,1,2);4) has an increasing filtration where rankP0 = 2 and

rankPi/Pi−1 = 1. This is precisely what one would expect if Soℓ(L(3,1,2);4) were in fact a quotient

of the homological variation of mixed Hodge structure underlying the family X(3,1,2);4(t).

Recall from Proposition 6.6 that each X(3,1,2);4(t) is associated to an elliptic curve. Therefore,

there is a family of elliptic curves attached to the pencils of graph hypersurfaces. Following the

proof of Proposition 6.6 this family of elliptic curves is described as follows. Let

Tj = (x1 + x2)

[(
2∑

i=1

tr2ijxi

)
+m2

i (x1 + x2)

]
+ tp2x1x2. (90)

Then the elliptic curve attached to X(3,1,2);4(t) is the double cover of P1 ramified in the vanishing

locus of ∑

1≤i,j≤a

detM i,jTiTj (91)

where M i,j is the (i, j)-minor of the matrix given in (68). After a birational change of variables

described in Appendix A, we may write this family of t-dependent elliptic curves as a family of

elliptic curves in Weierstrass form. We denote by Q(3,1,2);4(t) this family of Weierstrass equations.

One then computes the Picard–Fuchs operator annihilating the form Ω0/Q(3,1,2);4(t), again using

the method described in Appendix A. Let L̂(3,1,2);D denote this operator.

The normal forms2 of the differential operators L̂(3,1,2);D and of the L2 obtained from the

extended Griffiths–Dwork algorithm in [43] are the same, which implies that that the two differential

operators differ by the multiplication by t: L1 = L̂(3,1,2) t. This comparison is made explicit on

some numerical examples on SAGE worksheet House.ipynb.

6.2. The kite graph motive, (2, 1, 2). Let us analyze the situation when a = c = D = 2. This is

the simplest situation described by the discussion above, however we will see that in some ways it

2 The normal form of the second order ordinary differential operator L =
∑2

i=0 qi(t)(d/dt)
i is obtained after applying

the scaling f(t) → f(t) exp(−
∫

q1(t)dt/(2q2(t))) and reads L̃ = (d/dt)2 −
−4q0(t)q2(t)+2

dq1(t)
dt

q2(t)+q1(t)
2
−2q1(t)

dq2(t)
dt

4q2(t)2
.

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/House.ipynb
https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/House.ipynb
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Figure 9. The kite graph

is atypical. In this case, the graph hypersurfaces in question are given by the equations

U(2,1,2) = (z + x1 + x2) (y1 + y2) + z (x1 + x2) ,

V(2,1,2);D = (z + y1 + y2) p
2x1x2 + (z + x1 + x2) q

2y1y2 (92)

+ z
(
r211x1y2 + r212x1y2 + r221x2y1 + r222x2y2

)
,

F(2,1,2);D(t) = U(2,1,2)

(
m2

1y1 +m2
2y2 +m2

3x1 +m2
4x2 +m2

5z
)
− tV(2,1,2);D,

where the mass parameters are real non-vanishing positive number mi ∈ R>0 for 1 ≤ i ≤ 5, and

the kinematic parameters r211 = k2, r12 = (k+ q)2, r21 = (k+ p)2 and r22 = (k+ p+ q)2. Following

the recipe in the previous section, we may prove the following result.

Proposition 6.7. For any D ≥ 2 the quadric fibration π : X̃(2,1,2);D → P2 is nondegenerate. If

D = 2 curve V (D(2,1,2);D) geometric genus 0, and if D > 2 it has geometric genus 1. Therefore,

the cohomology of X(2,1,2);2 is mixed Tate, and GrWH3(X(2,1,2);4;Q) ∼= H1(E;Q)(−1) for an elliptic

curve E depending on mass and kinematic parameters.

Proof. Straightforward computation in SAGE [59] given on the worksheet Kite.ipynb. In this

worksheet it is shown that the elliptic curve E is the same for the blow up of the x0 = x1 = z or

y0 = y1 = z, reflecting the symmetry of the graph with respect to the middle edge. �

Remark 6.8. Note that since the graph (2, 1, 2) is symmetric, there are two choices of quadric

fibration on X(2,1,2);D corresponding to the two distinct chains of edges of length 2. If D > 2 then

both choices produce elliptic curves attached to X(2,1,2);D. By Theorem 6.5, these curves must have

isomorphic Q cohomology, thus they are isogenous. In fact, one can check that they are isomorphic.

Compare this to Remark 5.14.

However we have the following observation; the differential form used in computing the kite

Feynman integral is of the form

ω(2,1,2);2(t) =
U

5−3D/2
(2,1,2)

F(2,1,2);D(t)5−D
Ω0, (93)

where Ω0 is the canonical differential form on P4.

The singular locus of ω(2,1,2);D(t) is equal to X(2,1,2);2 only when space-time dimension D = 2. As

we have seen, in that case the mixed Hodge structure on H3(X(2,1,2);2) is mixed Tate. In fact, as one

can compute (see Section 6.1.1 of [43]), the differential form ω(2,1,2);2 is exact and thus represents

the trivial class in cohomology. On the other hand, in space-time dimension D = 4 the form is

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Kite.ipynb


MOTIVIC GEOMETRY OF TWO-LOOP FEYNMAN INTEGRALS 39

written as

ω(2,1,2);4(t) =
Ω0

U(2,1,2)F(2,1,2);4(t)
(94)

which represents an element in the de Rham cohomology of the complement of of Y(2,1,2)∪X(2,1,2);4

where Y(2,1,2) = V (U(2,1,2)). By Proposition 6.7, Hi(X(2,1,2);4;Q) is generically mixed Tate unless

i = 3, in which case

W2H
i(X(2,1,2);4;Q) is mixed Tate, GrW3 H3(X(2,1,2);4;Q) ∼= H1(E;Q)

for an elliptic curve E depending on kinematic parameters. A quick computation shows that Y(2,1,2)

is a 3-dimensional quadric of corank 1 so its cohomology groups can be computed easily as

Hi(Y(2,1,2);Q) =





0 if i is odd

Q if i = 0, 2, 6

Q2 if i = 4

We would like to apply the Mayer–Vietoris long exact sequence to describe the mixed Hodge

structure on the cohomology of X(2,1,2);4 ∪ Y(2,1,2). To do this, we must describe the cohomology of

Z = Y(2,1,2) ∩X(2,1,2);4.

Lemma 6.9. The cohomology of Z is mixed Tate.

Proof. As usual, the proof of this result comes from a sequence of birational transformations where

we carefully keep track of the cohomological contributions from each map.

(1) Blow up at [0 : 0 : 0 : 0 : 1]. First, we blow up at the point [0 : 0 : 0 : 0 : 1]. This can be

represented in toric homogeneous coordinates as

U′
(2,1,2) = (z + w(x1 + x2)) (y1 + y2) + z (x1 + x2) ,

V′
(2,1,2);D = (z + w(y1 + y2)) p

2x1x2 + (z + w(x1 + x2)) q
2y1y2 (95)

+ z
(
r211x1y2 + r212x1y2 + r221x2y1 + r222x2y2

)
,

F′
(2,1,2);D = U′

(2,1,2)

(
m2

1y1w +m2
2y2w +m2

3x1w +m2
4x2w +m2

5z
)
− twV′

(2,1,2);D,

The exceptional divisor of this blow up in Z is the vanishing locus of w in U′
(2,1,2) = V′

(2,1,2);D = 0.

This is the smooth quadric

x1 + x2 + y1 + y2 = p2x1x2 + q2y1y2 + r211x1y2 + r212x1y2 + r221x2y1 + r222x2y2 = 0.

This makes only a mixed Tate contribution to the cohomology of Z.

(2) Project onto P3. The projection onto the P3 with variables x1, x2, y1, y2 is one-to-one on Y(2,1,2)

away from x1 + x2 = y1 + y2 = 0, along which it is a P1 fibre bundle. There is an inverse bijection

well-defined away from the image of this locus, given by

[x1 : x2 : y1 : y2] 7→ [x1 : x2 : y1 : y2 : (x1 + x1)(y1 + y2) : (x1 + x2 + y1 + y2)] .

Using this, we see that the image of Z under the projection map is a quartic hypersurface in P3

given by the equation

W(2,1,2);D = (x1 + x2 + y1 + y2)
(
p2x1x2(y1 + y2) + q2y1y2(x1 + x2)

)

+ (x1 + x2)(y1 + y2)(p
2x1x2 + q2y1y2 + r211x1y1 + r212x1y2 + r221x2y1 + r222x2y2). (96)

Since Z is a hypersurface in Y , the projection is generically one-to-one away from its intersection

with the contraction locus. One sees that this map sends a quadric in Z to the line x1+x2 = y1+y2
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in Z ′ = V (W(2,1,2);D). Again, this birational map makes only mixed Tate contributions to the

cohomology of Z.

(3) Blow up the line x1 + x2 = y1 + y2 = 0 in Z ′. We see that Z ′ is a quartic hypersurface in

P3 containing a line x1 + x2 = y1 + y2 = 0 of A1 singularities. We make a change of variables,

X1 = x1 + x2,X2 = y1 + y2,X3 = x2,X4 = y2 to get

r211X
2
1X

2
2 − p2X1X

2
2X3 − r211X1X

2
2X3 + r221X1X

2
2X3 + p2X2

2X
2
3

− q2X2
1X2X4 − r211X

2
1X2X4 + r212X

2
1X2X4 + r211X1X2X3X4

− r212X1X2X3X4 − r221X1X2X3X4 + q2X2
1X

2
4 + r22X1X2X3X4 (97)

This is quadric in X3,X4 so we may blow up along the subvariety X1 = X2 = 0 to get a quadric

fibration over P1 which we call Z ′′. This quadric fibration is generically nondegenerate therefore

it has mixed Tate cohomology by Corollary 4.6. The exceptional divisor of the blow up is a (2, 2)

curve in P1
X1,X2

× P1
X3,X4

determined by the equation

p2X2
2X

2
3 + r211X1X2X3X4 − r212X1X2X3X4 − r221X1X2X3X4 + q2X2

1X
2
4 + r22X1X2X3X4 = 0 (98)

A quick check shows that this curve is singular for all choices of parameters. Hence its cohomology

is mixed Tate, and thus, up to mixed Tate factors, the quartic hypersurface Z ′ and the quadric

bundle Z ′′ have the same cohomology. �

Corollary 6.10. The Hodge structure on GrWi H4(P4 − (X(2,1,2);4 ∪ Y(2,1,2));Q) is pure Tate except

when i = 5, in which case,

GrW5 H4(P4 − (X(2,1,2);4 ∪ Y(2,1,2));Q) ∼= H1(E;Q)(−2)
for an elliptic curve E depending on the mass and kinematic parameters.

An application of the extended Griffiths–Dwork algorithm to the kite differential form in (94)

leads to a reducible order 7 Picard–Fuchs operator L(2,1,2);4 given in Section 6.1.2 of [43]. For

the numerical cases studied reported on the page PF-Kite.ipynb, we have checked that the non-

apparent singularities of the Picard–Fuchs operator L(2,1,2);4 occur at the location of the vanishing

of the discriminant of the elliptic curve E determined by the kite graph polynomial. The differential

operator L(2,1,2);4 sees the non-elliptic non-anomalous contribution evaluated in [17] .

Remark 6.11. This case presents a minor riddle when comparing the structure of the differ-

ential operator L(2,1,2);4 to the variation of mixed Hodge structure H(2,1,2);4. The local sys-

tem Soℓ(L(2,1,2);4) is a quotient of H∨
(2,1,2);4, and by Corollary 6.10, there is a weight filtration

W−4 ⊆ W−3 ⊆ W−2 ⊆ W−1 ⊆ W0 on H(2,1,2);4 where GrW−4,GrW−2 are pure Tate, and GrW−1 is

isomorphic to the variation of Hodge structure underlying the family of elliptic curves E appearing

in Corollary 6.10. All other GrWi are trivial.

7. Elliptic motives of (a, 1, 1) graph hypersurfaces

In this section, we analyze the graphs of type (a, 1, 1) represented in Figure 10 and prove Theo-

rems 7.2 stating that the motives of a graph hypersurface attached to an (a, 1, 1) graph come from

https://nbviewer.org/github/pierrevanhove/PicardFuchs/blob/main/PF-kite.ipynb
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Figure 10. A two-loop graphs of type (a, 1, 1) with a = 4

elliptic curves or are mixed Tate. The polynomial associated to such graphs are given by

U(a,1,1) = (z + x)

(
a∑

i=1

yi

)
+ zx,

V(a,1,1);D = (z + x)


 ∑

1≤i<j≤a

q2ijyiyj


+ zx

(
a∑

i=1

r2j yj

)
, (99)

F(a,1,1);D = U(a,1,1)

(
a∑

i=1

m2
i yi +m2

a+1x+m2
a+2z

)
−V(a,1,1);D.

The mass parameters are non-vanishing real positive numbers m2
i ∈ R>0 for 1 ≤ i ≤ a + 2. The

coefficients of V(a,1,1);D depend on the external momenta p, k1, . . . , ka ∈ CD with

r2i =


p+

i−1∑

j=1

ki




2

, 1 ≤ i ≤ a, q2ij =

(
j−1∑

r=i

kr

)2

, 1 ≤ i < j ≤ a. (100)

When a + 1 > D we have a + 1 vectors in a D dimensional vector space. That implies there are

linear relations between the momentum vectors. This implies relations between the coefficients of

the quadratic form V(a,1,1);D. The minimal set of such relations can be determined by computing

various Gram determinants between well chosen sets of momentum vectors [2]. We will make this

precise in the example considered in the paper.

7.1. The mixed Hodge structure of X(a,1,1);D. We begin by blowing up X(a,1,1);D at the linear

subspace L written as x = z = 0. The proper transform of this blow up can be viewed as a

hypersurface in the toric variety BlLPa+1 with new homogeneous coordinate w and morphism

(y1, . . . , ya, x, z, w) 7−→ [y1 : · · · : ya : xw : zw]. (101)

The proper transform X̃(a,1,1);D of X(a,1,1);D is given by the equations

Ũ(a,1,1) = (z + x)

(
a∑

i=1

yi

)
+ zxw,

Ṽ(a,1,1);D = (z + x)


 ∑

1≤i,j≤a

q2ijyiyj


+ zxw

(
a∑

i=1

r2j yj

)
, (102)

F̃(a,1,1);D = Ũ(a,1,1)

(
a∑

i=1

m2
i yi +m2

a+1xw +m2
a+2zw

)
− Ṽ(a,1,1);D.
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We observe that X̃(a,1,1);D admits a quadric fibration over P1 which we denote, as usual,

π : X̃(a,1,1);D → P1. (103)

Proposition 7.1. Up to mixed Tate factors, the cohomology of Xa,1,1 agrees with that of X̃a,1,1.

Proof. The blow up map discussed above is in fact one of the three blow ups involved in b :
bX(a,1,1);D → X(a,1,1);D described in Section 2.2, therefore this is a consequence of Lemma 5.7. �

Theorem 7.2. For any a,D, and arbitrary kinematic parameters, Ha(X(a,1,1);D;Q) is in MHSell
Q .

Consequently, if a+ 2 ≥ 3D/2 then the Feynman motive of (a, 1, 1) is in MHSell
Q .

Proof. If π has corank ≥ 1 then X̃(a,1,1);D has mixed Tate cohomology by Corollary 4.6. So we

assume that π has generic corank 0. We can collect quadratic yi and w terms from F̃(a,1,1);D as

F̃(a,1,1);D = (x+ z)A+ w
a∑

i=1

yiRi + w2B (104)

where, if c2ij denotes the coefficient of yiyj, we define the quadratic form

A =
∑

1≤i≤j≤a

c2ijyiyj =
∑

1≤i,j≤a

q2ijyiyj +

(
a∑

i=1

yi

)(
a∑

i=1

m2
i yi

)
, (105)

and

B = zx(m2
a+1x+m2

a+2z), (106)

and the finally the coefficients

Ri = (m2
i + r2i )zx+ (z + x)(m2

a+1x+m2
a+2z). (107)

One can compute that the discriminant of π is

(x+ z)a


(x+ z)BdetA+

∑

1≤i,j≤a

Ai,jRiRj


 . (108)

where Ai,j denotes the (i, j)-minor of A. This polynomial has at most five roots.

Therefore, by Corollary 4.6, we have mixed Tate cohomology if a is even. If a is odd,

Wa−1H
a(X̃(a,1,1);D ;Q) is mixed Tate, and GrWa Ha(X̃(a,1,1);D;Q) ∼= H1(C;Q) for a curve C which is

a double cover of P1 ramified in at most 5 points. Consequently C is rational or elliptic.

The second statement is proved almost identically to Theorem 5.1, so it is omitted. �

7.2. Space-time dimension and motives. While preparing this article we observed that space-

time dimension D is closely related to the complexity of the motive of XΓ;D. In this section, we

make this precise by showing that if D is small enough relative to a, the motivic contribution

from X(a,1,1);D is mixed Tate. Later on, we will compute the cohomology of X(a,1,1);D when certain

genericity assumptions are satisfied. These assumptions seem to be satisfied whenD is large enough

relative to a.

Proposition 7.3. If D < a − 3 then the quadric fibration π : X̃(a,1,1);D → P1 has generic corank

≥ 1.

Proof. We show that under the conditions of the proposition, the discriminant polynomial in (108)

vanishes. Observe that if rank(A) ≤ a − 2 then det(A) and Ai,j vanish for all i, j so it is enough
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to compute the rank of A. Write A as a sum of two forms

A1 =
∑

1≤i,j≤a

q2ijyiyj, A2 =

(
a∑

i=1

yi

)(
a∑

i=1

m2
i yi

)
(109)

We will show, briefly, that the matrix A1 has rank at most D + 2. Note that we may write

q2ij = (qi − qj)
2 with qi :=

∑i−1
r=1 pr. Thus A1 =

∑
1≤i<j≤a q

2
ijyiyj is the Euclidean distance

quadratic form attached to the sequence of vectors q1, . . . , qa. The rank of a Euclidean distance

quadratic form has rank min{a,dim(span(q1, . . . , qa))}. The span of q1, . . . , qa is the same as that

of k1, . . . , ka−1 defined in (100) which is ≤ D. If Q1, Q2 are quadratic forms on a k-vector space of

dimension N , then rank(Q1+Q2) ≤ min{N, rank(Q1)+rank(Q2)}. Thus rank(A) ≤ min{a,D+2}.
Therefore if D + 2 ≤ a− 2 then the discriminant of π vanishes and π has generic corank ≥ 1. �

Corollary 7.4. Suppose D < a− 3. Then Ha(X(a,1,1);D;Q) is mixed Tate.

From (108) one sees that the quadric fibration on X̃(a,1,1);D over P1 has at most five singular fibres.

There is one singular fibre over [1 : −1] of rank 2, and other singular fibres determined by the

vanishing of a degree 4 polynomial

D(a,1,1);D(x, z) := (x+ z)BdetA+
∑

1≤i,j≤a

Ai,jRiRj . (110)

Theorem 7.5. Suppose the quadric fibration has generic corank 0 and (x+ z)Da,1,1(x, z) has five

distinct roots, then

(1) If a is even then Ha(X̃(a,1,1);D;Q) ∼= Q(−a/2)6.
(2) If a is odd then there is a short exact sequence

0 −→ Q((1− a)/2) −→ Ha(X̃(a,1,1);D ;Q) −→ H1(E;Q) −→ 0

where E is the double cover of P1 ramified along the four simple roots of D(a,1,1);D.

Proof. We take the birational transformation obtained from the map h : P(Oa
P1 ⊕ OP1(−2)) 99K

P(Oa
P1 ⊕OP1(−1)) given by the homogeneous variable transformation

h : (y1, . . . , ya, x, z, v) 7−→ (y1, . . . , ya, x, zv(x + z)) = (y1, . . . , ya, x, z, w).

The proper transform of X̃a,1,1 under this birational map is given by polynomials

U(a,1,1) =

(
a∑

i=1

yi

)
+ (x+ z)zxw,

V(a,1,1);D =


 ∑

1≤i,j≤a

q2ijyiyj


+ zxw

(
a∑

i=1

r2j yj

)
, (111)

F(a,1,1);D = U(a,1,1)

(
a∑

i=1

m2
i yi + (m2

a+1x+m2
a+2z)(x+ z)

)
−V(a,1,1);D.

Under the condition that D + 3 ≥ a, this birational transformation has the property that the

singular fibre over the point [1 : −1] is replaced with a smooth fibre. Furthermore, under the

assumptions of the statement of the Theorem, X(a,1,1);D := V (F(a,1,1);D) is smooth and has four

singular fibres located at the roots of D(a,1,1). In fact, after change in y variables, we may rewrite

F(a,1,1);D as

y21 + · · ·+ y2a +D(a,1,1);D(x, z)v
2. (112)
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By Lemma 4.4 and our assumptions on D(a,1,1);D, if a is odd, the monodromy of the local system

Ra−1π∗Q is nontrivial around each point in the vanishing locus of D(a,1,1);D(x, z). Therefore, a

straightforward Leray spectral sequence computation shows that the Hodge numbers of X(a,1,1);D

are as follows. If a is even then

hp,q(X(a,1,1);D) =





0 if p 6= q

1 if p = q = 0, a

2 if p = q 6= a/2, 0, a

6 if p = q = a/2.

, (113)

If a is odd then

hp,q(X(a,1,1);D) =





0 if p 6= q, or p, q 6= (a+1
2 , a−1

2 ), (a−1
2 , a+1

2 )

1 if p = q = 0, a

2 if p = q 6= 0, a

1 if p, q = (a+1
2 , a−1

2 ), (a−1
2 , a+1

2 )

(114)

and in fact Ha(X(a,1,1);D;Q) ∼= H1(E;Q) where E is the double cover of P1 ramified along the

vanishing locus of D(a,1,1);D(x, z). Our assumptions imply that Da,1,1(x, z) is separable, so E is

an elliptic curve. We can then see that there are two long exact sequences relating the middle

dimensional cohomology of X(a,1,1);D to that of X̃(a,1,1);D.

· · · → Ha−1(X̃(a,1,1);D)→ Ha−1(F)→ Ha
c (X̃(a,1,1);D − F)→ Ha(X̃(a,1,1);D)→ Ha(F)→ · · · (115)

where F indicates the singular fibre over [1 : −1] in X̃(a,1,1);D. If a is odd, we note that Ha−1(F) ∼= Q

and Ha−1(X̃(a,1,1);D) → Ha−1(F) is surjective, since the image contains the hyperplane class and

Ha−1(F) ∼= Q is generated by the hyperplane class. Therefore we obtain an isomorphism

Ha
c (X̃(a,1,1);D − F) ∼= Ha(X̃(a,1,1);D). (116)

The analogous long exact sequence for X(a,1,1);D is of the form

· · · → Ha−1(X(a,1,1);D)→ Ha−1(F′)→ Ha
c (X(a,1,1);D−F′)→ Ha(X(a,1,1);D)→ Ha(F′)→ · · · (117)

In this case, however, we have that Ha−1(F′) ∼= Q2. The image of the map Ha−1(X(a,1,1);D) →
Ha−1(F′) has image isomorphic to Q by the structure of the monodromy representation on Ha−1(F′),

and by the local invariant cycles theorem. Taking into account the vanishing of Ha(F′) we obtain

the short exact sequence in the second part of the theorem.

The same technique suffices to prove the first part of the theorem as well. In this case, the long

exact sequence (115) produces the short exact sequence

0→ Ha
c (X̃a,1,1 − F)→ Ha(X̃a,1,1)→ ker

(
Ha(F)→ Ha+1

c (X̃a,1,1 − F)
)
→ 0 (118)

and there is a similar short exact sequence coming from (116),

0→ Ha
c (X(a,1,1);D − F′)→ Ha(X(a,1,1);D)→ ker

(
Ha(F′)→ Ha+1

c (X(a,1,1);D − F′)
)
→ 0 (119)

In the first case, we see that if a 6= 2 then Ha(F) ∼= Q, since we know that F is a quadric whose

rank is 2 and thus has even rank cohomology isomorphic to q except H2(a−1)(F) ∼= Q2. Since F′ is

a smooth quadric of even dimension, the restriction map Ha(X(a,1,1);D)→ Ha(F
′
) is surjective, and

Ha(F′) ∼= Q, so we have Ha(X̃a,1,1) ∼= Ha(X(a,1,1);D) ∼= Q(a/2)⊕6. �
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Figure 11. The ice cream cone graph

7.3. The ice cream cone graph local systems (2, 1, 1). In the simplest possible case of the

ice cream cone graph in Figure 11, where a = 2, we will describe the structure of cohomology and

make stronger statements about periods and Picard–Fuchs equations. Similar computations can

be done for X(2b,1,1);D for arbitrary b and large enough D. A multi-loop generalisation is discussed

in Section 9. In this section, we study pencils of ice cream cone graph hypersurfaces described by

graph polynomials

U(2,1,1) = (y1 + y2) (x1 + z) + zx1,

V(2,1,1);D = p22y1y2 (z + x1) + zx1
(
p21y1 + p23y2

)
, (120)

F(2,1,1);D(t) = U(2,1,1)

(
m2

1y1 +m2
2y2 +m2

3x1 +m2
4z
)
− tV(2,1,1);D,

where the mass parameters m2
1, . . . ,m

2
4 are real positive numbers, and the momenta are p1, p2 and

p3 = −p1 − p2 where p1 and p2 are vectors in CD respectively attached to the left and the bottom

of the graph (2, 1, 1). Here t is a parameter which can be thought of as a scaling parameter on all

momenta. Let X(2,1,1);D(t) = V (F(2,1,1);2(t)). The ice cream cone differential form reads

ω(2,1,1);D(t) =
U

4− 3D
2

(2,1,1)

(F(2,1,1);D(t))4−D
Ω0 (121)

is a rational differential form in D = 2 with the F(2,1,1);2 in the denominator. In this case, the

Picard–Fuchs operator L(2,1,1);2 has been derived using the techniques [43], where it has been

observed that L(2,1,1);2 has rank 2 and Liouvillian solutions.

Applying the discussion of the previous section to the case a = 2 leads us to consider the

specialisation polynomial in Equation (110)

D(2,1,1);D(x, z, t) = (x1 + z)BdetA+
∑

1≤i,j≤2

Ai,jRiRj (122)

with

A =

(
m2

1
1
2

(
m2

1 +m2
2 − p22t

)
1
2

(
m2

1 +m2 − p22t
)

m2
2

)
,

R1 = (m2
1 − p21t)x1z + (x1 + z)(m2

3x1 +m2
4), (123)

R2 = (m2 − p23t)x1z + (x1 + z)(m2
3x1 +m2

4),

B = x1z(m
2
3x1 +m2

4).

One checks the following claim directly.

Proposition 7.6. The polynomial D(2,1,1);D(x, z, t) has four distinct roots for generic masses and

kinematic parameters. Therefore, H2(X(2,1,1);2(t);Q) is generically pure Tate.



46 C. F. DORAN, A. HARDER, P. VANHOVE (WITH AN APPENDIX BY E. PICHON-PHARABOD)

This variation of Hodge structure has a very simple description in terms of the singular fibres of

the quadric fibration π̃ : X̃(2,1,1);2 → P1 described in (103). The singular fibres of π̃ are determined

by the vanishing of a polynomial D(2,1,1);D(x, z, t) for each value of t. Here we suppress subscripts

for to simplify notation. We introduce the graph polynomial for the one-loop sunset of the scoop

of the ice cream cone graph

U[1]2 = x1 + z, V[1]2 = x1z, L[1]2 = m2
3x1 +m2

4z. (124)

This notation will be used for the general multi-scoop case in Section 9. Using these notations we

have

D(2,1,1);D(x, z, t) = t(AV2
[1]2 +BV[1]2U[1]2L[1]2 + CU2

[1]2L
2
[1]2) (125)

with

A = p22p
2
1p

2
3t

2 + t
(
m2

2p
2
1(p

2
1 − p23 − p22)−m2

1p
2
3(p

2
1 − p23 + p22)

)
+m4

1p
2
3 +m4

2p
2
1 +m2

1m
2
2(p

2
2 − p21 − p23),

B = p22t(p
2
2 − p21 − p23)−m2

1(p
2
2 − p21 + p23)−m2

2(p
2
1 − p23 + p22),

C = p22.

(126)

Since the roots of D(2,1,1);D(x, z, t) vary with respect to t, they give rise to a local system by letting

Z = V (D(2,1,1);D(x, z, t)) ⊆ P1 × A1 and we may define V := π∗QZ
.

Proposition 7.7. The local system V is isomorphic to the direct sum U1 ⊕ U2 ⊕ Q2
B

where U1 is

a rank 1 local system and U2 is a rank 2 local system

Proof. The monodromy of the local system V is identified with the standard permutation repre-

sentation of the monodromy of the cover q : V (∆t)→ A1
t , so it is enough to study the monodromy

of this cover and its invariants. Clearly the irreducible component V (x+ z) has no monodromy, so

it corresponds to a constant component.

We may view the vanishing locus of (125) as a curve in P1
x,z×A1

t . We perform base-change along

the two-to-one map g : C → A1
t ramified in the vanishing locus of

B2 − 4AC = ((p21 − p23)
2 − 2(p21 + p23)p

2
2 + (p22)

2)× (p22t− (m1 +m2)
2)(p22t− (m1 −m2)

2) (127)

and we see in particular that, after this operation, the vanishing locus of ∆t has three components.

We have a commutative diagram

C ×B V (∆t) V (∆t)

C B

k

h g

f

Choose a point o in C. Then h−1o consists of four points which we label a, b, c, d so that monodromy

of the map p exchanges a and b, and exchanges c and d and so that no other exchanges occur. Then

g−1f(o) consists of four points again, k(a), k(b), k(c), k(d) so that in a small loop around points in

the ramification locus of f , k(a) 7→ k(c), k(b) 7→ k(d), and that around points which are images of

points in the ramification locus of h, k(a) 7→ k(b) and k(c) 7→ k(d).

From this we see that the homology class k(a) + k(b) + k(c) + k(d) is invariant under the mon-

odromy representation of g and k(a) + k(b) − k(c) − k(d) is anti-invariant under the monodromy

representation of g. Thus the monodromy representation of g decomposes into a direct sum of

a trivial summand, a nontrival rank 1 summand, and a nontrivial rank 2 summand, where the

nontrivial rank 2 summand is generated by k(a)− k(b) and k(c)− k(d). �
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Remark 7.8. Precisely, the monodromy representation of U2 is as follows. For each of the following

matrices, there are two points at which the monodromy matrix is of the following forms,
(
−1 0

0 1

)
,

(
1 0

0 −1

)
,

(
−1 0

0 −1

)
,

(
0 1

1 0

)
. (128)

So this representation is indeed irreducible.

For each t, the form [ω(2,1,1);2(t)] is an element of H3(W̃(2,1,1);2(t);Q) where

W(2,1,1);2(t) = P(OP1 ⊕OP1(−1)) − X̃(2,1,1);2(t). (129)

LetW be the total space of the family of quasiprojective varieties W(2,1,1);2(t) over A
1. The varieties

W(2,1,1);2(t) form a locally constant family of hypersurfaces over a nonempty open subset M of A1.

We let WM = π−1(M) ∩W, and denote

W = R3π∗QWM
. (130)

Note that [ω(2,1,1);2(t)] determines a section of W⊗OM .

Proposition 7.9. The local system W is isomorphic to V.

Proof. We let S denote the subscheme of W(2,1,1);2(t) given by

V (D(2,1,1);D(x, z, t)) ∩W(2,1,1);2(t) (131)

where D(2,1,1);D(x, z, t) is considered as a section of a line bundle on P(O2
P1 ⊕OP1) varying with t.

Let W ◦
(2,1,1);2 = W(2,1,1);2 − S. The map

π̃ : W ◦
(2,1,1);2(t)→ P1 − V (D(2,1,1);D(x, z, t)) (132)

is a fibration by varieties diffeomorphic to P2 −Q where Q is a conic curve. A quick computation

shows that Hi(P2 − Q;Q) = 0 unless i = 0 in which case H0(P2 − Q;Q) ∼= Q(0). Therefore, an

application of the Leray spectral sequence tells us that

H∗(W̃ ◦
(2,1,1);2;Q) ∼= H∗(P1 − V (D(2,1,1);D(x, z, t));Q). (133)

Furthermore, S is a union of five copies of P2 \ T where T is a union of two lines. Therefore,

H∗(S;Q) ∼= H∗(C×;Q)⊕5. Therefore we may observe that Riπ̃∗QS
∼= V if i = 0, 1 and is trivial oth-

erwise. Finally, we write out the residue exact sequence for the triple (W(2,1,1);2(t),W
◦
(2,1,1);2(t), S)

to see that

0→ H1(S;Q) ∼= Q(−2)⊕5 → H3(W(2,1,1);2(t);Q)→ H3(W ◦
(2,1,1);2(t);Q) ∼= 0.

Therefore we identify the cohomological local system of the family W(2,1,1);2(t) with V. �

Given a local system L we use the notation L∨ to denote its dual.

Corollary 7.10. The local system Soℓ(L(2,1,1);2) is isomorphic to quotient of V∨.

Proof. This follows from the discussion in Remark 3.7. �

In Section 5.2 of [43], it is shown that L(2,1,1);2 is an irreducible differential operator of rank 2 for

generic values of kinematic and mass parameters. Therefore, Soℓ(L(2,1,1);2) is an irreducible local

system of rank 2 and Soℓ(L(2,1,1);2) ∼= U2.

Corollary 7.11. For generic kinematic and mass parameters, Soℓ(L(2,1,1);2) is isomorphic to U2
∼=

U∨
2 .
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Proof. The local system Soℓ(L(2,1,1);2) is a quotient of U∨
1 ⊕U∨

2 ⊕Q⊕2
M

by a rank 3 local subsystem

K. If U∨
1 * K then Soℓ(L(2,1,2);2) is reducible. Similarly, if Q⊕2

M
is not contained in K then Q⊕2

M
/(K∩

Q⊕2
M

) is a direct summand of Soℓ(L(2,1,1);2), contradicting irreduciblity. Therefore, U∨
1 ⊕Q⊕2

M
= K

and Soℓ(L(2,1,1);2) ∼= U∨
2 . �

7.3.1. Picard–Fuchs equations for the ice cream cone graph. We explain how the split of the local

system in Proposition 7.7 allows the construction of the Picard–Fuchs operator for the ice cream

cone graph from the Picard–Fuchs operators of the one-loop sunset graphs.

Lemma 7.12. Let L1,L2 be local systems of rank 1, and suppose that s1 and s2 are sections of

L1 ⊗OM and L2 ⊗OM respectively. If

Ls1 =
d

ds
− f1(s), Ls2 =

d

ds
− f2(s) (134)

are the differential equations associated to s1 and s2 respectively, then the differential equation

associated to the section s1 ⊕ s2 of (L1 ⊕ L2)⊗OM is

Ls1⊕s2 = (f1(s)− f2(s))
d2

ds2
+ (f2(s)

2 − f1(s)
2 − f ′

1(s) + f ′
2(s))

d

ds

+ f2(s)f
′
1(s)− f1(s)f

′
2(s) + f1(s)

2f2(s)− f1(s)f2(s)
2 (135)

Proof. This is a direct computation. �

As a consequence, any local system of rank 2 which is a direct sum of two local systems of rank

1 can be written in the form (135). In particular, we argued in the proof of Proposition 7.7 that

after mild base-change, the local system U2
∼= Soℓ(L(2,1,1);2) decomposes as a direct sum of rank 1

local systems, so Lemma 7.12 applies.

Proposition 7.13. After the base change

t =
(m1 −m2)

2s2 + (m1 +m2)
2

p22(s
2 + 1)

, (136)

the differential operator L(2,1,1);2 is of the form given in (135) where fi(s) with i = 1, 2 are obtained

from the application of the change of variables T = ρi(s) with i = 1, 2 to the differential operator

d

dT
− (m2

3 +m2
4 − T )

((m3 −m4)2 − T )((m3 +m4)2 − T )
=⇒ d

ds
− fi(s) for T = ρi(s) i = 1, 2, (137)

with ρi(s) the roots of the discriminant (127)

−(m2
1p

2
3 +m2

2p
2
1)
(
s2 + 1

)
+m1m2

(
s2 − 1

)
(p21 + p23 − p22)

p22 (s
2 + 1)

± 2m1m2s
√
−(p21)2 + 2p21p

2
3 + 2p21p

2
2 − (p23)

2 + 2p23p
2
2 − (p22)

2

p22 (s
2 + 1)

. (138)

Proof. After making the change of variables the discriminant locus of the quadric fibration π :

X̃(2,1,1);2 → P1 decomposes as a product of a pair double coverings of the line A1
s, and the local

system U2 decomposes as a direct sum L1⊕L2. This follows from the fact that (125) is quadric in

V[1]2 and U[1]2L[1]2 . The base change along the map (136) is enough for the polynomial in (125)

to factor as a polynomial in x, z, s as

AV2
[1]2 +BV[1]2U[1]2L[1]2 + CU2

[1]2L
2
[1]2 = C

(
U[1]2L[1]2 − ξ1V[1]2

) (
U[1]2L[1]2 − ξ2V[1]2

)
(139)
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where ξ1 and ξ2 are the roots of the polynomial Cx2 +Bx+A. Under the map (136) these roots

are polynomial in s. In other words that (127) has a square root in the variable s. The two factors

ramify along the roots of (138). Each factor of (139) defines the second graph polynomial of a

one-loop sunset graph

F = U[1]2L[1]2 − TV[1]2 = (m2
3x1 +m2

4z)(x1 + z)− Tx1z. (140)

The first order Picard-Fuchs operator

L[1]2 =
d

dT
− m2

3 +m2
4 − T

((m3 −m4)2 − T ) ((m3 +m4)2 − T )
(141)

This operator acts on the differential form

ω[1]2 =
dx1 ∧ dz

F[1]2
(142)

as

L[1]2ω[1]2 = −d
(
2m2

4z

F[1]2
dz +

(m2
3 +m2

4 − T )z

F[1]2
dx1

)
. (143)

In the case of interest we have the two first order differential operator obtained from (141) after

applying T = ξ1(s) and T = ξ2(s) respectively, leading to operators of the form

d

ds
−

6∑

r=1

f
(r)
i

s− ρr
for i = 1, 2 (144)

Doing the base change along (136) to the t variables we get rank 1 local system is the solution set

to the differential equation
d

dt
− fi(t) for i = 1, 2 (145)

These are both integral local systems whose monodromy is nontrivial around points of ramification

of the two double covers. �

Changing variable from s to t using (136) in (135) one gets a second order differential equation

L̂s1⊕s2 . Its normal form matches the normal form (see footnote 2) of the second order differential

operator L(2,1,1);2 for the one-scoop ice cream cone given in Section 5.2 of [43]. Therefore the two

operators are related by a scaling factor

L(2,1,1);2 = L̂s1⊕s2 ×
√

((m1 +m2)2 − tp22)×
√
((m1 −m2)2 − tp22). (146)

Figure 12. The observatory graph

7.4. The observatory graph, (3, 1, 1). In this section we look at the observatory graph depicted

in Figure 12 from the perspective of the discussion in the previous section. The graph polynomials
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read

U(3,1,1) = (z + x1) (y1 + y2 + y3) + zx1,

V(3,1,1);D = zx1
(
p21y1 + (p1 + p2)

2y2 + (p1 − p4)
2y3
)
+ (z + x1)

(
p22y1y2 + p24y1y3 + (p2 + p4)

2y2y3
)
,

F(3,1,1);D(t) = U(3,1,2)

(
3∑

i=1

m2
i yi +m2

4xi +m2
5z

)
− tV(3,1,1);D. (147)

where k, p, q, r are vectors of CD.

Proposition 7.14. If D ≥ 4 Then GrW3 H3(X(3,1,1);D ;Q) is isomorphic to H3(E;Q) for an elliptic

curve depending on the mass and kinematic parameters. If D ≤ 2 then H3(X(3,1,1);D;Q) is mixed

Tate.

Proof. This is a direct computation applying the techniques described in the proofs of Theorems 7.2

and 7.5. �

As in the case of the kite graph (2, 1, 2) (Section 6.2) in the case where space-time dimension is

4, we have

ω(3,1,1);4(t) =
Ω0

F(3,1,1);4(t)U(3,1,1)
. (148)

Therefore the Feynman integral I(3,1,1);4(t) is a period related to the motive of the reducible hyper-

surface V (F(3,1,1);4(t)U(3,1,1)). By observation we have the following result.

Proposition 7.15. The quadric U(3,1,1) has corank 2 and contains the singular line V (z, x1, y1 +

y2 + y3).

Finally, we can compute the mixed Hodge structure of the surface V (U(3,1,1),V(3,1,1);D) =

V (U(3,1,1),F(3,1,1);D(t)).

Proposition 7.16. The cohomology of Z = V (U(3,1,1),V(3,1,1);4) is mixed Tate.

Proof. First, we note that Z contains the line L = V (z, x1, y1 + y2 + y3). Let BlLP4 be the blow

up of P4 in the line L. The proper transform of Y(3,1,1) in BlLP4 is a P1 bundle over a smooth

conic in P2, which we denote Ỹ(3,1,1). The proper transform of X(3,1,1);4 is a quadric bundle over

P2, therefore the proper transform of Z, which we denote Z̃ is a conic bundle over a smooth conic

in P2. From Corollary 4.6, it follows that Z̃ has mixed Tate cohomology. Since the birational

transformation relating Z to Z̃ replaces a line with a pair of lines meeting in a point. Therefore,

by Corollary 2.4 the cohomology of Z is mixed Tate. �

As a consequence of Propositions 7.14, 7.15, and 7.16, along with the Mayer–Vietoris exact

sequence (Proposition 2.6), we have the following result.

Proposition 7.17. The cohomology of Y(3,1,1)∪X(3,1,1);4 = V (U(3,1,1),F(3,1,1);4(t)) has the following

description.

(1) GrW3 H3(Y(3,1,1) ∪X(3,1,1);4;Q) ∼= H1(E;Q) for E an elliptic curve depending on mass and kine-

matic parameters.

(2) W2H
3(Y(3,1,1) ∪X(3,1,1);4;Q) is mixed Tate.
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7.4.1. Picard–Fuchs equations for the observatory graph. The observatory differential form in four

dimensions is defined by

ω(3,1,1);4(t) =
Ω0

U(3,1,1)F(3,1,1);4(t)
(149)

where Ω0 is the canonical differential form on P4 and the graph polynomials are defined in (147).

An application of the algorithm of [43] gives the differential operator L(3,1,1);4ω(3,1,1);4(t) = dβ(3,1,1)
of order 4 that is factorised using the algorithms [25,33] as

L(3,1,1);4 = L2L
a
1 L

b
1 (150)

where the operators L a
1 and L b

1 are first order differential operators and L2 is a second order opera-

tor with elliptic solutions. Various numerical results are given on the worksheet Observatory.ipynb.

As a consequence of Proposition 7.17, the homology local system underlying the variation of

Hodge structure H∨
(3,1,1);4 admits a weight filtration W−4 ⊆ W−3 ⊆ W−2 ⊆ W−1 ⊆ W0 where the

only nonzero weight-graded pieces are GrW−4,GrW−2 (which are pure Tate) and GrW−1
∼= H1(E(t);Q)(1)

for a family of elliptic curves. If one assumes that all integrals
∫

γ
ω(3,1,1);D(t), [γ] ∈ H4(P

4 −X(3,1,1);4(t);Q) (151)

are nonzero, then Soℓ(L(3,1,1);4) is isomorphic to H∨
(3,1,1);4. It then follows from Proposition 3.2

that Soℓ(L ) factors as L2L where L2 is a Picard–Fuchs operator for some holomorphic family of

differential 1-forms on the family of elliptic curves E(t), and L controls a mixed Tate variation of

Hodge structure. This is consistent with the computations described above.

8. The tardigrade graph motive, (2, 2, 2)

Figure 13. The tardigrade graph

8.1. Mixed Hodge structure for X(2,2,2);D. It is a general fact (see, e.g., Section 1.4 of [36] for

a convenient reference) that for a smooth cubic fourfold X, the cohomology H4(X) is of K3-type,

that is h4,0(X) = 0 and h3,1(X) = 1 and h2,2(X) = 21. In general, there is no summand of H4(X)

which is isomorphic to H2(S)(−1) for a K3 surface S; however, if X admits an isolated double point,

then such a K3 surface does exist. From this perspective the following result is not particularly

surprising, however we have seen in previous sections, for instance (3, 1, 2) and (4, 1, 1), that cubic

fourfold graph hypersurfaces attached to two-loop graphs can have singularities which force their

cohomology to be mixed Tate. In light of this, the following result implies that the cohomology

of the tardigrade graph hypersurface is more general than that of the (3, 1, 2) or (4, 1, 1) graph

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Observatory.ipynb
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hypersurfaces. We have that the graph hypersurfaces X(2,2,2);D are presented as

U(2,2,2) = (x0 + x1)(y0 + y1) + (x0 + x1)(z0 + z1) + (y0 + y1)(z0 + z1),

V(2,2,2);D = p2x0x1(y0 + y1 + z0 + z1) + q2y0y1(x0 + x1 + z0 + z1)

+ r2z0z1(x0 + x1 + y0 + y1) + k2x0y0z0 + (k + r)2x0y0z1

+ (k + q)2x0y1z0 + (k + q + r)2x0y1z1 + (k + p)2x1y0z0

+ (k + p+ r)2x1y0z1 + (k + p+ q)2x1y1z0 + (k + p+ q + r)2x1y1z1,

F(2,2,2);D(t) = U(2,2,2)(m
2
1x0 +m2

2x1 +m2
3y0 +m2

4y1 +m2
5z0 +m2

6z1)− tV(2,2,2);D (152)

where the mass parameters are real non-vanishing positive numbers m2
i ∈ R>0 for 1 ≤ i ≤ 6, and

p, q, k, r are vectors in CD.

Theorem 8.1. Let X(2,2,2);D be the tardigrade hypersurface for generic mass and momentum

parameters and D ≥ 2. Then there is a quartic K3 surface with six A1 singularities so that

GrW4 H4(X(2,2,2);D;Q) is isomorphic to H2(S;Q)(−1) up to mixed Tate factors.

Proof. Using Lemma 4.1, we blow up the locus y0 = y1 = z0 = z1 to obtain a conic fibration on

X̃(2,2,2);D = BlLX(2,2,2);D over P3 whose base variables are y0, y1, z0, z1 and whose fibre variables

are x0, x1, w. The critical locus of this fibration is

(y0 + y1 + z0 + z1)G(2,2,2) = 0, (153)

where G(2,2,2) is a homogeneous quartic in y0, y1, z0, z1. First we show that the vanishing locus

of G(2,2,2) is a generically an ADE singular K3 surface S with six A1 singularities. G(2,2,2) is the

determinant of a matrix that we write as follows. Let

K =

(
2m2

1 m2
1 +m2

2 − tp2

m2
1 +m2

2 − tp2 2m2
2

)
. (154)

Let

L = −tr2(y0 + y1)z0z1 − tq2(z0 + z1)y0y1 + (y0 + y1)(z0 + z1)(m
2
3y0 +m2

4y1 +m2
5z0 +m2

6z1) (155)

and let

R1 = (y0 + y1 + z0 + z1)(m
2
3y0 +m2

4y1 +m2
5z0 +m2

6z1) +m2
1(y0 + y1)(z0 + z1) (156)

− tq2y0y1 − tk2y0z0 − t(k + r)2y0z1 − t(k + q)2y1z0 − t(k + q + r)2y1z1 − tr2z0z1,

R2 = (y0 + y1 + z0 + z1)(m
2
3y0 +m2

4y1 +m2
5z0 +m2

6z1) +m2
2(y0 + y1)(z0 + z1)

− tq2y0y1 − t(k + p)2y0z0 − t(k + r + p)2y0z1 − t(k + p+ q)2y1z0 − t(k + p+ q + r)2y1z1 − tr2z0z1.

Then

G(2,2,2) = det(K)L(y0 + y1 + z0 + z1) +m2
2R

2
1 − (m2

1 +m2
2 − tp2)R1R2 +m2

1R
2
2. (157)

The vanishing locus of G(2,2,2) is generically only singular at the points

y0 = y1 = 0, (z0 + z1)(m
2
5z0 +m2

6z1)− tz0z1r
2 = 0,

z0 = z1 = 0, (y0 + y1)(m
2
3y0 +m2

4y1)− ty0y1q
2 = 0, (158)

y0 + y1 = 0, z0 + z1 = 0, (qy0 − rz0)
2 = 0.
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Now we check that these singularities are of A1-type. We explain the argument for the first pair of

singularities. The other four singularities are similar. We observe that G can be written as

G(2,2,2) = H(y0, y1, z0, z1) + S(y1L1(z0, z1) + y2L2(z0, z1)) + S2, (159)

where

S = (z0 + z1)(m
2
5z0 +m2

6z1)− tz0z1r
2, (160)

and H(y0, y1, z0, z1) has no linear or constant terms when viewed as a polynomial in y0, y1. Look

at the chart where z0 = 1. In this chart, we may view G(2,2,2) as a homogeneous quadratic form

in y0, y1,S and with coefficients which are functions of y0, y1, z1. One can check that at the points

S = 0 this quadratic form has rank 2. Therefore, the singularities at these points are of type A1.

The remainder of the argument is similar to the arguments in, e.g., Theorem 6.5 or Proposi-

tion 6.6. We first note that the blow up f : X̃(2,2,2);D → X(2,2,2);D replaces a linear subspace

with a union of a copy of P2 × P1 and P3 × {pt1,pt2}. Here pt1,pt2 denote a pair of points. An

application of the Mayer–Vietoris long exact sequence (Proposition 2.6) and Corollary 2.4 show

that the cohomology of X̃(2,2,2);D and X(2,2,2);D agree up to mixed Tate factors, and in particular

that Gr4WH4(X(2,2,2);D;Q) and Gr4WH4(X̃(2,2,2);D;Q) agree up to pure Tate factors.

We then apply a birational transformation similar to that of (75),

h : P(O2
P3 ⊕OP3(−2)) −→ P(O2

P3 ⊕OP3(−1)), (161)

defined by

h : (x1, x2, y1, y2, z1, z2, v) 7−→(x1, x2, y1, y2, z1, z2, v(y1 + y2 + z1 + z2))

= (x1, x2, y1, y2, z1, z2, w) (162)

which is an isomorphism away from the divisor Dh = π−1(V (y1 + y2 + z1 + z2)). Let

X(2,2,2);D = h−1(X̃(2,2,2);D −Dh), D′
h = X(2,2,2);D − h−1(X̃(2,2,2);D −Dh).

By direct computation, we see the following.

(1) Dh is a union of two P1 bundles over P2 meeting along a copy of P2. Therefore its cohomology

is mixed Tate.

(2) D′
h admits a quadric fibration over P2 of generic corank 0. Therefore, by Corollary 4.6,

GrWj Hk(D′
h;Q) is pure Tate except if j = k = 3.

By two applications of Lemma 2.3 we see that GrW4 H4(X(2,2,2);D;Q) is isomorphic to GrW4 H4(X̃(2,2,2);D;Q)

up to mixed Tate factors. So it remains to compute the cohomology of GrW4 H4(X(2,2,2);D;Q). Direct

computation shows that, after change of variables like those of Theorem 6.5 and Proposition 6.6,

X(2,2,2);D = V (x1x2 +G(2,2,2)v
2), (163)

in the toric homogeneous coordinates on P(O2
P3 ⊕ OP3(−2)). Applying the same argument as in

Theorem 6.5, we see that GrW4 H4(X(2,2,2);D;Q) is isomorphic to H2(S;Q)(−1) up to pure Tate

factors.

�

Remark 8.2. The singularities of a generic tardigrade hypersurface are isolated and of A1 type.

Therefore X(2,2,2);D is generically an orbifold and the Hodge structure on its cohomology is pure.
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8.2. Picard–Fuchs operators. Considering the differential form

ω(2,2,2);4(t) =
Ω0

F(2,2,2);4(t)2
, (164)

with Ω the canonical differential form in P5 and the graph polynomial

F(2,2,2);4(t) = U2,2,2(m
2
1x0 +m2

2x1 +m2
3y0 +m2

4y1 +m2
5z0 +m2

6z1)− tV2,2,2, (165)

defined on P5 − V (F(2,2,2);4(t)), the application of the extended Griffiths–Dwork algorithm on the

differential form ω(2,2,2);4(t) leads to the Picard–Fuchs differential operator L(2,2,2);4 given in Sec-

tion 6.2 of [43].

Performing a linear change of variables from (x0, x1) to (ξ0, ξ1) so that

m2
1x

2
0 +m2

2x
2
1 + (m2

1 +m2
2 − tp2)x0x1 = ξ0ξ1 (166)

the graph polynomial F(2,2,2);4(t) takes the form

F(2,2,2);4(t) = α01ξ0ξ1 + α0ξ0 + α1ξ1 + α. (167)

The coefficient α01 is homogeneous of degree 1, α0 and α1 are homogeneous of degree 2 and α is

homogeneous of degree 3 as polynomials in the variables (y1, y2, y3, z). Integrating the variables ξ0
and ξ1 leads to the differential form in P3

ω̃(2,2,2);4(t) = f(α01, α0, α1, α)
Ω̂

G(2,2,2)(t)
, (168)

with the quartic in P3

G(2,2,2)(t) = αα12 − α0α1. (169)

This quartic is the same as the one constructed in the proof of Theorem 8.1 applied to F(2,2,2);4(t)

in (152) after the re-scaling (p, q, k, r)→
√
t(p, q, k, r). The differential form in (168) is not a rational

differential form because the function f(α0, α1, α01, α) contains logarithms and square roots. In

order to apply the (extended) Griffiths–Dwork reduction we consider the rational differential form

on P3 − V (G(2,2,2)(t))

ω̂(2,2,2)(t) =
Ω̂

G(2,2,2)(t)
, (170)

to obtain a Picard–Fuchs operator L̂(2,2,2). On all numerical examples analyzed in [43], the Picard–

Fuchs operators L(2,2,2);4 and L̂(2,2,2) have the same order, and the same non-apparent regular

singularities. But the differential operators are not the same because the differentials are not

the same; nevertheless, this shows that the singular locus is defined by the same K3 surface. In

Appendix B the Picard rank of the K3 surface is shown to be 11 and its Néron-Severi lattice is

determined.

For the numerical cases studied in [43] and reported on PF-Tardigrade.ipynb we have checked, on

the worksheet Tardigrade.ipynb, that the Picard–Fuchs operator L(2,2,2);4 acting on the Feynman

integral differential form ω(2,2,2);4(t) in (164) and the Picard–Fuchs operator L̂(2,2,2) have the same

https://nbviewer.org/github/pierrevanhove/PicardFuchs/blob/main/PF-Tardigrade.ipynb
https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Tardigrade.ipynb
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normal form3. This implies that the two operators are related by the scaling factor

λ(t) = exp

(
− 1

11

∫ (
q̂10(t)

q̂11(t)
− q10(t)

q11(z)

)
dt

)
=
√

(p2t− (m1 +m2)2)(p2t− (m1 −m2)2) (171)

so that

L(2,2,2) = L̂(2,2,2);4 ×
√

(p2t− (m1 +m2)2)(p2t− (m1 −m2)2). (172)

The polynomial under the square is the discriminant of (166).

We may interpret this computation cohomologically in the following way. For the sake of sim-

plicity we work on the affine chart z1 = 1. The same computations can be done in projective

coordinates at the expense of using more complicated homogeneous differential forms as in [35].

The change of of variables from x0, x1 to ξ0, ξ1 in (166) has the effect of taking

ω(2,2,2);4 7→
1

λ(t)(α01ξ0ξ1 + α0ξ0 + α1ξ1 + α)
dξ0 ∧ dξ1 ∧ dy0 ∧ dy1 ∧ dz0. (173)

Here, as above, we let λ(t) denote
√
(p2t− (m1 +m2)2)(p2t− (m1 −m2)2). One sees easily that

the form ω(2,2,2);4 is exact when restricted to the complement of the vanishing locus of the quadric

α01ξ1 + α0:

d

(
− 1

λ(t)(α01ξ1 + α0)(α01ξ0ξ1 + α0ξ0 + α1ξ1 + α)

)
dξ1 ∧ dy0 ∧ dy1 ∧ dz0 = ω(2,2,2);4. (174)

In other words, when restricted to the subset of P5 −X(2,2,2);4 on which α01ξ1 + α0 vanishes, the

form ω(2,2,2);4 is trivial. Let P denote this variety. We have the residue long exact sequence

· · · → H3
dR(P ;C)→ H5

dR(P
5 −X(2,2,2);4)→ H5

dR(P
5 − (X(2,2,2);4 + P ))→ · · · (175)

Knowing that [ω(2,2,2);4(t)|P ] = 0 means that there is a lift of ω(2,2,2);4(t) to Ω3
P . This lift is obtained

by taking the residue of β along P . Note that P is contained in the singular quadric V (α01ξ1+α0).

Since P is the complement of a cone, the restriction to the hyperplane section P ′ = P ∩ V (ξ0)

induces an isomorphism between H3
dR(P )→ H3

dR(P
′). In other words, we have a pair of maps

H3
dR(P

′)
∼←−− H3

dR(P )
Gys−−→ H5

dR(P
5 −X(2,2,2);4). (176)

and a form res(β) in H3
dR(P ) mapping to ω(2,2,2);4 under the Gysin homomorphism. Since P ′ is the

complement of a hypersurface in a quadric hypersurfaces we may represent res(β)|P ′ as a rational

differential form on A3. To do this, take the birational change of variables,

φ : A5
99K A5, (ξ0, ξ1, y0, y1, x1) =

(
ξ0,

η − α0

α01
, y0, y1, x1

)
(177)

under which β becomes

φ∗β = − 1

λ(t)η(α01ηξ0 + α1η + (αα01 − α0α1))
dη ∧ dy0 ∧ dy1 ∧ dz0. (178)

The proper transform of P is V (η) so we may compute the residue on this subvariety to be

− 1

λ(t)(αα01 − α0α1)
dy0 ∧ dy1 ∧ dz1. (179)

3Consider the order 11 differential operator L =
∑11

i=0 qi(t)
(

d
dt

)i
and perform the change of variables f(z) →

f(z) exp
(

−
1
11

∫

q10(t)
q11(t)

dt
)

, the resulting differential operator is the so-called projective normal form is given by L̃ =
∑9

i=0 q̃i(z)
(

d
dz

)i
+

(

d
dz

)11
.
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This form is constant in the ξ0 direction, so restriction to the hyperplane ξ1 = 0 is represented by

the same equation. Note that this form is precisely the restriction of

− 1

λ(t)G(2,2,2)(t)
Ω̂ (180)

to the chart z1. The identification of differential operators in (172) is a consequence of this.

9. The n-scoop ice cream cone graph motive, (2, 1, . . . , 1)

(A) (B)

Figure 14. (A) The multi-loop ice cream cone graphs, (B) The multi-loop sunset graph.

In this section we generalise the construction of the two-loop ice cream cone in Section 7.3 to the

multi-loop ice cream graph in Figure 14(A). We recall that the n-loop sunset graph in Figure 14(B)

has graph polynomials

U[1]n =

n∏

i=1

xi




n∑

j=1

1

xj


 , V[1]n =

n∏

i=1

xi, L[1]n =

n∑

i=1

m2
2+ixi (181)

and

F[1]n = U[1]nL[1]n + q2V[1]n , (182)

where the mass parameters are real non-vanishing positive numbers mi ∈ R>0 and q is a vector in

CD.

For any (2, [1]n) graph with n-loops as in Figure 11, the associated graph polynomialsU2,[1]n ,V2,[1]n ,

and F2,[1]n can be expressed using the Symanzik polynomials of the sunset graph

U(2,[1]n) = (y1 + y2)U[1]n +V[1]n ,

V(2,[1]n);D = p22y1y2U[1]n + (p21y1 + p23y2)V[1]n , (183)

F(2,[1]n);D(t) = U(2,[1]n)

(
m2

1y1 +m2
2y2 + L[1]n

)
− tV(2,[1]n);D.

with p3 = −p1 − p2 and p1 and p2 are vector in CD associated to the left and bottom vertices of

the graph (2, [1]n). In D = 2 dimensions the multi-scoop ice cream cone rational differential form

reads

ω(2,[1]n);2(t) =
Un−1

(2,[1]n)

(F(2,[1]n);2(t))n
Ω0 (184)

where Ω0 is the canonical differential form on Pn+1 with coordinate [y1, y2, x1, . . . , xn]. Blowing up

the linear subspace L = Z(x0, . . . , xn) we obtain a hypersurface in a P2 bundle over Pn written in
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homogeneous coordinates as

U′
(2,[1]n) = (y1 + y2)U[1]n +wV[1]n ,

V′
(2,[1]n);D = p22y1y2U[1]n + w(p21y1 + p23y2)V[1]n , (185)

F′
(2,[1]n):D(t) = U′

(2,[1]n)(wL[1]n +m2
1y1 +m2

2y2)− tV′
(2,[1]n);D.

Therefore we can collect coefficients of this quadratic form in y1, y2, w into the following symmetric

matrix



2m2
1U[1]n (m2

1 +m2
2 − tp22)U[1]n U[1]nL[1]n + (m2

1 − tp21)V[1]n

(m2
1 +m2

2 − tp22)U[1]n 2m2
2U[1]n U[1]nL[1]n + (m2

2 − tp23)V[1]n

U[1]nL[1]n + (m2
1 − tp21)V[1]n U[1]nL[1]n + (m2

2 − tp23)V[1]n 2V[1]nL[1]n


 .

(186)

For generic choices of p21, p
2
2 this matrix is nondegenerate. The determinant of this matrix is the

product ofU[1]n and a homogeneous quadric in the termsU[1]nL[1]n andV[1]n . A direct computation

allows us to check the following result.

Proposition 9.1. For a generic choice of p1, p2,m1,m2, the discriminant locus of the quadric

fibration above is a union of two (distinct) sunset Calabi–Yau (n− 1)-folds and the vanishing locus

of U[1]n.

Proof. A computation shows that there are constants A,B, and C depending on kinematic param-

eters so that the discriminant locus of the quadratic fibration described above is

D2,[1]n = −2tU[1]n

(
AV2

[1]n +BU[1]nL[1]nV[1]n + CU2
[1]nL

2
[1]n

)
. (187)

where the coefficients A, B and C are the same as in the one-scoop ice cream cone case (126).

Observe that D2,[1]n therefore factors as tU[1]nC(U[1]nL[1]n−ξ1V[1]n)× (U[1]nL[1]n−ξ2V[1]n) where

ξ1 and ξ2 are the roots of the polynomial Cx2+Bx+A as in the one-scoop case of Section 7.3 which

depend on kinematic parameters. Since the factors only depend on the cone part of the ice cream

cone graph, they are the same as the one of Section 7.3. The base change in (136) rationalizes the

square roots, and one can apply the same construction as in the one-scoop case. �

In [30] it has been found that the Gauss–Manin connection associated with the single scale case,

p21 = p23 = 0 and p22 6= 0 and all equal internal masses m1 = · · · = mn+2 = m, for the ice cream cone

integrals takes a lower triangle form, and that the associated Gauss–Manin system of differential

equations splits as two (inhomogeneous) differential equations for the (n− 1)-loop sunset integrals,

in agreement with the result of Proposition 9.1.

Appendix A. Elliptic curves

We explain how to compute the Picard–Fuchs equation for a family of elliptic curves presented

as a double cover of P1 ramified over four points.

A.1. Double covers of P1 and Weierstrass form. Throughout the paper, we have considered

families of elliptic curves which are presented as double covers of P1 ramified along four points. In

an affine chart, such a family of elliptic curves over the unit disc U is presented as

y2 = b4(t)x
4 + b3(t)x

3 + b2(t)x
2 + b1(t)x+ b0(t). (188)

In order to compute the Picard–Fuchs equation of this family of curves, we may apply a standard

set of formulas, however these formulas require that the family of elliptic curves be in Weierstrass
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form,

y2 = 4x3 − g2(t)x− g3(t). (189)

We now outline a procedure for turning a family of elliptic curves in the for (188) in Weierstrass

form. The first step is to write our family of curves as a family of cubic curves. This can be done

by applying appropriate changes of variables. We get

y2 = x3 + b2(t)x
2 + (b1(t)b3(t)− 4b0(t)b4(t))x+ (b1(t)

2b4(t) + b0(t)b3(t)
2 − 4b0(t)b2(t)b4(t)). (190)

By completing the cube, x = X−b2(t)/3, and letting y = Y/2 we obtain an equation in Weierstrass

form.

Remark A.1. A subtle point in this computation is that the transformation from (188) to (190)

requires squaring a square root of b4(t). Consequently, the families of elliptic curves in (188)

and (190) have isomorphic fibres and represent the same variation of Hodge structure, but may not

correspond to the same underlying elliptic surface.

A.2. Picard–Fuchs equations of the Weierstrass family. If one considers the family of elliptic

curves Et

y2 = 4x3 − g2(t)x− g3(t) (191)

over the unit disc U where g2(t) and g3(t) are holomorphic and the discriminant ∆(t) = g32(t) −
27g3(t)

2 is non-vanishing, it is well-known that the periods f1(t) =
∫
γ dx/y and f2(t) =

∫
γ xdx/y

satisfy the differential system of equations

d

dt

(
f1(t)

f2(t)

)
=

(
− 1

12
d
dt log∆(t) 3δ(t)

2∆(t)

− g2(t)δ(t)
8∆(t)

1
12

d
dt log∆(t)

)(
f1(t)

f2(t)

)
(192)

with

δ(t) = 3g3(t)
d

dt
g2(t)− 2g2(t)

d

dt
g3(t). (193)

The Picard–Fuchs operator acting on the period integral
∫
γ dx/y is

Lell = 144∆(t)2δ(t)
d2

dt2
+ 144∆(t)

(
δ(t)

d∆(t)

dt
−∆(t)

dδ(t)

dt

)
d

dt

+ 27g2(t)δ(t)
3 + 12

d2∆(t)

dt2
δ(t)∆(t)−

(
d∆(t)

dt

)2

δ(t)− 12
dδ(t)

dt
∆(t)

d∆(t)

dt
. (194)

The regular singularities of this differential operator are the zeroes of the discriminant ∆(t) = 0

and those of δ(t) = 0. The zeroes of δ(t) are apparent singularities whereas the zeroes of the

discriminant ∆(t) are non-apparent and correspond to poles of the j-invariant

j(t) =
g2(t)

3

∆(t)
. (195)
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Appendix B. Computing an embedding of the Néron-Severi lattice of a quartic K3

surface in its full homology lattice

by Eric Pichon-Pharabod4

Université Paris-Saclay, Inria, 91120 Palaiseau, France

Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS,

F-91191 Gif-sur- Yvette Cedex, France.

eric.pichon-pharabod@inria.fr

In this section, we give an overview of a numerical method for computing the generic Picard

lattice of the family of singular quartic surfaces G(2,2,2)(t) of (159). The method we use relies on

computing the periods of this surface with very high numerical precision. Previous work relying on

a similar approach is described in [56] and [42], which give an algorithm for computing the periods

of a generic smooth projective hypersurface by deforming them from the Fermat variety. While this

method is in theory applicable to the Tardigrade surface, it requires numerical integration of opera-

tors of high order (21) and high degree differential (more than 1700), which is too computationally

expensive to be done in reasonable time (at least several days). The method we will instead use

in this appendix is a generalization of the method for arbitrary smooth hypersurfaces presented

in [41], which allows carrying out the computation in less than a minute. A static SAGE worksheet

reproducing the computations mentioned in this paper is available at Tardigrade-Lattice-K3.ipynb.

We begin by recalling the relevant results of [41].

B.1. The smooth case. Let P ∈ Q(x, y, z, w) be a homogeneous polynomial of degree 4 defining

a smooth complex projective quartic surface X = V (P ) ⊂ P3. Our aim is to recover the periods

of X, and the way we achieve this is by giving a description of the middle homology group H2(X)

that is well-suited for numerical integration.

For this consider a degree 1 map X 99K P1 given by

[x, y, z, w] 7→ [λ(x, y, z, w), µ(x, y, z, w)] , (196)

where λ and µ are some non-colinear linear maps. This map is not well defined as X ∩ kerλ∩ kerµ
is not empty (it consists of precisely degX = 4 points), but this can be fixed by instead considering

the modification Y of X, i.e. taking blowups at these points.

Assuming some genericity conditions, the resulting map f : Y → P1 allows us to describe X

in the following manner. Aside from the 36 critical values of f , for t ∈ P1, the fibre Yt = f−1(t)

is a smooth quartic curve, and deforms continuously with respect to t. The deformation of the

homology of such a fibre along a small loop around one critical point is well understood and given

explicitly by Picard-Lefschetz theory. In [41], we show that this monodromy can be recovered ex-

actly using numerical methods. We may then recover the homology of X from the monodromy in

the following manner.

Fix some regular (i.e. not critical) basepoint b ∈ P1, consider a critical point t ∈ P1, and a simple

loop ℓ around t with endpoint b, that separates t from other critical values. Then the deformation of

the fibre Xb along ℓ will induce an isomorphism of the homology H1(Yb,Z) (which has rank 6, as it

4This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958 and
by the European Research Council under the European Union’s Horizon Europe research and innovation programme,
grant agreement 101040794 (10000 DIGITS).

https://nbviewer.org/github/pierrevanhove/MotivesFeynmanGraphs/blob/main/Tardigrade-Lattice-K3.ipynb
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p

ℓ∗p
τ(p)

•x

•t•b
−→

←−
ℓ

Figure 15. At the bottom of the picture, a critical value t ∈ P1, the basepoint b,
and a simple loop ℓ around t. Above, the critical point x, a cycle p ∈ H1(Yb), its
extension τ(p) ∈ H2(Y, Yb) along ℓ, and its monodromy ℓ∗p along ℓ. Notice that the
border of τ(p) is ℓ∗p− p. The subgroup of H2(Y, Yb) generated by extensions along
ℓ has rank 1. Its generator (up to sign) is called the Lefschetz thimble at t, and its
boundary is the vanishing cycle at t.

is a genus 3 curve), which can be encoded by an integral matrix M ∈ GL6(Z). By Picard-Lefschetz

theory, this matrix has the form M = I6 + N where N is a rank 1 matrix and I6 is the identity

matrix of size 6. The cycle w ∈ H1(Yb) that spans the image of M − I6 is called the vanishing cycle

at t. It not only depends on t, but also on the choice of ℓ.

Let γ ∈ H1(Yb) and choose a representative σ ⊂ Yb of this cycle. The deformation of Xb along

ℓ induces a deformation of σ, which passes to homology. Namely, this yields a cycle τ(γ) of the

relative homology group H2(Y, Yb). In the same way that there is a unique vanishing cycle, the

image of the map τ has rank 1, and the generator of the image of this map is called the thimble at

t. This is represented in Figure 15.

Thimbles serve as building blocks of H2(Y ). Indeed, taking linear combinations of thimbles in

such a way that the boundary of the resulting element in H2(Y, Yb) is trivial, we obtain cycles of

H2(Y ) up to the fibre H2(Yb). It turns out that doing so, we only miss two generators of H2(Y ):

one fibre h coming from H2(Yb), and one section s : P1 → Y of f . However the periods of the holo-

morphic form of X on these cycles are always 0. Indeed h is an algebraic cycle, and s corresponds

to one of the blowups to get from X to Y .

This allows us to obtain a description of the cycles of H2(Y ) that are well suited to perform

numerical integration. Doing so therefore allows us to recover the periods of H2(Y ) coming from

forms of X. As Y is the blowup of X at certain points, these periods are in fact also the periods

of X. We are able to compute the periods with very high numerical precision (several hundreds of

digits). We may then use the LLL algorithm (see [44]) to heuristically recover the integer relations

between these periods. In turn this allows us to estimate the Picard rank of X. This method

may go wrong in two ways: we may recover fake integer relations that are satisfied to very high

precision, or we may miss high degree relations between the periods (see [42] for more details).
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B.2. The singular family G(2,2,2)(t). We now turn to the case of the singular family G(2,2,2)(t)

described in (159). To compute the generic Picard rank, we may simply evaluate the Picard rank of

the family specialized at generic values t0 of t. The variety X = V (G(2,2,2)(t0)) has 6 singularities of

type A1 by a direct computation. In order to resolve these singularities, it is sufficient to blowup X

at these points. The resulting variety X̃ is a smooth K3 surface. We will compute the holomorphic

periods of X̃ using the above methods. However, as we are not in the smooth case any more, the

description of monodromy given above is no longer valid and we thus have to inspect closely what

happens at the critical points.

While we could apply the method directly to a pencil of hyperplane sections of this quartic sur-

face, it is numerically more advantageous to instead consider the K3 surface directly as an elliptic

fibration in Weierstrass form.

Doing so, we find that the K3 surface is an elliptic fibration with 17 singular fibres, 14 of which

are I1’s, two are I4’s and the last one is an I2 (see [55] for terminology). Using the same machinery

as above, we fix a basepoint b, and simple loops around each critical value of the fibration. We

remain able to compute the monodromy around these critical points and find that all these matrices

are the sum of a rank one matrix with the identity matrix, as in the smooth case.

However, for the I4 (resp. I2) singularities, the corresponding vanishing cycles are four times

(resp. twice) some integral cycle (whereas the vanishing cycle of the I1 singularities are primitive).

This is because these fibres arise as the merging of four (resp. two) critical points. This is ex-

plained by the following observation. Embedding X = X0 in the pencil Xt of generically smooth

quartic surfaces generated by X and some some small deformation of X with only I1 fibres, we

get a family of elliptic fibrations that generically only has I1 fibres. The value of the singular

fibres of Xt vary continuously with respect to t and there are generically 24 of them. When t ap-

proaches 0, two groups of four and one pair of I1 fibres of X merge to give rise to the I4 and I2 fibres.

The monodromy matrices around the I1 fibres in the smooth case satisfy the relation (M−I2)2 =
0, i.e. M2 − I2 = 2(M − I2), which shows why the vanishing cycles at the I2 fibre is two times

the vanishing cycle at one of the merging I1 fibre. Additionally, we see that if t1 and t2 are the

values of the two I1 fibres that merge to give rise to the I2, and ℓ1 and ℓ2 are two corresponding

simple loops such that their composition is a simple loop around t1 and t2, then the corresponding

monodromy matrices M1 and M2 are equal (and thus the vanishing cycles are also the same). In

particular, there is some cycle γ ∈ H2(Xt) that is an extension around ℓ1 ∗ ℓ2 for small value of t,

and which vanishes when t→ 0. A similar result shows there are three vanishing cycles for each of

the I4 fibres.

In fact, by replacing X0 by X̃ in the family of elliptic fibration, one sees that the limit of the

vanishing cycles at the I2 and I4 fibres are precisely the exceptional divisors of the desingularization

of the A1 and A3 fibres. What’s more, a basis of H2(Xt) will deform to a basis of H2(X̃) as t→ 0,

and integral relations we compute in H2(Xt) still hold in H2(X̃). This observation will be useful

when we will want to recover the full cycle lattice of X̃ .
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Nevertheless, we may still reconstruct cycles H2(X̃) by taking linear combinations of thimbles

with zero boundary, along with the fibre and section. We recover 17− 2− 2 = 13 cycles as exten-

sions, in addition to the 2-cycle coming from the fibre f , and the cycle coming from a section of

the fibration, yielding a total of 15 cycles. Adding the 2 × 3 + 1 = 7 exceptional divisors coming

from the desingularization of the I4’s and I2, we find a rank 22 submodule of the cycles of the K3

surface. As 22 is also the rank of H2(X̃), this is sufficient to recover the Picard rank of X̃. It

should also be noted that the periods of the holomorphic form on the exceptional divisors of the

desingularization are 0, and thus do not impact our computation of the Picard rank.

Finally, carrying out this computation, we find a generic Picard rank of 11 for the family

G(2,2,2)(t).

B.3. Embedding the Néron-Severi lattice into the full K3 lattice. In this section we explain

how to recover the full cycle lattice, as well as the intersection product, and this allows us to give

an explicit embedding of the Néron-Severi lattice in the full K3 lattice, and identify the different

components in the intersection matrix.

While we managed to recover a full rank sublattice of the cycle lattice in the previous section,

we are still off by a finite index. We are indeed missing some of the cycles which correspond to

extensions that get “pinched” at the I2 and I4 fibres.

To circumvent this, we consider a formal smoothing of the elliptic fibration by splitting the

multiple singular values in the following way. For an Ii fibre, i ≥ 2, the monodromy matrix has the

form I2 + iU for some rank 1 matrix U . We formally split this singular fibre by turning it into i

distinct I1 fibres, each of which has monodromy matrix I2+U . Doing this construction, we recover

20 cycles as extensions, to which we add a section and the generic smooth fibre to recover a full

rank sublattice of H2(X̃). Following methods described in [41], we may recover the intersection

product between extensions. As mentionned in the previous section, the intersection product of

H2(Xt) is the same as that of H2(X̃), so we have indeed computed the intersection product of the

K3 surface.

To add the intersection products with the fibre and section it is sufficient to add a

(
0 1

1 −2

)

block to the intersection matrix. We finally have the full intersection matrix of the sublattice, and

find that its determinant is −1, which implies that the sublattice we have computed is in fact all

of H2(X̃). What’s more, as we know what the coordinates of the algebraic cycles are in this basis,

we may identify the algebraic and transcendental blocks in the full lattice. Applying a change of

basis to make the components visible, we obtain the matrix given in Fig. 16.

We can compute an equivalence between this lattice Λ and the standard K3 lattice (−E8) ⊕
(−E8)⊕H⊕H⊕H. In turn, this will allow us to give an explicit embedding of the algebraic cycles

in this lattice. Of course, these coordinates are only given up to an isometry of the standard K3

lattice.

In order to compute this equivalence, we proceed as follow. We first single out two H compo-

nents – the first H1 is directly given by the fiber and section of our fibration, and to recover a

second one, H2, we may simply look for cycles with self-intersection 0 that are in the orthogonal



MOTIVIC GEOMETRY OF TWO-LOOP FEYNMAN INTEGRALS 63




−2 1 0 0 0 0 −1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −2 −1 0 1 0 0 0 0 0 3 0 0 1 0 0 1 0 0 1
0 0 0 −1 −2 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

−1 0 0 1 0 1 −2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 2 1 0 0 0 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 −2 −1 0 0 0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 0 0 0 −1 − 2 4 0 0 0 1 0 0 1 0 1
0 1 0 3 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 −1 1 0 0 0 0 − 2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 − 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 −2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 2 1 0 0
0 0 0 0 0 −1 0 0 0 0 1 1 0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0




Figure 16. The intersection matrix of H2(X̃). The lower left 11×11 block (oulined
in grey) corresponds to the algebraic cycles. In this block, we single out, from top
left to bottom right, 3 sections (blue), the exceptional component of the I2 fibre
(orange), the exceptional components of the two I4 fibres (red), and the generic
smooth fibre in the lower right. Interestingly, we see that, despite the symmetry of
their mutual intersections, only one of the sections intersects the I4 fibres in the
same component.

complement of H1, and find among these a pair which has intersection 1. We then take the orthog-

onal complement Λ̃ of H1 ⊕ H2 in Λ, which is isomorphic to (−E8) ⊕ (−E8) ⊕ H ∼= (−D+
16) ⊕H

(see [51]).

We then need to identify an embedding of the last hyperbolic component H in Λ̃ that has

(−E8) ⊕ (−E8) as its orthogonal complement. The way we achieve this is by finding a family of

cycles of Λ̃ that satisfy the intersections given in diagram (35) of [26], reproduced here:

a1
•

a2
•

a4
•

a5
•

a6
•

a7
•

a8
•

a9
•

a10
•

a11
•

a12
•

a13
•

a14
•

a15
•

a16
•

a18
•

a19
•

a3
•

a17
•

(197)

We start by taking any embedding of the hyperbolic lattice H3 ⊂ Λ̃, and compute its orthogonal

complement. We will very likely obtain −D+
16 (if not, it means we have (−E8)⊕ (−E8) and we are

done). As −D+
16 is definite, we may compute its isometry group G. We can also compute one of

its roots r, and are then able to recover all the 480 roots of −D+
16 by computing the orbit G.r.

Once the roots are computed we inductively pick out a family of 16 roots of −D+
16 satisfying the

intersection products of a3, . . . , a18 of the diagram in eq. (197). Then a19 is given by the sum of

a generator of the complement of 〈a3, . . . , a17〉 in D+
16 (which is not a root) with a vector in H3,

in a way that makes the self intersection −2. Finally the observation that a1 ∈ 〈a3, . . . , a19〉⊥,
and 〈a1, a2〉 = 〈a3, a5, a6 . . . , a19〉⊥ along with the condition between their intersection allow to
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−1 −2 −2 −3 −2 −2 −2 −1 0 0 1 1 1 0 −1 −1 1 1 0 0 1 1

−2 −4 −2 −5 −4 −3 −2 −1 2 4 2 5 4 3 2 1 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0







E8 E8 H H H

sections

A1

A3

A3

fiber

Figure 17. The coordinates of the algebraic cycles in the standard K3 lattice. We
see that the A3 components each lie in disjoint copies of (−E8) ⊕ H, that the A1

component is included in one of the −E8’s, and that the non-trivial sections intersect
both −E8 components.

recover a1 and a2.

With this system identified, we use the equations at the end of section 4.1 of [26] to find an

isometry Λ̃ ∼= (−E8)⊕(−E8)⊕H, which in turn yields an isometry Λ ∼= (−E8)⊕(−E8)⊕H⊕H⊕H.

As we have that isometry explicitely, we may then give an explicit embedding of the Néron-Severi

lattice (with the different components identified) in the standard K3 lattice. This is shown in Fig. 17

Interestingly, we observe that each A3 component lies in different disjoint copies of (−E8)⊕H, the

A1 component is embedded in one of the −E8, and the two nontrivial sections intersect with both

−E8.

A static SAGE worksheet reproducing the computations mentionned in this appendix is available

at Tardigrade-Lattice-K3.ipynb.
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