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Abstract. For each Fano threefold, we construct a family of Landau–Ginzburg models which satisfy many
expectations coming from different aspects of mirror symmetry; they are log Calabi–Yau varieties with
proper potential maps; they admit open algebraic torus charts on which the potential function w restricts to
a Laurent polynomial satisfying a deformation of the Minkowski ansatz [Akh+12]; the general fibres of w
are Dolgachev–Nikulin dual to the anticanonical hypersurfaces in X. To do this, we study the deformation
theory of Landau–Ginzburg models in arbitrary dimension, following [KKP17], specializing to the case
of Landau–Ginzburg models obtained from Laurent polynomials. Our proof of Dolgachev–Nikulin mirror
symmetry is by detailed case-by-case analysis, refining work of Cheltsov and the fifth-named author [CP18].

1. Introduction

1.1. Relations between mirror symmetry predictions for Landau–Ginzburg models. Mirror
symmetry studies relations between symplectic geometry and complex algebraic geometry. In particular,
the form of mirror symmetry that we are interested in here is the relationship between Fano manifolds and
their mirror Landau–Ginzburg models. For the moment, a Landau–Ginzburg model will denote simply a
smooth quasi-projective variety Y equipped with a regular function w. In the past decades, many different
inter-related forms of mirror symmetry have been proposed. One of the goals of this paper is to understand
how predictions coming from different forms of mirror symmetry relate to one another. In particular, if X is
a Fano variety, and (Y,w) is its Landau–Ginzburg mirror, we have the following predictions, which we state
in the case where dim(X) = 3. Our discussion of mirror symmetry in this section is quite coarse, and we
often suppress specific choices of symplectic and complex structures for simplicity.

- Homological mirror symmetry (e.g., [KKP08; KKP17]). Homological mirror symmetry, initiated
by Kontsevich for Calabi–Yau varieties in [Kon94] and extended to the case of certain Fano varieties
(see [Sei01] for exposition), predicts that for a Fano manifold with smooth anticanonical divisor V , the
log Calabi–Yau pair (X,V ) has a mirror log Calabi–Yau pair (Z,D). The act of compactifying X − V to
X corresponds under mirror symmetry to equipping Y = Z −D with a proper function w (see [Aur07]).
Therefore, if X and (Y,w) form a mirror Fano/Landau–Ginzburg model pair, one expects that Y admits
a log Calabi–Yau compactification Z to which w extends to a morphism f : Z → P1. The fibre over ∞ is
snc and anticanonical.

- Hodge-theoretic mirror symmetry (e.g., [Iri09; IMM16]). Hodge-theoretic mirror symmetry predicts
the identification of the regularized quantum cohomology D-module of a Fano variety X with the Gauss–
Manin connection on the fibres of w : Y → C. This formulation of Hodge-theoretic mirror symmetry
goes back to Givental [Giv98], with the regularization introduced by Golyshev [Gol04]. Iritani [Iri09]
and concurrent work of Katzarkov–Kontsevich–Pantev [KKP08] equipped the (regularized) quantum
D-module with an integral structure which should match the natural integral structure underlying the
B-model variation of Hodge structure. Furthermore, the ambient quantum D-module of an anticanonical
Calabi–Yau hypersurface in X is identified with a sub-local system of the solution sheaf of the quantum
D-module [Iri11; IMM16].

In dimension 3, if the Picard lattice of a general anticanonical hypersurface of X is denoted Pic(X),
then one expects that the transcendental lattice of a general fibre of w is H ⊕ Pic(X). Here H indicates
the unique rank 2 even unimodular lattice of signature (1, 1). This relation is called Dolgachev–Nikulin
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mirror symmetry [Dol96]. For a discussion of this aspect of mirror symmetry, see [Ued20]. This can also
be extracted from homological mirror symmetry.

- Fanosearch programme (e.g., [Coa+14; Coa+16; Coa+21]). In an ongoing series of papers, Coates,
Corti, Kasprzyk, and a number of collaborators have pursued a program aimed towards understanding
the classification of Fano varieties through mirror symmetry and Laurent polynomials. The basic
observation, which goes back in some form at least to the work of Batyrev–Ciocan-Fontanine–Kim–van
Straten [Bat+00], is that if X is a Fano variety, and X admits a degeneration to a Gorenstein Fano
toric variety T , then the mirror of X admits a torus chart (C∗)n to which w restricts to give a Laurent
polynomial p whose Newton polytope is the anticanonical polytope of T . These Laurent polynomials
do not have general coefficients, and the choice of coefficients seems to have a deep connection to the
structure of the degeneration of X to T .

One of the main ideas appearing in the work of Coates, Corti, Kasprzyk, and collaborators is that
this process can be inverted; by characterizing the Laurent polynomials that appear in this way, one
should be able to create a family of Fano manifolds starting from the data of a Laurent polynomial of
appropriate type by applying deformation-theoretic techniques (see, for instance, [CKP19; Akh+16]).
The main challenge has been to characterize which polynomials correspond to Fano varieties. The current
expectation is that there is a bijection between mutation classes of rigid maximally mutable Laurent
polynomial (see Subsection 3.1) and TG Fano varieties (see [Coa+21] for precise details).

These three strands of mirror symmetry are deeply interwoven; the Fanosearch programme is influenced
by Hodge-theoretic mirror symmetry, and one expects that homological mirror symmetry at least partially
implies Hodge-theoretic mirror symmetry. The goal of this article is to show that the predictions made about
the class of objects mirror to Fano varieties by these three aspects of mirror symmetry are in harmony with
one another. We provide a more detailed outline of our results below.

1.2. Picard lattices of Landau–Ginzburg threefolds. The theory of toric Landau–Ginzburg models (see
Subsection 6.1 for definition or [Prz18] for a comprehensive overview) gives an effective approach of constructing
mirror Landau–Ginzburg models of Fano varieties. According to this theory, a Fano variety X corresponds to
a Laurent polynomial p, interpreted as a regular function on (C∗)n, so that the periods of the fibres of p
correspond to the Gromov–Witten invariants of X. Motivated by mirror symmetry, one expects [Prz17] that
(C∗)d also admits a compactification Z so that p extends to a morphism f : Z → P1, and so that f−1(∞) is a
simple normal crossings anticanonical divisor. Finally, overwhelming amounts of computations coming from
the Fanosearch programme lead us to believe that there should exist a degeneration of X to a toric variety
T whose fan polytope is the Newton polytope of the Laurent polynomial (see Subsection 6.1). A Laurent
polynomial satisfying all of these expectations is said to be a toric Landau–Ginzburg model of X.

It was proved in [Prz08; Prz13; Akh+12; Coa+16] that smooth Fano threefolds have toric Landau–Ginzburg
mirrors. Note that the corresponding Laurent polynomial is not uniquely determined by a Fano variety.
Nevertheless, if the anticanonical class −KX is very ample, then the toric Landau–Ginzburg model of a smooth
Fano threefold X is provided by a Minkowski polynomial (see Subsection 3.2). It was proved in [Akh+12]
that they are all related by birational transformations called mutations. Thus one can choose any Laurent
polynomial from [Akh+12, Appendix B] among mirror partners for X as well.

Dolgachev–Nikulin duality is a form of mirror symmetry between families of lattice-polarized K3 surfaces:
for any lattice L (under some natural restrictions on the lattice) and any complete family of L-polarized K3
surfaces there is a corresponding complete family of L∨-polarized K3 surfaces. Here L∨ is the Dolgachev–
Nikulin dual lattice (see Subsection 4.1 for a brief review, and [Dol96] for further details). Given a Fano
threefold X, there is a lattice polarization on each smooth anticanonical divisor S of X, obtained by taking
the sublattice im(H2(X,Z) → H2(S,Z)) and equipping this sublattice with the induced bilinear form. Let
us denote this lattice by Pic(X). Beauville [Bea04] has shown that for a general choice of S, there is an
isomorphism between Pic(X) and Pic(S), and that the deformations of pairs (X,S) form a complete family
of K3 surfaces.
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In [Ued20], Ueda applies work of Iritani [Iri09] to prove, modulo some lattice-theoretic details, that if T is a
smooth toric Fano threefold, then the fibres of the Landau–Ginzburg mirror of T are also Dolgachev–Nikulin
dual to anticanonical hypersurfaces in T . In this case, the Landau–Ginzburg mirror of T is (C∗)3 equipped
with a general Laurent polynomial p with Newton polytope equal to the fan polytope of T . Since Iritani’s
results on mirror symmetry for variations of integral Hodge structures are not known for general Fano
threefolds, Ueda’s arguments do not apply more generally. However, we are led to the following conjecture.

Conjecture 1.1. Let X be a smooth Fano threefold, and F be a general fibre of its log Calabi–Yau compacti-
fiable toric Landau–Ginzburg model f : Z → P1. Then there is an isomorphism of lattices:

Pic(X)∨ ∼= im
(
H2(Z,Z) res−−→ H2(F,Z)

)
.

Proposition 1.2 (see [Prz18, Theorem 5.25]). Conjecture 1.1 holds for Fano threefolds with ρ(X) = 1.

Definition 1.3. Let X be a smooth Fano threefold with ρ(X) > 1. We refer to the toric Landau–Ginzburg
model of the Fano threefold X used in [CP18] as a standard Landau–Ginzburg mirror of X.

Theorem 1.4. Conjecture 1.1 holds for standard toric Landau–Ginzburg models.

1.3. Deformations of standard Landau–Ginzburg models. For each Fano threefold, we have only
a single standard Landau–Ginzburg model, therefore, in general, the fibres of w : Y → A1 do not form a
complete family of Pic(X)∨-polarized family of K3 surfaces. Even worse, the Picard lattice of a general fibre of
w can be strictly larger than Pic(X)∨. Following Cheltsov–Przyjalkowski (see [CP18]), the Dolgachev–Nikulin
dual lattice (i.e., the lattice of monodromy invariants) arises as the Gal(C(t)/C)-invariant part of some larger
sublattice in the Picard lattice of a general fibre. It was noticed in [CP18] that the Galois action is non-trivial
for Families 2.12, 4.3, and 6.1–10.1.

By work of the fifth-named author [Prz17], each standard Landau–Ginzburg model associated to a Fano
threefold with very ample anticanonical bundle admits a tame compactification (see Definition 2.1 below),
and thus results of Katzarkov–Kontsevich–Pantev [KKP17] show that the deformation theory of (Z,D, f) is
unobstructed. Results of Cheltsov–Przyjalkowski [CP18], along with results in Subsection 2.1 below, show that
the space of deformations of standard tame compactified Landau–Ginzburg models (Z,D, f) has dimension
h1,1(X) + 2, and the deformation space of pairs (Z,F ), where F is a fibre of f, has dimension rank(Pic(X)).
Since the moduli space of LZ -polarized K3 surfaces has dimension 20− rank(LZ) = rank(Pic(X)) (where the
last equality follows from Theorem 1.4), it reasonable to expect that the forgetful map Def(Z,F ) → Def(F )

is surjective onto the space of deformations which preserve LZ-polarization. This is indeed the case, as we
prove in Proposition 2.15. More generally:

Theorem 1.5. Suppose (Z,D, f) is a tame compactified Landau–Ginzburg model of dimension 3 so that
(Z,D) is a log Calabi–Yau pair satisfying certain minor topological conditions. Let F be a smooth fibre of f.

(1) The forgetful map Def(Z,D, f) → Def(Z) is surjective, hence deformations of Z are unobstructed1.
(2) The forgetful map Def(Z,F ) → Def(F ) is a submersion of relative dimension h2,1(Z) onto the

subspace of Def(F ) preserving LZ-polarization.
Consequently, for a general deformation of (Z,D, f) and general fibre F of f, the Picard lattice of F is
isomorphic to LZ .

This result is quite abstract. It tells us very little about the nature of deformations of (Z,D, f). Our
next result describes this deformation space algebraically. As mentioned above, the Landau–Ginzburg model
(Z,D, f) can be constructed from a specific type of Laurent polynomial called a Minkowski polynomial. The
construction was first given in [Prz17] and recalled below in Proposition 3.7. We recall the definition of a
Minkowski polynomial in Subsection 3.1, but there are two important points: (a) a Minkowski decomposition
of each face of Newt(p) along with a corresponding factorization of the face polynomials of p, and (b) a

1This result is essentially claimed in [KKP17, Corollary 2.18], however, the proof there is incomplete. We fill in the gaps in the
proof of op. cit. in Subsection 2.1.



4 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

normalization condition: for each vertex ν of Newt(p) the corresponding coefficient is equal to 1. Dropping
the normalization requirement, we obtain a family of Laurent polynomials. We call such a polynomial a
parametrized Minkowski polynomial. Przyjalkowski’s method allows us to construct a tame compactified
Landau–Ginzburg model for any parametrized Minkowski polynomial, and thus an algebraic family of tame
compactified Landau–Ginzburg models which we denote L(p) for each Minkowski polynomial p. We prove
the following result in Subsection 3.1.

Theorem 1.6. Suppose p is a parametrized Minkowski polynomial of dimension at least 3. Any small
deformation of (Zp, Dp, f) is obtained from a small deformation of p.

To every Laurent polynomial with Newton polytope, we attach what we call Minkowski data, corresponding
to a factorization of the face polynomials of p. Minkowski data are partially ordered by refinement. It is
clear that if p is a Laurent polynomial, the Minkowski data of p is a refinement of any deformation of p. A
subtle point in the discussion below is that this need not be an equality. The following statement is a direct
consequence of Theorem 3.17.

Proposition 1.7. Let X be a smooth Fano threefold with very ample anticanonical class, and let (Z,D, f) be
its standard Landau–Ginzburg model, obtained by partially compactifying the corresponding Laurent polynomial
p of X. There is a rank(Pic(X))-dimensional family of Landau–Ginzburg models deformation equivalent to
(Z,D, f) so that the following statements hold.

(1) Any small deformation of Z is obtained by deforming p.
(2) The deformation space of pairs (Z,F ) form a complete family of Pic(X)∨-polarized K3 surfaces.

Remark 1.8 (Modularity of Landau–Ginzburg mirrors of Fano threefolds). In [Gol04; Gol07] Golyshev
studied quantum cohomology of Fano threefolds of Picard rank 1 and showed that their regularized quantum
differential equations come from symmetric squares of uniformizing differential equations of classical modular
curves. In [ILP13], Ilten, Lewis, and the fifth-named author show that the regularized quantum differential
operator can be obtained as the Picard–Fuchs operator attached to a Laurent polynomial whose fibres are K3
surfaces of Picard rank 19.

The original motivation for this paper was to understand how this statement generalizes to higher Picard
rank. Together, Propositions 1.2 and 1.7 tell us that for any Fano threefold X with very ample anticanonical
bundle there is a (rank(Pic(X)) − 1)-dimensional Landau–Ginzburg model (Zt, Dt, ft). Here t denotes a
parameter for this family of Landau–Ginzburg models. Furthermore, we see that this deformation is obtained
by deforming the Laurent polynomial p defining the standard Landau–Ginzburg model of X. Finally, we see
that as t varies, the fibres of ft form a family of Pic(X)∨-polarized K3 surfaces, and that this family of K3
surfaces have a finite, dominant period map onto the moduli space of Pic(X)∨-polarized K3 surfaces. This
should be viewed as a generalization of Golyshev’s original results to higher Picard rank. We still lack a
complete understanding of what exactly this map looks like, but a few examples are computed in Section 5.

Moreover, Proposition 4.12 and Theorem 1.4 combined imply that for any smooth Fano threefold with
very ample anticanonical bundle the corresponding moduli space of Pic(X)∨-polarized K3 surfaces is uniruled
(see Corollary 4.16). In particular, we obtain that the moduli space of E8(−1)2 ⊕ ⟨2n⟩-polarized K3 surfaces
is uniruled for n = 6, 7, 8, 10, 11, 13, 14, 16, 17, which generalizes a known result of Gritsenko–Hulek for n = 21

in [GH98]. See Subsubsection 6.7.2 for more details and further discussion of related topics.

1.4. Parametrized Landau–Ginzburg models. We expect that the families of Landau–Ginzburg models
obtained by deforming p, as in Proposition 1.7, form mirrors of Fano varieties equipped with general
complexified divisor classes.

Definition 1.9. Let X be a smooth Fano variety, and Pic(X) ≃ Zρ(X) be any choice of basis. We refer
to a Laurent polynomial p ∈ Z[a±1

1 , . . . , a±1
ρ(X)][x1, . . . , xdim(X)] as a parametrized Landau–Ginzburg model if

for any choice of the complexified divisor class K = (α1, . . . , αρ(X)) ∈ Pic(X) ⊗ C the induced parameter
specialization pK = p({ai = exp(−αi)}) is a toric Landau–Ginzburg model for the pair (X,K).
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Definition 1.10. Let X be a smooth Fano threefold, and f be its parametrized toric Landau–Ginzburg
model. We refer to f as standard if its specialization f0 is a standard toric Landau–Ginzburg model for
X = (X, 0).

As an illustration, we have explicitly constructed the isomorphism from Conjecture 1.1 for parametrized
Landau–Ginzburg models for smooth Fano threefolds of the form S × P1, where S is a smooth del Pezzo
surface with very ample anticanonical class. In this case we are able to verify the period condition.

Proposition 1.11 (see Appendix K). There exist standard parametrized toric Landau–Ginzburg models
f : Z(X,K) → P1 for the families of Fano varieties denoted №2.11, 3.27, 3.28, 4.11, 5.3, 6.1, 7.1, 8.1
in [Coa+16]. In these cases for any complexified divisor class K there is a natural isomorphism

Pic(X)∨ = im
(
H2(Z(X,K),Z)

res−−→ H2(F(X,K),Z)
)
.

Remark 1.12. While the results in Proposition 1.11 are stated abstractly, we note that the parametrized
Landau–Ginzburg models in question are in fact constructed in Appendix K.

1.5. Outline. The paper is structured as follows. In Section 2 we study the deformation theory of Landau–
Ginzburg models and related objects. We extend [KKP17, Corollary 2.18] and show that if (Z,D, f) is a
Landau–Ginzburg model of dimension at least 3 satisfying certain mild topological conditions, then the
natural maps TsDef(Z,D, f) → TsDef(Z,D) and TsDef(Z,D) → TsDef(Z) are surjective, and, therefore,
that (Z,D) and Z have unobstructed deformations, and that any small deformation Z ′ of Z admits a function
f ′ : Z ′ → P1 so that (Z ′, D′ = (f ′)−1(∞), f ′) is a deformation of (Z,D, f). As a consequence, if F is a smooth
fibre of f, then the deformations of (Z,F ) are unobstructed. In Subsection 2.4 we compute the image of the
map TsDef(Z,F ) → TsDef(F ), following Beauville [Bea04].

In Section 3 we focus on Landau–Ginzburg models which are obtained from Laurent polynomials. We define
a class of Laurent polynomials called weakly non-degenerate M-polynomials, which generalize the Minkowski
polynomials of [Akh+12]. We show that weakly non-degenerate M-polynomials give rise to well-behaved
Landau–Ginzburg models, and we show that if (Z,D, f) is such a Landau–Ginzburg model coming from a
Laurent polynomial p, then any deformation of (Z,D, f) comes from a deformation of p.

Section 4 specializes our results to the case where dim(Z) = 3. In Subsection 4.1 we recall basic notions
regarding lattice polarizations of K3 surfaces and Dolgachev–Nikulin duality. Then we show that if (Z,D, f)
is a Landau–Ginzburg threefold satisfying certain mild topological conditions, and its fibres are K3 surfaces,
then the fibres of Z and its deformations form a complete family of lattice-polarized K3 surfaces. In Section 5
we compute several examples which are related to well-known modular families of K3 surfaces.

In Section 6 we describe our proof of Dolgachev–Nikulin duality for anticanonical hypersurfaces of Fano
threefolds and fibres of their standard toric Landau–Ginzburg mirrors. We describe computational tools
used to compute the ambient Picard lattice of the fibres of standard Landau–Ginzburg mirrors of Fano
threefolds and lattice-theoretic tools used to compare abstract lattices. We then describe the computational
and technical tools used to compute Picard lattices for anticanonical divisors in Fano threefolds. The outcome
of these computations can be found in Appendix A.

Finally, in Appendices B, C, D, E, F, G, H, I, J we prove Theorem 1.4 for smooth Fano threefolds of rank
2, 3, 4, 5, 6, 7, 8, 9, and 10, respectively. All these sections are split by subsections whose numbers match the
numbers of families of smooth Fano threefolds given in [Coa+16]. In Appendix K we prove Proposition 1.11
and explicitly construct the corresponding parametrized Landau–Ginzburg models.

Notation and terminology. Unless otherwise stated, all varieties are taken to be over C. We follow the
labelling of families of Fano threefolds of Picard rank greater than 1 given by Mori–Mukai in [MM81]. The
only exception to this is Family №4.2 which was originally missed. Our numbering of Fano threefolds of
Picard rank 4 coincides with that of Coates–Corti–Galkin–Kasprzyk [Coa+16].
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2. Modularity of tame compactifiable Landau–Ginzburg models and their fibres

In this section we prove that the fibres of tame compactifiable Landau–Ginzburg models satisfying some
mild topological conditions (see conditions (a), (b), and (c) in Theorem 2.13) form complete families of
Calabi–Yau varieties. The arguments in this section owe much to Katzarkov–Kontsevich–Pantev [KKP17]
and Beauville [Bea04].

2.1. Deformations of tame compactifiable Landau–Ginzburg models. The main objects that we will
study in this paper are Landau–Ginzburg models. In a very broad sense, a Landau–Ginzburg model is simply
a quasi-projective variety equipped with a function. We will restrict ourselves to those Landau–Ginzburg
models that we expect to contain the class of Landau–Ginzburg models which are mirror to Fano varieties.

Definition 2.1. A proper, tame compactified Landau–Ginzburg model is a triple (Z,D, f) consisting of a
smooth projective variety Z, a simple normal crossings (snc) divisor D, and a morphism f : Z → P1 so that
f∗(∞) = D. We say that a tame compactified Landau–Ginzburg model satisfies the Calabi–Yau condition if
D is an anticanonical divisor of Z.

We use the notation Y to denote Z \D, and w denotes the restriction of f to Y .

In [KKP17], the third-named author, along with Kontsevich and Pantev, study the deformation theory and
the Hodge theory of Landau–Ginzburg models. A deformation of Landau–Ginzburg models is a quadruple
(Z ,D ,f , ϖ), where Z is a smooth manifold, D is a snc divisor in Z , f : Z → P1 is a morphism so that
f−1(∞) = D , and where ϖ : Z → B is a smooth projective morphism so that for each b ∈ B, the preimage
Zb = ϖ−1(b) along with Db = Zb ∩ Db and fb = f |Zb

form a tame compactified Landau–Ginzburg model.
Let TZ(− logD) denote the sheaf of tangent vectors to Z which vanish logarithmically along D. Then the

deformations of the pair (Z,D) are controlled by the sheaf TZ(− logD), and the deformations of the triple
(Z,D, f) are controlled by the complex

g• =
[
TZ(− logD)

df−→ f∗TP1(− log∞)
]
.

Observe that the global sections of TP1(− log∞) ∼= OP1(1) can be written as (λz + µ)∂z on the affine chart
with coordinate z. Therefore, global sections of f−1TP1(− log∞) are of the form (λf + µ)∂f , and sections of
f∗TP1(− log∞) are expressed similarly.
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Following Horikawa [Hor76], we may give a simple presentation of the Kodaira–Spencer map. We represent
the hypercohomology of g• by choosing a Stein covering of Z, which we denote U. We then obtain a Čech
resolution of g• which represents H1(Z, g•) as H1 of the complex

0 → C0(U, TZ(− logD)) → C0(U, f∗TP1(− log∞))⊕ C1(U, TZ(− logD))

→ C1(U, f∗TP1(− log∞))⊕ C2(U, TZ(− logD)) → · · ·

equipped with the induced differentials. Given a deformation of (Z,D, f), which we denote (Z ,D ,f), we
associate the cohomology class in H1(Z, TZ(− logD)) in the following way. Assume that Ũ = {Ũα} is a Stein
covering of Z which restricts to a Stein covering U = {Uα} of Z. Let gα,β be the transition functions for this
atlas which satisfy the 1-cocycle condition. These transition functions satisfy the obvious conditions:

• g∗α,βf |Ũα
= f |Ũβ

, and f |s=0 = f ;

• if hα is a local function defining D ∩ Ũα, then g∗α,βhα = uα,βhβ , where uα,β is a unit in Γ(Ũα,β ,OUα,β
).

For a coordinate function t on B we may define

τα = ∂tfα|s=0, ρα,β = ∂tgα,β |s=0.

It is elementary to check that ρα,β − ρα,γ + ρβ,γ on Uα,β,γ for each triple of indices α, β, γ, and that
τα − τβ = df(ρα,β). Calculations in local coordinates can be used to show that the zeroes of τα and ρα,β
are logarithmic. Therefore, (τα, ρα,β) form a Čech cycle in C0(U, f∗TP1(− log∞))⊕ C1(U, TZ(− logD)). The
assignment

κ : TS,s → H1(Z, g•)

is called the Kodaira–Spencer map of the deformation (Z ,D ,f).

Definition 2.2. Let (Z,D, f) be a tame compactified Landau–Ginzburg model. Deformations of (Z,D, f)
are unobstructed if there is a family ϖ : (Z ,D) → B over smooth base B so that the Kodaira–Spencer map
is surjective.

We have the following theorem which provides a starting point for our study.

Theorem 2.3 (Katzarkov–Kontsevich–Pantev, [KKP17]). Suppose (Z,D, f) is a Landau–Ginzburg model
satisfying the Calabi–Yau condition and for which H1(Z,Q) = 0. Then deformations of (Z,D, f) are
unobstructed.

Any Landau–Ginzburg model (Z,D, f) admits a deformation over the unit polydisc ∆ in A2 with coordinate
(λ, µ) which is obtained by deforming the potential function:

(1) (Z ,D ,f) = (Z ×∆, D ×∆, (1− λ)f + µ), ϖ : Z = Z ×∆ → ∆.

In (1) we interpret (1− λ)f + µ as scaling the potential function f by (1− λ) and translating by µ ∈ C ⊆ P1.

Proposition 2.4. Let (Z,D, f) be a proper tame compactified Landau–Ginzburg model.
(1) TsDef(Z,D, f) ∼= H1(Z, g•) sits in an exact sequence,

(2) · · · → C2 ψ−→ TsDef(Z,D, f) ∼= H1(Z, g•) → TsDef(Z,D) ∼= H1(Z, TZ(− logD)) → · · ·

(2) The image of the κ : T∆,0 → H1(Z, g•) for the family in (1) is identified with the image of ψ in (2).

Proof. To prove the first claim, note that there is a short exact sequence of complexes of sheaves

0 → f∗TP1(− log∞)[1] → g• → TZ(− logD) → 0.

Therefore, under the assumptions in the statement of the proposition, we have an exact sequence computing
the hypercohomology of g•,

· · · → H0(Z, f∗TP1(− log∞)) → H1(Z, g•) → H1(Z, TZ(− logD)) → H1(Z, f∗TP1(− log∞)) → · · ·

Then we apply the fact that TP1(− log∞) ∼= OP1(1) and hence f∗OP1(1) = OZ(D). Since D is the fibre of a
morphism to P1, we have h0(Z,OZ(D)) = 2. This proves the result.
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The second claim may be proved via straightforward and elementary analysis of the Kodaira–Spencer map
as presented above. In this case, the transition functions gα,β are trivial, therefore, ρα,β = 0 for all α, β. We
also calculate easily that given in any chart Ũα = Uα ×∆, we have ∂t((1− λt)f + (µt))|t=0 = (−λf + µ)∂f .
Therefore,

κ(Z ×∆, D ×∆, (1− λ)f + µ) = ({((1− λ)f + µ)|Uα
∂f}, 0) ∈ C0(U, f∗TP1(− log∞))⊕ C1(U, TZ(− logD)).

Since the vector fields (λf + µ)|Uα
∂f are all restrictions of a global vector field, they form a cocycle in

C0(U, f∗TP1(− log∞)). The induced map H0(Z, f∗TP1(− log∞)) → H1(Z, g•) sends global vector fields of
the form (λf + µ)∂f to the corresponding Čech cocycle. This concludes the proof. □

Lemma 2.5. If (Z,D) has unobstructed deformations and the map H1(Z, TZ(− logD)) → H1(Z, TZ) is
surjective, then X has unobstructed deformations. Similarly, if (Z,D, f) has unobstructed deformations
and the forgetful map H1(Z, g•) → H1(Z, TZ(− logD)) is surjective, then deformations of (Z,D) are also
unobstructed.

Proof. For both (Z,D) and Z there exist semi-universal deformation spaces and forgetful morphisms between
them. The tangent map of this forgetful morphism is the map H1(Z, TZ(− logD)) → H1(Z, TZ). If (Z ,D)

is a deformation of (X,D) over a smooth base with surjective Kodaira–Spencer map, the induced deformation
Z , therefore, also has surjective Kodaira–Spencer map. □

Example 2.6. Suppose C1 and C2 are distinct cubic curves in P2 meeting in 9 distinct points. Let Z be the
blow up of P2 at the intersection of C1 and C2. There is an induced map f : Z → P1 so that f−1(∞) = C2.
According to a result of Horikawa [Hor76], deformations of Z come from deformations of the nine points
blown up to obtain Z. A simple dimension count shows that the collection of 9-tuples of points in P2

which are the base locus of a pencil of cubic curves is of codimension 2. Therefore, in this case, the map
TsDef(Z,D, f) → TsDef(Z) is not surjective, and, in particular, the unobstructedness of deformations of
(Z,D, f) does not imply unobstructed deformations of Z (cf. [KKP17, Corollary 2.18]). In other words, there
are deformations of rational elliptic surfaces which are not rational elliptic. In the next section, we will show
that this phenomenon does not persist in higher dimensions.

2.2. Calabi–Yau Landau–Ginzburg models. In this section, we will wish to compute the map

TsDef(Z,D, f) → TsDef(Z,D)

by Hodge-theoretic means. To do this, we need the following construction from [KKP17]. Suppose that
(Z,D) satisfies the Calabi–Yau condition, and that ω is a nonvanishing section of the line bundle ΩdZ(logD).
Here d is the dimension of Z. Then there is a map iω : T iZ → Ωd−iZ (logD). Define a subsheaf

ΩiZ(logD, f) = {η ∈ ΩiZ(logD) | df ∧ η ∈ Ωi+1
Z (logD)}.

This is called the sheaf of f-adapted logarithmic forms on Z. We let T d−iZ (− logD, f) be the preimage
of ΩiZ(logD, f) under iω. The morphism ∧df makes ΩiZ(logD, f) a complex of sheaves. We may define
Gi = T 1−i

Z (− logD, f). Under the isomorphism Ω•
Z(logD, f) → G1−d+• the map ∧df is identified with the

contraction ιdf . It is shown in [KKP17] that there is a quasi-isomorphism of complexes induced by the natural
injection on sheaves

σ≥0G
• ↪→ g•

and isomorphisms [
TZ(− logD, f)

ιdf−−→ OZ

]
ιω−→
[
Ωd−1
Z (logD, f)

∧df−−→ ΩdZ(logD)
]
.

Here we have used the fact that ΩdZ(logD, f) = ΩdZ(logD) which follows directly from the definition.

Proposition 2.7. Suppose (Z,D, f) is a proper Landau–Ginzburg model satisfying the Calabi–Yau condi-
tion. If the map H1(Z,Ωd−1

Z (logD, f)) → H1(Z,Ωd−1
Z (logD)) is surjective, then so is TsDef(Z,D, f) →

TsDef(Z,D).
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Proof. There is a commutative diagram

σ≥0G
• TZ(− logD, f) Ωd−1

Z (logD, f)

g• TZ(− logD) Ωd−1
Z (logD)

q.is

∼=

∼=

where the horizontal maps are the induced morphisms of complexes coming from truncation. We know that
the map H1(Z, g•) → H1(Z, TZ(− logD)) is identified with TsDef(Z,D, f) → TsDef(Z,D). The result then
follows by a simple diagram chase after applying the cohomology functor. □

Remark 2.8. In [Sha18], Shamoto shows that there is a cohomological mixed Hodge complex underlying
the complex (Ω•

Z(logD), ddR). The injective map of complexes (Ω•
Z(logD, f), ddR) → (Ω•

Z(logD), ddR)

underlies a morphism of cohomological mixed Hodge complexes, therefore, the map H1(Z,Ωd−1
Z (logD, f)) →

H1(Z,Ωd−1
Z (logD)) is equal to the map induced map

GrF1 H
d(Z, (Ω•

Z(logD, f), ddR)) → GrF1 H
d(Z, (Ω•

Z(logD), ddR))

by strictness. This allows us to use tools from Hodge theory to determine the surjectivity of TsDef(Z,D, f) →
TsDef(Z,D). However, as we will see below, under topological assumptions which are frequently satisfied,
this is not necessary.

Proposition 2.9. Let (Z,D, f) be a proper tame compactifiable Landau–Ginzburg model satisfying the Calabi–
Yau condition with the property that H1(Z,Q) = 0. Suppose d ≥ 2, and assume that the fibres of f are
generically smooth Calabi–Yau varieties. Then deformations of (Z,D) are unobstructed.

Proof. According to [Sha18], there is a short exact sequence of sheaves

0 → Ωd−1
Z (logD, f) → Ωd−1

Z (logD) → Ωd−1
Z∞/∆(logD) → 0,

where Z∞ is a preimage under f of a small disc ∆ around ∞. According to [Ste76], H1(Z∞,Ω
d−1
Z∞/∆) is

isomorphic to H1(F,Ωd−1
F ), where F is a smooth fibre of f. By assumption, this is 0. Therefore, the

induced map H1(Z,Ωd−1
Z (logD, f)) → H1(Z,Ωd−1

Z (logD)) is surjective. By Proposition 2.7 we see that
TsDef(Z,D, f) → TsDef(Z,D) is surjective. Applying Theorem 2.3 and Lemma 2.5, the result follows. □

Remark 2.10. Observe that dimTsDef(Z,D, f) = dimH1(Z,Ωd−1
Z (logD, f))+ 1. Therefore, a direct analogue

of the local Torelli theorem for Landau–Ginzburg models does not hold.

2.3. Relation between deformations of (Z,D) and deformations of Z. Next, we will look at the map
H1(Z, TZ(− logD) → H1(Z, TZ). This map relates deformations of the pair (Z,D) to deformations of Z.

Proposition 2.11. Suppose (Z,D, f) is a tame compactifiable Landau–Ginzburg model satisfying the Calabi–
Yau condition. Assume that all components of D satisfy H0(Di, ωDi

) = H1(Di, ωDi
) = 0. Then the

map H1(Z, TZ(− logD)) → H1(Z, TZ) is an isomorphism. Consequently, by Lemma 2.5, if (Z,D) admit
unobstructed deformations, then so does Z.

Proof. There is a short exact sequence of sheaves

(3) 0 → TZ(− logD) → TZ → ND → 0,

where ND is the equisingular normal sheaf of D in Z. Kawamata [Kaw77, pp. 250] observes that in the
case where D is normal crossings with components D1, . . . , Dn, we have an isomorphism ND ∼=

⊕n
i=1 ki∗NDi

where ki : Di → D is the natural inclusion map. By adjunction and the fact that ωZ = OZ(−F ) is trivial
when restricted to Di, we can compute that

ωDi
∼= k∗i (ωZ ⊗OZ(Di)) ∼= k∗iOZ(Di) ∼= NDi

.

Under the conditions in the proposition, and applying the long exact sequence in cohomology coming from (3),
we see that the claim holds. □
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Remark 2.12. Observe that the conditions of Proposition 2.11 fail in dimension 2, since H1(Di, ωDi)
∼= C for

any smooth projective curve. This condition can also fail in higher dimension. For instance, if D is a type II
degeneration of K3 surfaces, then D is a union of surfaces D0, . . . , Dn so that D0 and Dn are rational, but
Di, i ̸= 0, n, are ruled over an elliptic curve. Note that H0(Di, ωDi

) ∼= C for i ̸= 0, 1, so the conditions above
fail if i ̸= 1. On the other hand, if all irreducible components of D are rational and dim(Z) ≥ 3, then the
conditions of Proposition 2.11 are satisfied. The case that we are most interested in this paper is when F is a
K3 surface, and D is a type III degenerate K3 surface (see, e.g., [Kul77]), then this condition is satisfied.

Combining Proposition 2.11 and Proposition 2.9, we obtain the following result.

Theorem 2.13 (cf. [KKP17, Corollary 2.18]). Suppose (Z,D, f) is a tame compactified Landau–Ginzburg
model of dimension d satisfying the following conditions:

(a) D ∼ −KZ ;
(b) H1(Z,Q) ∼= 0;
(c) H0(Di, ωDi), H

1(Di, ωDi)
∼= 0 for all irreducible components Di of D.

Then the tangent map TsDef(Z,D, f) → TsDef(Z) is surjective, and its kernel is spanned by deformations of
the potential function of (Z,D, f). Consequently, by Lemma 2.5, deformations of Z are unobstructed.

Remark 2.14. As a consequence of the unobstructedness of deformations of the tuples (Z,D, f), (Z,D), and
Z, we obtain smooth moduli stacks M(Z,D,f),M(Z,D), and MZ along with dominant forgetful morphisms

M(Z,D,f) → M(Z,D) → MZ .

The morphism M(Z,D,f) → M(Z,D) has relative dimension 2. In fact, this maps is a C∗ ×C fibre bundle with
fibres given by deformations of the potential function f . The morphism M(Z,D) → MZ is finite.

2.4. Deformations of the pair (Z,F ) and F . For a tame compactified Landau–Ginzburg model with
general fibre F , let jF : F ↪→ Z indicate the natural injection map. There is a canonical perfect pairing

(4) (−,−) : Hp(F,ΩqF )⊗C H
p−d−1(F,Ωq−d−1

F ) → Hd−2(F,Ωd−2
F ) ∼= C

coming from Serre duality. We define:

H1
p (F,Ω

d−2
F ) = im

(
j∗F : Hd−2(Z,Ω1

Z) → Hd−2(F,Ω1
F )
)⊥
.

Here the orthogonal complement is taken with respect to the pairing in (4).

Proposition 2.15. Let Z be a smooth projective variety, and let f : Z → P1 be a morphism whose fibres are
Calabi–Yau. Put D = f−1(∞) and assume (Z,D, f) satisfies conditions (a), (b) and (c) of Theorem 2.13.
Let F be a smooth fibre of f . Deformations of (Z,F ) are unobstructed. The image of κ : TsDef(Z,F ) →
TsDef(F ) ∼= H1(F,Ωd−2

F ) is H1
p (F,Ω

d−2
F ), and the kernel of κ has dimension H1(Z,Ωd−1

Z ).

Proof. Let (X,E) be any smooth pair, where E ∈ | − mKX | for a positive integer m. According to
Iacono [Iac15, Corollary 4.8], deformations of (X,E) are unobstructed. This proves the first claim. The
second claim is straightforward and follows the same argument as is used by Beauville in [Bea04, §3]. The
induced morphism is provided by the standard short exact sequence of sheaves

0 → TZ ⊗OZ(−F ) → TZ(− logF ) → iF∗TF → 0.

Since F is anticanonical, there is a contraction isomorphism

TZ ⊗OZ(−F ) ∼= TZ ⊗ ωZ → Ωd−1
Z .

Therefore, by our topological assumptions on F , we have an exact sequence

0 → H1(Z,Ωd−1
Z ) → H1(Z, TZ(− logF )) → H1(F, TF )

γ−→ H2(Z,Ωd−1
Z ) → · · · .

Following the arguments in [Bea04, Section 3] exactly, one identifies the kernel of γ with the orthogonal
complement of the image of the induced map Hd−2(Z,Ω1

Z) → Hd−2(F,Ω1
F ) under the natural perfect pairing
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H1(F, TF )⊗C H
d−2(F,Ω1

F ) → Hd−2(F,OF ). There is a commutative diagram of sheaves

TF ⊗ Ω1
F OF

Ωd−2
F ⊗ Ω1

F ωF

iω⊗id iω

(−)∧(−)

where iω indicates contraction with a holomorphic (d − 1)-form on F . Applying this identification to the
induced maps in cohomology completes the proof. □

Remark 2.16. Since deformations of the pair (Z,F ) are unobstructed, we obtain a smooth moduli stack
M(Z,F ). If we assume that H1(F,Q) = 0 as well, then the moduli stack of Calabi–Yau manifolds deformation
equivalent to MF is also smooth. The computation given above tells us that the forgetful map

M(Z,F ) → MF

has fibre of dimension H1(Z,Ωd−1
Z ), and image is of dimension H1

p (F,Ω
d−2
F ).

3. Weakly nondegenerate Laurent polynomials and their deformations

It has been proven in [Prz17], following [Coa+16], that all Fano threefolds with very ample anticanonical
bundle have mirrors which are constructed from a certain class of Laurent polynomials, called Minkowski
polynomials. In this section, we use this construction to produce what we believe are well-behaved versal
families of Landau–Ginzburg mirrors of Fano threefolds with very ample anticanonical bundle.

Remark 3.1 (Conventions regarding toric varieties). We use the following conventions. The toric variety
attached to a reflexive polytope P is the toric variety whose underlying fan is the spanning fan of the polytope
P . We denote this variety TV(P ). If X is a toric variety coming from a fan Σ in a lattice M of dimension
d, then each cone in Σ of dimension k corresponds to a torus of dimension d− k in X. If c is a cone in Σ

We denote the corresponding torus Tc. We use the phrase toric boundary of a toric variety X to denote the
union of all torus invariant divisors of X or, in the notation introduced above, X − T0 where 0 denotes the
cone in Σ consisting of just the origin in M . For general background on toric varieties, standard references
include Fulton’s classic text [Ful93] and the more recent book by Cox–Little–Schenck [CLS11].

3.1. M-polynomials. For a polytope δ, a lattice Minkowski decomposition M(δ) of δ is an expression

δ = n1δ1 + · · ·+ nkδk.

where δi are integral polytopes, and ni are positive integers, so that each integral point in δ is a sum of
integral points of δ1, . . . , δk. For a polytope δ, Minkowski decompositions are partially ordered by refinement,
which we denote by M(δ) ⪯ M(δ′). Observe that if δ′ is a face of δ then any Minkowski decomposition of δ
induces a Minkowski decomposition of δ′ which we denote M(δ)|δ′ .

Definition 3.2. Given a reflexive polytope P , a Minkowski datum for P is the data of a lattice Minkowski
decomposition M(δ) of each face δ of P so that for any faces δ′ ⊆ δ the induced Minkowski decomposition of
δ′ satisfies

M(δ)|δ′ ⪯ M(δ′).

Pairs (P,M) are also partially ordered by refinement, that is, if (P,M) and (P,M′) are Minkowski
decompositions of P , we say that (P,M) ⪯ (P,M′) if M(δ) ⪯ M′(δ) for all δ. We let Mtriv denote the trivial
Minkowski decomposition.

If p =
∑
ρ∈PZ

cρx
ρ is a Laurent polynomial with Newton polytope P then for each face δ of P there is an

associated face polynomial
pδ =

∑
ρ∈δ∩PZ

cρx
ρ.
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Definition 3.3. Let M be a Minkowski datum for a reflexive polytope P . A Laurent polynomial p with
Newton polytope P is an M-polynomial if for each face δ of ∆ we have M(δ) = n1δ1 + · · ·+ nkδk, and

pδ = (pn1

δ1
· · · pnk

δk
)xν

for some monomial xν . The set of all M-polynomials is denoted L(P,M). If (P,M) ⪯ (P,M′), then we have
L(P,M′) ⊆ L(P,M).

Example 3.4. When discussing Minkowski decompositions, we allow repetition of Minkowski summands
M(δ) which, in turn, allows for distinct Laurent polynomial factors pδ1 , . . . , pδi for which δ1 = · · · = δi. For
instance, if we let P and δ be as in Figures 1 and 2.

Figure 1. The polytope P .

Figure 2. The polytope δ.

There are distinct Minkowski data for P given by M1 = 3δ and M2 = δ + δ + δ. If we define

p1 =
(x+ y + 1)3

xy
, p2 =

(x+ y + 1)(x+ y + 2)(x+ y + 3)

xy
,

we see that p1 is M1-polynomial and M2-polynomial, but p2 an M2-polynomial but not an M1-polynomial.

Given an M-polynomial p with reflexive Newton polytope P , we let P ∗ denote the dual polytope. We may
let XP∗ denote a crepant resolution of the toric variety attached to P , if such a resolution exists. Such a
resolution always exists if dimP ≤ 3. In this case, the vanishing locus of p in XP∗ provides a possibly singular
hypersurface, which we can denote Fp, determined by the vanishing of a section σp of the anticanonical bundle
of XP∗ . Each cone c in the fan Σ underlying XP∗ corresponds to a toric stratum in XP∗ , which we denote
Tc. Let ρ1, . . . , ρk be ray generators of c. The intersection Tc ∩ Fp is the vanishing locus of the Laurent
polynomial pc∗ , where

δ∗c = {m ∈ P | ⟨m, ρi⟩ = (−1) for all i = 1, . . . , k}.

Definition 3.5. We say that an M-polynomial p is weakly non-degenerate if for each cone c, the intersection
Fp ∩ Tc is a divisor whose irreducible components are smooth, not necessarily reduced, and so that the
intersection of any collection of irreducible components of p ∩ Tc is smooth.

Remark 3.6. The notion of weak non-degeneracy here is a weakening of the classical notion of non-degeneracy
for a Laurent polynomial [DK87]. By the discussion preceding Definition 3.5, weak nondegeneracy is equivalent
to requiring that V (pδ) have smooth irreducible components whose intersections are all smooth.

Suppose we are given a weakly non-degenerate M-polynomial p supported on a reflexive Newton polytope
P . We obtain a pencil of anticanonical hypersurfaces

(5) Pp : sσp + t
∏
ρ∈P∗

Z

xρ.
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Let DP denote the snc union of all torus invariant divisors in XP∗ . The base locus of this pencil is the
intersection of σp with DP . Given a toric stratum Tc attached to a cone c of Σ, the vanishing locus of σp in
Tc can be computed using P ∗ as in the discussion preceding Definition 3.5.

Proposition 3.7 (Przyjalkowski [Prz17], cf. Duistermaat–van der Kallen [DK98, Theorem 4]). Let p be a
weakly non-degenerate polynomial in n variables with reflexive Newton polytope P . Assume that the toric Fano
variety attached to P ∗ admits a crepant resolution XP∗ . There exists a tame compactified Landau–Ginzburg
model (Zp, Dp, f), obtained by systematically resolving the base locus of Pp, with the following properties.

(1) The fibres of f are compactifications of the fibres of p.
(2) The Landau–Ginzburg model (Zp, Dp, f) satisfies conditions (a), (b), and (c) of Theorem 2.13.

Proof. This is proved for 3-dimensional Minkowski polynomials in [Prz17]. The general case follows the same
arguments, and the conclusion is ensured by the strong assumptions that we have made about the structure
of the base locus of the pencil in (5). The proof proceeds along the following lines.

Suppose the curve B ⊆ Di is smooth, irreducible, and contained in the base locus of Pp. Blowing up along
B reduces the multiplicity of Pp along B by 1. The pencil of hypersurfaces in (5) remains an anticanonical
pencil after blow up along a component of the base locus, however, if B intersects another irreducible
component Dj of DP , then another smooth irreducible component might be introduced into the base locus, a
P1-bundle over B ∩Dj , which is smooth by assumption. The multiplicity of this new component is less than
multp(B).

Now that this is taken care of, the algorithm is to blow up, one-by-one, the irreducible components of
the base locus of Pp in order of multiplicity. Each round of blow-ups reduces introduces finitely many new
components but reduces maximal multiplicity by at least 1. Therefore, this procedure eventually resolves the
base locus of Pp.

Finally, we check the topological conditions (a), (b), and (c) in Theorem 2.13 hold. Since each blow up is at
a smooth centre contained in the base-locus of a pencil of anticanonical hypersurfaces, the proper transform of
∂XP∗ remains anticanonical after each blow-up, verifying (a). The variety XP∗ satisfies H1(XP∗ ,Q) = 0 and
smooth blow up does not affect H1. This verifies (b). The irreducible components of ∂XP∗ are rational. Since
we do not blow up any stratum in ∂XP∗ , all irreducible components of Dp are birational to an irreducible
component of ∂XP∗ . Thus they too are rational and satisfy (c). □

Remark 3.8. The assumption that the toric crepant resolution XP∗ exists ensures that the smooth model of
(Zp, Dp, f) exists. On the other hand, one may always find a partial crepant orbifold resolution of TV(P ∗).
Carrying out the same procedure with this partial crepant orbifold resolution produces an orbifold Landau–
Ginzburg model. We speculate that the results of [KKP17] can be extended to the orbifold context along
with all of the results in this paper.

Corollary 3.9. The vanishing locus of a weakly non-degenerate polynomial supported on a Newton polytope
is a Calabi–Yau variety admits a crepant resolution of singularities.

Proof. Resolving the base locus in the pencil determined by p, we obtain a tame compactified Landau–
Ginzburg model (Zp, Dp, f) satisfying the Calabi–Yau condition by Proposition 3.7. The fibres of f are smooth
Calabi–Yau varieties birational to the fibres of p. □

Notation 3.10. Given the data of a reflexive polytope P of dimension 3 along with lattice Minkowski
decomposition of all faces of P , as in Definition 3.3, let L(P,M) be the collection of all M-polynomials
supported on P . Let Lwn-d

(P,M) denote the subset of all weakly non-degenerate M-polynomials.

Remark 3.11. We observe that moduli spaces of weakly nondegenerate Laurent polynomials form substrata of
the discriminant locus of moduli space of Laurent polynomials with Newton polytope P . This space has been
well studied and admits a compactification, called the secondary stack of P . This space has been studied in
relation to the moduli space of Landau–Ginzburg models by Diemer–Katzarkov–Kerr [DKK16; DKK13]. It
would be very interesting to understand the stratification of Lwn-d

P obtained by varying Minkowski data.
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The construction in Proposition 3.7 is consistent in families. Therefore, given the universal family
p : (C∗)d × Lwn-d

(P,M) → C, one obtains a family of tame compactified Landau–Ginzburg models satisfying the
Calabi–Yau condition:

(6) ϖ : (Zp,Dp,f) → Lwn-d
(P,M).

One might hope that this family is versal, however this expectation fails immediately in dimension 2. The
question of versality of the family in (6) is subtle, and it involves both the combinatorics and algebraic
geometry of M.

Example 3.12. Let us compute Minkowski decomposed polynomials associated to the polytope with vertices
labeled as polytope 68 in the list of Kreuzer–Skarke: 1 0 1 0 −1 0 1

0 1 1 −1 0 0 1

0 0 2 −1 −1 1 1

 .

The corresponding Laurent polynomials are generically of the form

p = a0x+ a1y + a2xyz
2 +

a3
yz

+
a4
xz

+ a5z + a6xyz + a7.

We let ai ∈ C∗. Observe that we could allow a7 = 0 without changing the Newton polytope of p however we
avoid this for simplicity. All faces of the polynomial P are simplices except for three, which are unit squares.
The corresponding face polynomials are

pδ1 = a1y + a2xyz
2 +

a4
xz

+ a5z, pδ2 = a0x+ a2xyz
2 +

a3
yz

+ a5z, pδ3 = a0x+ a1y +
a3
yz

+ a5z.

To a square, there is only one admissible Minkowski sum decomposition, into a pair of transverse line segments
of length 1. Minkowski decomposition of the first face occurs precisely when

a5a1 − a2a4 = 0, a0a5 − a2a3 = 0, a1a5 − a0a3 = 0.

We observe that this is a 5-dimensional torus in (C∗)8. There is a torus action by scaling each coordinate on
the space of all such Laurent polynomials which reduces the space of all Minkowski polynomials of this form
to a 1-dimensional torus. We observe that this is consistent with the fact that the corresponding family of
Fano varieties, №2.28, has Picard rank 2. After parametrization, this family of Laurent polynomials can be
written as

pa,b =
(xyz + a)(bxyz2 + xyz + x+ y)

xyz
− 1.

In Subsection 5.3 we will show that this family of Laurent polynomials is versal.

Example 3.13. We will return to the following example later on in the paper. Let us take the family of
Laurent polynomials

(7) p =
b0
z

+ b1z +

∑
0≤i+j≤3 ai,jx

iyj

xy

Each of the six facets of this Laurent polynomial is an A3 triangle (Definition 3.14 below), so the unique
Minkowski polynomial attached to this data is given by

p7.1 =
1

z
+ z +

(x+ y + 1)3

xy
.

The corresponding family of Landau–Ginzburg models is not versal.

3.2. Relations between M-polynomials and other types of polynomials. The definition of an M-
polynomial is inspired by the definition of Minkowski polynomials in [Coa+14]. We recall this definition.

Definition 3.14. Suppose p is a Laurent polynomial with reflexive Newton polytope of dimension 3. We say
that p is a Minkowski polynomial if it is an M-polynomial so that or each face δ we have M(δ) =

∑n
i=1 niδi,
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where δi is either an An-triangles with vertices (0, 0), (1, 0) and (0, n) or an interval of length 1. We require
that if δi is an An triangle, then, after possible change of variables,

pδi = (1 + y)n + x.

If δi is an interval of length 1, we require that, after a possible change of variables, pδi = (1 + x).

In other words, Minkowski polynomials are M-polynomials whose Minkowski summands are tightly restricted,
and so that the coefficients of p are specialized. Case-by-case analysis shows that all Minkowski polynomials
are weakly non-degenerate [Prz17]. All Fano threefolds with very ample anticanonical bundle have mirror
which comes from a Minkowski polynomial, however, there are Minkowski polynomials which are not mirror
to Fano manifolds, even in dimension 3. To deal with this, and to model Landau–Ginzburg mirrors of higher
dimensional Fano varieties, the authors of [Coa+21] introduce the notion of a maximally mutable Laurent
polynomial. This notation is inspired by the notion of mutation in cluster theory, going back at least to
work of Fomin–Zelevinsky [FZ02]. The connection to Landau–Ginzburg models was first made in work of
Galkin–Usnich [GU10].

Definition 3.15 (see [Akh+12]). Let p be a Laurent polynomial whose Newton polytope is contained in a
lattice M . Choose a primitive element n ∈ N = HomZ(M,Z). We may write

p =
∑
i∈Z

qix
i
n, qi = 0 for all but finitely many i

where pi ∈ C[ker(n) ∩ P ] and xn is the monomial corresponding to n. For any g ∈ C[ker(n) ∩ P ]. We define
the mutation of p along g in direction n to be the polynomial

µn,g(p) =
∑
i∈Z

qig
ixin

if µn,g(p) ∈ C[M ]. Given data (n, g), we say that p is mutable along (n, g) if µn,g(p) exists, or, equivalently,
if g−i divides qi for all i < 0.

For n as in Definition 3.15, put

δn =

{
x ∈ P

∣∣∣∣ n(x) = min
y∈P

{n(y)}
}
.

It is a direct observation that if p is mutable along (n, g) then pδn = gh(n,g) for some polynomial h(n,g). If P
is reflexive, and δn is a facet of P , then miny∈P {n(y)} = −1 so being mutable along (n, g) is equivalent to
Newt(g) being a Minkowski summand of δn, however, if δn is a face of P and miny∈P {n(y)} ̸= (−1), then
mutability is stronger than the existence of a Minkowski decomposition. For a Laurent polynomial p we let

Sp = {(n, g) | p is mutable along (n, g)}.

We say that p is rigid maximally mutable if the only normalized polynomial with Newton polytope P and
mutation set Sp is p itself2. A Laurent polynomial is normalized if all of the coefficients associated to
vertices of Newt(p) are equal to 1. It would be interesting to know whether all maximally mutable Laurent
polynomials are weakly regular.

3.3. Deformations of LG models and deformations of weakly non-degenerate Laurent polynomials.
Suppose p is a weakly non-degenerate Laurent polynomial with Newton polytope P . The goal of this section
is to show that there is Minkowski data (P,Mgen) and an induced map

Lwn-d
(P,M) → M(Zp,Dp)

which is dominant.

2This is not the definition of a rigid, maximally mutable polynomial given in [Coa+21], however, this definition is more compact
and it is conjectured in in op. cit. that the definition presented here is equivalent to the proper definition of a rigid maximally
mutable Laurent polynomial.
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Before addressing this question, we discuss a more general question of how blow-ups of pairs behave under
deformation. The following result essentially goes back to Horikawa [Hor76, Theorem 9.1].

Proposition 3.16. Let (X,D) be a pair consisting of a smooth variety X and a snc divisor D. Let C be a
smooth codimension 1 subvariety of an irreducible component D1 of D, and let b : X̃ → X be the blow up
along C and let D̃ be the proper transform of D under b. Suppose (X̃ , D̃) is a deformation of (X̃, D̃). Then
there is a deformation (X ,D) of (X,D) and a contraction morphism

π : (X̃ , D̃) → (X ,D)

with exceptional divisor E so the image of E is a deformation of C in D1.

Proof. Since we are blowing up components Ci,j one-by-one, it is sufficient to prove this for a single blow up.
The result then follows by iteration. Let (X,D) be a snc pair, and assume that C is a subvariety of D1.

According to Horikawa [Hor76, Theorem 9.1], any deformation X̃ → B of X̃ = BlC X admits a contraction
map b : X̃ → X , where the centre of b is a deformation of C. Therefore, any deformation of the pair (X̃, D̃),
where D̃ represents the proper transform of D, admits a contraction map. The only thing that we need to
show is that in deforming (X̃, D̃), the centre of b remains in D1. This is true if and only if the exceptional
divisor E of the blow up intersects D1. So it is sufficient to see that any deformation of the pair (X̃, D̃)

comes from a deformation of the pair (X̃, D̃ + E). This reduces to the following calculation in cohomology.
We have a short exact sequence of sheaves, (e.g, [Kaw77, Proposition 1])

(8) 0 → TBlC X(− log b−1D) → TBlC X(− log D̃) → NE → 0.

Since E is the exceptional divisor of a blow up, we have that NE ∼= OE(−1). By, e.g., [Har13, III Exercise 8.4],
we have that Rib∗OE(−1) ∼= 0 for all i. Therefore, by the Leray spectral sequence, we have Hj(E,NE) ∼= 0

for all j. Consequently, the map in (8) gives isomorphisms

Hj(BlC X,TBlC X(− log b−1D))
∼−→ Hj(BlC X,TBlC X(− log D̃))

for all j. Thus both the tangent space and obstruction spaces of the deformation space of (X̃, D̃) and
(X̃, b−1D) are identified. In other words, any deformation of the pair (X̃, D̃) comes from a deformation of
the pair (X̃, D̃ +E). In particular, in any small deformation of (X̃, D̃) the exceptional divisor E intersects
D1 in a deformation of C, and the intersections of C with Di deform smoothly as well. □

Let p be a weakly non-degenerate Laurent polynomial. A deformation of p over connected base S with
a marked point s0 is a Laurent polynomial with coefficients in Γ(S,OS) (or, equivalently, a rational map
p : XP × S 99K C) so that p|Xp×s0 = p and so that each s ∈ S, p|XP×s is a weakly non-degenerate Laurent
polynomial. Any small deformation of a weakly non-degenerate M-polynomial gives rise to a deformation of
Landau–Ginzburg models by applying Proposition 3.7 over OS .

Theorem 3.17. Let p be a weakly non-degenerate M-polynomial with Newton polytope P . Suppose a projective
crepant resolution XP∗ exists. Let (Zp, Dp) be the corresponding Landau–Ginzburg model. There is Minkowski
data (P,Mgen) so that (P,M) ⪯ (P,Mgen) along with an open subset U of Lwn-d

(P,Mgen)
so that the induced map

Lwn-d
(P,Mgen)

⊇ U → M(Zp,Dp).

is dominant.

Proof. By Proposition 3.16, a small deformation (Zp,Dp) of the pair (Zp, Dp) over a base B admits a contrac-
tion map π : (Zp,Dp) → (XP ,DP ), where (XP ,DP ) is a deformation of the toric variety XP and its boundary
divisor DP . Anticanonical toric pairs are rigid, since H1(XP , TX(− logDP )) ∼= H1(XP ,Ω

n−1
XP

(logDP )) ∼= 0.
It follows that XP

∼= XP ×DP . From Proposition 2.15(1), we know that for any small deformation of (Zp, Dp),
there is a small deformation of the data (Zp, Dp, f), unique up to scaling and translating f. Let (Zp,Dp,f)

denote such a deformation over a base B, and let π denote the contraction to (XP ,DP ) = (XP , DP )×B. By
construction, f induces a rational function p on (XP , DP )×B with polar locus DP ×B, or in other words,
a family of Laurent polynomials.
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The last thing that we must check is that the locus of indeterminacy of p is a deformation of the locus of
indeterminacy of p. However, this is ensured by Proposition 3.16, since the locus of indeterminacy is precisely
the union of the centres of π, and multiplicities are equal to the number of exceptional divisors contracting to
each component in the centre. □

Remark 3.18. We call (P,Mgen) the general Minkowski data of (P,M). General expectation of the Fanosearch
programme is that the Minkowski data of a Laurent polynomial should describe data involved in Q-Gorenstein
deformation from TV(P ) to a terminal Gorenstein Fano variety. The total space of this degeneration is
expected to be projective, and polarized by a power of the relative anticanonical sheaf. This forces the central
fibre to be Fano and toric. However, by changing polarization, one can sometimes partially desingularize
the central fibre, at the cost of changing polarization. If (Zp, Dp, f) is mirror to a Fano variety X, then the
parameters on M(Zp,Dp) should correspond to complexified Kähler parameters on X. general Minkowski
data should describe how much the central fibre of a Q-Gorenstein degeneration can be resolved by changing
polarization. For instance all Gorenstein toric degenerations of del Pezzo surfaces may be viewed as smooth
deformations. Correspondingly, for any reflexive P , and Minkowski data M, one can see (Appendix K) that
the general Minkowski data of M is trivial.

4. Specialization to the case of threefolds

4.1. Moduli spaces of lattice-polarized K3 surfaces and Dolgachev–Nikulin duality. Let us recall
some basic notions regarding lattice polarizations of K3 surfaces. We refer to the lattice LK3 = H⊕3⊕E8(−1)⊕2

as the K3 lattice.

Proposition 4.1 (see [Huy16, Proposition 1.3.5]). For any complex K3 surface S we have H2(S,Z) ≃ LK3.

Definition 4.2. Let L be an even lattice of signature (1, r). We say that a K3 surface S is L-polarized if
there is a primitive embedding ι : L ↪→ Pic(S) whose image contains an ample class. A family ϖ : S → B of
K3 surfaces is L-polarized if there is a trivial sub-local system L ⊆ R2ϖ∗ZS which induces an L-polarization
on each fibre of ϖ.

There is a well-defined coarse moduli space of L-polarized K3 surfaces (see, e.g., [Dol96, Theorem 3.1] for
details). We start with the period domain

PL = {z ∈ L⊥ ⊗Z C | (z, z) = 0, (z, z) > 0}.

Define the group
O+(L) = {γ ∈ O(ΛK3) | γ|L = idL}.

Let ∆(L⊥) denote the set of all δ ∈ L⊥ so that (δ, δ) = (−2), and define Hδ = {z ∈ PL | (z, δ) = 0} for any
δ ∈ ∆(L⊥). Then the coarse moduli space of L-polarized K3 surfaces is the arithmetic quotient

ML = O+(L⊥)\

PL −
⋃

δ∈∆(L⊥)

Hδ

 .

To any family of L-polarized K3 surfaces, ϖ : S → B, there is a period morphism Π: B → ML. We say that
S is a complete family of L-polarized K3 surfaces if Π is dominant.

Theorem 4.3 (see [Dol96]). Let L be a lattice such that there exists a unique (up to isometry) primitive
embedding into the K3 lattice LK3. Then ML is a coarse moduli space of L-polarized K3 surfaces.

Remark 4.4. There exist sufficient conditions on a lattice L to have a primitive embedding into the K3 lattice
(see [Dol82, Theorem 1.4.6]), and to ensure that this embedding is unique (see [Dol82, Theorem 1.4.8]). More
generally, the coarse moduli space of L-polarized K3 surfaces has finite number of irreducible components
corresponding to equivalence classes of embeddings of L into LK3.

There is a natural projective compactification of ML, called the Baily–Borel compactification. We will use
the notation ML to denote the Baily–Borel compactification. It is obtained by adding points called type III
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boundary components, and curves called type II boundary components to ML. The type III (resp., type
II) boundary components are in set-theoretic bijection between O+(L⊥) equivalence classes of rank 1 (resp.,
rank 2) totally isotropic sublattices of L⊥. See [Sca87; Dol96] for details.

Definition 4.5. Let L ⊂ LK3 be a primitive sublattice. Assume that the orthogonal complement admits the
decomposition L⊥ = H ⊕ L∨ for some lattice L∨. We refer to L∨ as the Dolgachev–Nikulin dual to L.

Remark 4.6. Let L and M be lattices primitively embedded into the K3 lattice. One can explicitly check
whether L and M are actually Dolgachev–Nikulin dual to each other using [Dol82, Lemma 1.4.5].

Dolgachev–Nikulin duality is a mirror symmetry correspondence between families of lattice-polarized
K3 surfaces: for a primitively embedded lattice L ⊂ LK3 one may construct complete families of L and
L∨-polarized K3 surfaces which are related by various forms of mirror symmetry.

Remark 4.7. Observe that the existence of L∨ corresponds to a specific choice of embedding H into L⊥ which,
in turn, correspond to a particular choice of type III boundary component. Dolgachev–Nikulin duality relates
L-polarized K3 surfaces whose complex structure is near this type III boundary point to the symplectic
structure of L∨-polarized K3 surfaces.

4.2. The canonical lattice of Landau–Ginzburg threefold. Suppose (Z,D, f) is a tame compactified
Landau–Ginzburg model. By adjunction, smooth fibres of f are Calabi–Yau, and, therefore, if dimZ = 3 they
are either K3 surfaces or abelian surfaces. Furthermore, there is a natural polarizing lattice on the fibres
of f. Suppose F is a smooth fibre of f, then there is a morphism jF : H2(Z,Z) → H2(F,Z) whose image is
primitive and contained in Pic(F ). Furthermore, the image of jF is monodromy invariant and thus generates
a trivial local subsystem of R2f◦∗ZU , where U is the smooth locus of f and f◦ = f|U . Let LZ denote the image
of jF .

Lemma 4.8. The family f◦ : U → V is an LZ-polarized family of K3 or abelian surfaces.

Proof. If α is ample on Z, then its restriction is in LZ and is ample on F . Now we prove that LZ is a
primitive sublattice. Any element β of Pic(F ) ∩ LZ ⊗Z Q in Pic(F )⊗Z Q is also monodromy-invariant. By
the global invariant cycles theorem it follows that β comes from a cohomology class in H2(Z,Z). Thus LZ is
primitive. □

In Proposition 3.7 we constructed Landau–Ginzburg models from sufficiently regular Laurent polynomials
in three variables supported on reflexive polytopes. In the process of this construction, we chose to blow up
the toric threefold XP∗ in a sequence of codimension 2 subvarieties. The order in which we perform these
blow ups determines the resulting variety (Zp, Dp), up to birational transformation. The following result
implies in particular that the lattice LZp does not depend on this choice.

Proposition 4.9. Suppose two K3 fibred varieties f1, f2 : X1, X2 → C and that there is a birational map
g : X1 → X2 making the diagram

X1 X2

C

f1

g

f2

commute. Then LX1 = LX2 .

Proof. By definition, this map induces a birational map between each individual fibre. Since K3 surfaces
are minimal, this means that each smooth fibre of f1 is isomorphic to the corresponding smooth fibre
of f2. Therefore, there is a nonempty open subset U of C over which g restricts to an isomorphism
g : f−1

1 (U) → f−1
2 (U). By the global invariant cycles theorem (see, e.g., [Voi03, §4.3.3]) we may identify

the image of H2(Xi,Z) → H2(F,Z) with the image of H2(f−1
i (U),Z) → H2(F,Z). Therefore, the result

holds. □
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An important operation in the study of Minkowski polynomials is called mutation, which is a type of
birational map making the following diagram commute

(C∗)3 (C∗)3

C

p1

h

p2

Since both ((C∗)3, p1) and ((C∗)3, p2) admit relative compactifications, we obtain the following result.

Corollary 4.10. If two M-polynomials p1, p2 are related by mutation, then LZp1
= LZp2

.

Remark 4.11. Throughout this paper we will freely change birational models for K3 surfaces in order to
compute Picard lattices. The fact that birational maps between smooth K3 surfaces are isomorphisms justifies
this tactic.

4.3. Characterizing the internal period maps of Landau–Ginzburg threefolds. In this section we
restrict to the case where dim(Z) = 3 and, furthermore, that Hi,0(Z) = 0 for all i ≠ 0. In addition to
conditions (a), (b), and (c) of Theorem 2.13, assume that (Z,D, f) satisfies:

(d) Smooth fibres of f are K3 surfaces, and the fibre over ∞ is a type III degenerate K3 surface.
Precisely, this means that the dual intersection complex of the fibre over ∞ is a normal crossings union of
rational surfaces whose dual intersection complex is a triangulation of the 2-sphere (see [Kul77] for more
details). For instance, if p is a sufficiently regular Laurent polynomial in three variables, (Zp, Dp, f) satisfies
this criterion.

Each 3-dimensional Landau–Ginzburg model (Z,D, f) admits an internal algebraic period map to the
moduli space of LZ-polarized K3 surfaces corresponding to the family f : Z → P1. We denote it by
ΠZ : P1 → MLZ

. Such period maps send type III degenerate K3 surfaces to type III boundary points of
MLZ

.

Proposition 4.12. Let (Z,D, f) be a tame compactified Landau–Ginzburg model of dimension 3 satisfying
conditions (a), (b), and (c) in Theorem 2.13, and condition (d) above. Then the moduli space MLZ

is
uniruled by a pencil of curves passing through a type III boundary point.

Proof. There is a finite forgetful map φ : MLZ
→ MK3, where MK3 is the 20-dimensional coarse moduli

space of (complex) K3 surfaces. There is a factorization

M(Z,F )

MLZ
MF = MK3.

The image of φ in MK3 has dimension

H1
p (F,Ω

1
F ) = 20− dim

(
im
(
H1(Z,Ω1

Z) → H1(F,Ω1
F )
))

= dimMLZ
.

Therefore, the map M(Z,F ) → MLZ
is dominant. Since the map M(Z,D, f) → M(Z) is dominant, any

small LZ-polarized deformation of F is a fibre of a small deformation of (Z ′, D′, f ′).
Choosing a versal deformation ϖ : (Z ,D ,f) → B we obtain a family of morphisms ϖ × f : Z → B × P1

whose general fibre is a smooth K3 surface. Thus there is a holomorphic map Π: B × P1 → MLZ
. Since each

fibre of ϖ : D → B is a deformation of B, each ϖ−1(b) is a type III degenerate K3 surface. Consequently,
Π(B ×∞) maps to a type III boundary point p∞ of MLZ

, and ϖ(b× P1) cut out a family of rational curves
passing through p∞ as b varies which locally cover MLZ

. Since MLZ
is projective this family of curves can

be extended globally. □

Remark 4.13. The existence of a type III boundary point in MLZ
implies that the lattice L⊥

Z admits a totally
isotropic sublattice of rank 1. In fact, Hodge-theoretic mirror symmetry suggests more, namely, that there is
an embedding of the lattice H into L⊥

Z .
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Remark 4.14. As the name suggest, Kulikov [Kul77] classified other types of degenerations of K3 surfaces, of
type I and II respectively. Type I semistable degenerations of K3 surfaces are simply smooth K3 surfaces,
and semistable type II degenerations correspond to chains of surfaces S0 ∪ · · · ∪Sn so that S0, Sn are rational,
and Si, i ̸= 0, n are ruled surfaces over an elliptic curve. Under the period mapping, type II degenerations of
K3 surfaces map to type II boundary points. The conclusions of Proposition 4.12 continue to hold if f−1(∞)

is a type II degenerate K3 surface with n = 1, however the uniruling is by curves passing through a type II
boundary component, not a type III boundary point. If f−1(∞) is type I (i.e. smooth) or type II with n > 1

then condition (c) of Theorem 2.13 fails.

This places strong restrictions on the lattice polarizations that can appear on anticanonical hypersurfaces
of Fano threefolds. In the case where rank(LZ) = 19, however, this is simply the observation that MLZ

∼= P1.
We note that in the case where rank(LZ) = 19, the condition that MLZ

∼= P1 is not enough to characterize
the lattices LZ , even under the condition that H is a sublattice of L⊥

Z . See [Dor+20, Theorem 2.12].

Definition 4.15. Suppose V is a Q-local system over a nonempty Zariski-open subset of P1. Let i : U → P1

denote the canonical embedding. We say that V is extremal if H1(P1, i∗V) = 0. Given a map ϕ : P1 → MLZ
,

there is a finite number of variations of Hodge structure over ϕ−1(MLZ
) for which the period map is ϕ. We

say that the map ϕ is extremal if one of these variations of Hodge structure has extremal underlying local
system.

It is shown in [Prz17] (see also [CP18]) that for all Fano threefolds, there is a Landau–Ginzburg mirror
(Z,D, f) so that H3(Z,Q) ∼= 0. The same is true for all deformations of Z. By the Leray spectral sequence,
one can argue that this implies that if U is the smooth locus of f, and f◦ denotes the restriction of f to f−1(U),
then local system R2f◦∗Qf−1(U)

is extremal (see, e.g., [Dor+16, Proof of Lemma 3.2]). Thus the period maps
of any deformation of (Z,D,w) are also extremal. This property is predicted by mirror symmetry (see [Har16;
Sha18]). Consequently, we have the following result when combined with Theorem 1.4.

Corollary 4.16. Suppose X is a Fano threefold with very ample anticanonical bundle. Then the moduli
space of Pic(X)∨-polarized K3 surfaces admits a type III boundary point p∞ and a ruling by extremal curves
passing through p∞.

Remark 4.17. Corollary 4.16 is predicted by mirror symmetry and Proposition 4.12. Suppose X is Fano and
it has a tame compactified mirror Landau–Ginzburg model (Z,D, f)3. One expects an identification between
H3(Y, F ) and ⊕3

i=0H
i,i(X), and cup product with c1(TX) on ⊕3

i=0H
i,i(X) should correspond to the action

of log(T∞), where T∞ is the monodromy operator

T∞ : H3(Y, F ) → H3(Y, F )

obtained by letting F vary in a small loop around infinity (see, e.g., [KKP17, §3.1]). Shamoto [Sha18] equips
H3(Y, F ) with a mixed Hodge structure whose weight filtration is induced by log(T∞) and whose Hodge
filtration has graded dimensions equal to those of the canonical Hodge filtration on H3(Y, F ).

Let H3
sh(Y, F ) denote this mixed Hodge structure. The Hodge filtration on H3(Y, F ) should agree, under

mirror symmetry, with the degree filtration on
⊕3

i=0H
i,i(X). Consequently, if c1(TX) is ample, then one

expects the weight and Hodge filtrations of H3
sh(Y, F ) to be opposed, and hence H3

sh(Y, F ) will be mixed
Tate. One can deduce from this ([Har21]) that both H3(Z,Q) = 0 and that H2

∞(F,Q) (the limit mixed
Hodge structure at ∞ of F ) is mixed Tate, thus D is a type III degenerate K3 surface. Combining this with
Proposition 4.12, we predict that Corollary 4.16 should hold.

We remark that this prediction requires two things: (a) the existence of a tame compactified mirror
(Z,D, f) and (b) that ∪c1(TX) behaves like the cup product with an ample divisor. The existence of a
tame compactified mirror (Z,D, f) seems to be a feature of many weak-Fano varieties (e.g., weak Fano
toric threefolds or, more generally, weak Fano toric complete intersections) and the second identifies X as a

3It is not true that all Fano varieties have tame compactifiable mirrors. For more details, see [Prz22], but essentially, the
existence of tame compactifiable mirrors seems related to having very ample anticanonical bundle.
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semi-Fano threefold in the terminology of Corti et al. [Cor+13; Cor+15], since this condition implies that the
anticanonical map is semi-small. The classification of semi-Fano threefolds is related to the classification of
G2-manifolds (op. cit.). If we take mirror symmetry for granted, the classification of semi-Fano threefolds
should therefore be related to the classification of lattices for which ML has the properties in Corollary 4.16.

4.4. A Noether–Lefschetz type result. If S is a surface in a P3 which is very general and of degree at
least 4, then it is a classical theorem, first proved by Lefschetz [Lef24] by topological means, later proved
by Griffiths–Harris [GH85] algebraically, that the Picard rank of S is 1. More general results of this nature
have been proved for hypersurfaces in toric varieties, for instance if XΣ is a simplicial toric variety, and S

is an ample hypersurface in XΣ of large enough degree, then Bruzzo–Grassi [BG12] show that the same
result holds. In this section, we formulate and prove a more general version of this for nef anticanonical
hypersurfaces in smooth toric threefolds, and we extend this to describing the image of the period map.

Proposition 4.18. Let p be a weakly non-degenerate Laurent polynomial supported on a reflexive polytope
P with Minkowski data M. Suppose that (P,M) = (P,Mgen). Let p′ ∈ Lwn-d

(P,M) be a very general Laurent
polynomial, and let F denote a minimal resolution of any compactification of p′. Then Pic(F ) is spanned by
divisors of the following type.

• Proper transforms of irreducible components of DP .
• Exceptional divisors of the resolution map b : F → F .

Here we use the phrase very general to mean the complement of a countable collection of codimension 1
subvarieties.

Proof. For notational simplicity we let p = p′. We may construct a smooth resolution of the vanishing locus
of p by constructing the Landau–Ginzburg model (Zp, Dp, f), following the recipe in Proposition 3.7. Then
S = f−1

p (0), and
Lwn-d
(P,M) → MLp

is, locally, a composition of dominant maps by Theorem 3.17 and Proposition 4.12. The period map is
algebraic, so this map is dominant. In the preceding sense, a general point in MLZp

corresponds to a K3
surface whose Picard lattice is LZp , the image of the natural map Pic(Zp) → Pic(F ). Given a Minkowski
decomposition (P,M), the blow up process in Proposition 3.7 is an iterated blow up along smooth centres.
Therefore, H2(Zp,Z) is spanned by the proper transforms of toric boundary divisors of XP∗ and exceptional
divisors.

We need to compute the restriction of Pic(Zp) to a fibre F of f. Let b : Zp → X∗
P denote the blow up

map, and we let b|F : F → F be the induced resolution map. If D is the proper transform of an irreducible
component of DP , then its intersection with F is empty, and thus [D]|F = 0. If E is an exceptional divisor
of the blow up map b : Zp → XP∗ , its image is either a point in V (p), in which case E ∩ F is contained
in the exceptional locus of the map b : F → F , or its image is a curve in DP ∩ F . Since we have assumed
that p is general, we know that all algebraic cycles in Pic(F ) are in the image of the restriction map
i∗ : Pic(Zp) → Pic(F ), so are, in particular, all exceptional divisors of b : F → F and all proper transforms of
irreducible components of DP ∩ F . This finishes the proof. □

Remark 4.19. Given an anticanonical hypersurface S in a smooth toric weak Fano threefold XP∗ , the map
Pic(XP∗) → Pic(S) is neither surjective nor injective in general. Depending on the geometry of P ∗ and its
dual, there are irreducible torus invariant divisors of XP∗ which do not intersect S, hence are in the kernel of
i∗, and similarly, there can be torus invariant divisors D of XP∗ so that D ∩S is a union of irreducible curves
for general S. For a general choice of S, the irreducible components of S ∩DP (recall that DP denotes the
toric boundary of XP as in Section 3) are a simple normal crossings union of curves. This normal crossings
union of curves only depends on P and P ∗. We reinterpret Proposition 4.18 in this case as the statement that
if p is a general Laurent polynomial whose Newton polytope is a 3-dimensional reflexive polytope, and S is
the vanishing locus of p in XP∗ , then Pic(S) is spanned by the irreducible components of S ∩DP . In [Whi15],
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this lattice was called Piccor(S) and the image of Pic(XP∗) → Pic(S) is called Pictor(S). These lattices were
computed by Rohsiepe in [Roh04]4.

5. Examples

In this section we give several explicit examples of the phenomena described in the previous sections.
The first example that we look at is the mirror to the family №2.1 This example does not have very ample
anticanonical bundle, therefore we do not automatically obtain a complete algebraic family of Landau–
Ginzburg mirrors directly from Theorem 3.17 and [Prz17]. We construct a parametrized family Laurent
polynomials in this section, obtained by taking a 1-parameter deformation of the standard Landau–Ginzburg
model for the family №2.1. Applying the techniques used in [CP18, Section 2.1] we obtain a 1-parameter
family of tame compactified Landau–Ginzburg models. In Subsection 5.1 we show that this family of
Landau–Ginzburg models is complete.

The second pair of examples that we look at are mirrors to Family №2.28 and Family №2.33. In these cases,
Proposition 4.12 and Corollary 4.16 can be applied directly. The interesting aspect of these examples is that
the anticanonical Picard lattices, denoted L2.28 and L2.33, are isomorphic (See Appendix A.1 below), therefore
the fibres of the mirror Landau–Ginzburg models are members of the same moduli space of lattice-polarized
K3 surfaces, and by Corollary 4.16 we obtain two extremal rulings passing through two, possibly different,
type III boundary points. We show that, in this case, the type III boundary points coincide, but the induced
rulings are very different.

5.1. Mori–Mukai 2.1. For the Landau–Ginzburg mirror of Family №2.1, there is a natural compactification
which does not satisfy Definition 2.1 (see [Prz22]). This Landau–Ginzburg model is constructed, according
to [ILP13], from the Laurent polynomial

p =
(x+ y + 1)6(z + 1)

xy2z
+ z.

The polytope dual to the Newton polytope of p is not integral, therefore, the construction of Zp described in
Proposition 3.7 cannot be carried out verbatim.

It is proved in Subsection B.1 that the fibres of p compactify to a family of K3 surfaces whose ambient
Picard lattice is

L2.1 = H ⊕ E8(−1)2.

There is Minkowski data attached to p, which we denote M. Up to isomorphism, any element of L(P,M) can
be described in the following form:

(9) pc =
(x+ y + 1)6(z + c)

xy2z
+ z.

One may apply the techniques in Appendix B to find a fibrewise compactification S of the fibres of pc for
which the lattice LS is isomorphic to L2.1. We expect that this family of Landau–Ginzburg models mirror
the Kähler moduli space of Fano varieties in Family №2.1. In this section, we verify that the conclusions of
Theorem 2.15 hold for this family of Landau–Ginzburg models.

K3 surfaces with lattice polarization by L2.1 have been studied by Clingher and the first-named au-
thor [CD07]. In that paper, the lattice L2.1 is simply called M . We we use the notation L2.1 to avoid
confusion. K3 surfaces admitting L2.1-polarization can be written as the vanishing locus of quartic polynomials
of the form

(10) y2zw − 4x3z + 3αxzw2 + βzw3 −
(
1

2

)
(δz2w2 + w4).

We may view the coordinates (α, β, δ) as weighted projective coordinates, with weights (2, 3, 6) respectively,
on the Baily–Borel compactification of ML2.1

. In this notation, the locus δ = 0 is a type II boundary curve,
and the point α3 = β2, δ = 0 is a type III boundary point.

4Unfortunately, the URL listing the lattices computed in [Roh04] is no longer valid.
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Proposition 5.1. For each polynomial pc, the induced period map Πc : P1 → ML2.1 is given by

Πc =
[
λ2/3 : 1728cµ2 − λ2 + 864λµ : 21236(cµ+ λ)µ3c

]
.

For general values of c, the map Πc sends [λ : 0] to the type III boundary point in ML2.1
and sends [−cs : s]

to a point in the type II boundary component. The union of the images of all maps Πc is Zariski-open in
ML2.1 .

Proof. Take a hypersurface Sc,λ presented as in (9). The map z : Sc,λ → C∗ has a general fibre which is a
(singular affine) curve of geometric genus 1. Let u = x+ y+ q. The hypersurface Sc,λ may be compactified to
a family of sextics curves in P2

u,y,q over P1
z,w of the form

X6(z + w)q + q3(u− y − q)z(cz − λw) = 0.

In the affine chart y = w = 1 we make the change of variables q = q̃u2. The proper transform of Sc,λ is then

(z + 1)u2q̃ + q̃3(u− 1− q̃u2)y2z(cz − λ) = 0.

This is now quadratic in u2. The resulting double cover of A2
q̃,z has ramification locus

q̃6z2(cz − λ)2 + 4((z + 1)q̃ − q̃4z(cz − λ))(q̃3z(cz − λ)).

After normalization, we see that Sc,λ is birational to a hypersurface in A2
q̃,z,Y expressed in terms of the

equations
Y 2 = (λ− cz)(−4z2X3c+ 4zX3t+ z2X2c− zX2t+ 4 + 4z)

after renaming X = q̃. Viewing this as a family of cubics in (X,Y ), we may put it into Weierstrass form.

Y 2 = X3 − z4

3
X − 2z5((864λc+ 864c2)z2 + (−λ2 + 864λ+ 1728c)z + 864)

27λ2
.

These K3 surfaces have two fibres of Kodaira type II∗ and four singular fibres of type I1. On the other hand,
quartic K3 surfaces of the form (10) also admit a fibration of the same type:

Y 2 = X3 − 192αz4X + 512z5(δz2 − 2βz + 1).

After appropriate coordinate scaling, one identifies parameters and obtains the desired result.
Finally, to check that the image is open in ML2.1

it is enough to see that the tangent map has full rank at
some point. This is straightforward, and we omit the details. □

5.2. Mori–Mukai 2.33. The unique Fano threefold making up Family №2.33 is simply P2 × P1. Therefore,
Givental’s algorithm tells us that the mirror Laurent polynomial is of the form

(11) a0x+ a1y + a2z +
a3x

z
+
a4
xy

+ a5, ai ∈ C∗.

Let P denote the newton polytope of the Laurent polynomials in (9), and let LP denote the space of all such
Laurent polynomials. Combining Proposition 4.18 and the computations in Appendix B, we know that the
Picard lattice of the vanishing locus of some p ∈ LP has the form

L2.33 = E8(−1)⊕2 ⊕
(
0 3

3 4

)
,

and, in fact, we know a priori that the period map LP → ML2.33
is dominant by Proposition 4.18. Letting

(C∗)3 act on the coordinates of members of LP , we see that all elements of LP are equivalent to polynomials
of the form

pa,b = x+ y + z +
x

z
+

a

xy
+ b,

where a = a30a1a4/(a
2
2a

2
3) and b = a0a5/(a2a3).
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There is a universal family of H ⊕ E8(−1) ⊕ E7(−1)-polarized K3 surfaces described by Clingher–
Doran [CD12] and by Kumar [Kum08]. We write Kumar’s model as

(12) y2 = x3 − t3
(
I4
12
t+ 1

)
x+ t5

(
I10
4
t2 +

(I2I4 − 3I6)

108
t+

I2
24

)
.

These K3 surfaces are related by the Shioda–Inose construction [Mor84] to principally polarized abelian
surfaces, and the moduli space of H ⊕ E8(−1) ⊕ E7(−1)-polarized K3 surfaces can be identified with the
moduli space of principally polarized abelian surfaces. The parameters I2, I4, I6, I10 in (12) are Igusa’s
modular invariants for genus 2 curves [Igu60], and thus can be written in terms of Siegel modular forms and
vice versa. According to Clingher–Doran [CD12], the Baily–Borel compactification of the moduli space of
H ⊕ E8(−1)⊕ E7(−1)-polarized K3 surfaces is given by the map

(α, β, γ, δ) =

((
1

36

)
I4,

(
−1

216

)
I2I4 +

(
1

72

)
I6,

(
1

4

)
I10,

(
1

96

)
I2I10

)
and α, β, γ, δ are variables on P(2, 3, 5, 6). The family of K3 surfaces in (10) can be obtained by setting
γ = 0. In terms of these variables, there is a type II boundary component at γ = δ = 0, a type III boundary
component at γ = δ = β2 − α3 = 0.

Proposition 5.2. Any K3 surface which admits lattice polarization by

L2.33 = E8(−1)2 ⊕
(

0 3

3 4

)
also admits lattice polarization by H ⊕ E8(−1)⊕ E7(−1). Therefore, there is a period map from LP to the
moduli space ML2.33

. This morphism is given by the map

α =
(
1
9

)
(144a1a2a3a4 + 24a0a1a4a5 + a45),

β =
(
− 1

27

)
(216a20a

2
1a

2
4 − 648a1a2a3a4a

2
5 + 36a0a1a4a

3
5 + a65),

γ = (1024) a3a2a
2
0a

3
4a

3
1,

δ =
(
1024
3

)
a3a2a

3
4a

3
1(12a

2
2a

2
3 − 12a0a2a3a5 + a20a

2
5).

Consequently, the period map Πa,b : P1 → MN is given by

α(µ, λ) =
(
1
9

)
(144aλ4 + 24abλ3µ+ b4µ4),

β(µ, λ) =
(
− 1

27

)
(216a2λ6 − 648ab2λ4µ2 + 36ab3λ3µ3 + b6µ6),

γ(µ, λ) = (1024) a3λ10,

δ(µ, λ) =
(
1024
3

)
a3λ10(12λ2 − 12bλµ+ b2µ2).

For each a, b, the map Πa,b sends [0 : λ] to the type III boundary point but that no other point maps to closure
of the type II boundary component of ML2.33

.

Proof. The first statement follows from the fact that the lattice E8(−1)⊕ E7(−1)⊕H embeds primitively
into the lattice L2.33, see, e.g., [Kum15]. To express this period map in terms of Clingher–Doran’s modular
invariants, we use a similar tactic to those described in the proof of Proposition 5.1. We omit details.

After a toric change of variables we find an elliptic fibration on (11) which also admits an II∗ and III∗

type singular fibres. Matching coefficients to (12) and applying the formulas above we obtain the result. □

5.3. Mori–Mukai 2.28. We observe from Appendix A.1 that the fibres of the Landau–Ginzburg mirrors
of Family №2.28 admit the same lattice polarization as the fibres of the mirror Landau–Ginzburg models
to Family №2.33. The standard mirror for Family №2.28 can be obtained by taking the family of Laurent
polynomials in Example 3.12

(13) pc,d =
(xyz + 1)(cxyz2 + dxyz + x+ y)

xyz
− 1,

and specializing c = d = 1. We have the following result.
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Proposition 5.3. The fibre of pc,d over λ is birational to the vanishing locus of

x+ y + z +
x

z
+
cλ2

xy
+ 1− dλ.

Therefore, by Proposition 5.2, period maps Πc,d are of the form

α(µ, λ) =
(
1
9

)
(d4λ4 − 4d3λ3µ− 24cdλ3µ+ 6d2λ2µ2 + 168cλ2µ2 − 4dλµ3 + µ4),

β(λ, µ) =
(
− 1

27

)
(d6λ6 − 6d5λ5µ− 36cd3λ5µ+ 15d4λ4µ2 − 540cd2λ4µ2 − 20d3λ3µ3 + 216c2λ4µ2,

+1188cdλ3µ3 + 15d2λ2µ4 − 612cλ2µ4 − 6dλµ5 + µ6),

γ(µ, λ) = (1024) c3µ4λ6

δ(µ, λ) =
(
1024
3

)
c3µ4λ6(d2λ2 + 10dλµ+ µ2).

Proof. The fibre over λ of pc,d is written as a Laurent polynomial as

λ
(xyz + 1)(cxyz2 + dxyz + x+ y)

xyz
− µ.

After scaling coordinates (x, y, z) 7→ (x/λ, y/λ, λ2z), this becomes

(xyz + 1)(cλ2xyz2 + dλxyz + x+ y)

xyz
− µ.

Using appropriate toric change of variables, we can express fibres of pc,d and pa,b as Jacobian elliptic surfaces
with a I∗4 type fibre at 0, and an I8 fibre at ∞. Using this representation we express the a0, . . . , a5 coefficients
of (11) in terms of c, d, λ, µ. Applying Proposition 5.2, we obtain the equations in the statement of the
current proposition. □

Corollary 5.4. The family of Laurent polynomials in (13) is versal. In other words, the family of varieties
Zpc,d obtained by applying Proposition 3.7 is a versal deformation of Zp1,1 .

Proof. If Zpc,d were not versal, the induced deformation of pairs (Zpc,d , F ), obtained by deforming fibres in
Zpc,d , would not induce a complete family of L2.28-polarized K3 surfaces. From Proposition 5.3 one checks
directly that this is not the case. □

Remark 5.5. Notice that for each value of c, d, the map Πc,d maps both [µ : 0] to the type III boundary
point in ML2.33

and maps [0 : λ] to a point in the type II boundary component of ML2.33
. It is interesting

to compare the two maps. Observe that, since the images of Πa,b do not intersect the type II boundary
component, the images of the two maps are distinct, but that they both describe families of pointed curves in
ML2.33 passing through the same type III boundary point.

6. Dolgachev–Nikulin duality for toric Landau–Ginzburg models of Fano threefolds

In this section we will explain the proof of Theorem 1.4, as stated in the introduction to this paper.
Let us recall that Dolgachev–Nikulin duality is a mirror symmetry correspondence between families of
lattice-polarized K3 surfaces (see Subsection 4.1 for details). After a brief summary of the theory of toric
Landau–Ginzburg models, we show how to compute the intersection pairing on

im(H2(Z,Z) → H2(F,Z)),

where (Z, f) is the standard toric Landau–Ginzburg model for a Fano threefold (see Definition 1.3), and F is
its general fibre. Then we explain how to compute the intersection pairing on

im(H2(X,Z) → H2(S,Z)),

where S is a smooth anticanonical divisor in a smooth Fano threefold X. We then explain how one uses these
results to verify Dolgachev–Nikulin mirror symmetry for families containing F and S.

6.1. Toric Landau–Ginzburg models. Let φ[p] be the constant term of a Laurent polynomial p. Define
the main period for p as the following formal series: Ip(t) =

∑
φ[pj ]tj . The following theorem (see [Prz13,

Proposition 2.3] for the proof) justifies this definition.



26 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Theorem 6.1. Let p be a Laurent polynomial in n variables. Let D be a Picard–Fuchs differential operator
for a pencil of hypersurfaces in a torus provided by p. Then we have D[Ip(t)] = 0.

Let us recall the definition of a toric Landau–Ginzburg model (see [Prz18, p. 2.1] for the details).

Definition 6.2. A toric Landau–Ginzburg model for a pair of a smooth Fano variety X of dimension n and
divisor D on it is a Laurent polynomial p ∈ C[x±1

1 , . . . , x±1
n ] which satisfies the following conditions.

Period condition: One has Ip = Ĩ
(X,D)
0 , where Ĩ(X,D)

0 is the so called restriction of the constant term of
regularized I-series to the anticanonical direction.

Calabi–Yau condition: There exists a relative compactification of a family p : (C∗)n → C whose total
space is a (non-compact) smooth Calabi–Yau variety Y . We refer to such a compactification as a
Calabi–Yau compactification.

Toric condition: There is a flat degeneration X ⇝ TX to a toric variety TX so that F (TX) = N(p), where
F (TX) is a fan polytope of TX , and N(p) is the Newton polytope for p.

It was proved in [Prz17] that standard toric Landau–Ginzburg models of smooth Fano threefolds satisfy
the stronger compactification condition: they have a log Calabi–Yau compactification.

Definition 6.3. A compactification of the family p : (C∗)n → C to a family f : Z → P1, where Z is smooth,
and −KZ ∼ f−1(∞), is called a log Calabi–Yau compactification.

Remark 6.4. The notion of log Calabi–Yau compactification differs from the notion of tame compactification
by not requiring snc condition for the fiber over infinity. However, in most of known cases of log Calabi–Yau
compactifications, in particular, for standard toric Landau–Ginzburg models, the fibers over infinity are snc.
These notions may become different if we allow singularities over infinity (see [Prz22]); however, even in these
cases statements from [KKP17] and other papers hold.

6.2. Pencil of quartic surfaces. For every smooth Fano threefold X with ρ(X) > 1 and very ample
anticanonical divisor −KX we can always choose a toric change of variables for the corresponding Minkowski
polynomial p in [Akh+12] such that there is a pencil S of quartic surfaces on P3 given by

(14) f4(X,Y, Z, T ) = λXY ZT, λ ∈ C ∪ {∞},

that expands the compactification diagram (see Definition 6.3)

(15) (C∗)3 �
�

//

p

��

Y

w

��

� � // Z

f
��

C C �
�

// P1

to the following commutative diagram:

(16) (C∗)3 �
�

//

p

��

Y

w

��

� � // Z

f
��

V
χ

oo

g

��

π // P3

ϕ
xx

C C �
�

// P1 P1

where ϕ is a rational map given by the pencil S, the map π is a birational morphism explicitly constructed
in [CP18], the threefold V is smooth, and χ is a composition of flops.

If the anticanonical divisor −KX of a smooth Fano threefold is not very ample, it is still possible to find
a Laurent polynomial with non-reflexive Newton polytope (and the corresponding pencil) that gives the
commutative diagram (15) and the analogue of the commutative diagram (16) (see [CP18, pp. 2.1, 2.2, 2.3,
9.1, 10.1]).

6.3. Idea of the proof. The proof of Theorem 1.4 is heavily based on the paper [CP18].
It was proved in [CP18, Lemma 1.5.3] that a general element Sλ of the pencil S is a du Val surface, and

the minimal resolution S̃λ → Sλ can be identified with a general fibre of the Landau–Ginzburg model. It is
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useful to treat with a generic fibre of the Landau–Ginzburg model as well. Let Sk be the du Val surface over
k = C(λ) (which is given by the equation of the form (14) if the anticanonical class −KX is very ample).
Otherwise, the defining equation is also given explicitly in [CP18]. Then we can identify a generic fibre of the
Landau–Ginzburg model with the minimal resolution S̃k → Sk.

Moreover, the pencil S allows us to compute the lattice of invariant cycles from Theorem 1.4.

Notation 6.5. Let Pk be the ambient variety of the generic member Sk of the pencil S. We denote by AS the
subgroup of Cl(Sk) generated by the linear equivalence classes [Ci] of the irreducible curves composing the
base locus of the pencil and the restriction i∗ Pic(Pk), where we denote the inclusion by i : Sk ↪→ Pk.

Remark 6.6. We have Pk = P3
k in all cases except MM2.1 and MM10.1, where we have Pk = P1

k × P2
k.

Notation 6.7. Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk
of the pencil, respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear
equivalence classes of exceptional divisors of the resolution and of strict transforms of curves from AS .

Remark 6.8. By construction the subgroup Lλ is equipped with the Gal(k)-action, and the subgroup LS can
be identified with the subgroup LGal(k)

λ ⊂ Lλ. Note that the sublattice LGal(k)
λ ⊂ Lλ is primitive.

The following statement is implicitly contained in the proof of [CP18, Main Theorem].

Proposition 6.9 (see [CP18, pp. 1.4, 1.9]). Let X be a smooth Fano threefold, and let F be a general fibre
of its log Calabi–Yau compactified standard toric Landau–Ginzburg model f : Z → P1. Then we have

im(H2(Z,Z) res−−→ H2(F,Z)) = LS .

Moreover, it is a lattice of rank

rank(LS) = rank(Pic(S̃k))− rank(Pic(Sk)) + rank(AS) = 20− rank(Pic(X)).

Remark 6.10. Note that the sublattice LS ⊂ Pic(F ) is primitive by [Voi03, Theorem 4.24].

The proof of Theorem 1.4 can be summarized as follows:

(1) Explicitly compute the sublattices Lλ ⊂ Pic(S̃λ) and LS = L
Gal(k)
λ ⊂ Pic(S̃k).

(2) Prove that L⊥
S ≃ H ⊕ Pic(X) ⊂ LK3 (using Remarks 4.4 and 4.6).

Remark 6.11. Note that Picard lattices Pic(X) of smooth Fano threefolds are explicitly presented in
Appendix A. Moreover, Remark 4.6 provides an explicit method to prove that L⊥

S ≃ H ⊕ Pic(X) in terms of
discriminant forms on these integral lattices (see [Ebe13, p. 3.3] for a review of the theory).

We also use the following notation.

Notation 6.12. We denote by C(f,g) a curve in P3 or P1 × P2 defined by (bi-)homogeneous polynomials f, g.
We also use the same notation for a surface S(f) in P3 or P1 × P2.

6.4. Base locus of the pencil S. Let Ci be the irreducible curves composing the base locus of S. We can
find these curves from the intersection of a surface Sλ for a general λ ∈ C with the irreducible components
of the member S∞ over infinity. For example, if the pencil is given by the equation (14), then we have to
consider the intersections S(f) ∩ Sλ for f ∈ {X,Y, Z, T}. We want to find a minimal set of generators of AS
over Z. We can think of AS as an abelian group that is given by the elements Ci, a general hyperplane section
HS , and the relations of linear equivalence. It is usually enough to consider only linear equivalence of the
hyperplane sections of Sλ. Then by means of integral linear algebra we can pick a minimal subset from the
set of generators of AS . Note that in general the obtained subset would not be an integral basis.

We also use the approach in [CP18, Appendix A] to compute the rank of the abelian group AS .



28 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

6.5. Computation of the lattice Lλ. It is well-known that the minimal resolution of a du Val surface
can be obtained as a series of blow-ups at singular points. Denote by Eji the j-th exceptional curve of the
resolution at the singular point Pi. Recall that the exceptional divisor of a blow up at a point can be identified
with the projectivization of the tangent cone at this point. We can use this to compute the intersection
numbers of the form C̃l · Ekj , where C̃l is the strict transform of l-th curve generating AS .

Namely, we can pass to a local chart U containing the given singular point P ∈ Sλ and compute the initial
term of Sλ|U at this point. After a homogenezation, we obtain the quadratic term of the singularity — a
homogeneous quadratic polynomial that defines the projectivization of the tangent cone Ep = P(TpSλ).

The following cases may occur:

(1) Ep is irreducible, then Ep ≃ P1, and the point has the type A1;
(2) Ep consists of two irreducible components, and the point has the type An for n > 1. If a curve C is

tangent to the only one (respectively, to the both) of the irreducible components of Ep, then its strict
transform C̃ intersects one of the “outer” (respectively, one of the “inner”) exceptional curves at the
point P ∈ Sλ with respect to the corresponding Dynkin diagram.

(3) Ep is a rational curve E ≃ P1 counted with multiplicity two. This case occurs when the point has the
type Dn for n > 4 or E6, E7, E8.

We can compute an integral basis of the lattice Lλ as follows:

(1) If we manage to obtain a basis of AS as a subset in the set {[Cl]}, then an integral basis of Lλ consists
of the exceptional curves Ekj of the resolution and strict transforms C̃i of curves from AS .

(2) In general, we have to compute the intersection matrix on the exceptional curves Ekj of the resolution
and strict transforms C̃l of curves generating the group AS . The intersection matrix would be
degenerate, and the lattice Lλ is isomorphic to the free abelian group Z[Ekj , C̃l] modulo the identities
from the kernel of the obtained matrix.

Actual computation of the lattice of invariant cycles LS and checking out the Dolgachev–Nikulin duality
LS ≃ Pic(X)∨ can be very tedious and time-consuming. To this end, we have written an implementation of
this algorithm in Sage, which can be found at https://github.com/MikhailOvcharenko/DN-duality.

6.6. Computation of Pic(X). If S is an anticanonical hypersurface in a smooth Fano threefold X, then by
the Lefschetz hyperplane theorem we have the inclusion i∗ : Pic(X) ↪→ Pic(S). Conversely, Beauville proves
in [Bea04] that for a general deformation of X and a general anticanonical hypersurface S, the map i∗ is
an isomorphism. Thus the Picard rank of a general such S is equal to b2(X), and H2(X,Z) can be given a
symmetric bilinear form ⟨·, ·⟩X defined to be

⟨α, β⟩X := ⟨−KX , α, β⟩

for α, β ∈ H2(X,Z). Let Pic(X) denote H2(X,Z) equipped with this pairing. There is a natural primitive
embedding

Pic(X) ↪→ Pic(S)

for each anticanonical hypersurface of X. Beginning from explicit descriptions of Fano threefolds given
by [MM81], the lattices Pic(X) can be computed without much difficulty. In this section we present tools for
performing these computations. In Appendix A, we present our computations. According to [MM81], Fano
threefolds are presented in one of the following forms.

(1) Complete intersections inside of products of projective spaces.
(2) Double covers of well-understood Fano threefolds ramified along a smooth divisor.
(3) Blow-ups of Fano threefolds of lower rank.
(4) Projective bundles over P1 or del Pezzo surfaces.

We explain our techniques for computing Picard lattices in each of these cases individually.

https://github.com/MikhailOvcharenko/DN-duality


MODULARITY OF LANDAU–GINZBURG MODELS 29

6.6.1. Complete intersections in products of projective spaces. If X is a complete intersection in a product
of projective spaces, calculation of intersection theory on X is elementary, and adjunction may be used to
compute the Picard lattice of X.

6.6.2. Double covers of other Fano threefolds. Computation of the Picard lattice of a double cover ϕ : X → Z

ramified along a smooth divisor is again elementary. It is well-known that

KX = ϕ∗KZ +R

where R is the ramification divisor of ϕ. We apply this formula along with the fact that for three divisors
D1, D2, and D3 on Z, we have

ϕ∗D1 · ϕ∗D2 · ϕ∗D3 = (deg ϕ)(D1 ·D2 ·D3).

Example 6.13. Let X be a double cover of P1 × P2 ramified along a divisor of bidegree (2, 2). Thus −KX is
given by ϕ∗OP1×P2(1, 2). Then Pic(X) is generated by the classes ϕ∗[p× P2] and ϕ∗[P1 ×H], where H is a
hyperplane section in P2. Then we computes that

−KX · ϕ∗[p× P2] · ϕ∗[P1 ×H] = (deg ϕ)([p× P2] + 2[P1 ×H]) · [p× P2] · [P1 ×H]) = 4.

Similarly, −KX · [p× P2]2 = 0 and −KX · [P1 ×H]2 = 2.

6.6.3. Blow-ups of Fano threefolds of lower Picard rank. One may compute explicitly how the lattice ⟨·, ·⟩X
changes under blow-up. We have the following computation.

Proposition 6.14. Let X be a Fano threefold and let π : X̃ → X be the blow up of X along a smooth curve
Y . Let Ỹ be the exceptional divisor of π. Then Pic(X̃) is generated by Ỹ and the pullback of divisors in X.
Furthermore, the following assertions hold.

(1) For D1, D2 divisors on X, ⟨π∗D1, π
∗D2⟩X̃ = ⟨D1, D2⟩X .

(2) For D a divisor on X, ⟨D, Ỹ ⟩X̃ = D · Y .
(3) ⟨Ỹ , Ỹ ⟩X̃ = χ(Y ).

Proof. The condition that X and X̃ are both Fano threefolds ensures that | −KX | and | −KX̃ | both contain
smooth members. The rest of the proof is simply an application of [Isk77, Lemma 2.11]. The claim that
Pic(X) is generated by Ỹ and the pullback of Pic(X) is part of the aforementioned lemma. Let π∗Y be the
tautological class on the exceptional divisor Ỹ of X̃. We notice that −KX̃ = −π∗KX − Ỹ . For any divisors
D1, D2 on X we have

−KX̃ · π∗D1 · π∗D2 = −π∗KX · π∗D1 · π∗D2 − Ỹ · π∗D1 · π∗D2

= −KX ·D1 ·D2 = ⟨D1, D2⟩X .

Let D be a divisor on X. We find that if F denotes the class of a fibre of the contraction map Ỹ → Y,

−KX̃ · π∗D · Ỹ = −π∗KX · π∗D · Ỹ − π∗D · (Ỹ )2

= π∗D · (degNY/XF − π∗Y )

= D · Y.

Finally, we have

(−π∗KX − Ỹ ) · Ỹ 2 = −π∗KX · Ỹ 2 − Ỹ 3

= −π∗KX · (π∗Y − degNY/XF ) +KX · Y + χ(Y )

= −π∗KX · π∗Y +KX · Y + χ(Y ) = χ(Y ).

This completes the calculation. □

This proposition allows us to compute the Picard lattices of Fano threefolds which are obtained by smooth
blow ups along smooth curves on Fano threefolds of lower Picard rank. One may compute similarly the
Picard lattice of a Fano threefold X blown up at a point.
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Remark 6.15. Suppose X is a Fano threefold of Picard rank 1 whose Fano index is divisible by 2 and
(−KX)

3 = 16n. Suppose that S1, S2 ∈ | − ( 12 )KX | are smooth sections meeting transversally in an elliptic
curve E. It is a direct application of Proposition 6.14 to see that BlE X has Picard lattice isomorphic to
H(n), the lattice with Gram matrix (

0 n

n 0

)
.

This can be observed directly by looking at Appendix A. This phenomenon occurs for Families №2.1, 2.3, 2.5, 2.10,
and 2.14.

6.6.4. Projective bundles. Finally, if X is a projective bundle over a variety Y associated to a vector bundle
E , then we may use the following result.

Theorem 6.16 (see, e.g., [GH14a, pp. 606]). Let Y be any smooth complex projective variety, and E a complex
vector bundle of rank r. Then the ring H∗(P(E),Z) is generated as an H∗(Y,Z)-module by ζ = c1(OP(E)(1)),
with the single relation

ζr + π∗c1(E)ζr−1 + · · ·+ π∗cr(E) = 0.

Here OP(E)(1) is the tautological line bundle on the projective bundle X.

Using the same notation as in Theorem 6.16 and letting p : P(E) → Y be the natural fibration morphism,
we have the following formula given by Reid in [Rei87, pp. 349],

KP(E) = p∗(KY + det E)⊗OP(E)(−r)(17)

= −rζ + p∗KY − p∗(det E)(18)

to compute the Picard lattice of a projective bundle. Here, r is the rank of E and ζ is the relative hyperplane
class. These two facts allow us to effectively compute the Picard lattice of a Fano projective bundle.

Example 6.17. Let Y = P2, and let E be the vector bundle OP2 ⊕OP2(2) with projection map p : P(E) → P2

and let X be the projective bundle P(E). Thus X is a unique member of Family 2.36 in the list of Mori–Mukai.
We let [H] be the class of a hyperplane on P2 and remark that p∗[H]·p∗[H] is the class of a fibre f of p, and that
the intersection of the class of f and ζ is the class of a single point. We compute that c1(E) = [2H] = det E .
Thus Theorem 6.16 gives

ζ2 = −p∗[2H] · ζ.
Thus

ζ3 = (p∗[2H])2 · ζ = 4,

and Equation (17) gives
[KX ] = −2ζ + p∗[H].

Furthermore, H2(X,Z) is generated by p∗[H] and ζ. Thus we find

⟨−[KX ], ζ, ζ⟩ = 2ζ3 + p∗[H] · p∗[2H] · ζ = 8 + 2 = 10,

⟨−[KX ], p∗[H], ζ⟩ = 2p∗[2H] · p∗[H] · ζ + (p∗[H])2 · ζ = 5,

⟨−[KX ], p∗[H], p∗[H]⟩ = 2p∗[H] · p∗[H] · ζ = 2.

Thus the Picard lattice of X has Gram matrix given by(
2 5

5 10

)
.

Remark 6.18. The authors of [Coa+16] have produced toric complete intersection models for many Fano
threefolds. In these situations, it is possible to compute the Picard lattice of X using toric geometry directly.

6.6.5. P1 × Sd. It remains to calculate the Picard lattices of anticanonical sections of Yd = P1 × Sd, where Sd
is a del Pezzo surfaces of degree d. We see that the Picard group of S9−d is spanned by the class H of the
pullback of hyperplane section in P2 and the exception classes Ei of blown up points. Therefore, we have
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that the Picard group of S9−d × P1 is spanned by the classes of divisors

Ri = P1 × Ei, G = P1 ×H,S = p× S9−d,

where p is a point in P1. The anti-canonical divisor on S9−d is given by 3H −
∑d
i=1Ei, and the anticanonical

divisor on P1 × S9−d is given by the tensor product of the pullback of anticanonical classes on S9−d and P1.
Therefore,

−KYd
=

[
3G−

d∑
i=1

Ri

]
+ 2 [S] .

We calculate the Picard lattice of general anticanonical hypersurfaces of Yd by taking the intersection form
on Pic(Yd) written as

⟨D1, D2⟩Yd
= D1 ·D2 · (−KYd

),

as given by [Bea04]. We may actually complete this calculation easily. We see that Pic(X) has rank d+ 2,
and

⟨Ri, Rj⟩Yd
= −2δij , ⟨Ri, G⟩Yd

= 0, ⟨Ri, S⟩Yd
= −1, ⟨G,S⟩Yd

= 3, ⟨G,G⟩Yd
= 2 and ⟨S, S⟩Yd

= 0.

Since Ri, S, and G are generators of the Picard lattice of Yd, we have proved the following.

Proposition 6.19. Let Yd = P1 × Sd, then the Picard lattice of a general hypersurface in Yd is of rank d+ 2,
and may be represented by the matrix

Nd =



−2 0 0 · · · 0 −1

0 −2 0 · · · 0 −1

0 0 −2 · · · 0 −1
...

...
...

. . .
...

...
0 0 0 · · · 2 3

−1 −1 −1 · · · 3 0


.

It is well-known that for Sd with d ̸= 9, 8, 7 and Sd ̸= P1 ×P1, there are canonically associated root lattices
Rd = E8,E7,E6,D5,A4,A2 × A1 for d = 1, . . . , 6. These lattices are obtained as the orthogonal complements
of KSd

in NS(Sd). We find the following relation to the Picard lattice of the anticanonical K3 surface in
P1 × Sd.

Proposition 6.20. Let Sd be a del Pezzo surface of degree d, and let d = 1, . . . , 6. The lattice NP1×Sd
is

isomorphic to H ⊕Rd(2), where Rd is the root lattice described above and Rd(2) indicates the lattice on the
same group as Rd but with intersection form multipllied by 2.

Proof. Let D1 and D2 be divisors on Sd which are orthogonal to Sd. Then we have

−(P1 ×D1) · (P1 ×D2) ·KP1×Sd
= −D1 ·D2 · (P1 ×KSd

− 2p× Sd) = 2D1 ·D2

for p a point in P1. Hence we have an embedding of Rd(2) into NP1×Sd
. This lattice is spanned by classes

3Ri −G for i = 1, . . . , d. It remains to prove that the orthogonal complement of Rd(2) is isomorphic to H.
We see that the orthogonal complement contains P1 ×KSd

. We see that

⟨3G− S, 3Ri −G⟩ = 0.

The lattice spanned by 3G − S and P1 × KSd
is isomorphic to H. Thus we have that H ⊕ Rd(2) is an

overlattice of NP1×Sd
. It can be checked explicitly that the two lattices have the same discriminant and thus

are isomorphic. □

6.7. Discussion. Here we will make a number of comments regarding the lattices that we compute in
Appendices A–K.

6.7.1. Isomorphisms between lattices appearing in Appendix A. We have already observed that the Picard
lattices of Family №2.28 and Family №2.33 are the same. One can identify many other pairs of Picard lattices
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by comparing their discriminant lattices using Sage. We have the following isomorphism classes where we use
the notation MMa.b to denote Family №a.b.

- Picard rank 2:
{MM2.6,MM2.32}, {MM2.4,MM2.28,MM2.33}, {MM2.15,MM2.30},
{MM2.8,MM2.35}, {MM2.9,MM2.19,MM2.27}, {MM2.11,MM2.31},

{MM2.7,MM2.23,MM2.29}.

(These isomorphisms have already been observed by Mase [Mas14].)
- Picard rank 3:

{MM3.1,MM3.27}, {MM3.2,MM3.28}, {MM3.3,MM3.5,MM3.11,MM3.17},
{MM3.8,MM3.15}, {MM3.9,MM3.29}, {MM3.14,MM3.22,MM3.26},

{MM3.21,MM3.24}
- Picard rank 4:

{MM4.2,MM4.7} {MM4.3,MM4.9} {MM4.6,MM4.8}
In certain cases, these isomorphisms can be seen easily, however, some are more cryptic.

6.7.2. Relationship to Siegel modular threefolds and Hilbert modular surfaces. In Golyshev’s work [Gol04;
Gol07], an important role is played by modular curves X0(n)

+ which are classically known to be moduli
spaces of elliptic curves with level n structure. It was noticed by Dolgachev [Dol96] that these curves are
moduli spaces of E8(−1)2⊕H⊕⟨2n⟩-polarized K3 surfaces, which are the Shioda–Inose partners (see [Mor84])
of abelian surfaces of type Eτ1 × Eτ2 , where Eτ1 and Eτ2 are n-isogenous elliptic curves. More generally, a
K3 surface with Picard lattice M of rank 18 admits a Shioda–Inose structure if and only if its transcendental
lattice is of the form H ⊕ L for a lattice L of rank 2 and signature (1, 1). In this case, the moduli space of
M -polarized K3 surfaces is closely related to a Hilbert modular surface [Har11]. In particular, the moduli
space of Pic(X)∨-polarized K3 surfaces is precisely a classical Humbert surface if and only if Pic(X)∨ is
isomorphic to a lattice of the following form (see, e.g., [EK14]):

(19)
(
−2 0

0 D/2

)
,

(
−2 1

1 −(D + 1)/2

)
for a positive integer D congruent to 0 or 1 mod 4, respectively.

A K3 surface of Picard lattice M of rank 17 admits Shioda–Inose structure if and only if its transcendental
lattice is of the form H2 ⊕ ⟨−2n⟩ for a positive integer n. In this case the moduli space of M -polarized K3
surfaces is related to the moduli space of (1, n)-polarized abelian surfaces [GH98]. No K3 surface of Picard
rank less than 17 admits Shioda–Inose structure. With this in mind we have the following result.

- The fibres of all Landau–Ginzburg mirrors of Fano threefolds of Picard rank 2 are parametrized by a
quotient of a Hilbert modular surface. In the cases listed in Figure 3, the moduli space of Pic(X)∨-polarized
K3 surfaces is identified with a classical Humbert surface.
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Fano threefolds Discriminant

MM2.1 1

MM2.2,MM2.10 4

MM2.36 5

MM2.8,MM2.35 8

MM2.4,MM2.28,MM2.33 9

MM2.16,MM2.30 12

MM2.12,MM2.31 13

MM2.7,MM2.24,MM2.29 16
MM2.17 20
MM2.23 24
MM2.22 28
MM2.21 29

Figure 3. Fano threefolds whose Picard lattices are of the form described in (19)

- In the cases listed in Figure 4 there is an isomorphism between Pic(X) and H ⊕ ⟨−2n⟩. Therefore, there
is an isomorphism between Pic(X)∨ and E8(−1)2 ⊕ ⟨2n⟩.

Fano threefolds Picard lattice

MM3.31 H ⊕ ⟨−12⟩
MM3.30 H ⊕ ⟨−14⟩

MM3.2,MM3.28 H ⊕ ⟨−16⟩
MM3.25 H ⊕ ⟨−20⟩

MM3.21,MM3.24 H ⊕ ⟨−22⟩
MM3.18 H ⊕ ⟨−26⟩

MM3.3,MM3.5,MM3.11,MM3.17 H ⊕ ⟨−28⟩
MM3.6 H ⊕ ⟨−32⟩

MM3.8,MM3.15 H ⊕ ⟨−34⟩

Figure 4. Fano threefolds whose Picard lattices are of the form H ⊕ ⟨−2n⟩ for a positive
integer n.

The moduli spaces of E8(−1)2⊕⟨2n⟩-polarized K3 surfaces is studied by Gritsenko–Hulek in [GH98], and it
is referred to as A∗

n in those works. The moduli space A∗
n is a quotient of the moduli space of (1, n)-polarized

abelian surfaces, which is denoted An. It is known [Gri94] that for n ≥ 13 and n ̸= 14, 15, 16, 18, 20, 24, 30, 36

the moduli space An is not unirational. We have the following consequence of Corollary 4.16 and Theorem 1.4.

Proposition 6.21. For n = 6, 7, 8, 10, 11, 13, 14, 16, 17, the moduli space A∗
n is uniruled.

Observe that Gritsenko’s result shows that when n = 13, 17 the moduli space An is not unirational.
In [GH14b], Gritsenko and Hulek use techniques coming from the study of modular forms on orthogonal
modular varieties to prove that A∗

21 is uniruled. We remark that Gross and Popescu prove rationality and
unirationality results for many moduli spaces An and their covers in [GP01; GP11]. Gross and Popescu’s
results are related to the existence of abelian surface fibred Calabi–Yau threefolds, which is similar in flavour
to our results.

Remark 6.22. Our results also show that the Humbert surfaces Hd with d = 1, 4, 5, 8, 9, 12, 13, 16, 20, 24, 28,
and 19 are uniruled, however, this result is well-known (see, e.g., [EK14]).
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6.7.3. Relative Fourier–Mukai partners, or absence thereof. It is well-known that Calabi–Yau varieties may
admit more than one mirror Calabi–Yau variety. This phenomenon is closely related to the existence of
Fourier–Mukai partners, and in the case of K3 surfaces, this culminates in Orlov’s derived Torelli theorem for
K3 surfaces [Orl97]. More precisely, two K3 surfaces S1 and S2 are derived equivalent if and only if their
transcendental lattices are Hodge isometric.

We may ask whether Fano threefolds also admit multiple mirrors. More precisely, we can ask whether
to any of the Landau–Ginzburg models appearing in this paper there are distinct, non-isomorphic families
of K3 surfaces whose transcendental variation of Hodge structure is isomorphic, or equivalently, which are
fibre-wise Fourier–Mukai partners to the fibres of (Y,w). The answer to this question is no; according to,
e.g., [Huy16, Corollary 3.8], any K3 surface with Picard rank at least 12 or which admits an elliptic fibration
with section has no non-trivial Fourier–Mukai partners. In all cases except Family №9.1 and Family №10.1
the Picard rank of the fibres of the Landau–Ginzburg mirror has Picard rank at least 12. In the case of
Family №9.1 and Family №10.1, each fibre admits an elliptic fibration with section. Therefore, we conclude
that any family of K3 surfaces whose transcendental variation of Hodge structure is isomorphic to that of
(Y,w) is indeed fibre-wise isomorphic to (Y,w).

6.8. Further directions.
(1) The results in this paper place strong constraints on the K3 surface fibres of Landau–Ginzburg mirrors of

Fano threefolds, or more precisely, if Pic(X) is the Picard lattice of the general anticanonical hypersurface
in X, then Corollary 4.16 says that there is a ruling on MPic(X)∨ of a very particular type. We explain
in Remark 4.17 that the same thing should hold for mirrors of semi-Fano varieties as well. It would be
interesting to classify moduli spaces of K3 surfaces satisfying the criteria of Corollary 4.16 and to relate
this classification to the classification of semi-Fano varieties. Similarly, our results provide tight constraints
on the moduli spaces of Calabi–Yau varieties which can be mirror to anticanonical hypersurfaces in
semi-Fano varieties in higher dimensions.

(2) Given a family of Landau–Ginzburg models, for convenience, denoted by (Zt, Dt, ft), there is an associated
isomonodromic deformation attached to the local system j∗tR

nft∗ZZt
. Here jt : Ut → P1 indicates inclusion

of the collection of smooth values of ft into P1. It would be interesting to investigate the relationship
between this isomonodromy problem and the deformation theory of the triple (Z,D, f). To deformations
of (Z,D, f) and to the isomonodromy of jt∗Rnft∗ZZt

one may associate Frobenius manifolds. It would be
interesting to understand the relationship between these two Frobenius manifolds.

(3) Roughly stated, Theorem 3.17 says that if (Z,D, f) is a Landau–Ginzburg model arising from a weakly
nondegenerate (see Definition 3.5) Laurent polynomial, then the same is true for any small deformation
of (Z,D, f). Under deformation, the combinatorics of the face polynomials of the corresponding Laurent
polynomial can change. It would be interesting to give a precise description of how the combinatorics of
this polynomial can change, and what this change means under mirror symmetry. See Remark 3.18 for
some speculation in this direction.

(4) In Section 4, we show that the moduli spaces of K3 surfaces which appear as the fibres of Landau–
Ginzburg mirrors of Fano threefolds are of a very special type. The analogous result for Fano threefolds of
Picard rank 1 (see [Gol04; Gol07]) were instrumental in classifications of K3 fibred Calabi–Yau threefolds
of high Picard rank in [Dor+20]. According to the philosophy of [DHT17], one would expect that
Calabi–Yau threefolds fibred by L-polarized K3 surfaces, where L is one of the Picard lattices appearing
in Appendices B-J should be related to the classification of Fano threefolds obtained by smoothing Tyurin
degenerate Calabi–Yau threefolds coming from pairs of Fano threefolds. It would be interesting to carry
out this program for Fano threefolds of higher Picard rank, and understanding the moduli spaces of these
K3 surfaces will be vital in this project.
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Appendix A. Picard lattices of anticanonical hypersurfaces in Fano threefolds

This section lists the Picard lattices of all Fano threefolds except P1 × Sd, whose Picard lattices are
described in Proposition 6.20.

A.1. Rank 2 Fano threefolds. (See also [Mas14]).

MM # Pic(X)

2.1
(
0 1

1 2

)
2.2

(
0 2

2 2

)
2.3

(
0 2

2 4

)
2.4

(
0 3

3 4

)
2.5

(
0 3

3 6

)
2.6

(
2 4

4 2

)
2.7

(
8 8

8 6

)
2.8

(
−2 0

0 4

)
2.9

(
8 7

7 4

)
2.10

(
0 4

4 8

)
2.11

(
−2 1

1 6

)
2.12

(
4 6

6 4

)

MM # Pic(X)

2.13
(
2 6

6 6

)
2.14

(
0 5

5 10

)
2.15

(
6 6

6 4

)
2.16

(
−2 2

2 8

)
2.17

(
0 5

5 6

)
2.18

(
0 4

4 2

)
2.19

(
−2 1

1 8

)
2.20

(
−2 3

3 10

)
2.21

(
−2 4

4 6

)
2.22

(
−2 2

2 10

)
2.23

(
0 4

4 6

)
2.24

(
2 5

5 2

)

MM # Pic(X)

2.25
(
0 4

4 4

)
2.26

(
−2 1

1 10

)
2.27

(
−2 3

3 4

)
2.28

(
0 3

3 4

)
2.29

(
−2 2

2 6

)
2.30

(
−2 2

2 4

)
2.31

(
−2 1

1 6

)
2.32

(
2 4

4 2

)
2.33

(
0 3

3 4

)
2.34

(
0 3

3 2

)
2.35

(
−2 0

0 4

)
2.36

(
2 5

5 10

)
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A.2. Rank 3 Fano threefolds.

MM # Pic(X)

3.1

0 2 2

2 0 2

2 2 0


3.2

0 2 1

2 0 2

1 2 −2


3.3

0 2 3

2 0 3

3 3 2


3.4

−2 2 0

2 0 4

0 4 2


3.5

−2 2 5

2 0 3

5 3 2


3.6

−2 0 1

0 0 4

1 4 4


3.7

0 3 3

3 2 4

3 4 2


3.8

2 0 5

0 −2 2

5 2 2


3.9

4 8 4

8 10 5

4 5 2


3.10

−2 0 2

0 −2 2

2 2 6


3.11

0 1 4

1 −2 0

4 0 4



MM # Pic(X)

3.12

−2 0 1

0 −2 3

1 3 4


3.13

−2 2 2

2 2 4

2 4 2


3.14

−2 0 0

0 0 3

0 3 4


3.15

−2 0 1

0 −2 2

1 2 6


3.16

−2 1 3

1 −2 0

3 0 4


3.17

0 2 3

2 0 3

3 3 2


3.18

−2 0 1

0 −2 2

1 2 4


3.19

−2 0 0

0 −2 0

0 0 6


3.20

−2 0 1

0 −2 1

1 1 6


3.21

−2 2 1

2 0 3

1 3 2



MM # Pic(X)

3.22

−2 0 2

0 0 2

2 3 2


3.23

−2 1 2

1 −2 0

2 0 4


3.24

−2 0 1

0 2 4

1 4 2


3.25

−2 0 1

0 −2 1

1 1 4


3.26

−2 0 0

0 −2 1

0 1 4


3.27

0 2 2

2 0 2

2 2 0


3.28

−2 1 0

1 0 3

0 3 4


3.29

−2 −1 0

−1 −2 0

0 0 4


3.30

−2 1 1

1 −2 0

1 0 4


3.31

0 2 3

2 0 3

3 3 6
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A.3. Rank 4 and 5 Fano threefolds.

MM # Pic(X)

4.1


0 2 2 2

2 0 2 2

2 2 0 2

2 2 2 0



4.2


−2 1 1 3

1 0 2 2

1 −2 0 2

3 2 2 0



4.3


0 2 2 4

2 0 2 3

2 2 0 3

4 3 3 6



4.4


−2 1 1 2

1 0 2 2

1 2 0 2

2 2 2 0



4.5


−2 1 1 2

1 −2 0 0

1 0 −2 0

2 0 0 6



4.6


−2 0 1 2

0 −2 0 1

1 0 2 3

2 1 3 0



4.7


−2 0 0 1

0 −2 0 1

0 0 −2 1

1 1 1 4



MM # Pic(X)

4.8


−2 0 1 0

0 −2 0 1

1 0 2 4

0 1 4 2



4.9


−2 0 1 1

0 0 2 2

1 2 0 2

1 2 2 0



4.10


−2 0 −1 0

0 −2 0 1

−1 0 −2 1

0 1 1 4



4.11


−2 0 −1 0

0 −2 −1 0

−1 −1 0 3

0 0 3 2



4.12


−2 −1 0 0

−1 −2 −1 0

0 −1 0 3

0 0 3 2



4.13


−2 0 −1 0

0 −2 −1 0

−1 −1 −2 1

0 0 1 4



MM # Pic(X)

5.1


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 −1 0

−1 −1 −1 −2 2

0 0 0 2 6



5.2


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 0 1

−1 −1 0 −2 1

0 0 1 1 4
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Appendix B. Dolgachev–Nikulin duality for Fano threefolds: rank 2

B.1. Family №2.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(x+ y + 1)6(z + 1)x−1y−2 + z−1

(see [CP18, Family №2.1]). It is not a Minkowski polynomial. Let us apply the following birational transform:

(C∗)3 99K C∗ × C∗ × C∗, (x, y, z) 7→ (B−1 −B−2C−1 − 1, B−2C−1,−Y −1 − 1).

The pencil S is defined by the equation

X(X + Y )C3 = Y (Y + λ(X + Y ))(A3 −BC(A−B)).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(Y ) + S(X+Y ) + S(A3−BC(A−B)), S−1 = S(X) + S(Y (A3−BC(A−B))+C3(X+Y )).

The base locus of the pencil S consists of the following curves:

C1 = C(Y,C), C2 = C(A,C), C3 = C(X,A3−BC(A−B)), C4 = C(X+Y,A3−BC(A−B)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations: [Sk · S(Y )]− [H
(1)
S ]

[Sk · S(X+Y )]− [H
(1)
S ]

[Sk · S(X)]− [H
(1)
S ]

 =

3 0 0 0 −1

0 0 0 1 −1

0 0 1 0 −1

 ·


[C1]

· · ·
[C4]

[H
(1)
S ]

 = 0.

We can reduce the number of linear equivalence classes using these relations: [C3]

[C4]

[H
(1)
S ]

 =

3[C1]

3[C1]

3[C1]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(Y,A,C): type A8 with the quadratic term λY · C;
P2 = P(A,C,Y+λ(X+Y )): type A8 with the quadratic term λ(λ+ 1)Y · C.

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence

classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃
(j)
S

of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E6

1 E7
1 E8

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E7
2 E8

2 C̃1 C̃2 H̃
(2)
S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E6
1 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E7
1 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E8
1 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
2 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E5
2 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E6
2 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E7
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E8
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1

C̃2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 −2 0

H̃
(2)
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E8

2 ]
)
=
(
−5 −10 −15 −14 −13 −12 −11 −10 −8 −7 −6 −5 −4 −3 −2 −6 −9 3

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E5
1 ] [E6

1 ] [E7
1 ] [E8

1 ] [E1
2 ]

[E2
2 ] [E3

2 ] [E4
2 ] [E5

2 ] [E6
2 ] [E7

2 ] [C̃1] [C̃2] [H̃
(2)
S ]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 1

1 2

)
.

Discriminant groups of the lattices M and N are both trivial. The lattices M and N have the signature
(1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.2. Family №2.2. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(x+ y + z + 1)2x−1 + (x+ y + z + 1)4y−1z−1

(see [CP18, Family №2.2]). It is not a Minkowski polynomial. Let us apply the following birational transform:

(C∗)3 99K (C∗)3, (x, y, z) 7→ (xy, yz,−y(x+ z) + z − 1).

The pencil S is defined by the equation

(XY + T 2 + Z(Y − T ))(Z2 − λXY ) = XZ3.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Y (X+Z)−T (Z−T )), S0 = 2S(Z) + S(Y (X+Z)−T (Z−T )−XZ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(Y,Z), C3 = C(X,Z(Y−T )+T 2), C4 = C(Y,Z(X+T )−T 2), C5 = C(Z,XY+T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

 =

2 0 1 0 0 −1

0 2 0 1 0 −1

1 1 0 0 1 −1

 ·


[C1]

· · ·
[C5]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:[C3]

[C4]

[C5]

 =

−2 0 1

0 −2 1

−1 −1 1

 ·

 [C1]

[C2]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term λXY − Z2;
P2 = P(X,Z,T ): type A9 with the quadratic term λX · (X + Z);
P3 = P(Y,Z,T ): type E6 with the quadratic term λY 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 HS

C1
1
10

1
2 1

C2
1
2 − 1

6 1

HS 1 1 4

.

Note that the intersection matrix has the rank 2.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E4
2 E5

2 E6
2 E7

2 E8
2 E9

2 E1
3 E2

3 E3
3 E4

3 E5
3 E6

3 C̃1 C̃2 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E3
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E6
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E7
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E8
2 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E9
2 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 0 1 0 −2 1 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 0 0 1 1 −2 1 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E6
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1

C̃2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E9

2 ]
)
=
(
−4 −4 −8 −7 −6 −5 −4 −3 −2 −4 −3 −5 −6 −4 −2 −5 −3 2

)
·(

[E1
1 ] [E1

2 ] [E2
2 ] [E3

2 ] [E4
2 ] [E5

2 ] [E6
2 ] [E7

2 ] [E8
2 ]

[E1
3 ] [E2

3 ] [E3
3 ] [E4

3 ] [E5
3 ] [E6

3 ] [C̃1] [C̃2] [H̃S ]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 2

2 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2

1
2 0 0 0 0 0 0 0 0 1

2
1
2 0 0 0 1

2
1
2

1
2

0 1
2 0 0 0 0 0 0 0 0 1

2
1
2 0 0 0 1

2
1
2 0

)
,

(
0 0 1

2 0

0 0 0 1
2

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

1
2

)
, BN =

(
0 1

2
1
2

1
2

)
; QM =

(
0,

3

2

)
, QN =

(
0,

1

2

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.3. Family №2.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(x+ y + 1)4(z + 1)x−1y−1z−1 + z + 1

(see [CP18, Family №2.3]). It is not a Minkowski polynomial. Let us apply the following birational transform:

(C∗)3 99K (C∗)3, (x, y, z) 7→ (−xz, xz + x− 1,−yz−1 − 1).
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The pencil S is defined by the equation

X3Y + (Y + Z)(X(Z + T )− T 2)(Y + λZ) = 0.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(Z) + S(Y+Z) + S(X(Z+T )−T 2), Sλ = S(Y ) + S(X3−(Y+Z)(X(Z+T )−T 2)).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(X,Y+Z), C4 = C(Y,X(Z+T )−T 2), C5 = C(Z,X3+Y T (X−T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations: [Sk · S(Z)]− [HS ]

[Sk · S(Y+Z)]− [HS ]

[Sk · S(Y )]− [HS ]

 =

0 1 0 0 1 −1

0 1 3 0 0 −1

0 2 0 1 0 −1

 ·


[C1]

· · ·
[C5]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:[C2]

[C4]

[C5]

 =

0 −3 1

0 6 −1

0 3 0

 ·

 [C1]

[C3]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A5 with the quadratic term (Y + Z) · (Y + λZ);
P2 = P(X,Z,T ): type A1 with the quadratic term X(Z + T )− T 2;
P3 = P(X,T,Y+Z): type A5 with the quadratic term (λ− 1)X · (Y + Z);
P4 = P(X,T,Y+λZ): type A5 with the quadratic term (λ− 1)X · (Y + λZ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 HS

C1
1
6

1
3 1

C3
1
3

1
6 1

HS 1 1 4

.

Note that the intersection matrix has the rank 2.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 E2
4 E3

4 E4
4 E5

4 C̃1 C̃3 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0

E5
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E5
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 −2 0 1

C̃3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E5

4 ]
)
=
(
−5 −4 −3 −2 −1 −3 −7 −8 −9 −10 −5 −5 −4 −3 −2 −6 −6 3

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E5
1 ] [E1

2 ] [E1
3 ] [E2

3 ] [E3
3 ]

[E4
3 ] [E5

3 ] [E1
4 ] [E2

4 ] [E3
4 ] [E4

4 ] [C̃1] [C̃3] [H̃S ]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 2

2 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 0 1

2
1
2 0 1

2 0 1
2 0 0 0 0 0 0 0

1
2 0 1

2 0 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 1

2

)
,

(
0 0 1

2 0

0 0 0 1
2

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2 0

)
, BN =

(
0 1

2
1
2 0

)
; QM = (0, 1) , QN = (0, 1) .

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.4. Family №2.4. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x2z−1 + xyz−1 + x2y−1 + 4x+ 2y + 2xy−1z + 4z + x−1yz + y−1z2 + x−1z2 + 3xz−1+

2yz−1 + 2xy−1 + 2x−1y + 2y−1z + 3x−1z + 3z−1 + x−1yz−1 + y−1 + 3x−1 + x−1z−1

(see [CP18, Family №2.4]). It is a Minkowski polynomial №3964 (see [Akh+12, Appendix B: bucket 161]).
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The pencil S is defined by the equation

X3Y +X2Y 2 +X3Z + 4X2Y Z + 2XY 2Z + 2X2Z2 + 4XY Z2 + Y 2Z2 +XZ3 + Y Z3 + 3X2Y T+

2XY 2T + 2X2ZT + 2Y 2ZT + 2XZ2T + 3Y Z2T + 3XY T 2 + Y 2T 2 +XZT 2 + 3Y ZT 2 + Y T 3 = λXY ZT.

Remark B.1. Note that the equation is invariant under the permutation (X,Z) 7→ (Z,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−7 = S(X+Z+T ) + S(X+Y+Z+T ) + S(Y (X+Z+T )+XZ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Y,Z), C3 = C(X,Z+T ), C4 = C(Z,X+T ), C5 = C(T,X+Z),

C6 = C(X,Y+Z+T ), C7 = C(Y,X+Z+T ), C8 = C(Z,X+Y+T ), C9 = C(T,X+Y+Z), C10 = C(T,XZ+Y (X+Z)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Z+T )]− [HS ]

[Sk · S(X+Y+Z+T )]− [HS ]


=



1 0 2 0 0 1 0 0 0 0 −1

1 1 0 0 0 0 2 0 0 0 −1

0 1 0 2 0 0 0 1 0 0 −1

0 0 0 0 1 0 0 0 1 1 −1

0 0 1 1 1 0 1 0 0 0 −1

0 0 0 0 0 1 1 1 1 0 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C2]

[C6]

[C7]

[C8]

[C9]

[C10]


=



−1 2 2 2 −1

−1 −2 0 0 1

0 −1 −1 −1 1

1 −2 −4 −2 2

0 5 5 3 −3

0 −5 −5 −4 4


·


[C1]

[C3]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:
P1 = P(X,Z,T ): type D4 with the quadratic term (X + Z + T )2;
P2 = P(X,Y,Z+T ): type A4 with the quadratic term (λ+ 7)X · Y ;
P3 = P(Y,Z,X+T ): type A4 with the quadratic term (λ+ 7)Y · Z;
P4 = P(Y,T,X+Z): type A1 with the quadratic term (X + Z + T )(X + Y + Z + T )− (λ+ 7)Y T .

• C1 C3 C4 C5 HS

C1 − 4
5

3
5 0 0 1

C3
3
5 − 1

5
1
2

1
2 1

C4 0 1
2 − 1

5
1
2 1

C5 0 1
2

1
2 − 1

2 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
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The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E3
3 E4

3 E1
4 C̃1 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 1

C̃5 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
5
9

1
3

8
9

2
9

5
9

1
3

2
9

1
9

8
9

7
9

2
3

5
9

5
9

8
9

7
9

4
9

1
9

4
9

)
,
(
0 0 8

9
1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
7
9

)
, BN =

(
2
9

)
; QM =

(
16

9

)
, QN =

(
2

9

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.5. Family №2.5. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x2y−1z−1 + 3xz−1 + 3yz−1 + x−1y2z−1 + 3xy−1 + 3x−1y + 3y−1z+

3x−1z + x−1y−1z2 + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z

(see [CP18, Family №2.5]). It is a Minkowski polynomial №3453 (see [Akh+12, Appendix B: bucket 158]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X3T + 3X2Y T + 3XY 2T + Y 3T + 3X2ZT + 3Y 2ZT + 3XZ2T+

3Y Z2T + Z3T +X2T 2 + 2XY T 2 + Y 2T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.2. Note that the equation is invariant under the permutations (X,Y ) 7→ (Y,X), (Y, Z) 7→ (Z, Y ).
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Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−7 = S(X+Y+Z+T ) + S(T (X+Y+Z)2+XY Z), S−6 = S(X+Y+Z) + S(XY Z+T (X+Y+Z)(X+Y+Z+T )).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Y+Z), C5 = C(Y,X+Z),

C6 = C(Z,X+Y ), C7 = C(X,Y+Z+T ), C8 = C(Y,X+Z+T ), C9 = C(Z,X+Y+T ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y+Z+T )]− [HS ]

[Sk · S(X+Y+Z)]− [HS ]


=



1 0 0 2 0 0 1 0 0 0 −1

0 1 0 0 2 0 0 1 0 0 −1

0 0 1 0 0 2 0 0 1 0 −1

1 1 1 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 1 1 1 −1

0 0 0 1 1 1 0 0 0 1 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C3]

[C6]

[C7]

[C8]

[C9]

[HS ]


=



−1 −1 0 0 3

0 0 −1 −1 3

−1 0 −2 0 4

0 −1 0 −2 4

1 1 2 2 −5

0 0 0 0 4


·


[C1]

[C2]

[C4]

[C5]

[C10]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D4 with the quadratic term (X + Y + Z)2;
P2 = P(X,T,Y+Z): type A3 with the quadratic term X · (X + Y + Z − (λ+ 6)T );
P3 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Y + Z − (λ+ 6)T );
P4 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y + Z − (λ+ 6)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C5 C10

C1 − 5
4 1 3

4 0 1
4

C2 1 − 5
4 0 3

4
1
4

C4
3
4 0 − 1

4
1
2

1
4

C5 0 3
4

1
2 − 1

4
1
4

C10
1
4

1
4

1
4

1
4

1
4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E1
4 E2

4 E3
4 C̃1 C̃2 C̃4 C̃5 C̃10

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 1 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1

C̃1 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 1 0 0 0

C̃2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 −2 0 0 0

C̃4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0

C̃5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −2 0

C̃10 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 0 2

3
1
3 0 1

3
2
3 0 0 0 1

3
2
3 0 0 0

0 0 2
3

1
3 0 2

3
1
3 0 1

3
2
3 0 0 0 0 0 1

3
2
3 0

)
,

(
0 0 1

3 0

0 0 0 1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 2

3
2
3

1
3

)
, BN =

(
0 1

3
1
3

2
3

)
; QM =

(
0,

4

3

)
, QN =

(
0,

2

3

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.6. Family №2.6. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + 2z + x−1yz + y−1z2 + x−1z2 + xz−1 + yz−1 + 2xy−1 + 2x−1y+

3y−1z + 3x−1z + xy−1z−1 + 2z−1 + x−1yz−1 + 3y−1 + 3x−1 + y−1z−1 + x−1z−1

(see [CP18, Family №2.6]). It is a Minkowski polynomial №3874 (see [Akh+12, Appendix B: bucket 149]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 + 2XY Z2 + Y 2Z2 +XZ3 + Y Z3 +X2Y T +XY 2T + 2X2ZT + 2Y 2ZT+

3XZ2T + 3Y Z2T +X2T 2 + 2XY T 2 + Y 2T 2 + 3XZT 2 + 3Y ZT 2 +XT 3 + Y T 3 = λXY ZT.

Remark B.3. Note that the equation is invariant under the permutations (X,Y ) 7→ (Y,X), (Z, T ) 7→ (T,Z).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−4 = S(X+Y ) + S(Z+T ) + S(X+Z+T ) + S(Y+Z+T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Z,T ), C3 = C(X,Z+T ), C4 = C(Y,Z+T ), C5 = C(Z,X+Y ), C6 = C(Z,X+T ),

C7 = C(Z,Y+T ), C8 = C(T,X+Y ), C9 = C(T,X+Z), C10 = C(T,Y+Z), C11 = C(X,Y+Z+T ), C12 = C(Y,X+Z+T ).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y )]− [HS ]

[Sk · S(Z+T )]− [HS ]

[Sk · S(X+Z+T )]− [HS ]

[Sk · S(Y+Z+T )]− [HS ]


=



1 0 2 0 0 0 0 0 0 0 1 0 −1

1 0 0 2 0 0 0 0 0 0 0 1 −1

0 1 0 0 1 1 1 0 0 0 0 0 −1

0 1 0 0 0 0 0 1 1 1 0 0 −1

2 0 0 0 1 0 0 1 0 0 0 0 −1

0 2 1 1 0 0 0 0 0 0 0 0 −1

0 0 1 0 0 1 0 0 1 0 0 1 −1

0 0 0 1 0 0 1 0 0 1 1 0 −1


·


[C1]

· · ·
[C12]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C4]

[C5]

[C7]

[C8]

[C9]

[C11]

[C12]


=



0 −2 −1 0 0 1

−1 −3 −3 −1 1 2

1 2 3 0 −1 −1

−1 3 3 1 −1 −1

1 −4 −3 −1 0 2

−1 0 −2 0 0 1

−1 4 2 0 0 −1


·



[C1]

[C2]

[C3]

[C6]

[C10]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Z,T ): type A3 with the quadratic term (Z + T ) · (X + Z + T );
P2 = P(Y,Z,T ): type A3 with the quadratic term (Z + T ) · (Y + Z + T );
P3 = P(X,Y,Z+T ): type A5 with the quadratic term (λ+ 4)X · Y ;
P4 = P(Z,T,X+Y ): type A1 with the quadratic term (X + Y )(Z + T )− (λ+ 4)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C6 C10 HS

C1 − 1
2 0 1

2 0 0 1

C2 0 0 1
2

1
4

1
4 1

C3
1
2

1
2 − 1

6
1
2 0 1

C6 0 1
4

1
2 − 5

4 0 1

C10 0 1
4 0 0 − 5

4 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 C̃1 C̃2 C̃3 C̃6 C̃10 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 1 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0

C̃1 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0 0 0 1

C̃2 1 0 0 1 0 0 0 0 0 0 0 1 0 −2 0 0 0 1

C̃3 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1

C̃10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
2 4

4 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 0 0 0 0 0 1

2 0 0 0 1
2

1
2 0 1

2 0 0 0
1
3

1
3

5
6

5
6

1
3

5
6

5
6

1
6

1
2

2
3

5
6

2
3

1
6

1
3

1
2

1
3

1
3

5
6

)
,

(
0 0 1

2 0

0 0 2
3

1
6

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 1
6

)
, BN =

(
1
2 0

0 5
6

)
; QM =

(
3

2
,
1

6

)
, QN =

(
1

2
,
11

6

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.7. Family №2.7. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ 2y + z + x−1yz + 2xz−1 + 2yz−1 + xy−1 + 2x−1y+

y−1z + 2x−1z + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z

(see [CP18, Family №2.7]). It is a Minkowski polynomial №3239 (see [Akh+12, Appendix B: bucket 148]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z + 2XY 2Z +XY Z2 + Y 2Z2 + 2X2Y T + 2XY 2T +X2ZT + 2Y 2ZT+

XZ2T + 2Y Z2T +X2T 2 + 2XY T 2 + Y 2T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.4. Note that the equation is invariant under the permutations (X,Z) 7→ (Z,X), (Y, T ) 7→ (T, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−5 = S((X+Z)(Y+T )+Y T ) + S((X+T )(Y+Z)+XT+Y Z).
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The base locus of the pencil S consists of the following curves:

C1 = C(Y,T ), C2 = C(Y,X+Z), C3 = C(T,X+Z), C4 = C(X,Y T+Z(Y+T )),

C5 = C(Y,XZ+T (X+Z)), C6 = C(Z,Y T+X(Y+T )), C7 = C(T,XZ+Y (X+Z)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


0 0 0 2 0 0 0 −1

1 1 0 0 1 0 0 −1

0 0 0 0 0 2 0 −1

1 0 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations:
[C5]

2[C6]

[C7]

[HS ]

 =


−1 −1 0 2

0 0 0 2

−1 0 −1 2

0 0 0 2

 ·


[C1]

[C2]

[C3]

[C4]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D4 with the quadratic term (X + Y + Z)2;
P2 = P(X,Y,T ): type A3 with the quadratic term (Y + T ) · (X + Y + T );
P3 = P(X,Z,T ): type D4 with the quadratic term (X + Z + T )2;
P4 = P(Y,Z,T ): type A3 with the quadratic term (Y + T ) · (Y + Z + T );
P5 = P(Y,T,X+Z): type A1 with the quadratic term (X + Z)(Y + T )− (λ+ 4)Y T .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C6

C1 0 1
2

1
2

1
2

1
2

C2
1
2 − 1

2
1
2

1
2

1
2

C3
1
2

1
2 − 1

2
1
2

1
2

C4
1
2

1
2

1
2 1 1

C6
1
2

1
2

1
2 1 1

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup (Lλ)

Gal(k) ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E4
3 E1

4 E2
4 E3

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃6

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 1 −2 1 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E4
3 0 0 0 0 0 0 0 0 1 0 −2 0 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 1

E3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 1 1 0 0

C̃1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 −2 0 0 0 0

C̃2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 0

C̃3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 −2 0 0

C̃4 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 −2 0

C̃6 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 −2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E3

4 ]

[C̃6]

)T
=

(
0 2 3 1 −1 2 1 0 2 3 1 −3 −2 −4 −4 −2 −2 4

0 −1 −1 −1 1 0 0 0 −1 −1 −1 1 0 2 2 1 1 −1

)
·

(
[E1

1 ] [E2
1 ] [E3

1 ] [E4
1 ] [E1

2 ] [E2
2 ] [E3

2 ] [E1
3 ] [E2

3 ]

[E3
3 ] [E4

3 ] [E1
4 ] [E2

4 ] [E1
5 ] [C̃1] [C̃2] [C̃3] [C̃4]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
8 8

8 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 0 1

2
1
2 0 1

2
1
2 0 0 1

2 0 0 1
2 0 0 0 0

0 1
4

3
8

1
8

1
2 0 0 0 3

4
5
8

7
8 0 0 1

2 0 3
4

1
4

1
2

)
,

(
0 0 1

2
1
2

0 0 7
8 0

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 7
8

)
, BN =

(
1
2 0

0 1
8

)
; QM =

(
1

2
,
15

8

)
, QN =

(
3

2
,
1

8

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.8. Family №2.8. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + 2x+ 2y + xy−1z + 2z + x−1yz + 2xz−1 + 2xy−1+

xy−1z−1 + 2z−1 + 2y−1 + 2x−1 + 2y−1z−1 + x−1y−1z−1

(see [CP18, Family №2.8]). It is a Minkowski polynomial №1969 (see [Akh+12, Appendix B: bucket 144]).
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The pencil S is defined by the equation

X2Y 2 + 2X2Y Z + 2XY 2Z +X2Z2 + 2XY Z2 + Y 2Z2 + 2X2Y T+

2X2ZT +X2T 2 + 2XY T 2 + 2XZT 2 + 2Y ZT 2 + 2XT 3 + T 4 = λXY ZT.

Remark B.5. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−2 = 2S(X(Y+Z+T )+Y Z+T 2).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y Z+T 2), C2 = C(Y,X(Z+T )+T 2), C3 = C(Z,X(Y+T )+T 2), C4 = C(T,X(Y+Z)+Y Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


2 0 0 0 −1

0 2 0 0 −1

0 0 2 0 −1

0 0 0 2 −1

 ·


[C1]

· · ·
[C4]

[HS ]

 = 0.

We cannot reduce the number of linear equivalence classes using these relations:
2[C1]

2[C2]

2[C3]

2[C4]

 =


[HS ]

[HS ]

[HS ]

[HS ]

 .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 HS

C1 1 1 1 1 2

C2 1 1 1 1 2

C3 1 1 1 1 2

C4 1 1 1 1 2

HS 2 2 2 2 4

.

Note that the intersection matrix has the rank 1.
For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type D6 with the quadratic term (X + Y )2;
P2 = P(X,Z,T ): type D6 with the quadratic term (X + Z)2;
P3 = P(Y,Z,T ): type D4 with the quadratic term (Y + Z + T )2;
P4 = P(Y,Z,X+T ): type A1 with the quadratic term (X − Y − Z + T )2 + (λ+ 2)Y Z.

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E6

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E1
3 E2

3 E3
3 E4

3 E1
4 C̃1 C̃2 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E6
1 0 0 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 0 0 1 −2 1 1 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0 0 0

E6
2 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 1 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0

E4
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 1 0 0

C̃1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 2

C̃2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 −2 0 0 2

C̃3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 −2 0 2

C̃4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 −2 2

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:
[E3

3 ]

[E1
4 ]

[C̃4]

[H̃S ]


T

=


1 2 3 4 2 3 −1 −2 −3 −4 −2 −3 1 0 0 0 2 −2

−1 −2 −3 −4 −1 −4 2 4 6 8 5 5 −3 −2 −1 2 −4 2

−1 −1 −1 −1 0 −1 0 1 2 3 2 2 −1 −1 −1 1 −1 1

1 2 3 4 3 2 1 2 3 4 3 2 0 0 0 2 0 0

 ·

(
[E1

1 ] [E2
1 ] [E3

1 ] [E4
1 ] [E5

1 ] [E6
1 ] [E1

2 ] [E2
2 ] [E3

2 ]

[E4
2 ] [E5

2 ] [E6
2 ] [E1

3 ] [E2
3 ] [E4

3 ] [C̃1] [C̃2] [C̃3]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 0

0 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 1

2
1
2

1
2 0 1

2 0 1
2 0 1

2 0 1
2 0 0 0

3
4

1
2

1
4 0 3

4 0 1
4

1
2

3
4 0 1

4 0 0 0 0 1
2 0 0

)
,

(
0 0 1

2 0

0 0 0 1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 3
4

)
, BN =

(
1
2 0

0 1
4

)
; QM =

(
1

2
,
7

4

)
, QN =

(
3

2
,
1

4

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.
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B.9. Family №2.9. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + xy−1 + x−1y + 2y−1z + 2x−1z+

x−1y−1z2 + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z

(see [CP18, Family №2.9]). It is a Minkowski polynomial №3014 (see [Akh+12, Appendix B: bucket 139]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +X2ZT + Y 2ZT + 2XZ2T+

2Y Z2T + Z3T +X2T 2 + 2XY T 2 + Y 2T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.6. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−3 = S(Z+T ) + S(X+Y+Z) + S(T (X+Y+Z)+XY ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Y+Z), C5 = C(X,Z+T ), C6 = C(Y,X+Z),

C7 = C(Y,Z+T ), C8 = C(Z,X+Y ), C9 = C(T,X+Y+Z), C10 = C(Z,XY+T (X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(Z+T )]− [HS ]

[Sk · S(X+Y+Z)]− [HS ]


=



1 0 0 2 1 0 0 0 0 0 −1

0 1 0 0 0 2 1 0 0 0 −1

0 0 1 0 0 0 0 1 0 1 −1

1 1 1 0 0 0 0 0 1 0 −1

0 0 2 0 1 0 1 0 0 0 −1

0 0 0 1 0 1 0 1 1 0 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C2]

[C5]

[C7]

[C8]

[C9]

[C10]


=



−1 2 −2 −2 1

−1 0 −2 0 1

1 −2 2 0 0

0 3 −3 −3 1

0 −3 2 2 0

0 −4 3 3 0


·


[C1]

[C3]

[C4]

[C6]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D4 with the quadratic term (X + Y + Z)2;
P2 = P(X,Z,T ): type A2 with the quadratic term (X + T ) · (Z + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term (Y + T ) · (Z + T );
P4 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 3)T );
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 3)T );
P6 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 3)ZT .

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C3 C4 C6 HS

C1 − 2
3

1
3

2
3 0 1

C3
1
3 − 1

6 0 0 1

C4
2
3 0 − 1

3
1
2 1

C6 0 0 1
2 − 1

3 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E1
3 E2

3 E1
4 E2

4 E1
5 E2

5 E1
6 C̃1 C̃3 C̃4 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0

C̃1 0 0 0 0 1 0 0 0 1 0 0 0 0 −2 0 0 0 1

C̃3 0 0 0 0 0 1 0 1 0 0 0 0 1 0 −2 0 0 1

C̃4 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 1

C̃6 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
8 7

7 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 6

17
9
17

3
17

1
17

16
17

16
17

15
17

15
17

16
17

8
17

4
17

7
17

3
17

14
17

11
17

12
17

7
17

)
,
(
0 0 14

17
1
17

)
.
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Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
15
17

)
, BN =

(
2
17

)
; QM =

(
32

17

)
, QN =

(
2

17

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.10. Family №2.10. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + 2z + x−1yz + x−1z2 + xz−1 + xy−1 + x−1y + y−1z+

3x−1z + xy−1z−1 + 2z−1 + 2y−1 + 3x−1 + y−1z−1 + x−1z−1

(see [CP18, Family №2.10]). It is a Minkowski polynomial №3019 (see [Akh+12, Appendix B: bucket 145]).
The pencil S is defined by the equation

X2Y Z +XY 2Z + 2XY Z2 + Y 2Z2 + Y Z3 +X2Y T +X2ZT + Y 2ZT +XZ2T+

3Y Z2T +X2T 2 + 2XY T 2 + 2XZT 2 + 3Y ZT 2 +XT 3 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−4 = S(X+Z+T ) + S(Y 2Z+(Z+T )(Y (X+Z+T )+XT )), S−5 = S(Y (X+Z+T )+XT ) + S(XT+Z(X+Y )+(Z+T )2).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Z+T ), C5 = C(Y,Z+T ), C6 = C(Z,X+T ),

C7 = C(T,X+Z), C8 = C(T,X+Y+Z), C9 = C(Y,X+Z+T ), C10 = C(X,Y Z+(Z+T )2), C11 = C(Z,XT+Y (X+T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Z+T )]− [HS ]

 =


1 0 0 1 0 0 0 0 0 1 0 −1

1 1 0 0 1 0 0 0 1 0 0 −1

0 0 1 0 0 1 0 0 0 0 1 −1

0 1 1 0 0 0 1 1 0 0 0 −1

0 0 0 1 0 1 1 0 1 0 0 −1

 ·


[C1]

· · ·
[C11]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[C10]

[C11]

 =


1 1 0 −1 1 −1 0

−1 −2 −1 1 −1 1 1

−1 −1 0 0 −1 0 1

−1 0 0 −1 0 0 1

0 0 −1 0 0 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Z,T ): type A4 with the quadratic term Z · (X + Z + T );
P2 = P(Y,Z,T ): type A2 with the quadratic term (Y + T ) · (Z + T );
P3 = P(X,Y,Z+T ): type A4 with the quadratic term (λ+ 4)X · Y ;
P4 = P(Y,T,X+Z): type A2 with the quadratic term T · (X − (λ+ 4)Y + Z + T ).

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5 C6 HS

C1 − 4
5 1 0 3

5
2
5 0 1

C2 1 − 2
3

1
3 0 1

3 0 1

C3 0 1
3 − 8

15
1
5

2
3

3
5 1

C4
3
5 0 1

5 − 2
5

1
5

2
5 1

C5
2
5

1
3

2
3

1
5 − 8

15 0 1

C6 0 0 3
5

2
5 0 − 4

5 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E1
3 E2

3 E3
3 E4

3 E1
4 E2

4 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 1 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

C̃1 0 0 0 0 0 0 0 1 0 0 0 0 −2 1 0 0 0 0 1

C̃2 0 0 0 0 1 0 0 0 0 0 1 0 1 −2 0 0 0 0 1

C̃3 1 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃5 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −2 0 1

C̃6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[C̃5]

)
=
(
2 3 2 1 −2 −1 −2 −4 −3 −2 −2 −1 −3 −3 1 0 2 1

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E1
2 ] [E2

2 ] [E1
3 ] [E2

3 ] [E3
3 ]

[E4
3 ] [E1

4 ] [E2
4 ] [C̃1] [C̃2] [C̃3] [C̃4] [C̃6] [H̃S ]

)T
,
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hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 4

4 8

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2

3
4

1
2

1
4

1
4

3
4

1
2 0 0 0 1

2
1
4

1
2

3
4

1
4 0 1

2
1
4

3
4

1
4

1
4

1
4

3
4 0 1

2
3
4

1
2

1
4 0 1

2
1
2

1
2

1
4

1
4

1
2

3
4

)
,

(
0 0 1

4 0

0 0 0 1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 3

4
3
4

1
2

)
, BN =

(
0 1

4
1
4

1
2

)
; QM =

(
0,

3

2

)
, QN =

(
0,

1

2

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.11. Family №2.11. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

y + z + x−1yz + 2x−1z2 + x−1y−1z3 + xz−1 + yz−1 + 2x−1y + 2y−1z + 2x−1z + xy−1z−1 + 2z−1 + x−1yz−1

(see [CP18, Family №2.11]). It is a Minkowski polynomial №1701 (see [Akh+12, Appendix B: bucket 120]).
The pencil S is defined by the equation

XY 2Z +XY Z2 + Y 2Z2 + 2Y Z3 + Z4 +X2Y T +XY 2T+

2Y 2ZT + 2XZ2T + 2Y Z2T +X2T 2 + 2XY T 2 + Y 2T 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−2 = S(Z(Y+Z)+T (X+Y )) + S(Z(Y+Z)+T (X+Y )+XY ).

The base locus of the pencil S consists of the following curves:

C1 = C(Z,T ), C2 = C(Z,X+Y ), C3 = C(T,Y+Z), C4 = C(X,Y (Z+T )+Z2),

C5 = C(Y,XT+Z2), C6 = C(Z,XT+Y (X+T )), C7 = C(T,Y (X+Z)+Z2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


0 0 0 2 0 0 0 −1

0 0 0 0 2 0 0 −1

1 1 0 0 0 1 0 −1

1 0 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations:
2[C5]

[C6]

[C7]

[HS ]

 =


0 0 0 2

−1 −1 0 2

−1 0 −1 2

0 0 0 2

 ·


[C1]

[C2]

[C3]

[C4]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D6 with the quadratic term (X + Y )2;
P2 = P(X,Z,T ): type A3 with the quadratic term (Z + T ) · (X + Z + T );
P3 = P(Y,Z,T ): type A5 with the quadratic term T · (Y + T );
P4 = P(X,T,Y+Z): type A1 with the quadratic term (Y + Z − T )(X − Y − Z + T )− (λ+ 2)XT .

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5

C1 − 5
12 1 5

6
1
2

1
2

C2 1 −1 0 1
2

1
2

C3
5
6 0 − 2

3
1
2

1
2

C4
1
2

1
2

1
2 1 1

C5
1
2

1
2

1
2 1 1

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E5
1 E6

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E4
3 E5

3 E1
4 C̃1 C̃2 C̃3 C̃4 C̃5

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E6
1 0 0 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0

E3
2 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 1 0 0

E2
3 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 1

E4
3 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 1 0

C̃1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 1 0 0 0

C̃2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 −2 0 0

C̃4 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 −2 0

C̃5 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E1

4 ]

[C̃5]

)T
=

(
0 −2 −4 −6 −5 −3 1 −2 −1 5 4 3 2 1 4 2 2 −4

0 −1 −2 −3 −2 −2 1 0 0 2 1 0 0 0 2 1 1 −1

)
·

(
[E1

1 ] [E2
1 ] [E3

1 ] [E4
1 ] [E5

1 ] [E6
1 ] [E1

2 ] [E2
2 ] [E3

2 ]

[E1
3 ] [E2

3 ] [E3
3 ] [E4

3 ] [E5
3 ] [C̃1] [C̃2] [C̃3] [C̃4]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.
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The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 1

1 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
10
13

4
13

11
13

5
13

3
13

9
13

4
13

12
13

6
13

11
13

1
13

4
13

7
13

10
13

9
13

3
13

12
13

1
13

)
,
(
0 0 7

13
1
13

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

6
13

)
, BN =

(
7
13

)
; QM =

(
6

13

)
, QN =

(
20

13

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.12. Family №2.12. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ y + z + 2xz−1 + 2yz−1 + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z

(see [CP18, Family №2.12]). It is a Minkowski polynomial №1194 (see [Akh+12, Appendix B: bucket 118]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z +XY 2Z +XY Z2 + 2X2Y T + 2XY 2T+

X2T 2 + 2XY T 2 + Y 2T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.7. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(X,Y+Z), C4 = C(Y,X+Z),

C5 = C(T,X+Z), C6 = C(T,Y+Z), C7 = C(Z,XY+T (X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


2 0 2 0 0 0 0 −1

0 2 0 2 0 0 0 −1

0 0 0 0 0 0 2 −1

1 1 0 0 1 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations:
2[C4]

[C6]

2[C7]

[HS ]

 =


2 −2 2 0

1 −1 2 −1

2 0 2 0

2 0 2 0

 ·


[C1]

[C2]

[C3]

[C5]

 .

Put µ(µ− 1) = (λ+ 2)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D4 with the quadratic term (X + Y + Z)2;
P2 = P(X,Y,T ): type A1 with the quadratic term XY + T 2;
P3 = P(X,Z,T ): type A1 with the quadratic term XZ + (X + T )2;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + (X + T )2;
P5 = P(X,T,Y+Z): type A3 with the quadratic term X · (Y + Z − (λ+ 2)T );
P6 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Z − (λ+ 2)T );
P7 = P(µX+(µ−1)Y,Z,(µ−1)Y−T ): type A1;
P8 = P((µ−1)X+µY,Z,(µ−1)X−T ): type A1.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5 C7

C1 − 1
4

1
2

3
4 0 1

2
1
2

C2
1
2 − 1

4 0 3
4

1
4

1
2

C3
3
4 0 − 1

4
1
2 0 1

2

C4 0 3
4

1
2 − 1

4
1
4

1
2

C5
1
2

1
4 0 1

4 − 3
4

1
2

C7
1
2

1
2

1
2

1
2

1
2 1

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 , E

2
1 , E

3
1 , E

4
1 , E

1
2 , E

1
3 , E

1
4 , E

1
5 , E

2
5 , E

3
5 , E

1
6 , E

2
6 , E

3
6 , E

1
7 + E1

8 , C̃1, C̃2, C̃3, C̃4, C̃5, C̃6, C̃7.

The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E1

3 E1
4 E1

5 E2
5 E3

5 E1
6 E2

6 E3
6 E1

7 E1
8 C̃1 C̃2 C̃3 C̃4 C̃5 C̃7

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

E1
4 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 0 0 0 1

E1
5 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 1 0 0

E2
6 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
6 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 1

E1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1

C̃1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0

C̃2 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 −2 0 0 0 0

C̃3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃4 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0

C̃5 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0

C̃7 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 −2

.
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Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E1

2 ]

[E1
3 ]

)T
=

(
−1 0 0 1 1 −3 −2 −1 0 0 0 1 1 −2 0 −2 0 0 2

−1 0 1 0 1 −3 −2 −1 3 2 1 0 0 −2 2 −2 2 0 0

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E1
4 ] [E1

5 ] [E2
5 ] [E3

5 ] [E1
6 ] [E2

6 ] [E3
6 ]

[E1
7 ] [E1

8 ] [C̃1] [C̃2] [C̃3] [C̃4] [C̃5] [C̃7]

)T
,

hence we have rank(Lλ) = 19. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E1

3 E1
4 E1

5 E2
5 E3

5 E1
6 E2

6 E3
6 E1

7 + E1
8 C̃1 C̃2 C̃3 C̃4 C̃5 C̃7

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 0 0 1 1

E1
4 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 0 0 1

E1
5 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 1 0 0

E2
6 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
6 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
7 + E1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 2

C̃1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 −2 0 0 0 0 0

C̃2 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 −2 0 0 0 0

C̃3 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0

C̃4 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0

C̃5 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −2 0

C̃7 0 0 0 1 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 −2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice LS :(
[E1

2 ]

[E1
3 ]

)T
=

(
−1 0 0 1 1 −3 −2 −1 0 0 0 1 −2 0 −2 0 0 2

−1 0 1 0 1 −3 −2 −1 3 2 1 0 −2 2 −2 2 0 0

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E1
4 ] [E1

5 ] [E2
5 ] [E3

5 ] [E1
6 ]

[E2
6 ] [E3

6 ] [E1
7 + E1

8 ] [C̃1] [C̃2] [C̃3] [C̃4] [C̃5] [C̃7]

)T
,

hence we have rank(LS) = 18. Recall that Pic(S̃k) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sk. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
4 6

6 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0
2
5

3
10

4
5

2
5

3
5

3
5

2
5

1
5

4
5

3
5

2
5

1
2

3
10

7
10

1
2

3
10

1
5

1
2

)
,

(
0 0 1

2 0

0 0 3
5

1
10

)
.
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Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

4
5

)
, BN =

(
0 1

2
1
2

1
5

)
; QM =

(
1,

9

5

)
, QN =

(
1,

1

5

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.13. Family №2.13. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1yz + xy−1 + 2x−1y + y−1z + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + y−1z−1

(see [CP18, Family №2.13]). It is a Minkowski polynomial №1393 (see [Akh+12, Appendix B: bucket 119]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2Z2 +X2ZT + 2Y 2ZT+

XZ2T +X2T 2 + 2XY T 2 + Y 2T 2 + 2XZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Z+T ), C5 = C(Y,Z+T ),

C6 = C(T,X+Y ), C7 = C(T,X+Z), C8 = C(Y,X+Z+T ), C9 = C(Z,XT+(X+Y )2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


2 0 0 2 0 0 0 0 0 −1

1 1 0 0 1 0 0 1 0 −1

0 0 2 0 0 0 0 0 1 −1

0 1 1 0 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[HS ]

 =


2 −1 −1 2 0 −1

1 −1 0 2 −1 0

2 0 −2 2 0 0

2 0 0 2 0 0

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A1 with the quadratic term Y 2 +X(Y + T );
P2 = P(X,Z,T ): type A1 with the quadratic term XZ + (Z + T )2;
P3 = P(Y,Z,T ): type A1 with the quadratic term T 2 + Z(Y + T );
P4 = P(X,Y,Z+T ): type A5 with the quadratic term (λ+ 3)X · Y ;
P5 = P(Y,T,X+Z): type A1 with the quadratic term (Y + T )(X + Z + T )− (λ+ 1)Y T ;
P6 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y − (λ+ 3)T );
P7 = P(X,Z+T,Y−(λ+3)T ): type A1 with the quadratic term

(λ+ 3)((λ+ 3)(Z + T )2 −X(X + Y − Z − (λ+ 4)T )).

The Q-valued intersection matrix on the group AS has the following form:



64 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

• C1 C2 C3 C4 C5 C6

C1 − 1
6

1
2 0 2

3
1
3

1
2

C2
1
2 − 1

2
1
2 0 1

2
1
2

C3 0 1
2 − 1

3
1
2

1
2

1
3

C4
2
3 0 1

2 − 1
6

1
6 0

C5
1
3

1
2

1
2

1
6 − 2

3 0

C6
1
2

1
2

1
3 0 0 − 5

6

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E1

2 E1
3 E1

4 E2
4 E3

4 E4
4 E5

4 E1
5 E1

6 E2
6 E1

7 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

E1
2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E1
3 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

E1
4 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0 0

E3
4 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E4
4 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E5
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0

E2
6 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
7 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0

C̃2 1 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 0 0

C̃3 0 1 1 0 0 0 0 0 0 1 0 0 0 0 −2 0 0 0

C̃4 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 −2 0 0

C̃5 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0

C̃6 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
2 6

6 6

)
.
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We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2 0 1
2 0 0 0 0 0 1

2 0 0 1
2 0 0 0 0 1

2
5
6

3
4

5
12

1
4

1
2

1
12

2
3

1
4

3
4

5
6

1
6 0 2

3
1
2

1
2 0 5

6
1
2

)
,

(
0 0 1

2 0

0 0 3
4

1
12

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 1
12

)
, BN =

(
1
2 0

0 11
12

)
; QM =

(
3

2
,
1

12

)
, QN =

(
1

2
,
23

12

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.14. Family №2.14. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ z + 2yz−1 + x−1z + x−1y−1z2 + 2z−1 + x−1yz−1+

3x−1 + 3x−1y−1z + 2x−1z−1 + 3x−1y−1 + x−1y−1z−1

(see [CP18, Family №2.14]). It is a Minkowski polynomial №1659 (see [Akh+12, Appendix B: bucket 122]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z +XY Z2 + 2XY 2T + Y Z2T + Z3T + 2XY T 2+

Y 2T 2 + 3Y ZT 2 + 3Z2T 2 + 2Y T 3 + 3ZT 3 + T 4 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Y,Z+T ), C4 = C(X,Y+Z+T ),

C5 = C(X,Y T+(Z+T )2), C6 = C(Z,Y (X+T )+T 2), C7 = C(T,X(Y+Z)+Z2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 1 1 0 0 −1

0 1 3 0 0 0 0 −1

0 0 0 0 0 2 0 −1

1 1 0 0 0 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C5]

[HS ]

 =


3 0 0 −1

−3 0 2 0

−3 −1 2 1

0 0 2 0

 ·


[C3]

[C4]

[C6]

[C7]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Z,T ): type D5 with the quadratic term (X + T )2;
P2 = P(Y,Z,T ): type A3 with the quadratic term Y · (Y + Z);
P3 = P(X,Y,Z+T ): type A2 with the quadratic term Y · ((λ+ 3)X + Y + Z + T );
P4 = P(X,Z,Y+T ): type A1 with the quadratic term (X−Y −Z−T )(X−Y −2Z−T )+(λ+3)XZ;
P5 = P(Y,X−(λ+3)T,Z+T ): type A2 with the quadratic term

Y · ((λ+ 3)X − (λ+ 4)2Y − (λ+ 4)Z − ((λ+ 4)2 − (λ+ 3))T );

P6 = P(Z,X−(λ+3)T,(λ+4)Y+T ): type A1.

The Q-valued intersection matrix on the group AS has the following form:
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• C3 C4 C6 C7

C3
1
12

1
3

1
2

1
4

C4
1
3 − 5

6
1
2 0

C6
1
2

1
2 1 1

C7
1
4 0 1 0

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E1

5 E2
5 E1

6 C̃3 C̃4 C̃6 C̃7

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 1 0

E3
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0

C̃3 0 0 0 0 0 1 0 0 1 0 0 1 0 0 −2 0 0 0

C̃4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 −2 0 0

C̃6 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 −2 0

C̃7 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 5

5 10

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
5

1
5

1
5

3
5

3
5 0 4

5
2
5

3
5 0 4

5
4
5

2
5

3
5

1
5

2
5

1
5 0

1
5

3
5 0 0 2

5
1
5

3
5

1
5

1
5

3
5

2
5

1
5

3
5

2
5

4
5 0 4

5
4
5

)
,

(
0 0 1

5 0

0 0 0 1
5

)
.
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Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 4

5
4
5

3
5

)
, BN =

(
0 1

5
1
5

2
5

)
; QM =

(
0,

8

5

)
, QN =

(
0,

2

5

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.15. Family №2.15. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + xy−1z−1 + 2z−1 + x−1yz−1 + 2y−1 + 2x−1 + x−1y−1z

(see [CP18, Family №2.15]). It is a Minkowski polynomial №911 (see [Akh+12, Appendix B: bucket 109]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +X2T 2+

2XY T 2 + Y 2T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.8. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−1 = S(X+Y+Z) + S(XY (Z+T )+T 2(X+Y+Z)).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Y+Z),

C5 = C(Y,X+Z), C6 = C(Z,X+Y ), C7 = C(T,X+Y+Z), C8 = C(Z,XY+T (X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y+Z)]− [HS ]

 =


2 0 0 2 0 0 0 0 −1

0 2 0 0 2 0 0 0 −1

0 0 1 0 0 1 0 1 −1

1 1 1 0 0 0 1 0 −1

0 0 0 1 1 1 1 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations:
[C5] + [C8]

[C6] + [C8]

[C7]

2[C8]

[HS ]

 =


3 −3 −2 5

2 0 −1 2

1 −1 −1 2

4 −4 −4 8

2 0 0 2

 ·


[C1]

[C2]

[C3]

[C4]


For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type D4 with the quadratic term (X + Y + Z)2;
P2 = P(X,Y,T ): type A1 with the quadratic term XY + T 2;
P3 = P(X,Z,T ): type A1 with the quadratic term T 2 +X(Z + T );
P4 = P(Y,Z,T ): type A1 with the quadratic term T 2 + Y (Z + T );
P5 = P(X,T,Y+Z): type A3 with the quadratic term X · (X + Y + Z − (λ+ 1)T );
P6 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Y + Z − (λ+ 1)T );
P7 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 1)ZT .

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5 C6 C8

C1 − 1
4

1
2

1
2

3
4 0 0 1

2

C2
1
2 − 1

4
1
2 0 3

4 0 1
2

C3
1
2

1
2 − 1

2 0 0 1
2 1

C4
3
4 0 0 − 1

4
1
2

1
2

1
2

C5 0 3
4 0 1

2 − 1
4

1
2

1
2

C6 0 0 1
2

1
2

1
2 − 1

2 1

C8
1
2

1
2 1 1

2
1
2 1 0

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E1
2 E1

3 E1
4 E1

5 E2
5 E3

5 E1
6 E2

6 E3
6 E1

7 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 C̃8

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E4
1 0 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

E1
2 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

E1
4 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 1 0 0 0 1

E1
5 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 1 0 0

E2
6 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
6 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 1 0

C̃1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 −2 0 0 0 0 0 0

C̃2 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 −2 0 0 0 0 0

C̃3 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 −2 0 0 0 0

C̃4 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0

C̃6 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 0

C̃8 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2

.
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Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:[E3
6 ]

[C̃5]

[C̃8]


T

=

 5 6 3 4 −2 −1 −3 3 2 1 −3 −2 0 0 −4 −2 4 2

−2 −3 −2 −2 1 1 1 0 0 0 0 0 0 1 1 1 −1 −1

1 0 0 −1 1 0 −1 3 2 1 0 0 −1 2 0 −1 2 −1

 ·

(
[E1

1 ] [E2
1 ] [E3

1 ] [E4
1 ] [E1

2 ] [E1
3 ] [E1

4 ] [E1
5 ] [E2

5 ]

[E3
5 ] [E1

6 ] [E2
6 ] [E1

7 ] [C̃1] [C̃2] [C̃3] [C̃4] [C̃6]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
6 6

6 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 0 1

2
1
2 0 1

2
1
2 0 1

2 0 0 1
2 0 0 0 0 0

2
3 0 0 1

3
5
6

1
2

1
6 0 0 0 0 0 0 2

3 0 1
3

1
3

2
3

)
,

(
0 0 1

2
1
2

0 0 5
6 0

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 5
6

)
, BN =

(
1
2 0

0 1
6

)
; QM =

(
1

2
,
11

6

)
, QN =

(
3

2
,
1

6

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.16. Family №2.16. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ z + xz−1 + yz−1 + xy−1 + x−1y + y−1z + x−1z + xy−1z−1 + z−1 + 2y−1 + x−1 + x−1y−1z

(see [CP18, Family №2.16]). It is a Minkowski polynomial №1940 (see [Akh+12, Appendix B: bucket 104]).
The pencil S is defined by the equation

X2Y Z +XY Z2 +X2Y T +XY 2T +X2ZT + Y 2ZT +XZ2T+

Y Z2T +X2T 2 +XY T 2 + 2XZT 2 + Y ZT 2 + Z2T 2 = λXY ZT.

Remark B.9. Note that the equation is invariant under the permutation (X,Z) 7→ (Z,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−2 = S(X+Z) + S(Y+T ) + S(T (X+Y+Z)+XZ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+Z), C6 = C(X,Y+T ),

C7 = C(Y,X+Z), C8 = C(Z,X+Y ), C9 = C(Z,Y+T ), C10 = C(T,X+Z), C11 = C(Y,XZ+T (X+Z)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Z)]− [HS ]

[Sk · S(Y+T )]− [HS ]


=



1 1 0 0 1 1 0 0 0 0 0 −1

0 0 1 0 0 0 1 0 0 0 1 −1

1 0 0 1 0 0 0 1 1 0 0 −1

0 1 1 1 0 0 0 0 0 1 0 −1

2 0 0 0 0 0 1 0 0 1 0 −1

0 0 2 0 0 1 0 0 1 0 0 −1


·


[C1]

· · ·
[C11]

[HS ]

 = 0.
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We can reduce the number of linear equivalence classes using these relations:

[C2]

[C4]

[C8]

[C9]

[C10]

[C11]


=



−1 0 −1 −1 0 1

3 −1 1 1 1 −1

−4 3 −1 0 −1 1

0 −2 0 −1 0 1

−2 0 0 0 −1 1

0 −1 0 0 −1 1


·



[C1]

[C3]

[C5]

[C6]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term (X + Z) · (X + Y + Z);
P2 = P(X,Y,T ): type A2 with the quadratic term (Y + T ) · (X + T );
P3 = P(X,Z,T ): type A3 with the quadratic term T · (X + Z);
P4 = P(Y,Z,T ): type A2 with the quadratic term (Y + T ) · (Z + T );
P5 = P(X,Z,Y+T ): type A1 with the quadratic term (X + Z)(Y + T )− (λ+ 2)XZ;
P6 = P(Y,T,X+Z): type A1 with the quadratic term (X + Z)(Y + T )− (λ+ 2)Y T .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 C6 C7 HS

C1 0 0 1
4

1
2

1
2 1

C3 0 − 1
6 0 2

3
1
2 1

C5
1
4 0 − 5

4 1 1
2 1

C6
1
2

2
3 1 − 5

6 0 1

C7
1
2

1
2

1
2 0 − 1

2 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E3

3 E1
4 E2

4 E1
5 E1

6 C̃1 C̃3 C̃5 C̃6 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 1 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 1 0

C̃1 1 0 0 0 0 0 0 1 0 0 1 0 −2 0 0 0 0 1

C̃3 0 0 0 0 1 0 0 0 1 0 0 1 0 −2 0 0 0 1

C̃5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 1

C̃6 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 −2 0 1

C̃7 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 2

2 8

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 0 1

2 0 1
2 0 1

2 0 1
2 0 0 0 1

2 0 0 1
2 0

7
10

1
5

9
10 0 0 3

10
3
5

9
10

1
5

3
5

7
10

3
10

1
5

4
5

3
5

1
5

4
5

1
10

)
,

(
0 0 1

2 0

0 0 3
5

1
10

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

2
5

)
, BN =

(
1
2

1
2

1
2

3
5

)
; QM =

(
1

2
,
2

5

)
, QN =

(
3

2
,
8

5

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.17. Family №2.17. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xy−1 + x−1y + y−1z + x−1z + z−1 + 2y−1 + x−1 + x−1y−1z + x−1z−1 + x−1y−1

(see [CP18, Family №2.17]). It is a Minkowski polynomial №1927 (see [Akh+12, Appendix B: bucket 101]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2ZT + Y 2ZT +XZ2T + Y Z2T+

XY T 2 + 2XZT 2 + Y ZT 2 + Z2T 2 + Y T 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−2 = S(X+T ) + S(T 2(Z−T )+(Y+T )(Z(X+Y+Z)+T 2)).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+Z),

C6 = C(Y,X+T ), C7 = C(Z,X+T ), C8 = C(Y,X+Z+T ), C9 = C(T,X+Y+Z), C10 = C(X,Z(Y+T )+T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 0 0 0 1 0 0 0 0 1 −1

0 1 1 0 0 1 0 1 0 0 −1

0 1 0 2 0 0 1 0 0 0 −1

1 0 1 1 0 0 0 0 1 0 −1

2 0 0 0 0 1 1 0 0 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C3]

[C7]

[C9]

[C10]

 =


2 −2 0 1 0 0

−2 2 0 −2 −1 1

−2 0 0 −1 0 1

1 −3 0 2 1 0

−1 0 −1 0 0 1

 ·



[C1]

[C4]

[C5]

[C6]

[C8]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term (X + T ) · (Y + T );
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P4 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z)− (λ+ 2)XT ;
P5 = P(Y,Z,X+T ): type A2 with the quadratic term Y · (X + (λ+ 2)Z + T );
P6 = P(Y,T,X+Z): type A1 with the quadratic term (Y + T )(X + Y + Z + T )− (λ+ 3)Y T ;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y − λT ) + (Z − T )2.

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The Q-valued intersection matrix on the group AS has the following form:

• C1 C4 C5 C6 C8 HS

C1 − 1
12

1
4

1
2

2
3 0 1

C4
1
4 − 1

12 0 0 0 1

C5
1
2 0 − 3

2 0 0 1

C6
2
3 0 0 − 2

3
2
3 1

C8 0 0 0 2
3 − 5

6 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 73

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E2
3 E1

4 E1
5 E2

5 E1
6 E1

7 C̃1 C̃4 C̃5 C̃6 C̃8 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0 0 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 1 0

E2
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0

C̃1 1 0 0 0 1 0 0 1 0 0 0 0 −2 0 0 0 0 1

C̃4 0 0 1 0 0 1 0 0 0 0 0 1 0 −2 0 0 0 1

C̃5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃6 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 1

C̃8 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 5

5 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
23
25

24
25 0 19

25
13
25

4
25

2
25

23
25

2
25

1
25

19
25

3
25

7
25

6
25

14
25

3
5

13
25

1
5

)
,
(
0 0 24

25
1
5

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
21
25

)
, BN =

(
4
25

)
; QM =

(
46

25

)
, QN =

(
4

25

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.18. Family №2.18. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + x−1z + xy−1z−1 + z−1 + y−1+

x−1 + 2y−1z−1 + x−1z−1 + x−1y−1 + x−1y−1z−1

(see [CP18, Family №2.18]). It is a Minkowski polynomial №1923 (see [Akh+12, Appendix B: bucket 74]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT + Y Z2T +X2T 2 +XY T 2+

XZT 2 + Y ZT 2 + 2XT 3 + Y T 3 + ZT 3 + T 4 = λXY ZT.

Remark B.10. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), Sλ+2 = S(X+T ) + S(X+Y+Z+T ) + S(Y Z+T 2).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(Y,X+T ), C5 = C(Z,X+T ),

C6 = C(X,Y+Z+T ), C7 = C(Y,X+Z+T ), C8 = C(Z,X+Y+T ), C9 = C(T,X+Y+Z), C10 = C(X,Y Z+T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

[Sk · S(X+Y+Z+T )]− [HS ]


=



1 0 0 0 0 1 0 0 0 1 −1

0 2 0 1 0 0 1 0 0 0 −1

0 0 2 0 1 0 0 1 0 0 −1

1 1 1 0 0 0 0 0 1 0 −1

2 0 0 1 1 0 0 0 0 0 −1

0 0 0 0 0 1 1 1 1 0 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C4]

[C5]

[C6]

[C8]

[C9]

[C10]


=



0 −2 0 −1 1

−2 2 0 1 0

−1 3 3 0 −1

2 −2 −2 −1 1

−1 −1 −1 0 1

0 −3 −3 0 2


·


[C1]

[C2]

[C3]

[C7]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term Y · (X + T );
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P4 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z + T )− (λ+ 2)XT ;
P5 = P(Y,Z,X+T ): type A1 with the quadratic term (X + T )(X + Y + Z + T ) + (λ+ 2)Y Z;
P6 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 1)T );
P7 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C7 HS

C1 0 1
4

1
4 0 1

C2
1
4 − 1

12
1
2

2
3 1

C3
1
4

1
2 − 1

12 0 1

C7 0 2
3 0 − 5

6 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E1

4 E1
5 E1

6 E2
6 E1

7 E2
7 C̃1 C̃2 C̃3 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 1 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 0

E1
6 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 1 0

E2
6 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0

E2
7 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

C̃1 0 0 1 0 0 1 0 1 0 0 0 0 0 −2 0 0 0 1

C̃2 1 0 0 0 0 0 1 0 0 1 0 0 0 0 −2 0 0 1

C̃3 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 −2 0 1

C̃7 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 4

4 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 0 0 1

2
1
2

1
2 0 0 0 0 0 0 0 0 1

2
1
8

1
2

7
8

5
8

1
2

3
8

1
4

1
8

3
8 0 1

2
1
2

1
4

1
4

3
4

3
4

3
4

1
8

)
,

(
0 0 0 1

2

0 0 7
8

1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 1
8

)
, BN =

(
1
2 0

0 7
8

)
; QM =

(
3

2
,
1

8

)
, QN =

(
1

2
,
15

8

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.19. Family №2.19. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1yz + xz−1 + yz−1 + xy−1 + x−1y + y−1z + xy−1z−1 + y−1

(see [CP18, Family №2.19]). It is a Minkowski polynomial №1109 (see [Akh+12, Appendix B: bucket 86]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2Z2 +X2Y T +XY 2T+

X2ZT + Y 2ZT +XZ2T +X2T 2 +XZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−1 = S(X+Z) + S(Z+T ) + S(X(Y+T )+Y 2).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Z+T ),

C6 = C(Y,X+Z), C7 = C(Y,Z+T ), C8 = C(T,X+Y ), C9 = C(T,X+Z), C10 = C(Z,X(Y+T )+Y 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Z)]− [HS ]

[Sk · S(Z+T )]− [HS ]


=



2 1 0 0 1 0 0 0 0 0 −1

1 0 1 0 0 1 1 0 0 0 −1

0 1 0 1 0 0 0 0 0 1 −1

0 0 1 1 0 0 0 1 1 0 −1

0 2 0 0 0 1 0 0 1 0 −1

0 0 0 2 1 0 1 0 0 0 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C1]

[C2]

[C7]

[C8]

[C9]

[C10]


=



−1 2 1 −1 0

2 −4 −3 2 1

0 −2 −1 0 1

3 −9 −6 5 2

−4 8 6 −5 −1

−2 3 3 −2 0


·


[C3]

[C4]

[C5]

[C6]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A4 with the quadratic term X · (X + Z);
P2 = P(X,Y,T ): type A1 with the quadratic term X(Y + T ) + Y 2;
P3 = P(X,Z,T ): type A2 with the quadratic term (X + Z) · (Z + T );
P4 = P(Y,Z,T ): type A2 with the quadratic term (Y + T ) · (Z + T );
P5 = P(X,Y,Z+T ): type A2 with the quadratic term X · ((λ+ 1)Y − Z − T );
P6 = P(Y,T,X+Z): type A1 with the quadratic term (X + Z)(Y + T )− (λ+ 1)Y T ;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y − T )− (λ+ 1)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5 C6 HS

C3 − 1
3

1
3 0 1

2 1

C4
1
3 − 1

6
2
3 0 1

C5 0 2
3 − 2

3 0 1

C6
1
2 0 0 − 7

10 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E1

3 E2
3 E1

4 E2
4 E1

5 E2
5 E1

6 E1
7 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 1 0 0

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0 0

E2
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 0

C̃3 0 0 0 0 1 0 0 1 0 0 0 1 0 −2 0 0 0 1

C̃4 0 0 0 0 0 0 1 0 1 0 0 0 1 0 −2 0 0 1

C̃5 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 0 1

C̃6 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 1

1 8

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
13
17

9
17

5
17

1
17

15
17

7
17

14
17

1
17

6
17

1
17

9
17

5
17

14
17

13
17

11
17

10
17

14
17

5
17

)
,
(
0 0 9

17
1
17

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

8
17

)
, BN =

(
9
17

)
; QM =

(
8

17

)
, QN =

(
26

17

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.20. Family №2.20. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + z + yz−1 + x−1y + z−1 + x−1yz−1 + y−1 + x−1 + x−1z−1

(see [CP18, Family №2.20]). It is a Minkowski polynomial №1110 (see [Akh+12, Appendix B: bucket 87]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 +XY Z2 +XY 2T + Y 2ZT +XY T 2 + Y 2T 2 +XZT 2 + Y ZT 2 + Y T 3 = λXY ZT.

Remark B.11. Note that the equation is invariant under the permutation (X,Z) 7→ (Z,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Z,T ), C5 = C(X,Y+T ), C6 = C(X,Z+T ),

C7 = C(Z,X+T ), C8 = C(Z,Y+T ), C9 = C(T,X+Y ), C10 = C(T,Y+Z), C11 = C(Y,XZ+T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 1 1 0 0 0 0 0 −1

1 0 1 0 0 0 0 0 0 0 1 −1

0 0 1 1 0 0 1 1 0 0 0 −1

0 1 0 1 0 0 0 0 1 1 0 −1

 ·


[C1]

· · ·
[C11]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C4]

[C9]

[C11]

 =


−1 0 −1 −1 0 0 0 1

0 −1 0 0 −1 −1 0 1

1 1 1 1 1 1 −1 −1

−1 −1 0 0 0 0 0 1

 ·



[C1]

[C3]

[C5]

[C6]

[C7]

[C8]

[C10]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · (X + Y );
P2 = P(X,Z,T ): type A2 with the quadratic term (X + T ) · (Z + T );
P3 = P(Y,Z,T ): type A4 with the quadratic term Z · (Y + Z).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 C6 C7 C8 C10 HS

C1 − 4
5 1 2

5 1 0 0 0 1

C3 1 − 4
5 0 0 1 2

5
3
5 1

C5
2
5 0 − 6

5 1 0 1 0 1

C6 1 0 1 − 4
3

1
3 0 0 1

C7 0 1 0 1
3 − 4

3 1 0 1

C8 0 2
5 1 0 1 − 6

5
1
5 1

C10 0 3
5 0 0 0 1

5 − 6
5 1

HS 1 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 8.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E1
3 E2

3 E3
3 E4

3 C̃1 C̃3 C̃5 C̃6 C̃7 C̃8 C̃10 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 1 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

C̃1 0 0 1 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 1

C̃3 0 0 0 0 0 0 0 0 1 0 1 −2 0 0 1 0 0 1

C̃5 1 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 1

C̃6 0 0 0 0 0 1 0 0 0 0 1 0 1 −2 0 0 0 1

C̃7 0 0 0 0 1 0 0 0 0 0 0 1 0 0 −2 1 0 1

C̃8 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 −2 0 1

C̃10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 3

3 10

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
16
29

7
29

27
29

28
29

12
29

26
29

22
29

2
29

11
29

1
29

19
29

19
29

25
29

11
29

27
29

13
29

20
29

10
29

)
,
(
0 0 16

29
1
29

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
14
29

)
, BN =

(
15
29

)
; QM =

(
14

29

)
, QN =

(
44

29

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.21. Family №2.21. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + xy−1 + x−1y + y−1z + z−1 + x−1

(see [CP18, Family №2.21]). It is a Minkowski polynomial №731 (see [Akh+12, Appendix B: bucket 84]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +X2ZT + Y 2ZT +XZ2T +XY T 2 + Y ZT 2 = λXY ZT.

Remark B.12. Note that the equation is invariant under the permutation (X,Y, Z, T ) 7→ (Y,X, T, Z).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(X,Y+T ), C8 = C(Y,X+Z), C9 = C(Z,X+Y+T ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 0 −1

1 0 0 1 1 0 0 1 0 0 −1

0 1 0 1 0 1 0 0 1 0 −1

0 0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C5]

[C7]

[C8]

 =


0 0 −1 −1 −1 0 1

0 −1 0 −1 0 −1 1

−1 −1 1 1 1 0 0

−1 1 −1 1 0 1 0

 ·



[C1]

[C3]

[C4]

[C6]

[C9]

[C10]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Y · (X + Z);
P2 = P(X,Y,T ): type A3 with the quadratic term X · (Y + T );
P3 = P(X,Z,T ): type A1 with the quadratic term X(Z + T ) + ZT ;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y (Z + T ) + ZT ;
P5 = P(X,Z,Y+T ): type A1 with the quadratic term (X + Z)(X + Y + T )− (λ+ 2)XZ;
P6 = P(Y,T,X+Z): type A1 with the quadratic term (Y + T )(X + Y + Z)− (λ+ 2)Y T ;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z + T )− (λ+ 4)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 C6 C9 C10 HS

C1 − 1
2

3
4

3
4 0 0 0 1

C3
3
4 − 3

4 0 1
2 0 1 1

C4
3
4 0 − 3

4
1
2 1 0 1

C6 0 1
2

1
2 − 1

2
1
2

1
2 1

C9 0 0 1 1
2 −1 1

2 1

C10 0 1 0 1
2

1
2 −1 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E1

4 E1
5 E1

6 E1
7 C̃1 C̃3 C̃4 C̃6 C̃9 C̃10 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 1 1 0 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 −2 0 0 0 0 0 1 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 1 1 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0 1

C̃3 0 0 0 1 0 0 1 0 0 0 0 0 −2 0 0 0 1 1

C̃4 1 0 0 0 0 0 0 1 0 0 0 0 0 −2 0 1 0 1

C̃6 0 0 0 0 0 0 1 1 0 0 1 0 0 0 −2 0 0 1

C̃9 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 −2 0 1

C̃10 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 4

4 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 1

2 0 1
2 0 1

2
1
2

1
2 0 0 0 0 0 0 0 1

2
1
2 0 1

2
1
2 0 1

2
1
2

1
2

4
7

4
7 0 5

7
2
7

2
7

5
7

1
7

1
7

3
7

)
,

(
0 0 1

2 0

0 0 9
14

1
14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

3
7

)
, BN =

(
1
2

1
2

1
2

4
7

)
; QM =

(
1

2
,
3

7

)
, QN =

(
3

2
,
11

7

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.22. Family №2.22. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + z + x−1y + z−1 + y−1 + x−1 + x−1z−1

(see [CP18, Family №2.22]). It is a Minkowski polynomial №414 (see [Akh+12, Appendix B: bucket 69]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 +XY Z2 + Y 2ZT +XY T 2 +XZT 2 + Y ZT 2 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Z,T ), C5 = C(Z,X+T ),

C6 = C(T,X+Y ), C7 = C(T,Y+Z), C8 = C(X,Z(Y+T )+T 2), C9 = C(Y,XZ+T 2).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 0 1 0 −1

1 0 1 0 0 0 0 0 1 −1

0 0 1 2 1 0 0 0 0 −1

0 1 0 1 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C3]

[C8]

[C9]

 =


0 −1 0 −1 −1 1

0 −2 −1 0 0 1

−1 1 0 1 1 0

−1 2 1 0 0 0

 ·



[C1]

[C4]

[C5]

[C6]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · (X + Y );
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A4 with the quadratic term Z · (Y + Z);
P4 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y − (λ+ 1)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C4 C5 C6 C7 HS

C1 − 4
5 0 0 3

5 0 1

C4 0 1
20

1
2

1
2

1
5 1

C5 0 1
2 −1 0 0 1

C6
3
5

1
2 0 − 7

10 1 1

C7 0 1
5 0 1 − 6

5 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E4
3 E1

4 C̃1 C̃4 C̃5 C̃6 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 1 0 0

C̃1 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃4 0 0 0 0 1 0 0 1 0 0 0 1 0 −2 0 0 0 1

C̃5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃6 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 −2 1 1

C̃7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 2

2 10

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 1

2
1
2 0 1

2
1
2 0 1

2 0 0 1
2 0 0 0 1

2 0
2
3

1
3 0 2

3
1
3

5
6

11
12

3
4

2
3

7
12

1
2

7
12 0 5

6
5
12

1
3

5
12 0

)
,

(
0 0 1

2 0

0 0 7
12

1
12

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

5
12

)
, BN =

(
1
2

1
2

1
2

7
12

)
; QM =

(
1

2
,
5

12

)
, QN =

(
3

2
,
19

12

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.23. Family №2.23. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + y−1z + x−1z + y−1 + x−1

(see [CP18, Family №2.23]). It is a Minkowski polynomial №411 (see [Akh+12, Appendix B: bucket 78]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +XZ2T + Y Z2T +XZT 2 + Y ZT 2 = λXY ZT.

Remark B.13. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−1 = S(Z+T ) + S((X+Y )(XY+ZT )+XY Z).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(X,Z+T ), C8 = C(Y,Z+T ), C9 = C(Z,X+Y ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(Z+T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 0 −1

1 0 0 1 1 0 0 1 0 0 −1

0 1 0 1 0 1 0 0 1 0 −1

0 0 1 0 1 1 0 0 0 1 −1

0 0 0 0 0 2 1 1 0 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C4]

[C6]

[C7]

[C10]

 =


3 1 −2 −3 2 0

−3 −1 1 2 −2 1

2 1 −1 −2 1 0

−4 −2 2 3 −2 1

−2 −2 0 2 −1 1

 ·



[C2]

[C3]

[C5]

[C8]

[C9]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A1 with the quadratic term XY + T (X + Y );
P3 = P(X,Z,T ): type A3 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · (Z + T );
P5 = P(X,Y,Z+T ): type A1 with the quadratic term (X + Y )(Z + T )− (λ+ 1)XY ;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 1)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C2 C3 C5 C8 C9 HS

C2 − 1
2

3
4 0 0 1

2 1

C3
3
4 − 3

4
1
2 0 0 1

C5 0 1
2 − 3

4
1
2 0 1

C8 0 0 1
2 − 1

2 0 1

C9
1
2 0 0 0 − 1

2 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 85

• E1
1 E2

1 E3
1 E1

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E1
5 E1

6 C̃2 C̃3 C̃5 C̃8 C̃9 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 0 0 0 0 0 0 0 0 0 1 1 0 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 1 1 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0

E2
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0

E3
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃2 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 0 0 1 1 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃5 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃8 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 −2 0 1

C̃9 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 4

4 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 1

2
1
2 0 0 0 0 0 0 1

2
1
2 0 0 0 0 0 1

2

0 1
2

1
4 0 3

8
1
4

1
8

3
8

3
4

7
8

1
8

3
8

1
2 0 0 1

4
3
4

5
8

)
,

(
0 0 0 1

2

0 0 7
8

1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

7
8

)
, BN =

(
1
2

1
2

1
2

1
8

)
; QM =

(
1

2
,
15

8

)
, QN =

(
3

2
,
1

8

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.24. Family №2.24. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ y + z + xz−1 + x−1y + y−1z + y−1 + x−1

(see [CP18, Family №2.24]). It is a Minkowski polynomial №412 (see [Akh+12, Appendix B: bucket 44]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z +XY 2Z +XY Z2 +X2Y T + Y 2ZT +XZ2T +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(X,Y+T ), C7 = C(Y,Z+T ), C8 = C(Z,Y+T ), C9 = C(T,X+Z), C10 = C(T,Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 0 0 −1

1 0 0 1 1 0 1 0 0 0 −1

0 2 0 1 0 0 0 1 0 0 −1

0 0 1 0 1 0 0 0 1 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C1]

[C4]

[C8]

[C10]

 =


−1 −1 0 −1 0 0 1

1 1 −1 1 −1 0 0

−3 −1 1 −1 1 0 1

0 −1 −1 0 0 −1 1

 ·



[C2]

[C3]

[C5]

[C6]

[C7]

[C9]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · (Y + T );
P3 = P(X,Z,T ): type A1 with the quadratic term X2 + Z(X + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · (Y + Z + T );
P5 = P(X,Z,Y+T ): type A2 with the quadratic term Z · ((λ+ 2)X − Y − T ).

The Q-valued intersection matrix on the group AS has the following form:

• C2 C3 C5 C6 C7 C9 HS

C2 − 1
6

1
2 0 1

3 0 1
2 1

C3
1
2 − 3

4
1
4

1
2 0 1

2 1

C5 0 1
4 − 1

2
1
2

1
2 1 1

C6
1
3

1
2

1
2 − 1

3 0 0 1

C7 0 0 1
2 0 −1 0 1

C9
1
2

1
2 1 0 0 − 3

2 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E1
4 E2

4 E3
4 E1

5 E2
5 C̃2 C̃3 C̃5 C̃6 C̃7 C̃9 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 1 1 0 0 0 1 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 1 0 0 0 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1 0 0 0

C̃2 1 0 0 0 0 1 0 0 0 1 0 −2 0 0 0 0 0 1

C̃3 0 0 1 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 1

C̃5 0 0 0 0 1 0 1 0 0 0 0 0 0 −2 0 0 1 1

C̃6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 −2 0 0 1

C̃7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃9 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
2 5

5 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
20
21

10
21

16
21

6
7

17
21

8
21

6
7

20
21

10
21

1
3

5
21

3
7

2
3

16
21

1
7

4
7

2
3

4
21

)
,
(
0 0 8

21
1
21

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
11
21

)
, BN =

(
10
21

)
; QM =

(
32

21

)
, QN =

(
10

21

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.25. Family №2.25. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1yz + xz−1 + y−1 + x−1 + y−1z−1

(see [CP18, Family №2.25]). It is a Minkowski polynomial №199 (see [Akh+12, Appendix B: bucket 43]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2Z2 +X2Y T +XZT 2 + Y ZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−1 = S(X(Z+T )+Y Z) + S(Y (X+Z)+T 2).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(Y,Z+T ),

C6 = C(T,X+Y ), C7 = C(T,X+Z), C8 = C(X,Y Z+T 2), C9 = C(Z,XY+T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 0 1 0 −1

1 0 2 0 1 0 0 0 0 −1

0 1 0 1 0 0 0 0 1 −1

0 0 1 1 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C1]

[C6]

[C8]

[C9]

 =


0 −2 0 −1 0 1

0 −1 −1 0 −1 1

−1 2 0 1 0 0

−1 0 −1 0 0 1

 ·



[C2]

[C3]

[C4]

[C5]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term Y · (X + Y );
P2 = P(X,Z,T ): type A5 with the quadratic term Z · (X + Z);
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · (Z + T );
P4 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Z − (λ+ 1)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C2 C3 C4 C5 C7 HS

C2 − 2
3 0 2

3 0 1
3 1

C3 0 1
20

1
4

1
2

1
2 1

C4
2
3

1
4 − 5

12
1
2

1
6 1

C5 0 1
2

1
2 −1 0 1

C7
1
3

1
2

1
6 0 − 2

3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E5
2 E1

3 E2
3 E3

3 E1
4 C̃2 C̃3 C̃4 C̃5 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0

E3
3 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0 1 0

C̃2 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 1 0 0 0 0 0 0 0 0 1 0 0 1 0 −2 0 0 0 1

C̃4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 −2 0 0 1

C̃5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −2 0 1

C̃7 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[C̃7]

)
=
(
−4 −3 −2 −1 2 3 2 1 0 −4 −3 −1 −3 2 −5 1 −1 1

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E1
2 ] [E2

2 ] [E3
2 ] [E4

2 ] [E5
2 ]

[E1
3 ] [E2

3 ] [E3
3 ] [E1

4 ] [C̃2] [C̃3] [C̃4] [C̃5] [H̃S ]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 4

4 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 1

4 0 1
2 0 1

2
1
2 0 1

4 0 1
4 0 1

2
1
4

1
2

0 1
2 0 1

2
3
4 0 3

4
1
2

1
4

1
4 0 1

4
3
4

1
2

1
2

1
2

1
2 0

)
,

(
0 0 1

4 0

0 0 0 1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 3

4
3
4

3
4

)
, BN =

(
0 1

4
1
4

1
4

)
; QM =

(
0,

7

4

)
, QN =

(
0,

1

4

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.26. Family №2.26. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + xy−1z−1 + z−1 + y−1 + x−1

(see [CP18, Family №2.26]). It is a Minkowski polynomial №202 (see [Akh+12, Appendix B: bucket 58]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +X2T 2 +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.
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Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(X,Y+T ), C7 = C(Y,X+Z), C8 = C(Z,X+Y ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 0 −1

1 0 0 2 0 0 1 0 0 −1

0 1 0 0 2 0 0 1 0 −1

0 0 1 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 −1 −1 0 0 1

−1 0 0 −2 0 1

0 −1 0 0 −2 1

0 0 −1 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term (X + Y ) · (X + Z);
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − λT );
P6 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 1
3

1
3

1
2

1
2 0 1

C2
1
3 − 2

3
1
3 0 2

3 1

C3
1
2

1
3 − 7

12
1
4

1
3 1

C4
1
2 0 1

4 − 1
12

1
2 1

C5 0 2
3

1
3

1
2 − 1

6 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 91

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E2
3 E1

4 E1
5 E2

5 E1
6 E2

6 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 1 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 1 0

E1
5 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
6 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃2 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 1

1 10

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
20
21

3
7

2
21 0 3

7
8
21

2
7

5
7

4
7

2
7

1
21

11
21

10
21

19
21

4
21

6
7

4
7 0

)
,
(
0 0 11

21
1
21

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
10
21

)
, BN =

(
11
21

)
; QM =

(
10

21

)
, QN =

(
32

21

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.27. Family №2.27. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + x−1 + y−1z−1 + x−1y−1

(see [CP18, Family №2.27]). It is a Minkowski polynomial №71 (see [Akh+12, Appendix B: bucket 19]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T + Y ZT 2 +XT 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Z,T ),

C5 = C(X,Y+T ), C6 = C(Y,X+Z), C7 = C(T,X+Y+Z), C8 = C(Z,XY+T 2).



92 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 1 0 0 0 −1

0 0 3 0 0 1 0 0 −1

1 0 0 1 0 0 0 1 −1

0 1 1 1 0 0 1 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C6]

[C7]

[C8]

 =


−2 0 0 −1 1

0 −3 0 0 1

−1 −1 −1 0 1

2 0 −1 1 0

 ·


[C2]

[C3]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A5 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · (Z + T );
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P5 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C2 C3 C4 C5 HS

C2 0 1
3

1
6

2
3 1

C3
1
3

1
12

1
3

1
3 1

C4
1
6

1
3 − 1

2 0 1

C5
2
3

1
3 0 − 4

3 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E5
2 E1

3 E2
3 E1

4 E1
5 E2

5 E3
5 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

C̃2 1 0 1 0 0 0 0 0 0 1 0 0 0 −2 0 0 0 1

C̃3 0 1 0 0 0 0 0 1 0 0 1 0 0 0 −2 0 0 1

C̃4 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 −2 0 1

C̃5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 3

3 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
6
17

4
17

2
17

11
17

3
17

12
17

4
17 0 15

17
5
17

10
17

1
17

9
17

10
17

2
17

13
17

15
17

7
17

)
,
(
0 0 10

17
1
17

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

8
17

)
, BN =

(
9
17

)
; QM =

(
8

17

)
, QN =

(
26

17

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.28. Family №2.28. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ z + xz−1 + yz−1 + x−1y + xy−1z−1 + y−1

(see [CP18, Family №2.28]). It is a Minkowski polynomial №69 (see [Akh+12, Appendix B: bucket 5]).
The pencil S is defined by the equation

X2Y Z +XY Z2 +X2Y T +XY 2T + Y 2ZT +X2T 2 +XZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−1 = S(X+Z) + S(XY (Z+T )+T (XT+Y 2)).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(Y,X+Z), C7 = C(T,X+Z), C8 = C(Z,Y 2+X(Y+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Z)]− [HS ]

 =


2 1 1 0 0 0 0 0 −1

1 0 0 2 0 1 0 0 −1

0 1 0 0 1 0 0 1 −1

0 0 1 1 1 0 1 0 −1

0 2 0 0 0 1 1 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C5]

[C6]

[C7]

[C8]

 =


−2 −1 0 1

−5 −3 −3 3

−1 0 −2 1

5 2 2 −2

7 4 3 −3

 ·


[C1]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A4 with the quadratic term X · (X + Z);
P2 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A3 with the quadratic term T · (X + Z);
P4 = P(Y,Z,T ): type A1 with the quadratic term Y (Z + T ) + T 2;
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 HS

C1 0 3
5

2
5 1

C3
3
5 − 9

20
1
5 1

C4
2
5

1
5 − 1

30 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E3
3 E1

4 E1
5 E2

5 C̃1 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −2 0 1

C̃4 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
7
9

1
3

8
9

4
9

5
9

2
3

5
9

4
9

1
3

2
9

1
9

2
3

5
9

7
9

2
9

4
9

1
3 0

)
,
(
0 0 8

9
1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
7
9

)
, BN =

(
2
9

)
; QM =

(
16

9

)
, QN =

(
2

9

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.29. Family №2.29. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + y−1 + x−1

(see [CP18, Family №2.29]). It is a Minkowski polynomial №72 (see [Akh+12, Appendix B: bucket 35]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +XZT 2 + Y ZT 2 = λXY ZT.

Remark B.14. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z),

C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(Z,X+Y ), C8 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 0 −1

1 0 0 1 2 0 0 0 −1

0 1 0 1 0 1 1 0 −1

0 0 1 0 1 1 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C4]

[C6]

[C7]

 =


−1 −2 0 0 1

−1 0 −2 0 1

0 −1 −1 −1 1

2 3 3 1 −2

 ·


[C1]

[C3]

[C5]

[C8]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A2 with the quadratic term Y · (Z + T );
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 1)T ) + T 2;
P6 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − (λ+ 1)T ) + T 2;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 1)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 C8 HS

C1 − 1
4

1
2

1
2 0 1

C3
1
2 − 1

12
1
4

1
2 1

C5
1
2

1
4 − 1

12
1
2 1

C8 0 1
2

1
2 − 1

2 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E2

4 E1
5 E1

6 E1
7 C̃1 C̃3 C̃5 C̃8 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 1 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 0 0 1 0 0 1 0 0 0 1 0 0 0 −2 0 0 1

C̃5 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −2 0 1

C̃8 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 2

2 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 1

2 0 0 0 0 0 0 0 1
2

1
2

1
2 0 0 0 0 1

2

0 0 0 3
8

1
2

5
8

1
2

3
4

1
2

1
4

1
8

7
8

1
2 0 1

4
3
4 0 1

2

)
,

(
0 0 1

2 0

0 0 5
8

1
8

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

3
8

)
, BN =

(
1
2

1
2

1
2

5
8

)
; QM =

(
1

2
,
3

8

)
, QN =

(
3

2
,
13

8

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.30. Family №2.30. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ x−1y + x−1z + xy−1z−1 + z−1 + y−1

(see [CP18, Family №2.30]). It is a Minkowski polynomial №23 (see [Akh+12, Appendix B: bucket 4]).
The pencil S is defined by the equation

X2Y Z + Y 2ZT + Y Z2T +X2T 2 +XY T 2 +XZT 2 = λXY ZT.

Remark B.15. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(X,Y+Z), C7 = C(Y,X+Z), C8 = C(Z,X+Y ).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 −1

1 0 0 2 0 0 1 0 −1

0 1 0 0 2 0 0 1 −1

0 0 2 1 1 0 0 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C5]

[C6]

[C7]

[C8]

 =


0 0 −2 −1 1

−1 −1 −1 0 1

−1 0 0 −2 1

0 −1 4 2 −1

 ·


[C1]

[C2]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term X · (X + Y + Z);
P2 = P(X,Y,T ): type A4 with the quadratic term Y · T ;
P3 = P(X,Z,T ): type A4 with the quadratic term Z · T ;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X2 − T (λX − Y − Z).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 HS

C1 − 9
20

3
4

1
5

3
5 1

C2
3
4 − 9

20
1
5 0 1

C3
1
5

1
5

1
10

2
5 1

C4
3
5 0 2

5 − 3
10 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E4
2 E1

3 E2
3 E3

3 E4
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0

E3
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 −2 0 1

C̃4 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 2

2 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 1

2 0 1
2 0 1

2 0 1
2

1
2 0 1

2
1
2 0 0 0

1
2 0 1

2
1
3 0 2

3
1
3

2
3 0 1

3
2
3

1
2

1
2

2
3

1
3 0 0 1

2

)
,

(
0 0 1

2 0

0 0 2
3

1
6

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

1
3

)
, BN =

(
1
2

1
2

1
2

2
3

)
; QM =

(
1

2
,
1

3

)
, QN =

(
3

2
,
5

3

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.31. Family №2.31. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xy−1 + x−1 + y−1z−1

(see [CP18, Family №2.31]). It is a Minkowski polynomial №21 (see [Akh+12, Appendix B: bucket 15]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2ZT + Y ZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(T,X+Y+Z), C7 = C(Y,XZ+T 2).



100 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 −1

1 0 0 1 0 0 1 −1

0 1 0 0 3 0 0 −1

0 0 1 1 1 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C6]

[C7]

 =


−2 0 3 0

0 0 −3 1

−1 −1 −1 1

2 −1 −3 1

 ·


[C3]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A5 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5 HS

C3
2
15

1
6

1
5 1

C4
1
6 − 1

2
1
3 1

C5
1
5

1
3

2
15 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E2
2 E3

2 E4
2 E1

3 E2
3 E1

4 E1
5 E2

5 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃3 1 0 0 0 0 1 0 0 0 0 0 1 0 0 −2 0 0 1

C̃4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 1

1 6

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
7
13

4
13

1
13

11
13

8
13

6
13

2
13

11
13

7
13

8
13 0 5

13
2
13

1
13

10
13

5
13

3
13

2
13

)
,
(
0 0 7

13
1
13

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

6
13

)
, BN =

(
7
13

)
; QM =

(
6

13

)
, QN =

(
20

13

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.32. Family №2.32. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1 + x−1 + x−1y−1z−1

(see [CP18, Family №2.32]). It is a Minkowski polynomial №22 (see [Akh+12, Appendix B: bucket 24]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZT 2 + Y ZT 2 + T 4 = λXY ZT.

Remark B.16. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(T,X+Y+Z), C5 = C(X,Y Z+T 2), C6 = C(Y,XZ+T 2).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


2 0 0 0 1 0 −1

0 2 0 0 0 1 −1

0 0 4 0 0 0 −1

1 1 1 1 0 0 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C4]

[C5]

[C6]

[HS ]

 =


−1 −1 3

−2 0 4

0 −2 4

0 0 4

 ·

[C1]

[C2]

[C3]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P5 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P6 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y + Z − λT ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3

C1
1
20

1
5

1
4

C2
1
5

1
20

1
4

C3
1
4

1
4

1
4

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E1
4 E1

5 E1
6 E2

6 E3
6 C̃1 C̃2 C̃3

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1

E2
6 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E3
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0

C̃2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 −2 0

C̃3 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
2 4

4 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 0 0 0 0 0 0 1

2 0 1
2 0 1

2
1
2 0 1

2 0 0 0

0 1
3

2
3 0 1

2
1
3

1
6 0 2

3
1
3

5
6

2
3

1
2 0 1

2
2
3

1
3 0

)
,

(
0 0 1

2 0

0 0 2
3

1
6

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 1
6

)
, BN =

(
1
2 0

0 5
6

)
; QM =

(
3

2
,
1

6

)
, QN =

(
1

2
,
11

6

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.33. Family №2.33. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + x−1y−12

(see [CP18, Family №2.33]). It is a Minkowski polynomial №7 (see [Akh+12, Appendix B: bucket 2]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 3 0 0 0 0 −1

0 0 1 3 0 0 −1

2 0 1 0 1 0 −1

0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C3]

[C5]

[C6]

 =


−3 0 1

0 −3 1

6 3 −2

−7 −4 3

 ·

 [C2]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A6 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · (Z + T );
P4 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − λT );
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C2 C4 HS

C2
4
21

1
3 1

C4
1
3

1
12 1

HS 1 1 4

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 105

• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E1
3 E2

3 E3
3 E1

4 E2
4 E1

5 E2
5 C̃2 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E6
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 1 0

C̃2 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 1

C̃4 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
7
9

2
9 0 2

3
1
3 0 2

3
1
3

2
3

1
3 0 8

9
4
9

5
9

1
9

1
3

2
3 0

)
,
(
0 0 8

9
1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
7
9

)
, BN =

(
2
9

)
; QM =

(
16

9

)
, QN =

(
2

9

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.34. Family №2.34. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1 + y−1z−1

(see [CP18, Family №2.34]). It is a Minkowski polynomial №5 (see [Akh+12, Appendix B: bucket 10]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y ZT 2 +XT 3 = λXY ZT.

Remark B.17. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 −1

1 0 0 3 0 0 −1

0 1 0 0 3 0 −1

0 0 1 1 1 1 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C6]

[HS ]

 =


−2 0 3

−2 3 0

−3 2 2

−2 3 3

 ·

[C3]

[C4]

[C5]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − λT );
P6 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − λT ).

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5

C3
1
10

1
5

1
5

C4
1
5

2
15

1
3

C5
1
5

1
3

2
15

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E1
4 E1

5 E2
5 E1

6 E2
6 C̃3 C̃4 C̃5

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0

E2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 1

C̃3 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0

C̃4 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 −2 0

C̃5 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
3

2
3 0 1

3
2
3

1
3 0 2

3
8
9

1
9 0 1

9
5
9

4
9

8
9 0 2

3
1
3

)
,
(
0 0 7

9
1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
2
9

)
, BN =

(
7
9

)
; QM =

(
2

9

)
, QN =

(
16

9

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.35. Family №2.35. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xy−1z−1 + x−1

(see [CP18, Family №2.35]). It is a Minkowski polynomial №6 (see [Akh+12, Appendix B: bucket 7]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2T 2 + Y ZT 2 = λXY ZT.

Remark B.18. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 −1

2 0 0 2 0 0 −1

0 2 0 0 2 0 −1

0 0 1 1 1 1 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations.
[C4] + [C5] + [C6]

2[C5]

2[C6]

[HS ]

 =


1 1 1

1 −1 2

2 2 −2

1 1 2

 ·

[C1]

[C2]

[C3]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term X2 + Y Z;
P2 = P(X,Y,T ): type A5 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A5 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P6 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT )− T 2;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT )− T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6

C1 − 1
6

1
2

1
3

2
3 0 0

C2
1
2 − 1

6
1
3 0 2

3 0

C3
1
3

1
3

1
6

1
6

1
6

1
2

C4
2
3 0 1

6 − 1
6

1
2

1
2

C5 0 2
3

1
6

1
2 − 1

6
1
2

C6 0 0 1
2

1
2

1
2 − 1

2

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E4
2 E5

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 E1
5 E1

6 E1
7 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E5
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 1 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 1

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 1

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 1

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0

C̃2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 0

C̃3 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 0

C̃4 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 −2 0 0

C̃5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 −2 0

C̃6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 −2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:[E1
7 ]

[C̃2]

[C̃5]


T

=

 2 −3 0 3 6 5 −5 −4 −3 −2 −1 2 −4 1 4 −6 4 −2

0 −1 0 1 2 2 −2 −2 −2 −2 −1 1 −1 1 1 −2 2 0

−1 3 1 −1 −3 −3 4 3 2 1 0 −2 3 −1 −2 5 −3 1

 ·

(
[E1

1 ] [E1
2 ] [E2

2 ] [E3
2 ] [E4

2 ] [E5
2 ] [E1

3 ] [E2
3 ] [E3

3 ]

[E4
3 ] [E5

3 ] [E1
4 ] [E1

5 ] [E1
6 ] [C̃1] [C̃3] [C̃4] [C̃6]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
−2 0

0 4

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2 0 1
2 0 1

2
1
2 0 1

2 0 1
2

1
2 0 0 0 0 0 0

1
2

1
2

1
2

1
2

1
2

1
2

3
4 0 1

4
1
2

3
4

1
4

3
4

1
4 0 1

2
1
2 0

)
,

(
0 0 1

2 0

0 0 0 1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2 0

0 3
4

)
, BN =

(
1
2 0

0 1
4

)
; QM =

(
1

2
,
7

4

)
, QN =

(
3

2
,
1

4

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

B.36. Family №2.36. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x2y−1z−1 + x−1
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(see [CP18, Family №2.36]). It is a Minkowski polynomial №8 (see [Akh+12, Appendix B: bucket 6]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X3T + Y ZT 2 = λXY ZT.

Remark B.19. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 −1

3 0 0 1 0 0 −1

0 3 0 0 1 0 −1

0 0 1 1 1 1 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C4]

[C5]

[C6]

 =


−1 −2 1

−3 0 1

3 6 −2

0 −7 2

 ·

 [C1]

[C3]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term Y · Z;
P2 = P(X,Y,T ): type A6 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A6 with the quadratic term X · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 HS

C1
2
21

2
7 1

C3
2
7

3
14 1

HS 1 1 4

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E1
3 E2

3 E3
3 E4

3 E5
3 E6

3 E1
4 C̃1 C̃3 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0

E6
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E6
3 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0

C̃1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 1

C̃3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
2 5

5 10

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
2
5

1
5

2
5

1
5 0 4

5
3
5

4
5

4
5 0 1

5
2
5

3
5

4
5

4
5

3
5

3
5

1
5

)
,
(
0 0 0 1

5

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
3
5

)
, BN =

(
2
5

)
; QM =

(
8

5

)
, QN =

(
2

5

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix C. Dolgachev–Nikulin duality for Fano threefolds: rank 3

C.1. Family №3.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + 3z + x−1yz + y−1z2 + x−1z2 + xz−1 + yz−1 + 2xy−1 + 2x−1y+

3y−1z + 3x−1z + xy−1z−1 + 3z−1 + x−1yz−1 + 3y−1 + 3x−1 + y−1z−1 + x−1z−1

(see [CP18, Family №3.1]). It is a Minkowski polynomial №3874 (see [Akh+12, Appendix B: bucket 154]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 + 3XY Z2 + Y 2Z2 +XZ3 + Y Z3 +X2Y T +XY 2T + 2X2ZT + 2Y 2ZT+

3XZ2T + 3Y Z2T +X2T 2 + 3XY T 2 + Y 2T 2 + 3XZT 2 + 3Y ZT 2 +XT 3 + Y T 3 = λXY ZT.

Remark C.1. Note that the equation is invariant under the permutations (X,Y ) 7→ (Y,X), (Z, T ) 7→ (T,Z).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−6 = S(Z+T ) + S(X+Y+Z+T ) + S((X+Y )(Z+T )+XY ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Z,T ), C3 = C(X,Z+T ), C4 = C(Y,Z+T ), C5 = C(X,Y+Z+T ),

C6 = C(Y,X+Z+T ), C7 = C(Z,X+Y+T ), C8 = C(T,X+Y+Z), C9 = C(Z,XY+T (X+Y )), C10 = C(T,XY+Z(X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(Z+T )]− [HS ]

[Sk · S(X+Y+Z+T )]− [HS ]


=



1 0 2 0 1 0 0 0 0 0 −1

1 0 0 2 0 1 0 0 0 0 −1

0 1 0 0 0 0 1 0 1 0 −1

0 1 0 0 0 0 0 1 0 1 −1

0 2 1 1 0 0 0 0 0 0 −1

0 0 0 0 1 1 1 1 0 0 −1


·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:

[C4]

[C5]

[C6]

[C8]

[C9]

[C10]


=



0 −2 −1 0 1

−1 0 −2 0 1

−1 4 2 0 −1

2 −4 0 −1 1

0 −1 0 −1 1

−2 3 0 1 0


·


[C1]

[C2]

[C3]

[C7]

[HS ]

 .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C7 HS

C1 − 1
2 0 1

2 0 1

C2 0 0 1
2

1
2 1

C3
1
2

1
2 − 1

6 0 1

C7 0 1
2 0 − 3

2 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Z,T ): type A3 with the quadratic term (Z + T ) · (X + Z + T );
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P2 = P(Y,Z,T ): type A3 with the quadratic term (Z + T ) · (Y + Z + T );
P3 = P(X,Y,Z+T ): type A5 with the quadratic term (λ+ 6)X · Y ;
P4 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z + T )− (λ+ 6)ZT .

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 C̃1 C̃2 C̃3 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 1 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 1 0

C̃1 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0 0 1

C̃2 1 0 0 1 0 0 0 0 0 0 0 1 0 −2 0 0 1

C̃3 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 2

2 0 2

2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2 0 1

2
1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 1

2 0 0 0 0 1
2 0 1

2 0 0
1
4

1
2

3
4

3
4

1
2

1
4

1
4

1
2

3
4

1
2

1
4

3
4

1
2 0 0 1

2
1
4

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 − 1
4 − 1

4
1
4

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2 0

1
2 0 0

0 0 1
4

 , BN =

0 1
2 0

1
2 0 0

0 0 3
4

 ; QM =

(
0, 0,

1

4

)
, QN =

(
0, 0,

7

4

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.
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C.2. Family №3.2. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x2y−1z−1 + 3xz−1 + 3yz−1 + x−1y2z−1 + 3xy−1+

3x−1y + 3y−1z + 3x−1z + x−1y−1z2 + y−1 + x−1 + x−1y−1z

(see [CP18, Family №3.2]). It is a Minkowski polynomial №2570 (see [Akh+12, Appendix B: bucket 157]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X3T + 3X2Y T + 3XY 2T + Y 3T + 3X2ZT+

3Y 2ZT + 3XZ2T + 3Y Z2T + Z3T +XZT 2 + Y ZT 2 + Z2T 2 = λXY ZT.

Remark C.2. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−6 = S(X+Y+Z) + S(T ((X+Y+Z)2+ZT )+XY Z).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(X,Y+Z), C5 = C(Y,X+Z),

C6 = C(Z,X+Y ), C7 = C(T,X+Y+Z), C8 = C(X,(Y+Z)2+ZT ), C9 = C(Y,(X+Z)2+ZT ).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y+Z)]− [HS ]

 =


1 0 0 1 0 0 0 1 0 −1

0 1 0 0 1 0 0 0 1 −1

0 0 1 0 0 3 0 0 0 −1

1 1 1 0 0 0 1 0 0 −1

0 0 0 1 1 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C5]

[C7]

[C8]

[C9]

 =


0 0 0 −3 1

1 1 −1 −4 1

−1 −1 0 3 0

−1 0 −1 0 1

−1 −2 1 4 0

 ·


[C1]

[C2]

[C4]

[C6]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A5 with the quadratic term Z · (X + Y + Z);
P2 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 6)T );
P3 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 6)T );
P4 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y + Z − (λ+ 6)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C6 HS

C1 − 4
3 1 2

3 0 1

C2 1 − 4
3 0 0 1

C4
2
3 0 − 1

2
1
3 1

C6 0 0 1
3

1
12 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.



MODULARITY OF LANDAU–GINZBURG MODELS 115

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E2
2 E1

3 E2
3 E1

4 E2
4 E3

4 C̃1 C̃2 C̃4 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 1 0 0

E2
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

C̃1 0 0 0 0 0 1 0 0 0 0 0 0 −2 1 0 0 1

C̃2 0 0 0 0 0 0 0 1 0 0 0 0 1 −2 0 0 1

C̃4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 1

C̃6 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 1

2 0 2

1 2 −2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
3
16

1
4

5
16

3
8

3
16

5
8

13
16

3
8

3
16

11
16

1
8

9
16

5
16

9
16

1
8

1
4

7
16

)
,
(
0 0 − 5

8 − 1
16

1
8

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
16

)
, BN =

(
15
16

)
; QM =

(
1

16

)
, QN =

(
31

16

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.3. Family №3.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x2z−1 + 2x+ y + z + x−1yz + 2xz−1 + xy−1 + x−1y + x−1z + z−1 + 2y−1 + 2x−1 + x−1y−1

(see [CP18, Family №3.3]). It is a Minkowski polynomial №1805 (see [Akh+12, Appendix B: bucket 135]).
The pencil S is defined by the equation

X3Y + 2X2Y Z +XY 2Z +XY Z2 + Y 2Z2 + 2X2Y T +X2ZT+

Y 2ZT + Y Z2T +XY T 2 + 2XZT 2 + 2Y ZT 2 + ZT 3 = λXY ZT.
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Remark C.3. Note that the equation is invariant under the permutation (X,Y, Z, T ) 7→ (T,Z, Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(X,Y+T ), C5 = C(Y,X+T ),

C6 = C(Z,X+T ), C7 = C(T,X+Z), C8 = C(X,Y (Z+T )+T 2), C9 = C(T,X2+Z(X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 1 0 0 0 1 0 −1

0 1 1 0 2 0 0 0 0 −1

1 1 0 0 0 2 0 0 0 −1

0 0 1 0 0 0 1 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C3]

[C8]

[C9]

 =


−1 0 0 −2 0 1

1 0 −2 2 0 0

−1 −1 0 0 0 1

−1 0 2 −2 −1 1

 ·



[C1]

[C4]

[C5]

[C6]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term Y · (X + Y + T );
P2 = P(X,Z,T ): type A4 with the quadratic term Z · (X + Z + T );
P3 = P(Y,Z,X+T ): type A3 with the quadratic term (λ+ 4)Y · Z.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C4 C5 C6 C7 HS

C1 − 6
5 1 0 3

5
1
5 1

C4 1 − 6
5

2
5 0 0 1

C5 0 2
5 − 1

20
1
4 0 1

C6
3
5 0 1

4 − 1
20

2
5 1

C7
1
5 0 0 2

5 − 6
5 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 117

• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E3
3 C̃1 C̃4 C̃5 C̃6 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1 0 0

C̃1 0 0 0 0 1 0 0 0 0 0 0 −2 1 0 0 0 1

C̃4 1 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1

C̃5 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃6 0 0 0 0 0 1 0 0 0 0 1 0 0 0 −2 0 1

C̃7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 3

2 0 3

3 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
3
7

15
28

9
14

23
28

1
28

3
14

3
4

2
7

6
7

11
14

5
7

6
7

9
28

13
14

9
14

23
28

5
14

)
,
(
0 0 − 17

28 − 3
28

1
14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
28

)
, BN =

(
27
28

)
; QM =

(
1

28

)
, QN =

(
55

28

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.4. Family №3.4. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + 2z + x−1yz + 2xy−1 + 2x−1y + x−1z + xy−1z−1 + 2z−1 + x−1yz−1 + 2x−1 + x−1z−1

(see [CP18, Family №3.4]). It is a Minkowski polynomial №1725 (see [Akh+12, Appendix B: bucket 142]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 + 2XY Z2 + Y 2Z2 + 2X2ZT + 2Y 2ZT+

Y Z2T +X2T 2 + 2XY T 2 + Y 2T 2 + 2Y ZT 2 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(Z,T ), C3 = C(X,Y+T ), C4 = C(X,Z+T ), C5 = C(Y,Z+T ),

C6 = C(T,X+Y ), C7 = C(Z,Y T+(X+Y )2), C8 = C(T,XY+Z(X+Y )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 1 2 0 0 0 0 −1

2 0 0 0 2 0 0 0 −1

0 2 0 0 0 0 1 0 −1

0 1 0 0 0 1 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C7]

[C8]

[HS ]

 =


1 0 −2 2 0

2 −2 0 2 0

2 −1 0 2 −1

2 0 0 2 0

 ·


[C1]

[C2]

[C4]

[C5]

[C6]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A1 with the quadratic term Y T + (X + Y )2;
P2 = P(X,Z,T ): type A1 with the quadratic term XZ + (Z + T )2;
P3 = P(Y,Z,T ): type A1 with the quadratic term Y Z + (Z + T )2;
P4 = P(X,Y,Z+T ): type A5 with the quadratic term (λ+ 4)X · Y ;
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y − (λ+ 4)T );
P6 = P(X,Z+T,Y−(λ+4)T ): type A1 with the quadratic term

(λ+ 4)((λ+ 5)(XT + (Z + T )2)−X(X + Y + T ));

P7 = P(Y,Z+T,X−(λ+4)T ): type A1 with the quadratic term

(λ+ 4)((λ+ 4)(Y T + (Z + T )2)− Y (X + Y )).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C5 C6

C1 − 1
6 0 1

3
2
3

1
2

C2 0 − 1
3

1
2

1
2

1
3

C4
1
3

1
2 − 1

6
1
6 0

C5
2
3

1
2

1
6 − 1

6 0

C6
1
2

1
3 0 0 − 5

6

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 119

• E1
1 E1

2 E1
3 E1

4 E2
4 E3

4 E4
4 E5

4 E1
5 E2

5 E1
6 E1

7 C̃1 C̃2 C̃4 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

E1
2 0 −2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E1
3 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 1 0

E1
4 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
4 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E4
4 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0 0

E5
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 0 0 0 0 1 0 0 0 0 0 −2 0 0 0 0

C̃2 0 1 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 0

C̃4 0 1 0 1 0 0 0 0 0 0 1 0 0 0 −2 0 0

C̃5 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 −2 0

C̃6 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 2 0

2 0 4

0 4 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:0 1
2 0 0 0 0 0 1

2
1
2 0 1

2
1
2

1
2 0 0 0 1

2

0 1
2

1
2 0 0 0 0 0 0 0 1

2
1
2 0 0 0 0 0

0 5
6

1
2

1
6

1
3

1
2

2
3

1
2 0 1

3 0 2
3

1
3

2
3 0 1

3
2
3

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 − 1
3 − 1

3
1
6

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

 1
2

1
2 0

1
2 0 0

0 0 1
6

 , BN =

 1
2

1
2 0

1
2 0 0

0 0 5
6

 ; QM =

(
1

2
, 0,

1

6

)
, QN =

(
3

2
, 0,

11

6

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.5. Family №3.5. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x2y−1 + 3x+ 3y + x−1y2 + z + x−1yz + xz−1 + yz−1 + 2xy−1 + 2x−1y + z−1 + y−1 + x−1

(see [CP18, Family №3.5]). It is a Minkowski polynomial №1820 (see [Akh+12, Appendix B: bucket 138]).
The pencil S is defined by the equation

X3Z + 3X2Y Z + 3XY 2Z + Y 3Z +XY Z2 + Y 2Z2 +X2Y T+

XY 2T + 2X2ZT + 2Y 2ZT +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(Y,Z), C4 = C(Z,T ), C5 = C(Y,X+T ),

C6 = C(T,X+Y ), C7 = C(Z,X+Y+T ), C8 = C(X,Y Z+(Y+T )2), C9 = C(T,Y Z+(X+Y )2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 0 1 0 −1

1 0 1 0 2 0 0 0 0 −1

0 1 1 1 0 0 1 0 0 −1

0 0 0 1 0 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C3]

[C7]

[C8]

[C9]

 =


−1 0 0 −2 0 1

1 −1 −1 2 0 0

−1 −1 0 0 0 1

0 0 −1 0 −1 1

 ·



[C1]

[C2]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY + Z(X + Y );
P2 = P(X,Y,T ): type A4 with the quadratic term Y · (X + Y );
P3 = P(X,Z,Y+T ): type A1 with the quadratic term X(X + Y − (λ+ 4)Z + T )− Z2;
P4 = P(Y,Z,X+T ): type A2 with the quadratic term Y · (X + Y − (λ+ 4)Z + T );
P5 = P(Z,T,X+Y ): type A2 with the quadratic term T · (X + Y − (λ+ 4)Z + T );
P6 = P(Y,X+T,Z−(λ+4)T ): type A1.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C5 C6 HS

C1 − 3
10

1
2 0 2

5
3
5 1

C2
1
2 −1 1 0 0 1

C4 0 1 − 4
3 0 2

3 1

C5
2
5 0 0 − 1

30
1
5 1

C6
3
5 0 2

3
1
5 − 8

15 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E4
2 E1

3 E1
4 E2

4 E1
5 E2

5 E1
6 C̃1 C̃2 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0 0

E4
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 0 1 0 0 0 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 1 0

E2
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃2 1 0 0 0 0 1 0 0 0 0 0 0 −2 1 0 0 1

C̃4 0 0 0 0 0 0 0 0 1 0 0 0 1 −2 0 0 1

C̃5 0 1 0 0 0 0 1 0 0 0 1 0 0 0 −2 0 1

C̃6 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 2 5

2 2 3

5 3 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
5
28

1
4

4
7

25
28 0 4

7
2
7

9
14

6
7

3
7

27
28

3
14

1
7

5
28

13
14

3
28

5
14

)
,
(
0 0 − 5

28 − 1
28

1
7

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

9
28

)
, BN =

(
19
28

)
; QM =

(
9

28

)
, QN =

(
47

28

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.6. Family №3.6. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ 2y + x−1y2 + z + x−1yz + xz−1 + yz−1 + 3x−1y + x−1z + z−1 + y−1 + 3x−1 + x−1y−1

(see [CP18, Family №3.6]). It is a Minkowski polynomial №1900 (see [Akh+12, Appendix B: bucket 117]).
The pencil S is defined by the equation

X2Y Z + 2XY 2Z + Y 3Z +XY Z2 + Y 2Z2 +X2Y T +XY 2T+

3Y 2ZT + Y Z2T +XY T 2 +XZT 2 + 3Y ZT 2 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−3 = S(X+Y+T ) + S(XY (Z+T )+Z(Y+T )2+Y Z2).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+T ),

C6 = C(Y,X+T ), C7 = C(T,X+Y ), C8 = C(Z,X+Y+T ), C9 = C(T,X+Y+Z), C10 = C(X,Y Z+(Y+T )2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y+T )]− [HS ]

 =


1 0 0 0 1 0 0 0 0 1 −1

0 1 2 0 0 1 0 0 0 0 −1

1 1 0 1 0 0 0 1 0 0 −1

0 0 1 1 0 0 1 0 1 0 −1

0 0 0 0 1 1 1 1 0 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C6]

[C7]

[C8]

[C9]

[C10]

 =


0 −1 −2 0 0 1

1 2 2 1 −1 −1

−1 −1 0 −1 0 1

−1 −2 −3 −2 1 2

−1 0 0 0 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term Y · (X + Y + T );
P2 = P(Y,Z,T ): type A2 with the quadratic term Y · (Z + T );
P3 = P(X,Z,Y+T ): type A2 with the quadratic term X · (X + Y − (λ+ 3)Z + T );
P4 = P(Y,Z,X+T ): type A1 with the quadratic term (Y − Z)(X + Y + T )− (λ+ 3)Y Z;
P5 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − (λ+ 2)T ) + T 2;
P6 = P(Z,T,X+Y ): type A2 with the quadratic term T · (X + Y − (λ+ 3)Z + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 4
3 1 0 1 2

3 1

C2 1 − 5
6

2
3

1
3 0 1

C3 0 2
3 − 1

12
1
3

1
4 1

C4 1 1
3

1
3 − 2

3 0 1

C5
2
3 0 1

4 0 − 7
12 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E1

4 E1
5 E1

6 E2
6 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 1 1 0 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0 1 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
6 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

C̃1 0 0 0 0 0 1 0 0 0 0 0 −2 1 0 1 0 1

C̃2 0 0 0 1 0 0 0 1 0 0 0 1 −2 0 0 0 1

C̃3 1 0 0 1 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃4 0 0 0 0 1 0 0 0 0 1 0 1 0 0 −2 0 1

C̃5 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 0 4

1 4 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
9
32

5
8

31
32

13
32

9
16

7
16

23
32

5
32

31
32

13
16

29
32

27
32

5
16

15
16

23
32

5
16

7
32

)
,
(
0 0 1

8 − 1
32

1
4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
25
32

)
, BN =

(
7
32

)
; QM =

(
57

32

)
, QN =

(
7

32

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.7. Family №3.7. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + x−1y + y−1z + x−1z + z−1 + x−1yz−1 + y−1 + 2x−1 + x−1y−1z + x−1z−1 + x−1y−1

(see [CP18, Family №3.7]). It is a Minkowski polynomial №2355 (see [Akh+12, Appendix B: bucket 103]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T + Y 2ZT +XZ2T + Y Z2T+

XY T 2 + Y 2T 2 +XZT 2 + 2Y ZT 2 + Z2T 2 + Y T 3 + ZT 3 = λXY ZT.

Remark C.4. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−3 = S(X+T ) + S(XY Z+(Y+Z)(Y+T )(Z+T )).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+Z), C6 = C(X,Y+T ),

C7 = C(X,Z+T ), C8 = C(Y,X+T ), C9 = C(Y,Z+T ), C10 = C(Z,X+T ), C11 = C(Z,Y+T ), C12 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 0 0 0 1 1 1 0 0 0 0 0 −1

0 1 1 0 0 0 0 1 1 0 0 0 −1

0 1 0 1 0 0 0 0 0 1 1 0 −1

1 0 1 1 0 0 0 0 0 0 0 1 −1

2 0 0 0 0 0 0 1 0 1 0 0 −1

 ·


[C1]

· · ·
[C12]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C9]

[C10]

[C11]

[C12]

 =


−1 0 0 0 −1 −1 0 1

0 −1 −1 0 0 0 −1 1

−2 0 0 0 0 0 −1 1

2 −1 0 −1 0 0 1 0

−1 0 −1 −1 0 0 0 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[C8]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term (X + T ) · (Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term (X + T ) · (Z + T );
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z)− (λ+ 3)XT ;
P5 = P(Y,Z,X+T ): type A1 with the quadratic term (X + T )(Y + Z) + (λ+ 3)Y Z.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6 C8 HS

C1 − 1
6 0 1

3
1
3

1
2

1
3

2
3 1

C2 0 − 1
2

1
2

1
2 1 0 1

2 1

C3
1
3

1
2 − 7

12
1
4 0 2

3
1
3 1

C4
1
3

1
2

1
4 − 7

12 0 0 0 1

C5
1
2 1 0 0 − 3

2 1 0 1

C6
1
3 0 2

3 0 1 − 4
3

1
3 1

C8
2
3

1
2

1
3 0 0 1

3 − 5
6 1

HS 1 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 8.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
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The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E1
3 E2

3 E3
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 C̃8 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

E1
2 0 0 −2 1 0 0 0 0 0 1 0 0 0 0 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 1 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 1 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 1 0

C̃1 1 0 1 0 0 0 0 1 0 −2 0 0 0 0 0 0 1

C̃2 0 0 0 0 0 1 0 0 1 0 −2 0 0 1 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 1

C̃4 0 0 0 1 0 0 1 0 0 0 0 0 −2 0 0 0 1

C̃5 0 0 0 0 0 0 0 1 0 0 1 0 0 −2 1 0 1

C̃6 0 1 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 1

C̃8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 3 3

3 2 4

3 4 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
3

1
3

2
3

1
3 0 0 0 1

3
2
3 0 0 0 0 2

3
1
3

1
3

2
3

5
12

1
6

3
4

1
6

5
6

3
4

1
6

2
3

5
12

1
3

1
2

11
12

7
12 0 0 1

3
5
6

)
,

(
0 0 − 1

3
1
3

1
3

0 0 − 1
6 − 5

12
1
12

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 2

3
2
3

7
12

)
, BN =

(
0 1

3
1
3

5
12

)
; QM =

(
0,

19

12

)
, QN =

(
0,

5

12

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.8. Family №3.8. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1z + z + xy−1 + x−1y + y−1z + z−1 + 2y−1 + 2x−1 + x−1z−1 + x−1y−1

(see [CP18, Family №3.8]). It is a Minkowski polynomial №1505 (see [Akh+12, Appendix B: bucket 112]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2Z2 +XY Z2 +X2ZT + Y 2ZT+

XZ2T +XY T 2 + 2XZT 2 + 2Y ZT 2 + Y T 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Z,T ), C4 = C(Y,X+T ), C5 = C(Z,X+T ),

C6 = C(T,X+Y ), C7 = C(T,Y+Z), C8 = C(Y,T (X+T )+XZ), C9 = C(X,Z(Y+T )2+Y T 2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 0 0 0 0 0 1 −1

0 1 0 1 0 0 0 1 0 −1

0 1 2 0 1 0 0 0 0 −1

1 0 1 0 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C5]

[C6]

[C8]

[C9]

 =


0 −1 −2 0 0 1

−1 0 −1 0 −1 1

0 −1 0 −1 0 1

−1 0 0 0 0 1

 ·



[C1]

[C2]

[C3]

[C4]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term X · (X + Y + T );
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + Z + T );
P4 = P(Y,Z,X+T ): type A2 with the quadratic term Y · (X + (λ+ 3)Z + T );
P5 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y − (λ+ 2)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C7 HS

C1 − 1
2 0 1

4
1
4 1 1

C2 0 − 2
3

2
3

2
3

1
3 1

C3
1
4

2
3 − 1

12 0 1
3 1

C4
1
4

2
3 0 − 7

12 0 1

C7 1 1
3

1
3 0 − 4

3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E2

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 1 1 0 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 1 1

C̃2 0 0 0 0 0 0 1 0 1 0 0 0 −2 0 0 0 1

C̃3 0 0 0 0 0 1 1 0 0 0 1 0 0 −2 0 0 1

C̃4 0 0 1 0 0 0 0 0 1 0 0 0 0 0 −2 0 1

C̃7 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on the
surface Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

2 0 5

0 −2 2

5 2 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
27
34

16
17

3
34

13
34

2
17

29
34

5
34

15
34 0 1

2
27
34

11
17

9
34

10
17

4
17

25
34

13
34

)
,
(
0 0 − 11

17 − 15
34

1
17

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
34

)
, BN =

(
33
34

)
; QM =

(
1

34

)
, QN =

(
67

34

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.9. Family №3.9. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x2y−1z−1 + x−1y + x−1z + 2xy−1z−1 + x−1 + y−1z−1

(see [CP18, Family №3.9]). It is a Minkowski polynomial №374 (see [Akh+12, Appendix B: bucket 22]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X3T + Y 2ZT + Y Z2T + 2X2T 2 + Y ZT 2 +XT 3 = λXY ZT.

Remark C.5. Note that the equation is invariant under the permutations (X,T ) 7→ (T,X), (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−2 = S(X+T ) + S(XT (X+T )+Y Z(X+Y+Z+T )).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(Y,X+T ), C7 = C(Z,X+T ), C8 = C(X,Y+Z+T ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 1 1 0 0 0 0 1 0 −1

1 0 0 1 0 2 0 0 0 −1

0 1 0 0 1 0 2 0 0 −1

0 0 1 1 1 0 0 0 1 −1

0 0 2 0 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C4]

[C5]

[C7]

[C8]

[C9]

 =


−1 0 0 −2 1

0 −1 4 2 −1

0 0 −2 −1 1

−1 −1 −1 0 1

1 1 −5 0 1

 ·


[C1]

[C2]

[C3]

[C6]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A5 with the quadratic term Y · (X + T );
P2 = P(X,Z,T ): type A5 with the quadratic term Z · (X + T );
P3 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z + T )− (λ+ 2)XT ;
P4 = P(Y,Z,X+T ): type A1 with the quadratic term (X + T )2 − (λ+ 2)Y Z.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C6 HS

C1 − 7
6 1 1

6
2
3 1

C2 1 − 7
6

1
6 0 1

C3
1
6

1
6

1
6

1
3 1

C6
2
3 0 1

3 − 1
6 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E2
2 E3

2 E4
2 E5

2 E1
3 E1

4 C̃1 C̃2 C̃3 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1

C̃2 0 0 0 0 0 1 0 0 0 0 0 0 1 −2 0 0 1

C̃3 0 0 0 0 1 0 0 0 0 1 1 0 0 0 −2 0 1

C̃6 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

4 8 4

8 10 5

4 5 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
11
12

1
6

7
12 0 5

12
11
12

1
2

1
12

2
3

1
4

11
12

5
12

2
3

1
3

5
6

5
6

1
12

)
,
(
0 0 1

12
1
3 0

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

5
12

)
, BN =

(
7
12

)
; QM =

(
5

12

)
, QN =

(
19

12

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.10. Family №3.10. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ y + z + xz−1 + y−1z + x−1z + z−1 + y−1 + x−1 + x−1y−1z

(see [CP18, Family №3.10]). It is a Minkowski polynomial №1113 (see [Akh+12, Appendix B: bucket 99]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z +XY 2Z +XY Z2 +X2Y T +XZ2T+

Y Z2T +XY T 2 +XZT 2 + Y ZT 2 + Z2T 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(T,X+Z),

C6 = C(T,Y+Z), C7 = C(X,ZT+Y (Z+T )), C8 = C(Y,ZT+X(Z+T )), C9 = C(Z,T 2+X(Y+T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 1 0 0 −1

0 0 1 1 0 0 0 1 0 −1

1 0 1 0 0 0 0 0 1 −1

0 1 0 1 1 1 0 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


0 −1 0 −1 −1 1

−1 −1 0 0 0 1

0 0 −1 −1 0 1

−1 0 −1 0 0 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term (X + Z) · (Y + Z);
P2 = P(X,Y,T ): type A2 with the quadratic term (X + T ) · (Y + T );
P3 = P(X,Z,T ): type A4 with the quadratic term X · (X + Z);
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · (Y + Z + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 2
15

2
5

1
3 0 3

5 1

C2
2
5 − 8

15 0 1
3

1
5 1

C3
1
3 0 − 7

12
1
4 0 1

C4 0 1
3

1
4 − 7

12 1 1

C5
3
5

1
5 0 1 − 6

5 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E1
3 E2

3 E3
3 E4

3 E1
4 E2

4 E3
4 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1 0 0

C̃1 1 0 0 0 0 1 0 0 0 0 0 −2 0 0 0 0 1

C̃2 0 0 1 0 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 1 0 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃4 0 0 0 1 0 0 0 0 0 0 1 0 0 0 −2 1 1

C̃5 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 2

0 −2 2

2 2 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 0

0 1
2 0 0 0 0 1

2 0 1
2 0 1

2
1
2 0 0 0 1

2 0

0 1
2

1
5

9
10

7
10

9
10

3
5

3
10

2
5

4
5

1
5

1
2

1
2 0 3

5 0 1
10

 ,

0 0 1
2

1
2

1
2

0 0 1
2

1
2 0

0 0 3
5

1
10

1
10

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

 1
2 0 1

2

0 0 1
2

1
2

1
2

2
5

 , BN =

 1
2 0 1

2

0 0 1
2

1
2

1
2

3
5

 ; QM =

(
3

2
, 1,

2

5

)
, QN =

(
1

2
, 1,

8

5

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.11. Family №3.11. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + x−1y + y−1z + x−1z + x−1yz−1 + y−1 + x−1 + x−1y−1z + x−1y−1

(see [CP18, Family №3.11]). It is a Minkowski polynomial №1519 (see [Akh+12, Appendix B: bucket 72]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T + Y 2ZT +XZ2T+

Y Z2T + Y 2T 2 +XZT 2 + Y ZT 2 + Z2T 2 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−2 = S(X+T ) + S(XY Z+(Z+T )(Z(Y+T )+Y 2)).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Z+T ),

C6 = C(Y,X+T ), C7 = C(Y,Z+T ), C8 = C(Z,X+T ), C9 = C(T,X+Y+Z), C10 = C(X,Y 2+Z(Y+T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 0 0 0 1 0 0 0 0 1 −1

0 1 1 0 0 1 1 0 0 0 −1

0 2 0 1 0 0 0 1 0 0 −1

1 0 1 1 0 0 0 0 1 0 −1

2 0 0 0 0 1 0 1 0 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C6]

[C7]

[C8]

[C9]

[C10]

 =


−2 2 0 1 0 0

2 −3 −1 −1 0 1

0 −2 0 −1 0 1

−1 0 −1 −1 0 1

−1 0 0 0 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term (X + T ) · (Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term (X + T ) · (Z + T );
P3 = P(Y,Z,T ): type A4 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z − T )− (λ+ 2)XT ;
P5 = P(Y,Z,X+T ): type A2 with the quadratic term Z · (X + (λ+ 2)Y + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 1
6 0 1

3
1
3

1
3 1

C2 0 − 2
15

2
5

3
5 0 1

C3
1
3

2
5 − 8

15
1
5 0 1

C4
1
3

3
5

1
5 − 8

15
2
3 1

C5
1
3 0 0 2

3 − 4
3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E1
3 E2

3 E3
3 E4

3 E1
4 E1

5 E2
5 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 1 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0 0

E4
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

C̃1 1 0 1 0 0 0 0 0 1 0 0 −2 0 0 0 0 1

C̃2 0 0 0 0 0 0 1 0 0 1 0 0 −2 0 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 0 1 0 0 0 1 0 0 0 0 0 0 −2 0 1

C̃5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 1 4

1 −2 0

4 0 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
23
28

5
7

6
7

11
14

2
7

27
28

9
14

3
7

27
28

13
14

27
28

13
14

25
28

17
28

3
14

1
2

3
14

)
,
(
0 0 − 2

7 − 1
7

1
28

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
28

)
, BN =

(
27
28

)
; QM =

(
1

28

)
, QN =

(
55

28

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.12. Family №3.12. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

xyz−1 + x+ y + z + yz−1 + y−1z + x−1z + z−1 + y−1 + x−1

(see [CP18, Family №3.12]). It is a Minkowski polynomial №738 (see [Akh+12, Appendix B: bucket 85]).
The pencil S is defined by the equation

X2Y 2 +X2Y Z +XY 2Z +XY Z2 +XY 2T +XZ2T + Y Z2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(X,Z+T ), C7 = C(Y,Z+T ), C8 = C(T,X+Z), C9 = C(T,Y+Z), C10 = C(Z,T 2+Y (X+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 0 0 −1

1 0 0 1 1 0 1 0 0 0 −1

0 1 0 1 0 0 0 0 0 1 −1

0 0 1 0 1 0 0 1 1 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C9]

[C10]

 =


−1 −1 −1 0 0 0 1

−1 0 0 −1 −1 0 1

0 0 −1 0 −1 −1 1

0 −1 0 −1 0 0 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C8]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY + Z(X + Y );
P2 = P(X,Y,T ): type A1 with the quadratic term XY + T (X + Y );
P3 = P(X,Z,T ): type A3 with the quadratic term X · (X + Z + T );
P4 = P(Y,Z,T ): type A4 with the quadratic term Y · (Y + Z);
P5 = P(X,Y,Z+T ): type A1 with the quadratic term (X + Y )(Z + T )− (λ+ 2)XY .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C8 HS

C1 − 1
2

1
2

1
2

1
2

1
2 0 1

C2
1
2 − 3

4
3
4

1
2 0 1

4 1

C3
1
2

3
4 − 3

4 0 1
2

1
4 1

C4
1
2

1
2 0 − 3

10
2
5 0 1

C5
1
2 0 1

2
2
5 − 7

10 1 1

C8 0 1
4

1
4 0 1 − 5

4 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E4
4 E1

5 C̃1 C̃2 C̃3 C̃4 C̃5 C̃8 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

E1
2 0 −2 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

E1
3 0 0 −2 1 0 0 0 0 0 0 0 1 1 0 0 0 0

E2
3 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0

E3
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E4
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0

C̃1 1 1 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1

C̃2 1 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 1 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃4 1 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 −2 1 1

C̃8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 −2 3

1 3 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
29
36

5
36

4
9

5
6

2
9

8
9

7
9

29
36

5
6

1
36

1
18

25
36

13
36

31
36

31
36

11
18

5
36

)
,
(
0 0 1

36 − 5
12

1
18

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
17
36

)
, BN =

(
19
36

)
; QM =

(
17

36

)
, QN =

(
55

36

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.13. Family №3.13. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + xy−1 + x−1z + z−1 + y−1 + x−1

(see [CP18, Family №3.13]). It is a Minkowski polynomial №421 (see [Akh+12, Appendix B: bucket 70]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T +X2ZT + Y Z2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark C.6. Note that the equation is invariant under the permutation (X,Y, Z) 7→ (Y,Z,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(X,Z+T ), C8 = C(Y,X+T ), C9 = C(Z,Y+T ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 0 −1

1 0 0 1 1 0 0 1 0 0 −1

0 1 0 1 0 1 0 0 1 0 −1

0 0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[C10]

 =


−1 −1 −1 0 0 0 1

−1 0 0 −1 −1 0 1

0 −1 0 −1 0 −1 1

0 0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY +XZ + Y Z;
P2 = P(X,Y,T ): type A3 with the quadratic term Y · (X + T );
P3 = P(X,Z,T ): type A3 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Z · (Y + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6 HS

C1 − 3
4

1
2

1
4

1
2

3
4 0 1

C2
1
2 − 3

4
3
4

1
2 0 1

4 1

C3
1
4

3
4 − 1

2 0 1
4

1
4 1

C4
1
2

1
2 0 − 3

4
1
4

3
4 1

C5
3
4 0 1

4
1
4 − 1

2
1
4 1

C6 0 1
4

1
4

3
4

1
4 − 1

2 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 1 1 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 1 0

E2
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 1 0 0

C̃1 1 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1

C̃2 1 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 0 0 1 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃4 1 0 0 0 0 0 0 1 0 0 0 0 0 −2 0 0 1

C̃5 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −2 0 1

C̃6 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 2 2

2 2 4

2 4 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2

1
2 0 1

2
1
2 0 1

2
1
2 0 1

2 0 0 0 0 0 0 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2 0 1

2
1
2 0 1

2 0
3
5

3
5 0 2

5
3
5

1
2

2
5

3
5

1
2

2
5

9
10

9
10

4
5

2
5

3
10

3
10

3
5

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 − 3
10 − 2

5
1
10

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

 1
2

1
2 0

1
2

1
2

1
2

0 1
2

4
5

 , BN =

 1
2

1
2 0

1
2

1
2

1
2

0 1
2

1
5

 ; QM =

(
1

2
,
3

2
,
9

5

)
, QN =

(
3

2
,
1

2
,
1

5

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.14. Family №3.14. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x2y−1z−1 + x−1y + x−1z + xy−1z−1 + x−1

(see [CP18, Family №3.14]). It is a Minkowski polynomial №203 (see [Akh+12, Appendix B: bucket 21]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X3T + Y 2ZT + Y Z2T +X2T 2 + Y ZT 2 = λXY ZT.

Remark C.7. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ), S−2 = S(X+T ) + S(Y Z(X+Y+Z+T )+X2T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(Y,X+T ), C7 = C(Z,X+T ), C8 = C(X,Y+Z+T ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 1 1 0 0 0 0 1 0 −1

2 0 0 1 0 1 0 0 0 −1

0 2 0 0 1 0 1 0 0 −1

0 0 1 1 1 0 0 0 1 −1

0 0 2 0 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C5]

[C6]

[C7]

[C8]

[C9]

 =


−2 −2 2 −1 1

−2 0 0 −1 1

2 0 −2 1 0

−1 −1 −1 0 1

2 2 −3 0 0

 ·


[C1]

[C2]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term X2 + Y Z;
P2 = P(X,Y,T ): type A4 with the quadratic term Y · (X + T );
P3 = P(X,Z,T ): type A4 with the quadratic term Z · (X + T );
P4 = P(X,Y,Z+T ): type A1 with the quadratic term X(X + (λ+ 2)Y )− Y (X + Y + Z + T );
P5 = P(X,Z,Y+T ): type A1 with the quadratic term X(X + (λ+ 2)Z)− Z(X + Y + Z + T );
P6 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z + T )− (λ+ 2)XT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 HS

C1 − 1
5

1
2

1
5

4
5 1

C2
1
2 − 1

5
1
5 0 1

C3
1
5

1
5

1
10

1
5 1

C4
4
5 0 1

5 − 6
5 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E4
2 E1

3 E2
3 E3

3 E4
3 E1

4 E1
5 E1

6 C̃1 C̃2 C̃3 C̃4 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0

C̃1 1 1 0 0 0 0 0 0 0 1 0 0 −2 0 0 0 1

C̃2 1 0 0 0 0 1 0 0 0 0 1 0 0 −2 0 0 1

C̃3 0 0 0 0 1 0 0 0 1 0 0 1 0 0 −2 0 1

C̃4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 0

0 0 3

0 3 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
7
18

2
9

4
9

2
3

8
9

5
9

4
9

1
3

2
9

1
18

5
6

5
9

1
9

2
3

1
9

8
9

5
9

)
,
(
0 0 − 1

2
1
9 − 1

3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

5
18

)
, BN =

(
13
18

)
; QM =

(
5

18

)
, QN =

(
31

18

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.15. Family №3.15. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + y−1z + z−1 + y−1 + x−1 + x−1y−1z

(see [CP18, Family №3.15]). It is a Minkowski polynomial №420 (see [Akh+12, Appendix B: bucket 67]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XZ2T +XY T 2 +XZT 2 + Y ZT 2 + Z2T 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(X,Y+Z), C7 = C(Z,X+T ), C8 = C(T,X+Y+Z), C9 = C(Y,XZ+T (X+Z)).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 1 0 0 0 −1

0 0 1 1 0 0 0 0 1 −1

1 0 1 0 1 0 1 0 0 −1

0 1 0 1 1 0 0 1 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 0 −1 1

0 −1 0 −1 −1 1

0 0 −1 −1 0 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term (X + Z) · (Y + Z);
P2 = P(X,Y,T ): type A1 with the quadratic term X(Y + T ) + T 2;
P3 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · (Z + T );
P5 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 1
3

1
2

1
3 0 1

2 1

C2
1
2 − 1

12 0 1
2

1
4 1

C3
1
3 0 − 7

12
3
4

1
4 1

C4 0 1
2

3
4 − 3

4
1
4 1

C5
1
2

1
4

1
4

1
4 − 1

2 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E1

3 E2
3 E3

3 E1
4 E2

4 E3
4 E1

5 E2
5 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 −2 0 0 0 0 0 0 0 0 0 1 0 1 0 0

E1
3 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0 0 0

E3
3 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 1 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 1

C̃2 0 0 1 1 0 0 0 0 0 1 0 0 −2 0 0 0 1

C̃3 0 1 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 −2 2

1 2 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
16
17

15
34

23
34

6
17

31
34

1
34

7
17

11
34

4
17

9
17

9
34

15
34

27
34

16
17

19
34

5
34

1
34

)
,
(
0 0 − 8

17 − 15
34

1
17

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
33
34

)
, BN =

(
1
34

)
; QM =

(
33

34

)
, QN =

(
35

34

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.16. Family №3.16. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + xy−1 + x−1yz−1 + y−1 + x−1

(see [CP18, Family №3.16]). It is a Minkowski polynomial №213 (see [Akh+12, Appendix B: bucket 42]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T +X2ZT + Y 2T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Y,Z), C5 = C(Z,T ),

C6 = C(X,Y+Z), C7 = C(Y,X+T ), C8 = C(Z,X+T ), C9 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 1 0 0 0 −1

1 0 1 1 0 0 1 0 0 −1

0 0 0 2 1 0 0 1 0 −1

0 1 1 0 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 −1 0 1

0 0 0 −2 −1 1

0 −1 −1 0 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 1
2

1
2

1
2

1
2 0 1

C2
1
2 − 1

12
1
4 0 1

2 1

C3
1
2

1
4 − 7

12
1
3

1
3 1

C4
1
2 0 1

3 − 1
6

2
3 1

C5 0 1
2

1
3

2
3 − 5

6 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term Y 2 + Z(X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A1 with the quadratic term X(Z + T ) + T 2;
P4 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P5 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 1)T );
P6 = P(Y,Z,X+T ): type A2 with the quadratic term Z · (X − (λ+ 2)Y + T ).

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E1

4 E2
4 E1

5 E2
5 E1

6 E2
6 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 −2 0 0 0 0 0 0 0 1 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
4 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 1 0

E1
5 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0 0

E2
5 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
6 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

C̃1 1 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃2 0 1 0 0 1 0 0 1 0 0 0 0 −2 0 0 0 1

C̃3 0 0 0 1 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃4 1 0 0 0 0 0 1 0 0 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 1 3

1 −2 0

3 0 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
3

8
15

1
15

7
30

4
5

7
30

1
15

1
3

2
3

13
15

13
30

11
30 0 2

5
3
10

3
5

1
3

)
,
(
0 0 − 7

15 − 7
30

1
10

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
17
30

)
, BN =

(
13
30

)
; QM =

(
17

30

)
, QN =

(
43

30

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.17. Family №3.17. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1z + x−1yz−1 + y−1 + x−1 + x−1z−1

(see [CP18, Family №3.17]). It is a Minkowski polynomial №209 (see [Akh+12, Appendix B: bucket 39]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZ2T + Y 2T 2 +XZT 2 + Y ZT 2 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(Y,Z+T ), C7 = C(Z,Y+T ), C8 = C(X,Y+Z+T ), C9 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 0 0 1 0 −1

1 0 1 1 0 1 0 0 0 −1

0 0 1 0 2 0 1 0 0 −1

0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 0 −1 −1 0 1

0 0 −1 0 −2 1

−1 −2 0 0 0 1

0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · (Y + T );
P2 = P(X,Z,T ): type A1 with the quadratic term XZ + T 2;
P3 = P(Y,Z,T ): type A4 with the quadratic term Y · Z;
P4 = P(X,Y,Z+T ): type A1 with the quadratic term (X − Y )(Y + Z + T )− (λ+ 2)XY ;
P5 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 1)T );
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z + T )− T ((λ+ 1)Z + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 5
6

2
3 1 1

3 0 1

C2
2
3 − 1

6 0 1
3

1
2 1

C3 1 0 − 4
5

2
5

3
5 1

C4
1
3

1
3

2
5 − 8

15
1
5 1

C5 0 1
2

3
5

1
5 − 1

5 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 145

• E1
1 E2

1 E1
2 E1

3 E2
3 E3

3 E4
3 E1

4 E1
5 E2

5 E1
6 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 −2 0 0 0 0 0 0 0 0 0 1 0 0 1 0

E1
3 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0

E4
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0 0 0

E2
5 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃1 1 0 0 0 0 0 0 1 0 0 0 −2 0 1 0 0 1

C̃2 1 0 1 0 0 0 0 0 1 0 0 0 −2 0 0 0 1

C̃3 0 0 0 0 0 1 0 0 0 0 0 1 0 −2 0 0 1

C̃4 0 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 1

C̃5 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 3

2 0 3

3 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
17
28

5
14

19
28

5
7

9
28

13
14

6
7

1
7

5
7

6
7

25
28

2
7

4
7

19
28

3
28

11
14

1
7

)
,
(
0 0 − 17

28 − 3
28

1
14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
28

)
, BN =

(
27
28

)
; QM =

(
1

28

)
, QN =

(
55

28

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.18. Family №3.18. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + xy−1 + y−1 + x−1

(see [CP18, Family №3.18]). It is a Minkowski polynomial №212 (see [Akh+12, Appendix B: bucket 41]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +X2ZT +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(Y,X+T ), C8 = C(Z,X+Y ), C9 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 0 0 −1

1 0 0 1 1 0 1 0 0 −1

0 1 0 1 0 1 0 1 0 −1

0 0 1 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 −1 0 1

1 2 −1 0 −1 0

0 −1 0 −1 −1 1

 ·



[C1]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + Y T + ZT ;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 1)T ) + T 2;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 2)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 C5 C6 HS

C1 − 1
4

1
2

1
4

1
2 0 1

C3
1
2 − 1

12 0 1
4

1
3 1

C4
1
4 0 − 3

4
1
2

1
2 1

C5
1
2

1
4

1
2 − 3

4
1
2 1

C6 0 1
3

1
2

1
2 − 1

3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E1

5 E1
6 C̃1 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 1 1 0

E1
5 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 0 0 1 0 0 1 0 0 1 0 0 −2 0 0 0 1

C̃4 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃5 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 −2 2

1 2 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
15
26

1
13

15
26

3
26

7
13

23
26

5
13

1
13

7
13

11
13

23
26

1
13

9
13

1
13

3
13

10
13

1
26

)
,
(
0 0 − 6

13 − 11
26

1
13

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
25
26

)
, BN =

(
1
26

)
; QM =

(
25

26

)
, QN =

(
27

26

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.19. Family №3.19. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1z + xy−1z−1 + x−1 + y−1z−1

(see [CP18, Family №3.19]). It is a Minkowski polynomial №75 (see [Akh+12, Appendix B: bucket 18]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y Z2T +X2T 2 + Y ZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(X,Z+T ), C7 = C(Y,X+T ), C8 = C(Z,X+T ), C9 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 0 −1

1 0 0 2 0 0 1 0 0 −1

0 1 0 0 2 0 0 1 0 −1

0 0 1 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 −1 −1 0 0 1

−1 0 0 −2 0 1

0 −1 0 0 −2 1

0 0 −1 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term Y · (X + T );
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P4 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − (λ+ 1)T )− T 2;
P5 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT )− T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 6
5 1 1

5
4
5 0 1

C2 1 − 4
5

2
5 0 3

5 1

C3
1
5

2
5 − 2

5
1
5

1
5 1

C4
4
5 0 1

5 − 1
5

1
2 1

C5 0 3
5

1
5

1
2 − 1

5 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 1 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃1 1 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1

C̃2 0 0 0 0 0 0 1 0 0 0 0 1 −2 0 0 0 1

C̃3 0 0 0 1 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃4 1 0 0 0 0 0 0 0 1 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 0

0 −2 0

0 0 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:0 0 0 0 0 0 0 0 1
2

1
2

1
2 0 0 0 0 0 0

1
2 0 1

2 0 0 1
2 0 0 1

2 0 1
2 0 1

2
1
2 0 0 0

5
6

5
6

5
6

5
6

2
3

1
2

1
3

5
6 0 1

3
2
3

1
6

1
3

5
6

2
3

1
3

1
6

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 0 0 1
6

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

 1
2 0 0

0 1
2 0

0 0 5
6

 , BN =

 1
2 0 0

0 1
2 0

0 0 1
6

 ; QM =

(
1

2
,
1

2
,
11

6

)
, QN =

(
3

2
,
3

2
,
1

6

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.20. Family №3.20. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + xy−1z−1 + y−1 + x−1

(see [CP18, Family №3.20]). It is a Minkowski polynomial №80 (see [Akh+12, Appendix B: bucket 38]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +X2T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(X,Y+T ), C7 = C(Y,X+Z), C8 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 −1

1 0 0 2 0 0 1 0 −1

0 2 0 0 2 0 0 0 −1

0 0 1 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C6]

[C7]

[C8]

[HS ]

 =


−1 1 −1 0 2

−1 2 0 −2 2

0 2 −1 −1 1

0 2 0 0 2

 ·


[C1]

[C2]

[C3]

[C4]

[C5]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term X2 + Z(X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + T 2;
P5 = P(X,Z,Y+T ): type A1 with the quadratic term Z((λ+ 2)X − Y − T ) +X2;
P6 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − λT );
P7 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z + T )− T ((λ+ 2)Z + T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5

C1 − 1
2

1
2

1
2

1
2 0

C2
1
2 − 1

4
1
4 0 3

4

C3
1
2

1
4 − 1

2
1
4

1
4

C4
1
2 0 1

4 − 1
12

1
2

C5 0 3
4

1
4

1
2 − 1

4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E1

4 E1
5 E1

6 E2
6 E1

7 C̃1 C̃2 C̃3 C̃4 C̃5

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 1

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 1

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
6 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 0

C̃2 1 0 0 0 1 0 0 0 1 0 0 0 0 −2 0 0 0

C̃3 0 1 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0

C̃4 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 −2 0

C̃5 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 −2 1

1 1 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
4
7

13
28

4
7

17
28

1
28

1
7

1
4

1
4

15
28

3
7

3
14

3
7

1
14

1
14

5
14

9
14

6
7

)
,
(
0 0 1

28 − 13
28

1
14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
13
28

)
, BN =

(
15
28

)
; QM =

(
13

28

)
, QN =

(
43

28

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.21. Family №3.21. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1z + z−1 + y−1 + x−1 + x−1y−1z

(see [CP18, Family №3.21]). It is a Minkowski polynomial №214 (see [Akh+12, Appendix B: bucket 49]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZ2T +XY T 2 +XZT 2 + Y ZT 2 + Z2T 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(X,Y+Z), C7 = C(T,X+Y+Z), C8 = C(Y,XZ+T (X+Z)).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 1 0 0 −1

0 0 1 1 0 0 0 1 −1

1 0 1 0 2 0 0 0 −1

0 1 0 1 1 0 1 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C6]

[C7]

[C8]

 =


−1 0 0 −2 1

−1 −2 0 0 1

0 −1 −1 −1 1

1 0 −1 2 0

 ·


[C1]

[C2]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term (X + Z) · (Y + Z);
P2 = P(X,Y,T ): type A1 with the quadratic term X(Y + T ) + T 2;
P3 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,T,Y+Z): type A2 with the quadratic term X · (X + Y + Z − (λ+ 1)T );
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C5 HS

C1 − 1
3

1
2 0 1

2 1

C2
1
2 − 1

12
1
2

1
4 1

C4 0 1
2 − 3

4
1
4 1

C5
1
2

1
4

1
4 0 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E1

3 E2
3 E3

3 E1
4 E2

4 E3
4 E1

5 E2
5 E1

6 C̃1 C̃2 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 1 0 0

E1
3 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0

E3
3 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃2 0 0 1 1 0 0 0 0 0 1 0 0 0 −2 0 0 1

C̃4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 2 1

2 0 3

1 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
5
11

8
11

19
22

1
2

2
11

15
22

5
22

6
11

19
22

6
11

3
11

1
11

2
11

9
11

10
11

2
11

8
11

)
,
(
0 0 81

22
9
22 − 5

11

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

3
22

)
, BN =

(
19
22

)
; QM =

(
25

22

)
, QN =

(
19

22

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.22. Family №3.22. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1z + x−1 + y−1z−1 + x−1y−1z−1

(see [CP18, Family №3.22]). It is a Minkowski polynomial №76 (see [Akh+12, Appendix B: bucket 13]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y Z2T + Y ZT 2 +XT 3 + T 4 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(Y,X+T ),

C5 = C(Z,X+T ), C6 = C(T,X+Y+Z), C7 = C(X,T 3+Y Z(Z+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 0 0 0 1 −1

0 3 0 1 0 0 0 −1

0 0 3 0 1 0 0 −1

1 1 1 0 0 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C4]

[C5]

[C6]

[C7]

 =


0 −3 0 1

0 0 −3 1

−1 −1 −1 1

−1 0 0 1

 ·


[C1]

[C2]

[C3]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term Y · (X + T );
P2 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 1)T );
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − λT ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 HS

C1 − 9
20

1
5

1
4 1

C2
1
5

2
15

1
3 1

C3
1
4

1
3

1
12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E1

4 E2
4 E1

5 E2
5 C̃1 C̃2 C̃3 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃2 0 0 0 1 0 0 0 1 0 1 0 0 0 0 −2 0 1

C̃3 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 2

0 0 3

2 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
3

5
6

1
3

5
6

2
3

1
2

1
3

11
18

8
9

5
9

7
9

4
9

13
18

5
6

1
3

1
6

2
3

)
,
(
0 0 − 1

6 − 1
9

1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

5
18

)
, BN =

(
13
18

)
; QM =

(
5

18

)
, QN =

(
31

18

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.23. Family №3.23. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1z + x−1 + y−1z−1 + x−1y−1

(see [CP18, Family №3.23]). It is a Minkowski polynomial №77 (see [Akh+12, Appendix B: bucket 17]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y Z2T + Y ZT 2 +XT 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Z,T ),

C5 = C(Y,X+Z), C6 = C(T,X+Y+Z), C7 = C(X,T 2+Y (Z+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 1 −1

0 0 3 0 1 0 0 −1

1 0 0 3 0 0 0 −1

0 1 1 1 0 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C5]

[C6]

[C7]

 =


0 0 −3 1

0 −3 0 1

−1 −1 −1 1

−1 0 3 0

 ·


[C2]

[C3]

[C4]

[HS ]

 = 0.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term Y · (X + T );
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Y + Z − (λ+ 1)T );
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − λT ).

The Q-valued intersection matrix on the group AS has the following form:

• C2 C3 C4 HS

C2 − 8
15

1
3

1
5 1

C3
1
3

1
12

1
3 1

C4
1
5

1
3

2
15 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E1
4 E2

4 E3
4 E1

5 E2
5 C̃2 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃2 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃3 0 1 0 0 0 0 1 0 1 0 0 0 0 0 −2 0 1

C̃4 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 1 2

1 −2 0

2 0 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
10

7
20

11
20

1
4

19
20

13
20

17
20

1
10

19
20

3
10

13
20

9
10

9
20

17
20

3
5

7
20

1
20

)
,
(
0 0 − 3

5 − 3
10

1
20

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
13
20

)
, BN =

(
7
20

)
; QM =

(
13

20

)
, QN =

(
27

20

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.24. Family №3.24. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + y−1 + x−1 + x−1y−1z−1

(see [CP18, Family №3.24]). It is a Minkowski polynomial №78 (see [Akh+12, Appendix B: bucket 31]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +XZT 2 + Y ZT 2 + T 4 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(T,X+Y+Z), C5 = C(Y,XZ+T 2), C6 = C(X,T 3+Y Z(Y+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 0 0 1 −1

0 2 0 0 1 0 −1

0 0 4 0 0 0 −1

1 1 1 1 0 0 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C4]

[C5]

[C6]

[HS ]

 =


−1 −1 3

0 −2 4

−1 0 4

0 0 4

 ·

[C1]

[C2]

[C3]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P5 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3

C1 − 9
20

1
5

1
4

C2
1
5

1
20

1
4

C3
1
4

1
4

1
4

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 159

• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E1
4 E1

5 E2
5 E3

5 C̃1 C̃2 C̃3

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E3
5 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0

C̃2 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 −2 0

C̃3 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 2 4

1 4 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
6
11

4
11

2
11 0 10

11
1
11

3
11

5
22

7
11

1
22

9
22

13
22

8
11

19
22

8
11

9
11

5
11

)
,
(
0 0 25

11
9
22 − 5

11

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

3
22

)
, BN =

(
19
22

)
; QM =

(
25

22

)
, QN =

(
19

22

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.25. Family №3.25. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + x−1 + x−1y−1

(see [CP18, Family №3.25]). It is a Minkowski polynomial №25 (see [Akh+12, Appendix B: bucket 16]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T + Y ZT 2 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(X,Y+T ), C7 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 1 0 −1

0 0 1 3 0 0 0 −1

2 0 1 0 1 0 0 −1

0 1 0 1 1 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C5]

[C6]

[C7]

 =


0 0 −3 1

−2 0 3 0

−1 −2 0 1

2 −1 −4 1

 ·


[C1]

[C2]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · (Z + T );
P4 = P(X,Z,Y+T ): type A1 with the quadratic term Z((λ+ 1)X + Y + T )−X2;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P6 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 HS

C1 − 3
10

2
5 0 1

C2
2
5 − 1

30
1
3 1

C4 0 1
3

1
12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E3
3 E1

4 E1
5 E1

6 E2
6 C̃1 C̃2 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0

E4
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
6 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃1 0 0 0 0 1 0 0 0 0 1 0 0 0 −2 0 0 1

C̃2 1 0 1 0 0 0 0 0 0 0 1 0 0 0 −2 0 1

C̃4 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 1

0 −2 1

1 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
3
5

1
10

4
5

1
2

1
5

3
5

19
20

3
10

13
20

13
20

1
20

2
5

1
5

3
10

1
10

3
5

3
4

)
,
(
0 0 1

20 − 9
20

1
10

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

9
20

)
, BN =

(
11
20

)
; QM =

(
9

20

)
, QN =

(
31

20

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.26. Family №3.26. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + x−1 + y−1z−1

(see [CP18, Family №3.26]). It is a Minkowski polynomial №26 (see [Akh+12, Appendix B: bucket 12]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT + Y ZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(X,Y+T ), C7 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 −1

1 0 0 3 0 0 0 −1

0 1 0 0 3 0 0 −1

0 0 1 1 1 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C6]

[C7]

 =


0 −3 0 1

0 0 −3 1

−1 3 3 −1

−1 −1 −1 1

 ·


[C3]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − λT );
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5 HS

C3 − 9
20

1
5

1
4 1

C4
1
5

2
15

1
3 1

C5
1
4

1
3

1
12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E1

3 E2
3 E1

4 E2
4 E1

5 E2
5 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃3 1 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 0 1 0 0 0 1 0 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 0 0

0 −2 1

0 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
2
3

1
6

2
3

1
6

2
3

1
2

1
3

13
18

7
9

1
9

5
9

8
9

17
18

1
6

2
3

5
6

1
3

)
,
(
0 0 − 1

2 − 2
9 − 4

9

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
11
18

)
, BN =

(
7
18

)
; QM =

(
29

18

)
, QN =

(
7

18

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.27. Family №3.27. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + z−1 + y−1 + x−1

(see [CP18, Family №3.27]). It is a Minkowski polynomial №31 (see [Akh+12, Appendix B: bucket 45]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark C.8. Note that the equation is invariant under the permutations (X,Y ) 7→ (Y,X), (X,Z) 7→ (Z,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 −1

1 0 0 1 2 0 0 −1

0 1 0 1 0 2 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C4]

[C7]

[HS ]

 =


1 0 2 −2

1 2 0 −2

2 1 1 −3

2 2 2 −2

 ·


[C1]

[C3]

[C5]

[C6]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY +XZ + Y Z;
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P6 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 C6

C1 − 1
2

1
2

1
2 0

C3
1
2 0 1

4
1
4

C5
1
2

1
4 0 1

4

C6 0 1
4

1
4 0

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E1
5 E1

6 E1
7 C̃1 C̃3 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃3 0 1 0 0 1 0 0 0 0 0 1 0 0 0 −2 0 0

C̃5 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 −2 0

C̃6 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 2

2 0 2

2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:0 0 0 0 1
2 0 1

2 0 0 0 1
2 0 1

2 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0

1
2

3
4

1
2

1
4

1
4

1
2

3
4

1
4

1
2

3
4 0 1

2
1
2 0 0 0 0

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 − 1
4 − 1

4
1
4

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2 0

1
2 0 0

0 0 1
4

 , BN =

0 1
2 0

1
2 0 0

0 0 3
4

 ; QM =

(
0, 0,

1

4

)
, QN =

(
0, 0,

7

4

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.28. Family №3.28. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + y−1 + x−1

(see [CP18, Family №3.28]). It is a Minkowski polynomial №30 (see [Akh+12, Appendix B: bucket 28]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 −1

1 0 0 1 2 0 0 −1

0 2 0 1 0 1 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C4]

[C6]

[C7]

 =


−1 −2 0 1

−1 0 −2 1

3 4 2 −2

−3 −5 −3 3

 ·


[C1]

[C3]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A2 with the quadratic term Y · (Z + T );
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2;
P6 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − (λ+ 1)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 HS

C1 − 1
3

1
2

1
2 1

C3
1
2

1
20

1
4 1

C5
1
2

1
4 − 1

12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:



MODULARITY OF LANDAU–GINZBURG MODELS 167

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E4
3 E1

4 E2
4 E1

5 E1
6 C̃1 C̃3 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 1 0 0 1 0 0 0 0 0 1 0 0 −2 0 1

C̃5 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 1 0

1 0 3

0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2
13
16

1
4

3
16

1
2

5
8

3
4

7
8

3
4

3
8

11
16

9
16

1
2

3
8

1
8

3
4

)
,
(
0 0 − 3

16 − 3
8

1
16

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
16

)
, BN =

(
15
16

)
; QM =

(
1

16

)
, QN =

(
31

16

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.29. Family №3.29. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + x−1 + x−1y−1z−1

(see [CP18, Family №3.29]). It is a Minkowski polynomial №27 (see [Akh+12, Appendix B: bucket 8]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT + Y ZT 2 + T 4 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,T ), C3 = C(Z,T ), C4 = C(T,X+Y+Z), C5 = C(X,T 3+Y Z(Y+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 0 1 −1

0 4 0 0 0 −1

0 0 4 0 0 −1

1 1 1 1 0 −1

 ·


[C1]

· · ·
[C5]

[HS ]

 = 0.

We can partially reduce the number of linear equivalence classes using these relations.
[C3] + [C4]

4[C4]

[C5]

[HS ]

 =


−1 3

−4 8

−1 4

0 4

 ·
(
[C1]

[C2]

)
.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A3 with the quadratic term Y · (X + Y + Z − λT );
P5 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4

C1 − 1
2

1
4

1
4 1

C2
1
4

1
4

1
4

1
4

C3
1
4

1
4

1
4

1
4

C4 1 1
4

1
4 − 1

2

.

Note that the intersection matrix has the rank 2.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E1
5 E2

5 E3
5 C̃1 C̃2 C̃3 C̃4

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 1

C̃1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃2 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 −2 0 0

C̃3 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 −2 0

C̃4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 −2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E3

5 ]

[C̃4]

)T
=

(
1 2 3 −1 −2 −3 2 0 −2 3 2 1 −3 −2 0 4 −4

−1 −1 −1 0 1 2 0 1 2 −1 −1 −1 2 1 −1 −1 3

)
·

(
[E1

1 ] [E2
1 ] [E3

1 ] [E1
2 ] [E2

2 ] [E3
2 ] [E1

3 ] [E2
3 ] [E3

3 ]

[E1
4 ] [E2

4 ] [E3
4 ] [E1

5 ] [E2
5 ] [C̃1] [C̃2] [C̃3]

)T
,

hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 −1 0

−1 −2 0

0 0 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
7
12

1
2

5
12

3
4

5
6

11
12

1
4

1
6

1
12 0 2

3
1
3 0 0 2

3
1
3 0

)
,
(
0 0 2

3 − 1
3 − 1

4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

5
12

)
, BN =

(
7
12

)
; QM =

(
5

12

)
, QN =

(
19

12

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.30. Family №3.30. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + xy−1 + x−1

(see [CP18, Family №3.30]). It is a Minkowski polynomial №29 (see [Akh+12, Appendix B: bucket 11]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T +X2ZT + Y ZT 2 = λXY ZT.
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Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 −1

2 0 0 1 1 0 0 −1

0 1 0 2 0 1 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C5]

[C6]

[C7]

 =


−1 −2 0 1

−2 0 −1 1

1 2 −2 0

1 −3 3 0

 ·


[C1]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A4 with the quadratic term Y · Z;
P2 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 1)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 HS

C1 0 2
5

2
5 1

C3
2
5 − 1

30 0 1

C4
2
5 0 − 2

15 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E1
4 E2

4 E1
5 C̃1 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0

C̃1 1 0 0 0 0 0 1 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 0 0 1 0 0 0 1 0 0 0 1 0 −2 0 1

C̃4 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 1 1

1 −2 0

1 0 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 3

14
3
7

5
7

2
7

6
7

3
7

3
14

1
7

4
7

2
7

9
14

6
7

11
14

5
7

13
14

1
7

)
,
(
0 0 − 2

7 − 9
14

1
14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

9
14

)
, BN =

(
5
14

)
; QM =

(
9

14

)
, QN =

(
19

14

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

C.31. Family №3.31. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + xy−1 + x−1

(see [CP18, Family №3.31]). It is a Minkowski polynomial №28 (see [Akh+12, Appendix B: bucket 14]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +X2ZT + Y ZT 2 = λXY ZT.

Remark C.9. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 −1

2 0 0 1 1 0 0 −1

0 2 0 1 0 1 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C5]

[C6]

[C7]

 =


−1 −2 0 1

−2 0 −1 1

2 4 −1 −1

0 −5 2 1

 ·


[C1]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Y · Z;
P2 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y (Z + T ) + ZT ;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 HS

C1 − 1
20

2
5

1
2 1

C3
2
5

1
10 0 1

C4
1
2 0 − 1

2 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E4
2 E1

3 E2
3 E3

3 E4
3 E1

4 E1
5 C̃1 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0

E4
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 1 0 0

C̃1 1 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 0 1 0 0 0 1 0 0 0 0 1 0 −2 0 1

C̃4 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 3

2 0 3

3 3 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
4

1
6

7
12 0 1

6
1
3

1
6

2
3

1
2

1
3

1
6

3
4

11
12

1
3

5
6

1
2

1
12

)
,
(
0 0 1

4 − 1
4

1
6

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
12

)
, BN =

(
11
12

)
; QM =

(
1

12

)
, QN =

(
23

12

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix D. Dolgachev–Nikulin duality for Fano threefolds: rank 4

D.1. Family №4.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + x−1y + y−1z + x−1z + z−1 + x−1yz−1 + y−1 + 3x−1 + x−1y−1z + x−1z−1 + x−1y−1

(see [CP18, Family №4.1]). It is a Minkowski polynomial №2355 (see [Akh+12, Appendix B: bucket 111]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T + Y 2ZT +XZ2T + Y Z2T+

XY T 2 + Y 2T 2 +XZT 2 + 3Y ZT 2 + Z2T 2 + Y T 3 + ZT 3 = λXY ZT.

Remark D.1. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−4 = S(X+T ) + S(XY Z+(Y+Z+T )(Y Z+Y T+ZT )).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(Y,X+T ), C6 = C(Y,Z+T ),

C7 = C(Z,X+T ), C8 = C(Z,Y+T ), C9 = C(X,Y+Z+T ), C10 = C(T,X+Y+Z), C11 = C(X,Y Z+T (Y+Z)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+T )]− [HS ]

 =


1 0 0 0 0 0 0 0 1 0 1 −1

0 1 1 0 1 1 0 0 0 0 0 −1

0 1 0 1 0 0 1 1 0 0 0 −1

1 0 1 1 0 0 0 0 0 1 0 −1

2 0 0 0 1 0 1 0 0 0 0 −1

 ·


[C1]

· · ·
[C11]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C10]

[C11]

 =


0 −1 −1 0 −1 0 1

−2 0 0 0 −1 0 1

2 −1 0 −1 1 0 0

−1 0 −1 −1 0 0 1

−1 0 0 0 0 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C9]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term (X + T ) · (Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term (X + T ) · (Z + T );
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z + T )− (λ+ 4)XT ;
P5 = P(Y,Z,X+T ): type A1 with the quadratic term (X + T )(Y + Z) + (λ+ 4)Y Z.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5 C9 HS

C1 − 1
6 0 1

3
1
3

2
3

1
2 1

C2 0 − 1
2

1
2

1
2

1
2 0 1

C3
1
3

1
2 − 7

12
1
4

1
3 0 1

C4
1
3

1
2

1
4 − 7

12 0 0 1

C5
2
3

1
2

1
3 0 − 5

6 0 1

C9
1
2 0 0 0 0 − 3

2 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E1
3 E2

3 E3
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 C̃9 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 1 0 0 0 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 1 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 1 0 0

C̃1 1 0 1 0 0 0 0 1 0 −2 0 0 0 0 0 1

C̃2 0 0 0 0 0 1 0 0 1 0 −2 0 0 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 −2 0 0 0 1

C̃4 0 0 0 1 0 0 1 0 0 0 0 0 −2 0 0 1

C̃5 1 0 0 0 0 0 0 0 1 0 0 0 0 −2 0 1

C̃9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


0 2 2 2

2 0 2 2

2 2 0 2

2 2 2 0

 .
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We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:
0 1

2 0 0 1
2 0 0 0 0 0 1

2 0 0 1
2 0 0

0 1
2 0 0 0 0 1

2
1
2

1
2 0 1

2 0 0 1
2 0 1

2
1
2 0 1

2 0 1
2

1
2

1
2

1
2 0 0 0 1

2
1
2 0 0 1

2
1
3

5
6 0 5

6
2
3 0 1

3
5
6

5
6

1
6 0 1

3
2
3

2
3

1
2

1
6

 ,


0 0 1

2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 − 1
3 − 1

3 − 1
3

1
6

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =


0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

1
3

 , BN =


0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

2
3

 ; QM =

(
0, 0, 0,

4

3

)
, QN =

(
0, 0, 0,

2

3

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.2. Family №4.2. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xy−1 + x−1y + xy−1z−1 + z−1 + 2y−1 + 2x−1 + y−1z−1 + x−1y−1

(see [CP18, Family №4.13]). It is a Minkowski polynomial №1081 (see [Akh+12, Appendix B: bucket 110]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2ZT + Y 2ZT +X2T 2+

XY T 2 + 2XZT 2 + 2Y ZT 2 +XT 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+T ),

C6 = C(Y,X+T ), C7 = C(Z,X+Y+T ), C8 = C(T,X+Y+Z), C9 = C(Y,ZT+X(Z+T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 2 0 0 0 0 −1

0 0 1 0 0 1 0 0 1 −1

1 0 0 2 0 0 1 0 0 −1

0 1 1 1 0 0 0 1 0 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C7]

[C8]

[C9]

 =


−1 0 0 −2 0 1

−1 0 −2 0 0 1

1 −1 −1 2 0 0

0 −1 0 0 −1 1

 ·



[C1]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A1 with the quadratic term Z(Y + T ) + T 2;
P4 = P(X,Z,Y+T ): type A2 with the quadratic term X · (X + Y + (λ+ 3)Z + T );
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 2)T );
P6 = P(X,Y+T,Z−(λ+3)T ): type A1.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C3 C4 C5 C6 HS

C1 − 2
3 0 2

3
2
3 0 1

C3 0 − 5
6

1
2

1
3

2
3 1

C4
2
3

1
2 − 1

6 0 0 1

C5
2
3

1
3 0 − 1

6
1
3 1

C6 0 2
3 0 1

3 − 4
3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E1
3 E1

4 E2
4 E1

5 E2
5 E1

6 C̃1 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 1 0 1 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 −2 0 0 0 0 0 0 1 1 0 0 0

E1
4 0 0 0 0 0 −2 1 0 0 0 1 0 0 1 0 0

E2
4 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0 0

E2
5 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

C̃1 0 0 1 0 0 1 0 0 0 0 −2 0 0 0 0 1

C̃3 1 0 0 0 1 0 0 0 0 0 0 −2 0 0 0 1

C̃4 0 0 1 0 1 0 0 1 0 0 0 0 −2 0 0 1

C̃5 0 1 0 0 0 1 0 0 0 1 0 0 0 −2 0 1

C̃6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 1 1 3

1 0 2 2

1 2 0 2

3 2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2 0 1
2 0 0 1

2 0 0 1
2

1
2 0 0 0 1

2 0
7
11

3
11

7
11

9
11

10
11

2
11

13
22

8
11

19
22

5
11

19
22

5
22

13
22

10
11

17
22

10
11

)
,

(
0 0 0 − 1

2
1
2 0

0 0 − 9
11 − 7

11 − 3
22

1
22

)
.
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Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

1
11

)
, BN =

(
0 1

2
1
2

10
11

)
; QM =

(
1,

1

11

)
, QN =

(
1,

21

11

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.3. Family №4.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1 + x−1y + y−1z + x−1z + 2y−1 + 2x−1 + y−1z−1 + x−1z−1

(see [CP18, Family №4.2]). It is a Minkowski polynomial №664 (see [Akh+12, Appendix B: bucket 88]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2ZT + Y 2ZT +XZ2T + Y Z2T + 2XZT 2 + 2Y ZT 2 +XT 3 + Y T 3 = λXY ZT.

Remark D.2. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ),

S−2 = S(X+Y ) + S(Y ZT+XZ(Y+T )+(Z+T )2T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(Z,X+Y ),

C6 = C(T,X+Y ), C7 = C(X,Y Z+(Z+T )2), C8 = C(Y,XZ+(Z+T )2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

[Sk · S(X+Y )]− [HS ]

 =


1 1 0 0 0 0 1 0 −1

1 0 1 0 0 0 0 1 −1

0 0 0 3 1 0 0 0 −1

0 1 1 1 0 1 0 0 −1

2 0 0 0 1 1 0 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C5]

[C6]

[C7]

[C8]

 =


2 −1 −4 1

0 0 −3 1

−2 0 3 0

−1 −1 0 1

−3 1 4 0

 ·


[C1]

[C2]

[C4]

[HS ]

 .

Put µ(µ− 1) = (λ− 2)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term T · (X + Y );
P2 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P4 = P(X,Y,Z+T ): type A3 with the quadratic term (µX − (µ− 1)Y ) · ((µ− 1)X − µY );
P5 = P(Z,T,X+Y ): type A3 with the quadratic term Z · (X + Y − (λ+ 2)T ).

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C4 HS

C1 − 1
4

1
4 0 1

C2
1
4 − 7

12
1
3 1

C4 0 1
3

1
12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 , E

2
1 , E

3
1 , E

1
2 , E

2
2 , E

1
3 , E

2
3 , E

1
4 + E3

4 , E
2
4 , E

1
5 , E

2
5 , E

3
5 , C̃1, C̃2, C̃4, H̃S .

The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E1

4 E2
4 E3

4 E1
5 E2

5 E3
5 C̃1 C̃2 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0

E2
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 1 0 0 0

E3
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃1 1 0 0 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 −2 0 1

C̃4 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on the
surface Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E1

4 + E3
4 E2

4 E1
5 E2

5 E3
5 C̃1 C̃2 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
4 + E3

4 0 0 0 0 0 0 0 −4 2 0 0 0 0 0 0 0

E2
4 0 0 0 0 0 0 0 2 −2 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E3
5 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃1 1 0 0 0 0 0 0 0 1 0 0 0 −2 0 0 1

C̃2 0 0 1 1 0 0 0 0 0 0 0 0 0 −2 0 1

C̃4 0 0 0 0 1 1 0 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(LS) = 16. Recall that Pic(S̃k) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sk.
We denote by M the intersection matrix on LS .

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


0 2 2 4

2 0 2 3

2 2 0 3

4 3 3 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
4

1
2

3
4 0 0 0 0 0 1

2
3
4

1
2

1
4 0 0 0 1

4
3
8

1
2

5
8 0 1

4 0 1
2

5
8

1
4

7
8

1
4

5
8

1
4

3
4

1
2

7
8

)
,

(
0 0 − 1

4 − 1
4

1
4 0

0 0 − 3
8 0 0 1

4

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
4

1
4

1
4

3
8

)
, BN =

(
3
4

3
4

3
4

5
8

)
; QM =

(
1

4
,
3

8

)
, QN =

(
7

4
,
13

8

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.4. Family №4.4. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + x−1y + y−1z + x−1z + z−1 + y−1 + x−1

(see [CP18, Family №4.3]). It is a Minkowski polynomial №741 (see [Akh+12, Appendix B: bucket 83]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T + Y 2ZT +XZ2T + Y Z2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark D.3. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ),

C7 = C(Y,Z+T ), C8 = C(Z,Y+T ), C9 = C(X,Y+Z+T ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 0 0 1 0 −1

1 0 0 1 1 0 1 0 0 0 −1

0 1 0 1 0 1 0 1 0 0 −1

0 0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[C10]

 =


−1 0 0 −1 −1 0 1

0 −1 0 −1 0 −1 1

−1 −1 −1 0 0 0 1

0 0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term X(Y + Z) + Y Z;
P2 = P(X,Y,T ): type A1 with the quadratic term X(Y + T ) + Y T ;
P3 = P(X,Z,T ): type A1 with the quadratic term X(Z + T ) + ZT ;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,Y,Z+T ): type A1 with the quadratic term (X + Y )(Y + Z + T )− (λ+ 3)XY ;
P6 = P(X,Z,Y+T ): type A1 with the quadratic term (X + Z)(Y + Z + T )− (λ+ 3)XZ;
P7 = P(X,T,Y+Z): type A1 with the quadratic term (X + T )(X + Y + Z + T )− (λ+ 4)XT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6 HS

C1 − 1
2

1
2

1
2

1
2

1
2 0 1

C2
1
2 − 1

2
1
2

1
2 0 1

2 1

C3
1
2

1
2 − 1

2 0 1
2

1
2 1

C4
1
2

1
2 0 − 1

2
1
2

1
2 1

C5
1
2 0 1

2
1
2 − 3

4
1
4 1

C6 0 1
2

1
2

1
2

1
4 − 3

4 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E1
3 E1

4 E2
4 E3

4 E1
5 E1

6 E1
7 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

E1
2 0 −2 0 0 0 0 0 0 0 1 0 1 0 1 0 0

E1
3 0 0 −2 0 0 0 0 0 0 0 1 1 0 0 1 0

E1
4 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0

E3
4 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 0

E1
7 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0

C̃1 1 1 0 0 0 0 1 0 0 −2 0 0 0 0 0 1

C̃2 1 0 1 0 0 0 0 1 0 0 −2 0 0 0 0 1

C̃3 0 1 1 0 0 0 0 0 1 0 0 −2 0 0 0 1

C̃4 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃5 0 1 0 1 0 0 0 0 0 0 0 0 0 −2 0 1

C̃6 0 0 1 0 0 1 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 1 1 2

1 0 2 2

1 2 0 2

2 2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

4
3
4

1
4

1
2

3
4

1
4

3
4

1
2

1
2

1
2 0 0 0 0 1

2
1
4

1
2

1
2

1
12 0 5

12
1
6

5
6

1
4

1
3

2
3

1
2

1
2

1
6

5
6

3
4

)
,

(
0 0 −1 − 7

4
1
4

1
4

0 0 1
6

5
12 − 1

12 0

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
4

1
2

1
2

1
12

)
, BN =

(
3
4

1
2

1
2

11
12

)
; QM =

(
5

4
,
1

12

)
, QN =

(
3

4
,
23

12

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.5. Family №4.5. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + yz−1 + xy−1 + x−1y + y−1 + x−1

(see [CP18, Family №4.4]). It is a Minkowski polynomial №427 (see [Akh+12, Appendix B: bucket 68]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +XY 2T +X2ZT + Y 2ZT +XZT 2 + Y ZT 2 = λXY ZT.

Remark D.4. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ),

C7 = C(X,Y+T ), C8 = C(Y,X+T ), C9 = C(Z,X+Y ), C10 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 0 −1

1 0 0 1 1 0 0 1 0 0 −1

0 1 0 1 0 1 0 0 1 0 −1

0 0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[C10]

 =


−1 −1 −1 0 0 0 1

−1 0 0 −1 −1 0 1

0 −1 0 −1 0 −1 1

0 0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A3 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A1 with the quadratic term X(Z + T ) + ZT ;
P4 = P(Y,Z,T ): type A1 with the quadratic term Y (Z + T ) + ZT ;
P5 = P(Z,T,X+Y ): type A1 with the quadratic term (Z + T )(X + Y + Z)− (λ+ 3)ZT .

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6 HS

C1 − 1
4

1
4

1
2

1
4

1
2 0 1

C2
1
4 − 3

4
1
2

3
4 0 1

2 1

C3
1
2

1
2 − 3

4 0 1
4

1
2 1

C4
1
4

3
4 0 − 3

4
1
2

1
2 1

C5
1
2 0 1

4
1
2 − 3

4
1
2 1

C6 0 1
2

1
2

1
2

1
2 − 1

2 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 1 0 1 0 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 1 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 0 0 0 1 1 0 0 1 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 1 1 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 0

C̃1 1 0 0 0 1 0 0 0 0 −2 0 0 0 0 0 1

C̃2 0 0 1 0 0 0 1 0 0 0 −2 0 0 0 0 1

C̃3 0 0 0 1 0 0 1 0 0 0 0 −2 0 0 0 1

C̃4 0 0 1 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃5 0 0 0 0 0 1 0 1 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 0 0 1 1 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 1 1 2

1 −2 0 0

1 0 −2 0

2 0 0 6

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 1

2
1
2

1
2

1
2

1
2

1
2 0 0 1

2
1
2

1
2

1
2 0 0

1
2

1
2

1
2

3
10

1
4

7
10

3
20

7
20

1
4

1
2

9
20

7
20

1
20

3
20

1
2

1
4

)
,

(
0 0 −2 − 7

2 − 1
2

1
2

0 0 − 3
10 − 13

20 − 3
20

1
10

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
2

1
2

1
2

13
20

)
, BN =

(
1
2

1
2

1
2

7
20

)
; QM =

(
3

2
,
13

20

)
, QN =

(
1

2
,
27

20

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.6. Family №4.6. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + x−1y + y−1z + z−1 + y−1 + x−1

(see [CP18, Family №4.5]). It is a Minkowski polynomial №426 (see [Akh+12, Appendix B: bucket 81]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T + Y 2ZT +XZ2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ),

C7 = C(X,Y+T ), C8 = C(Y,Z+T ), C9 = C(Z,Y+T ), C10 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 0 −1

1 0 0 1 1 0 0 1 0 0 −1

0 1 0 1 0 1 0 0 1 0 −1

0 0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C7]

[C8]

[C9]

[C10]

 =


−1 −1 −1 0 0 0 1

−1 0 0 −1 −1 0 1

0 −1 0 −1 0 −1 1

0 0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term Z(X + Y ) +XY ;
P2 = P(X,Y,T ): type A3 with the quadratic term X · (Y + T );
P3 = P(X,Z,T ): type A1 with the quadratic term X(Z + T ) + ZT ;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,Z,Y+T ): type A1 with the quadratic term (X + Z)(Y + T )− (λ+ 2)XZ.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 C6 HS

C1 − 3
4

1
2

3
4

1
2

1
4 0 1

C2
1
2 − 1

2
1
2

1
2 0 1

2 1

C3
3
4

1
2 − 3

4 0 1
4

1
2 1

C4
1
2

1
2 0 − 1

2
1
2

1
2 1

C5
1
4 0 1

4
1
2 − 1

2
1
4 1

C6 0 1
2

1
2

1
2

1
4 − 3

4 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E1

4 E2
4 E3

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 1 0 1 0 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 −2 0 0 0 0 0 1 1 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0

E3
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 0

C̃1 1 1 0 0 0 0 0 0 0 −2 0 0 0 0 0 1

C̃2 1 0 0 0 1 0 0 0 1 0 −2 0 0 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 −2 0 0 0 1

C̃4 1 0 0 0 0 0 1 0 0 0 0 0 −2 0 0 1

C̃5 0 0 0 1 0 1 0 0 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 1 2

0 −2 0 1

1 0 2 3

2 1 3 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
11
13

7
13

28
39

35
39

23
39

2
13

3
13

28
39

7
39

29
39

14
39

8
13

23
39

1
13

8
39

4
39

)
,
(
0 0 − 31

39 − 19
39 − 25

39
1
39

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

4
39

)
, BN =

(
35
39

)
; QM =

(
4

39

)
, QN =

(
74

39

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.7. Family №4.7. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1z + z−1 + y−1 + x−1 + x−1z−1 + x−1y−1

(see [CP18, Family №4.6]). It is a Minkowski polynomial №424 (see [Akh+12, Appendix B: bucket 65]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZ2T +XY T 2 +XZT 2 + Y ZT 2 + Y T 3 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(Z,X+T ),

C6 = C(T,X+Y+Z), C7 = C(X,ZT+Y (Z+T )), C8 = C(Y,X(Z+T )+T 2).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


2 0 0 0 0 0 1 0 −1

0 1 1 0 0 0 0 1 −1

0 1 0 2 1 0 0 0 −1

1 0 1 1 0 1 0 0 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C5]

[C6]

[C7]

[C8]

 =


0 −1 0 −2 1

−1 0 −1 −1 1

−2 0 0 0 1

0 −1 −1 0 1

 ·


[C1]

[C2]

[C3]

[C4]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term X · (Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 1)T ) + T 2;
P5 = P(Y,Z,X+T ): type A1 with the quadratic term (Y + Z)(X − Z + T ) + (λ+ 3)Y Z;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 HS

C1 − 1
12 0 1

4
1
3 1

C2 0 − 1
2

1
2

1
2 1

C3
1
4

1
2 − 1

2
1
4 1

C4
1
3

1
2

1
4 − 1

12 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E3

3 E1
4 E1

5 E1
6 C̃1 C̃2 C̃3 C̃4 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 1 0 0 0

E3
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 0 1 0 0 0 0 1 0 0 −2 0 0 0 1

C̃2 0 0 0 0 0 0 1 0 0 1 0 0 −2 0 0 1

C̃3 0 0 1 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃4 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 0 1

0 −2 0 1

0 0 −2 1

1 1 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2 0 1

2 0 0 1
2 0 1

2
1
2 0 1

2 0 0 0 0 0

0 6
11

1
11

9
11

2
11

7
22 0 17

22
5
22

21
22

3
11

5
11

10
11

7
11

6
11

19
22

)
,

(
0 0 − 1

2 0 1
2 0

0 0 3
11

39
22 − 5

22 − 5
11

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

4
11

)
, BN =

(
0 1

2
1
2

7
11

)
; QM =

(
1,

15

11

)
, QN =

(
1,

7

11

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.8. Family №4.8. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1z + z−1 + y−1 + x−1 + x−1z−1

(see [CP18, Family №4.7]). It is a Minkowski polynomial №216 (see [Akh+12, Appendix B: bucket 57]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZ2T +XY T 2 +XZT 2 + Y ZT 2 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ),

C6 = C(X,Z+T ), C7 = C(Y,Z+T ), C8 = C(Z,X+T ), C9 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 2 0 0 0 1 0 0 0 −1

1 0 1 1 0 0 1 0 0 −1

0 0 1 0 2 0 0 1 0 −1

0 1 0 1 1 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 −1 0 1

0 0 −1 0 −2 1

0 −1 0 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · (Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P4 = P(X,Y,Z+T ): type A1 with the quadratic term (X − Y )(Z + T )− (λ+ 2)XY ;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 1)T ) + T 2;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C4 C5 HS

C1 − 5
6

2
3 1 1

3 0 1

C2
2
3 − 1

6 0 1
3

1
3 1

C3 1 0 −1 1
2

1
2 1

C4
1
3

1
3

1
2 − 7

12
1
4 1

C5 0 1
3

1
2

1
4 − 1

12 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E1
3 E2

3 E3
3 E1

4 E1
5 E1

6 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃1 1 0 0 0 0 0 0 1 0 0 −2 0 1 0 0 1

C̃2 1 0 1 0 0 0 0 0 1 0 0 −2 0 0 0 1

C̃3 0 0 0 0 0 1 0 0 0 0 1 0 −2 0 0 1

C̃4 0 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 1

C̃5 0 0 0 1 0 0 1 0 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 1 0

0 −2 0 1

1 0 2 4

0 1 4 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
2
13

20
39

2
39

11
13

2
39

3
13

17
39

10
13

5
39

32
39

7
13

10
39

38
39

34
39

25
39

7
39

)
,
(
0 0 − 32

39 − 19
39 − 25

39
1
39

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

4
39

)
, BN =

(
35
39

)
; QM =

(
4

39

)
, QN =

(
74

39

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.9. Family №4.9. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + y−1z + x−1z + z−1 + y−1 + x−1

(see [CP18, Family №4.8]). It is a Minkowski polynomial №217 (see [Akh+12, Appendix B: bucket 54]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XZ2T + Y Z2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark D.5. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(X,Z+T ), C8 = C(Y,Z+T ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 −1

1 0 0 1 1 0 0 1 0 −1

0 1 0 1 0 2 0 0 0 −1

0 0 1 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C4]

[C7]

[C8]

[C9]

 =


0 −1 0 0 −2 1

−1 −1 −1 0 0 1

−1 1 0 −1 2 0

0 0 −1 −1 −1 1

 ·



[C1]

[C2]

[C3]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY + Z(X + Y );
P2 = P(X,Y,T ): type A1 with the quadratic term XY + T (X + Y );
P3 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,Y,Z+T ): type A1 with the quadratic term (X + Y )(Z + T )− (λ+ 2)XY ;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C3 C5 C6 HS

C1 − 1
2

1
2

1
2

1
2 0 1

C2
1
2 − 1

2
1
2 0 1

2 1

C3
1
2

1
2 − 3

4
1
2

1
4 1

C5
1
2 0 1

2 − 3
4

1
4 1

C6 0 1
2

1
4

1
4 0 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E1
5 E1

6 C̃1 C̃2 C̃3 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

E1
2 0 −2 0 0 0 0 0 0 0 0 1 0 1 1 0 0

E1
3 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 1 −2 1 0 0 0 0 0 0 1 0 0 0 0

E3
3 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

C̃1 1 1 0 0 0 0 0 0 1 0 −2 0 0 0 0 1

C̃2 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 1 1 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃5 0 1 0 0 0 1 0 0 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 1 0 0 1 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 1 1

0 0 2 2

1 2 0 2

1 2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2

3
4

1
4

1
2

1
4

1
4

1
2

3
4

3
4 0 1

2
1
2 0 0 0 0

5
8

1
4

7
8

1
2

3
8

7
8 0 1

8
3
4

5
8

1
2

3
4

1
4

3
4

1
4

3
8

)
,

(
0 0 0 − 1

4
3
4

1
4

0 0 − 1
4

1
8 − 1

2 0

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
1
4 0

0 1
8

)
, BN =

(
3
4 0

0 7
8

)
; QM =

(
1

4
,
1

8

)
, QN =

(
7

4
,
15

8

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.10. Family №4.10. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + y−1 + x−1 + y−1z−1

(see [CP18, Family №4.9]). It is a Minkowski polynomial №82 (see [Akh+12, Appendix B: bucket 37]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +XZT 2 + Y ZT 2 +XT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(X,Y+T ), C7 = C(Y,Z+T ), C8 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 1 0 0 −1

1 0 0 2 0 0 1 0 −1

0 1 0 0 3 0 0 0 −1

0 0 1 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C6]

[C7]

[C8]

 =


0 0 0 −3 1

−1 −1 0 3 0

−1 0 −2 0 1

0 −1 −1 −1 1

 ·


[C1]

[C3]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A3 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C4 C5 HS

C1 −1 1
2

1
2 0 1

C3
1
2 − 1

2
1
4

1
4 1

C4
1
2

1
4 − 1

12
1
3 1

C5 0 1
4

1
3

1
12 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E1

5 E2
5 C̃1 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

C̃1 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 1 0 0 0 1 0 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 0 1 0 1 0 1 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 −1 0

0 −2 0 1

−1 0 −2 1

0 1 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
18
31

29
31

19
31

14
31

21
31

28
31

28
31

16
31

20
31

13
31

22
31

21
31

7
31

9
31

4
31

13
31

)
,
(
0 0 − 21

31 − 15
31 − 20

31
1
31

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

5
31

)
, BN =

(
26
31

)
; QM =

(
36

31

)
, QN =

(
26

31

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.11. Family №4.11. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + z−1 + y−1 + x−1

(see [CP18, Family №4.10]). It is a Minkowski polynomial №85 (see [Akh+12, Appendix B: bucket 48]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z),

C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(X,Y+T ), C8 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 −1

1 0 0 1 2 0 0 0 −1

0 1 0 1 0 2 0 0 −1

0 0 1 0 1 1 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C4]

[C7]

[C8]

 =


1 0 2 −2 0

−1 0 −2 0 1

−2 −1 −2 2 1

0 −1 −1 −1 1

 ·


[C1]

[C3]

[C5]

[C6]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term XY +XZ + Y Z;
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − (λ+ 1)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C3 C5 C6 HS

C1 − 1
2

1
2

1
2 0 1

C3
1
2 − 7

12
1
4

1
3 1

C5
1
2

1
4 0 1

4 1

C6 0 1
3

1
4 − 1

12 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E2

4 E3
4 E1

5 E1
6 C̃1 C̃3 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃5 0 0 0 1 0 0 1 0 0 1 0 0 0 −2 0 1

C̃6 0 0 0 0 0 1 0 0 1 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 −1 0

0 −2 −1 0

−1 −1 0 3

0 0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2

1
2 0 1

2 0 0 0 0 0 0 1
2 0 0 0 0 1

2
9
14

1
14 0 9

14
2
7

3
7

5
14

3
7

1
2

9
14

2
7

2
7

1
7

2
7

4
7

13
14

)
,

(
0 0 − 1

2
1
2 0 0

0 0 9
14

1
7

5
7 − 1

14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

2
7

)
, BN =

(
0 1

2
1
2

5
7

)
; QM =

(
1,

2

7

)
, QN =

(
1,

12

7

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.12. Family №4.12. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + y−1 + x−1 + x−1z−1

(see [CP18, Family №4.11]). It is a Minkowski polynomial №83 (see [Akh+12, Appendix B: bucket 34]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT +XZT 2 + Y ZT 2 + Y T 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(T,X+Y+Z), C7 = C(X,Z(Y+T )+T 2).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 1 −1

1 0 1 2 0 0 0 −1

0 0 1 0 3 0 0 −1

0 1 0 1 1 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C3]

[C6]

[C7]

 =


0 −2 3 0

0 0 −3 1

−1 −1 −1 1

−1 2 −3 1

 ·


[C2]

[C4]

[C5]

[HS ]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A4 with the quadratic term Y · Z;
P4 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P5 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − (λ+ 1)T ).

The Q-valued intersection matrix on the group AS has the following form:

• C2 C4 C5 HS

C2 − 7
12

1
4

1
3 1

C4
1
4

1
20

1
5 1

C5
1
3

1
5

2
15 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E3

3 E4
3 E1

4 E1
5 E2

5 C̃2 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
2 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃2 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 1 0 0 1 0 0 0 1 0 0 0 −2 0 1

C̃5 0 0 0 0 1 0 0 0 1 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 −1 0 0

−1 −2 −1 0

0 −1 0 3

0 0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
16
23

19
23

22
23

6
23

22
23 0 21

23
19
23

17
23

1
23

10
23

5
23

13
23

2
23

15
23

4
23

)
,
(
0 0 − 13

23 − 20
23 − 16

23
1
23

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
12
23

)
, BN =

(
11
23

)
; QM =

(
12

23

)
, QN =

(
34

23

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

D.13. Family №4.13. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + x−1y + x−1yz−1 + y−1 + x−1

(see [CP18, Family №4.12]). It is a Minkowski polynomial №84 (see [Akh+12, Appendix B: bucket 29]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 + Y 2ZT + Y 2T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ),

C5 = C(Z,T ), C6 = C(T,X+Y+Z), C7 = C(X,ZT+Y (Z+T )).
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Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 0 1 −1

1 0 1 2 0 0 0 −1

0 0 2 0 2 0 0 −1

0 1 0 1 1 1 0 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C3]

[C6]

[C7]

[HS ]

 =


1 0 2 −2

2 −1 3 −3

1 −1 4 −2

2 0 4 −2

 ·


[C1]

[C2]

[C4]

[C5]

 .

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term Y 2 + Z(X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A1 with the quadratic term Z(X + T ) + T 2;
P4 = P(Y,Z,T ): type A5 with the quadratic term Y · Z;
P5 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + T 2;
P6 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − (λ+ 1)T )− T 2.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 C4 C5

C1 − 1
2

1
2

1
2 0

C2
1
2 − 3

4
1
4

1
2

C4
1
2

1
4

1
12

1
6

C5 0 1
2

1
6 − 1

6

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E1

4 E2
4 E3

4 E4
4 E5

4 E1
5 E1

6 C̃1 C̃2 C̃4 C̃5

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 0 0 0 0 0 0 0 0 1 0 1

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E5
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃2 0 1 0 0 1 0 0 0 0 0 0 0 0 −2 0 0

C̃4 0 0 0 1 0 1 0 0 0 0 1 0 0 0 −2 0

C̃5 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 16. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 −1 0

0 −2 −1 0

−1 −1 −2 1

0 0 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2 0 1
2

1
2

1
2 0 1

2 0 1
2 0 0 0 0 0 0

1
5

1
2

3
5

3
10

3
10

1
5

2
5

3
5

4
5 0 1

2
1
10

2
5

2
5 0 1

5

)
,

(
0 0 − 1

2
1
2 0 0

0 0 − 1
5

3
10

2
5 − 1

10

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

7
10

)
, BN =

(
0 1

2
1
2

3
10

)
; QM =

(
1,

7

10

)
, QN =

(
1,

13

10

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix E. Dolgachev–Nikulin duality for Fano threefolds: rank 5

E.1. Family №5.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + xy−1 + x−1y + y−1z + x−1z + z−1 + 2y−1 + 2x−1 + x−1y−1z + x−1y−1

(see [CP18, Family №5.1]). It is a Minkowski polynomial №1083 (see [Akh+12, Appendix B: bucket 100]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +X2ZT + Y 2ZT +XZ2T + Y Z2T+

XY T 2 + 2XZT 2 + 2Y ZT 2 + Z2T 2 + ZT 3 = λXY ZT.

Remark E.1. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(X,T ), C3 = C(Y,Z), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(X,Y+T ),

C7 = C(Y,X+T ), C8 = C(T,X+Y ), C9 = C(X,Y+Z+T ), C10 = C(Y,X+Z+T ).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 0 1 0 0 1 0 −1

0 0 1 1 0 0 1 0 0 1 −1

1 0 1 0 2 0 0 0 0 0 −1

0 1 0 1 1 0 0 1 0 0 −1

 ·


[C1]

· · ·
[C10]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C3]

[C8]

[C9]

[C10]

 =


−1 0 0 −2 0 0 1

0 −1 −1 −1 0 0 1

−1 −1 0 0 −1 0 1

1 0 −1 2 0 −1 0

 ·



[C1]

[C2]

[C4]

[C5]

[C6]

[C7]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A3 with the quadratic term T · (X + Y + T );
P2 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P3 = P(Y,Z,T ): type A2 with the quadratic term Z · (Y + T );
P4 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y − (λ+ 2)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C4 C5 C6 C7 HS

C1 − 4
3

1
3 0 2

3 1 0 1

C2
1
3 − 7

12
3
4

1
3

1
4

1
4 1

C4 0 3
4 − 7

12
1
3

1
4

1
4 1

C5
2
3

1
3

1
3 − 1

6 0 0 1

C6 1 1
4

1
4 0 − 5

4
3
4 1

C7 0 1
4

1
4 0 3

4 − 5
4 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E3
1 E1

2 E2
2 E1

3 E2
3 E1

4 C̃1 C̃2 C̃4 C̃5 C̃6 C̃7 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 1 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 0 0 0 0 0 0 0 0 0 1 1 0

E1
2 0 0 0 −2 1 0 0 0 1 0 0 1 0 0 0

E2
2 0 0 0 1 −2 0 0 0 0 1 0 0 0 0 0

E1
3 0 0 0 0 0 −2 1 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0

C̃1 0 0 0 1 0 0 0 0 −2 0 0 0 1 0 1

C̃2 1 0 0 0 1 0 0 0 0 −2 0 0 0 0 1

C̃4 1 0 0 0 0 1 0 0 0 0 −2 0 0 0 1

C̃5 0 0 0 1 0 0 1 1 0 0 0 −2 0 0 1

C̃6 0 0 1 0 0 0 0 0 1 0 0 0 −2 0 1

C̃7 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 1 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 15. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 −1 0

−1 −1 −1 −2 2

0 0 0 2 6

 .
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We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2

1
2

1
2

1
2 0 0 0 0 0 1

2 0 0 0 1
2

1
2

1
2

1
2

1
2 0 0 0 1

2 0 0 0 1
2 0 1

2 0 1
2

1
2 0 1

2
1
7

5
7

4
7

3
7

9
14

2
7

2
7

5
7

2
7

1
14

13
14

5
14

 ,

0 0 − 1
2 0 1

2 0 0

0 0 − 1
2

1
2 0 0 0

0 0 1
7

1
7

1
7

5
7 − 1

14

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2 0

1
2 0 0

0 0 13
14

 , BN =

0 1
2 0

1
2 0 0

0 0 1
14

 ; QM =

(
1, 1,

27

14

)
, QN =

(
1, 1,

1

14

)
.

The lattices M and N have the signature (1, 14) and (2, 5), respectively, hence M⊥ ≃ N in the K3 lattice.

E.2. Family №5.2. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + xz−1 + xy−1 + x−1y + y−1 + x−1

(see [CP18, Family №5.2]). It is a Minkowski polynomial №220 (see [Akh+12, Appendix B: bucket 64]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +X2Y T +X2ZT + Y 2ZT +XZT 2 + Y ZT 2 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(X,Y+T ), C8 = C(Y,X+T ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 1 0 0 0 1 0 0 −1

1 0 0 1 1 0 0 1 0 −1

0 2 0 1 0 1 0 0 0 −1

0 0 1 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C6]

[C7]

[C8]

[C9]

 =


0 −2 0 −1 0 1

−1 −1 −1 0 0 1

−1 0 0 −1 −1 1

0 2 −1 1 −1 0

 ·



[C1]

[C2]

[C3]

[C4]

[C5]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term Z · (X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term Z · (X + T );
P4 = P(Y,Z,T ): type A1 with the quadratic term Y Z + Y T + ZT ;
P5 = P(X,Z,Y+T ): type A1 with the quadratic term Z((λ+ 2)X − Y − T )−X2.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C2 C3 C4 C5 HS

C1 − 1
3

1
3

1
2

1
3

1
2 1

C2
1
3 − 1

6
1
3

2
3 0 1

C3
1
2

1
3 − 7

12 0 1
4 1

C4
1
3

2
3 0 − 5

6
1
2 1

C5
1
2 0 1

4
1
2 − 3

4 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E2
3 E1

4 E1
5 C̃1 C̃2 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 1 0 1 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 1 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 1 0 0 0 0

E2
3 0 0 0 0 0 1 −2 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 0 −2 0 0 0 0 1 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0

C̃1 1 0 0 1 0 0 0 0 0 −2 0 0 0 0 1

C̃2 0 1 0 0 0 1 0 0 1 0 −2 0 0 0 1

C̃3 0 0 1 0 0 0 1 0 0 0 0 −2 0 0 1

C̃4 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 1

C̃5 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 15. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 0 1

−1 −1 0 −2 1

0 0 1 1 4

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
9
44

39
44

7
11

9
44

1
4

29
44

19
22

31
44

8
11

23
44

5
11

3
44

5
44

13
44

7
11

)
,
(
0 0 − 13

44
9
44

1
22 − 9

22
1
11

)
.



MODULARITY OF LANDAU–GINZBURG MODELS 205

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
31
44

)
, BN =

(
13
44

)
; QM =

(
31

44

)
, QN =

(
57

44

)
.

The lattices M and N have the signature (1, 14) and (2, 5), respectively, hence M⊥ ≃ N in the K3 lattice.

E.3. Family №5.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + yz−1 + y−1z + z−1 + y−1 + x−1

(see [CP18, Family №5.3]). It is a Minkowski polynomial №219 (see [Akh+12, Appendix B: bucket 76]).
The pencil S is defined by the equation

X2Y Z +XY 2Z +XY Z2 +XY 2T +XZ2T +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark E.2. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(Y,Z+T ), C8 = C(Z,Y+T ), C9 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 0 0 0 −1

1 0 0 1 1 0 1 0 0 −1

0 1 0 1 0 1 0 1 0 −1

0 0 1 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:


[C2]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 −1 0 1

1 2 −1 0 −1 0

0 −1 0 −1 −1 1

 ·



[C1]

[C3]

[C4]

[C5]

[C6]

[HS ]


.

For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term Y Z +X(Y + Z);
P2 = P(X,Y,T ): type A2 with the quadratic term X · (Y + T );
P3 = P(X,Z,T ): type A2 with the quadratic term X · (Z + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − (λ+ 2)T ) + T 2.

The Q-valued intersection matrix on the group AS has the following form:
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• C1 C3 C4 C5 C6 HS

C1 − 5
6

2
3

1
2

1
3 0 1

C3
2
3 − 1

6 0 1
3

1
3 1

C4
1
2 0 − 1

2
1
2

1
2 1

C5
1
3

1
3

1
2 − 7

12
1
4 1

C6 0 1
3

1
2

1
4 − 7

12 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. In our case we have Lλ = LS .
The intersection matrix on the lattice Lλ has the following form:

• E1
1 E1

2 E2
2 E1

3 E2
3 E1

4 E2
4 E3

4 E1
5 C̃1 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 1 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 1 1 0 0 0 0

E2
2 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 1 0 0 0

E3
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0

C̃1 1 1 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 1 0 1 0 0 0 0 1 0 −2 0 0 0 1

C̃4 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃5 0 0 1 0 0 1 0 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 15. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sλ.
Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 −1 0

−1 −1 −1 0 3

0 0 0 3 2

 .
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We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2 0 0 0 0 1

2 0 1
2

1
2 0 0 0 0 0 1

2

0 0 1
2 0 0 1

2 0 0 0 1
2 0 1

2 0 0 0
1
12

1
12

1
3

3
4

5
6

2
3

3
4

5
6

1
3

1
6

2
3 0 7

12
11
12

1
6

 ,

0 0 − 1
2 0 1

2 0 0

0 0 − 1
2 0 0 0 1

2

0 0 − 5
12

1
12

1
12 − 1

6
1
4

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2

1
2

1
2 0 1

2
1
2

1
2

7
12

 , BN =

0 1
2

1
2

1
2 0 1

2
1
2

1
2

5
12

 ; QM =

(
1, 0,

7

12

)
, QN =

(
1, 0,

17

12

)
.

The lattices M and N have the signature (1, 14) and (2, 5), respectively, hence M⊥ ≃ N in the K3 lattice.



208 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Appendix F. Dolgachev–Nikulin duality for Fano threefolds: rank 6

F.1. Family №6.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ 2y + x−1y2 + z + 3x−1y + z−1 + y−1 + 3x−1 + x−1y−1

(see [CP18, Family №6.1]). It is a Minkowski polynomial №284 (see [Akh+12, Appendix B: bucket 107]).
The pencil S is defined by the equation

X2Y Z + 2XY 2Z + Y 3Z +XY Z2 + 3Y 2ZT +XY T 2 +XZT 2 + 3Y ZT 2 + ZT 3 = λXY ZT.

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Z), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ),

C5 = C(X,Y+T ), C6 = C(Y,X+T ), C7 = C(T,XZ+(X+Y )2).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 0 0 0 3 0 0 −1

0 1 2 0 0 1 0 −1

1 1 0 2 0 0 0 −1

0 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C6]

[C7]

 =


0 0 −3 1

0 −2 3 0

−2 2 −3 1

−1 −1 0 1

 ·


[C3]

[C4]

[C5]

[HS ]

 .

Put µ(µ− 1) = (λ+ 1)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P3 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + (Y 2 + T 2);
P4 = P(Z,T,X+Y ): type A3 with the quadratic term (µZ − (µ− 1)T ) · ((µ− 1)Z − µT );
P5 = P(X,µY+(µ−1)Z,Y+T ): type A2 with the quadratic term

X · (µ2(µ− 1)(X + Y + T ) + (2µ− 1)((µ− 1)Z − µT ));

P6 = P(X,(µ−1)Y+µZ,Y+T ): type A2 with the quadratic term

X · (µ(µ− 1)2(X + Y + T )− (2µ− 1)(µZ − (µ− 1)T )).

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5 HS

C3 − 1
12

1
4

1
3 1

C4
1
4 − 1

4 0 1

C5
1
3 0 0 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
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Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 , E

2
1 , E

1
2 , E

2
2 , E

3
2 , E

1
3 , E

1
4 + E3

4 , E
2
4 , E

1
5 + E1

6 , E
2
5 + E2

6 , C̃3, C̃4, C̃5, H̃S .

The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E1
4 E2

4 E3
4 E1

5 E2
5 E1

6 E2
6 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 1 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1 0

E2
6 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0

C̃3 1 0 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃4 0 0 0 0 1 0 0 1 0 0 0 0 0 0 −2 0 1

C̃5 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on the
surface Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E1
4 + E3

4 E2
4 E1

5 + E1
6 E2

5 + E2
6 C̃3 C̃4 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 −2 0 0 0 0 1 0 0 0

E1
4 + E3

4 0 0 0 0 0 0 −4 2 0 0 0 0 0 0

E2
4 0 0 0 0 0 0 2 −2 0 0 0 1 0 0

E1
5 + E1

6 0 0 0 0 0 0 0 0 −4 2 0 0 2 0

E2
5 + E2

6 0 0 0 0 0 0 0 0 2 −4 0 0 0 0

C̃3 1 0 1 0 0 1 0 0 0 0 −2 0 0 1

C̃4 0 0 0 0 1 0 0 1 0 0 0 −2 0 1

C̃5 0 1 0 0 0 0 0 0 2 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.
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Note that the intersection matrix is non-degenerate, hence we have rank(LS) = 14. Recall that Pic(S̃k) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sk.
We denote by M the intersection matrix on LS .

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 −1 0

0 −2 0 0 −1 0

0 0 −2 0 −1 0

0 0 0 −2 −1 0

−1 −1 −1 −1 0 3

0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:
0 0 0 0 0 0 0 0 1

2 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 1
2 0 1

2
1
2 0 1

2 0 1
2 0 0 0 0

1
5

4
5

9
10

1
5

1
2

3
10

9
10

3
10

3
5

3
10

3
5

4
5

2
5

4
5

 ,


0 0 − 1

2 0 1
2 0 0 0

0 0 − 1
2 0 0 1

2 0 0

0 0 − 1
2

1
2 0 0 0 0

0 0 − 1
5

3
10

3
10

3
10

2
5 − 1

10

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =


0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

2
5

 , BN =


0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2 0 1

2
1
2

1
2

1
2

3
5

 ; QM =

(
1, 1, 1,

7

5

)
, QN =

(
1, 1, 1,

3

5

)
.

The lattices M and N have the signature (1, 13) and (2, 6), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix G. Dolgachev–Nikulin duality for Fano threefolds: rank 7

G.1. Family №7.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x2y−1 + 3x+ 3y + x−1y2 + z + 2xy−1 + 2x−1y + z−1 + y−1 + x−1

(see [CP18, Family №7.1]). It is a Minkowski polynomial №506 (see [Akh+12, Appendix B: bucket 136]).
The pencil S is defined by the equation

X3Z + 3X2Y Z + 3XY 2Z + Y 3Z +XY Z2 + 2X2ZT + 2Y 2ZT +XY T 2 +XZT 2 + Y ZT 2 = λXY ZT.

Remark G.1. Note that the equation is invariant under the permutation (X,Y ) 7→ (Y,X).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(Y,Z), C4 = C(Z,T ),

C5 = C(X,Y+T ), C6 = C(Y,X+T ), C7 = C(T,(X+Y )3+XY Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 2 0 0 −1

1 0 1 0 0 2 0 −1

0 1 1 2 0 0 0 −1

0 0 0 1 0 0 1 −1

 ·


[C1]

· · ·
[C7]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C2]

[C3]

[C7]

[HS ]

 =


1 −2 0 2

1 −2 2 0

2 −3 2 2

2 −2 2 2

 ·


[C1]

[C4]

[C5]

[C6]

 .

Put µ(µ− 1) = (λ+ 2)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:
P1 = P(X,Y,Z): type A1 with the quadratic term XY + Z(X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(Z,T,X+Y ): type A5 with the quadratic term (µZ − (µ− 1)T ) · ((µ− 1)Z − µT );
P4 = P(X,Y+T,(µ−1)Z−µT ): type A1;
P5 = P(X,Y+T,µZ−(µ−1)T ): type A1;
P6 = P(Y,X+T,(µ−1)Z−µT ): type A1;
P7 = P(Y,X+T,µZ−(µ−1)T ): type A1.

The Q-valued intersection matrix on the group AS has the following form:

• C1 C4 C5 C6

C1 − 1
2 0 1

2
1
2

C4 0 − 1
2 0 0

C5
1
2 0 − 1

4
1
4

C6
1
2 0 1

4 − 1
4

.

Note that the intersection matrix has the rank 4.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
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classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 , E

1
2 , E

2
2 , E

3
2 , E

1
3 + E5

3 , E
2
3 + E4

3 , E
3
3 , E

1
4 + E1

5 , E
1
6 + E1

7 , C̃1, C̃4, C̃5, C̃6.

The intersection matrix on the lattice Lλ has the following form:

• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 E1
5 E1

6 E1
7 C̃1 C̃4 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 1 0 0

E4
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0

C̃5 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 −2 0

C̃6 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 17. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on the
surface Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 E1

2 E2
2 E3

2 E1
3 + E5

3 E2
3 + E4

3 E3
3 E1

4 + E1
5 E1

6 + E1
7 C̃1 C̃4 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 1 0

E2
2 0 1 −2 1 0 0 0 0 0 1 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 1

E1
3 + E5

3 0 0 0 0 −4 2 0 0 0 0 0 0 0

E2
3 + E4

3 0 0 0 0 2 −4 2 0 0 0 0 0 0

E3
3 0 0 0 0 0 2 −2 0 0 0 1 0 0

E1
4 + E1

5 0 0 0 0 0 0 0 −4 0 0 0 2 0

E1
6 + E1

7 0 0 0 0 0 0 0 0 −4 0 0 0 2

C̃1 1 0 1 0 0 0 0 0 0 −2 0 0 0

C̃4 0 0 0 0 0 0 1 0 0 0 −2 0 0

C̃5 0 1 0 0 0 0 0 2 0 0 0 −2 0

C̃6 0 0 0 1 0 0 0 0 2 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(LS) = 13. Recall that Pic(S̃k) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sk.
We denote by M the intersection matrix on LS .
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The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 −1 0

0 −2 0 0 0 −1 0

0 0 −2 0 0 −1 0

0 0 0 −2 0 −1 0

0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 0 3

0 0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:
1
2 0 1

2 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 1
2 0 1

2 0 0 0 0 0

0 0 0 0 0 1
2 0 0 0 0 0 0 0

1
2 0 1

2 0 1
2 0 0 0 0 0 0 1

2
1
2

3
4

1
4

1
4

3
4 0 0 0 5

8
3
8

1
2 0 1

4
1
4

 ,


0 0 1

2
1
2

1
2 0 1

2 0 0

0 0 1
2

1
2 0 1

2
1
2 0 0

0 0 1
2 0 0 0 1

2 0 0

0 0 1
2

1
2 0 0 0 0 0

0 0 1
8

1
8

1
8

1
8

1
8

3
4

7
8

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 5
8

 , BN =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 3
8

 ;

QM =

(
0, 0, 1, 1,

13

8

)
, QN =

(
0, 0, 1, 1,

3

8

)
.

The lattices M and N have the signature (1, 12) and (2, 7), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix H. Dolgachev–Nikulin duality for Fano threefolds: rank 8

H.1. Family №8.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

y2z−1 + x+ 3y + 3z + y−1z2 + 3yz−1 + 3y−1z + 3z−1 + 3y−1 + x−1 + y−1z−1

(see [CP18, Family №8.1]). It is a Minkowski polynomial №769 (see [Akh+12, Appendix B: bucket 155]).
The pencil S is defined by the equation

XY 3 +X2Y Z + 3XY 2Z + 3XY Z2 +XZ3 + 3XY 2T+

3XZ2T + 3XY T 2 + 3XZT 2 + Y ZT 2 +XT 3 = λXY ZT.

Remark H.1. Note that the equation is invariant under the permutation (Y,Z) 7→ (Z, Y ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z+T ), C5 = C(Z,Y+T ), C6 = C(T,(Y+Z)3+XY Z).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 2 0 0 0 −1

1 0 0 3 0 0 −1

0 1 0 0 3 0 −1

0 0 1 0 0 1 −1

 ·


[C1]

· · ·
[C6]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:
[C1]

[C2]

[C6]

[HS ]

 =


−2 0 3

−2 3 0

−3 3 3

−2 3 3

 ·

[C3]

[C4]

[C5]

 .

Put µ(µ− 1) = (λ+ 4)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P2 = P(X,T,Y+Z): type A5 with the quadratic term (µX − (µ− 1)T ) · ((µ− 1)X − µT );
P3 = P(Y,(µ−1)X−µT,Z+T ): type A2 with the quadratic term Y · ((µ− 1)X − µT );
P4 = P(Y,µX−(µ−1)T,Z+T ): type A2 with the quadratic term Y · (µX − (µ− 1)T );
P5 = P(Z,(µ−1)X−µT,Y+T ): type A2 with the quadratic term Z · (µX − (µ− 1)T );
P6 = P(Z,µX−(µ−1)T,Y+T ): type A2 with the quadratic term Z · ((µ− 1)X − µT ).

The Q-valued intersection matrix on the group AS has the following form:

• C3 C4 C5

C3 − 1
2 0 0

C4 0 0 1
3

C5 0 1
3 0

.

Note that the intersection matrix has the rank 3.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
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the subgroup LS can be identified with the subgroup LGal(k)
λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 , E

2
1 , E

1
2 + E5

2 , E
2
2 + E4

2 , E
3
2 , E

1
3 + E1

4 , E
2
3 + E2

4 , E
1
5 + E1

6 , E
2
5 + E2

6 , C̃3, C̃4, C̃5.

The intersection matrix on the lattice Lλ has the following form:

• E1
1 E2

1 E1
2 E2

2 E3
2 E4

2 E5
2 E1

3 E2
3 E1

4 E2
4 E1

5 E2
5 E1

6 E2
6 C̃3 C̃4 C̃5

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E4
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E5
2 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
3 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 1

E2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0

C̃4 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 −2 0

C̃5 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on the
surface Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 E2

1 E1
2 + E5

2 E2
2 + E4

2 E3
2 E1

3 + E1
4 E2

3 + E2
4 E1

5 + E1
6 E2

5 + E2
6 C̃3 C̃4 C̃5

E1
1 −2 1 0 0 0 0 0 0 0 0 1 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 1

E1
2 + E5

2 0 0 −4 2 0 0 0 0 0 0 0 0

E2
2 + E4

2 0 0 2 −4 2 0 0 0 0 0 0 0

E3
2 0 0 0 2 −2 0 0 0 0 1 0 0

E1
3 + E1

4 0 0 0 0 0 −4 2 0 0 0 2 0

E2
3 + E2

4 0 0 0 0 0 2 −4 0 0 0 0 0

E1
5 + E1

6 0 0 0 0 0 0 0 −4 2 0 0 2

E2
5 + E2

6 0 0 0 0 0 0 0 2 −4 0 0 0

C̃3 0 0 0 0 1 0 0 0 0 −2 0 0

C̃4 1 0 0 0 0 2 0 0 0 0 −2 0

C̃5 0 1 0 0 0 0 0 2 0 0 0 −2

.

Note that the intersection matrix is non-degenerate, hence we have rank(LS) = 12. Recall that Pic(S̃k) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on Sk.
We denote by M the intersection matrix on LS .
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The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 0 −1 0

0 −2 0 0 0 0 −1 0

0 0 −2 0 0 0 −1 0

0 0 0 −2 0 0 −1 0

0 0 0 0 −2 0 −1 0

0 0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 −1 0 3

0 0 0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:

0 0 0 0 0 0 1
2

1
2 0 0 0 0

0 0 0 0 0 0 1
2

1
2

1
2 0 0 0

0 0 0 0 0 1
2 0 0 1

2 0 0 0

0 0 0 0 0 1
2

1
2 0 1

2 0 0 0

0 0 0 1
2 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0 0 0 0

2
3

1
3 0 0 0 2

3
1
3

1
3

2
3 0 0 0


,



0 0 1
2

1
2

1
2 0 1

2
1
2 0 1

2

0 0 1
2

1
2 0 1

2
1
2

1
2 0 1

2

0 0 0 1
2 0 0 0 0 0 1

2

0 0 1
2 0 0 0 0 0 0 1

2

0 0 1
2

1
2 0 0 1

2 0 0 1
2

0 0 1
2

1
2 0 0 0 1

2 0 1
2

0 0 2
3

2
3

2
3

2
3

2
3

2
3

2
3 0


.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 2
3


, BN =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
3


;

QM =

(
0, 0, 0, 0, 1, 1,

2

3

)
, QN =

(
0, 0, 0, 0, 1, 1,

4

3

)
.

The lattices M and N have the signature (1, 11) and (2, 8), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix I. Dolgachev–Nikulin duality for Fano threefolds: rank 9

I.1. Family №9.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(x+ y + 1)4x−1y−1 + z + z−1

(see [CP18, Family №9.1]). It is not a Minkowski polynomial. Let us apply the following birational transform:

(C∗)3 99K (C∗)3, (x, y, z) 7→ (xz,−xz + x− 1, y−1z).

The pencil S is defined by the equation

X3Y = (Y 2 + Z2 − λY Z)(X(Z − T ) + T 2).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except

S∞ = S(Y ) + S(Z) + S(X(Z−T )+T 2).

The base locus of the pencil S consists of the following curves:

C1 = C(X,T ), C2 = C(Y,Z), C3 = C(Y,X(Z−T )+T 2), C4 = C(Z,X3+Y T (X−T )).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

(
[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

)
=

(
0 2 1 0 −1

0 1 0 1 −1

)
·


[C1]

· · ·
[C4]

[HS ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:(
[C3]

[C4]

)
=

(
0 −2 1

0 −1 1

)
·

 [C1]

[C2]

[HS ]

 .

Put µ(µ− 1) = (λ− 2)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(X,Y,Z): type A5 with the quadratic term (µY − (µ− 1)Z) · ((µ− 1)Y − µZ);
P2 = P(X,Z,T ): type A1 with the quadratic term X(Z − T ) + T 2;
P3 = P(X,T,(µ−1)Y−µZ): type A5 with the quadratic term X · ((µ− 1)Y − µZ);
P4 = P(X,T,µY−(µ−1)Z): type A5 with the quadratic term X · (µY − (µ− 1)Z).

The Q-valued intersection matrix on the group AS has the following form:

• C1 C2 HS

C1
1
6 0 1

C2 0 − 1
2 1

HS 1 1 4

.

Note that the intersection matrix has the rank 2.
Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,

respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence
classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃S
of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

E1
1 + E5

1 , E
2
1 + E4

1 , E
3
1 , E

1
2 , E

1
3 + E1

4 , E
2
3 + E2

4 , E
3
3 + E3

4 , E
4
3 + E4

4 , E
5
3 + E5

4 , C̃1, C̃2, H̃S .

The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E1

2 E1
3 E2

3 E3
3 E4

3 E5
3 E1

4 E2
4 E3

4 E4
4 E5

4 C̃1 C̃2 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E5
3 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E5
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 −2 0 1

C̃2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[H̃S ]

)
=
(
−1 −2 −3 −2 −1 3 5 4 3 2 1 5 4 3 2 1 6 −2

)
·(

[E1
1 ] [E2

1 ] [E3
1 ] [E4

1 ] [E5
1 ] [E1

2 ] [E1
3 ] [E2

3 ] [E3
3 ]

[E4
3 ] [E5

3 ] [E1
4 ] [E2

4 ] [E3
4 ] [E4

4 ] [E5
4 ] [C̃1] [C̃2]

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 + E5

1 E2
1 + E4

1 E3
1 E1

2 E1
3 + E1

4 E2
3 + E2

4 E3
3 + E3

4 E4
3 + E4

4 E5
3 + E5

4 C̃1 C̃2 H̃S

E1
1 + E5

1 −4 2 0 0 0 0 0 0 0 0 0 0

E2
1 + E4

1 2 −4 2 0 0 0 0 0 0 0 0 0

E3
1 0 2 −2 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 −2 0 0 0 0 0 1 0 0

E1
3 + E1

4 0 0 0 0 −4 2 0 0 0 2 0 0

E2
3 + E2

4 0 0 0 0 2 −4 2 0 0 0 0 0

E3
3 + E3

4 0 0 0 0 0 2 −4 2 0 0 0 0

E4
3 + E4

4 0 0 0 0 0 0 2 −4 2 0 0 0

E5
3 + E5

4 0 0 0 0 0 0 0 2 −4 0 0 0

C̃1 0 0 0 1 2 0 0 0 0 −2 0 1

C̃2 0 0 1 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 4

.
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Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice LS :(
[H̃S ]

)
=
(
−1 −2 −3 3 5 4 3 2 1 6 −2

)
·(

[E1
1 + E5

1 ] [E2
1 + E4

1 ] [E3
1 ] [E1

2 ] [E1
3 + E1

4 ] [E2
3 + E2

4 ]

[E3
3 + E3

4 ] [E4
3 + E4

4 ] [E5
3 + E5

4 ] [C̃1] [C̃2]

)T
,

hence we have rank(LS) = 11. Recall that Pic(S̃k) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sk. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 0 0 −1 0

0 −2 0 0 0 0 0 −1 0

0 0 −2 0 0 0 0 −1 0

0 0 0 −2 0 0 0 −1 0

0 0 0 0 −2 0 0 −1 0

0 0 0 0 0 −2 0 −1 0

0 0 0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 −1 −1 0 3

0 0 0 0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:

0 0 0 0 1
2

1
2 0 1

2 0 0 0

0 0 0 0 0 0 1
2 0 1

2 0 0

0 0 0 0 1
2 0 0 1

2
1
2 0 0

0 0 0 0 1
2 0 0 0 1

2 0 0

0 1
2 0 0 1

2 0 1
2 0 1

2 0 0
1
2

1
2 0 0 1

2 0 1
2 0 1

2 0 0
1
2 0 0 1

2
1
4 0 1

4 0 3
4 0 0


,



0 0 0 0 0 1
2 0 0 0 0 1

2

0 0 0 0 1
2 0 0 0 0 0 1

2

0 0 0 1
2

1
2

1
2

1
2

1
2 0 0 1

2

0 0 0 0 1
2

1
2

1
2

1
2

1
2 0 1

2

0 0 1
2

1
2 0 0 0 1

2
1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0 1

2 0 1
2

0 0 3
4

1
4

3
4

3
4

1
4

3
4

1
4

1
2

1
4


.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 3
4


, BN =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
4


;

QM =

(
0, 0, 0, 0, 0, 0,

7

4

)
, QN =

(
0, 0, 0, 0, 0, 0,

1

4

)
.

The lattices M and N have the signature (1, 10) and (2, 9), respectively, hence M⊥ ≃ N in the K3 lattice.



220 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Appendix J. Dolgachev–Nikulin duality for Fano threefolds: rank 10

J.1. Family №10.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(x+ y + 1)6x−1y−2 + z + z−1

(see [CP18, Family №10.1]). It is not a Minkowski polynomial. Let us apply the following birational transform:

(C∗)3 99K C∗ × C∗ × C∗, (x, y, z) 7→ (B−1 −B−2C−1 − 1, B−2C−1, Y ).

The pencil S is defined by the equation

XY C3 = (A3 −BC(A−B))(X2 + Y 2 − λXY ).

Members Sλ of the pencil are irreducible for any parameter λ ∈ P1 except the following one:

S∞ = S(X) + S(Y ) + S(A3−BC(A−B)).

The base locus of the pencil S consists of the following curves:

C1 = C(A,C), C2 = C(X,A3−BC(A−B)), C3 = C(Y,A3−BC(A−B)).

Their linear equivalence classes on the generic member Sk of the pencil satisfy the following relations:

(
[Sk · S(X)]− [H

(1)
S ]

[Sk · S(Y )]− [H
(1)
S ]

)
=

(
0 1 0 −1

0 0 1 −1

)
·


[C1]

[C2]

[C3]

[H
(1)
S ]

 = 0.

We can reduce the number of linear equivalence classes using these relations:(
[C3]

[H
(1)
S ]

)
=

(
[C2]

[C2]

)
.

Put µ(µ− 1) = (λ+ 4)−1. For a general choice of λ ∈ C the surface Sλ has the following singularities:

P1 = P(A,C,µX−(µ−1)Y ): type A8;
P2 = P(A,C,(µ−1)X−µY ): type A8.

Let S̃λ and S̃k be the minimal resolution of a general member Sλ and the generic member Sk of the pencil,
respectively. Denote by Lλ ⊂ Pic(S̃λ) and LS ⊂ Pic(S̃k) the subgroups generated by linear equivalence

classes of exceptional divisors of the resolution and by linear equivalence classes of strict transforms C̃i, H̃
(j)
S

of the above-introduced curves. By construction the subgroup Lλ is equipped with the Gal(k)-action, and
the subgroup LS can be identified with the subgroup LGal(k)

λ ⊂ Lλ. Its Galois orbits can be described as

(E1
1 , E

1
2), (E

2
1 , E

2
2), (E

3
1 , E

3
2), (E

4
1 , E

4
2), (E

5
1 , E

5
2), (E

6
1 , E

6
2), (E

7
1 , E

7
2), (E

8
1 , E

8
2).

The intersection matrix on the lattice Lλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E5
1 E6

1 E7
1 E8

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E7
2 E8

2 C̃1 C̃2 H̃
(2)
S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E5
1 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E6
1 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

E7
1 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E8
1 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0

E5
2 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0

E6
2 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0

E7
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0

E8
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0

C̃1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 1 0

C̃2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3

H̃
(2)
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice Lλ:(
[E8

2 ]
)
=
(
−8 −7 −6 −5 −4 −3 −2 −1 −8 −7 −6 −5 −4 −3 −2 −9 −2 3

)
·(

E1
1 E2

1 E3
1 E4

1 E5
1 E6

1 E7
1 E8

1 E1
2 E2

2 E3
2 E4

2 E5
2 E6

2 E7
2 C̃1 C̃2 H̃

(2)
S

)T
,

hence we have rank(Lλ) = 18. Recall that Pic(S̃λ) is generated by linear equivalence classes of the exceptional
curves Eji and of strict transforms of curves on Sλ.

The intersection matrix on the lattice LS = L
Gal(k)
λ has the following form:

• E1
1 + E1

2 E2
1 + E2

2 E3
1 + E3

2 E4
1 + E4

2 E5
1 + E5

2 E6
1 + E6

2 E7
1 + E7

2 E8
1 + E8

2 C̃1 C̃2 H̃
(2)
S

E1
1 + E1

2 −4 2 0 0 0 0 0 0 2 0 0

E2
1 + E2

2 2 −4 2 0 0 0 0 0 0 0 0

E3
1 + E3

2 0 2 −4 2 0 0 0 0 0 0 0

E4
1 + E4

2 0 0 2 −4 2 0 0 0 0 0 0

E5
1 + E5

2 0 0 0 2 −4 2 0 0 0 0 0

E6
1 + E6

2 0 0 0 0 2 −4 2 0 0 0 0

E7
1 + E7

2 0 0 0 0 0 2 −4 2 0 0 0

E8
1 + E8

2 0 0 0 0 0 0 2 −4 0 0 0

C̃1 2 0 0 0 0 0 0 0 −2 1 0

C̃2 0 0 0 0 0 0 0 0 1 0 3

H̃
(2)
S 0 0 0 0 0 0 0 0 0 3 2

.

Note that the intersection matrix is degenerate. We choose the following integral basis of the lattice LS :(
[E8

1 + E8
2 ]
)
=
(
−8 −7 −6 −5 −4 −3 −2 −9 −2 3

)
·(

E1
1 + E1

2 E2
1 + E2

2 E3
1 + E3

2 E4
1 + E4

2 E5
1 + E5

2 E6
1 + E6

2 E7
1 + E7

2 C̃1 C̃2 H̃
(2)
S

)T
,
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hence we have rank(LS) = 10. Denote by M the induced intersection matrix on LS in this integral basis.
The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 0 0 0 −1 0

0 −2 0 0 0 0 0 0 −1 0

0 0 −2 0 0 0 0 0 −1 0

0 0 0 −2 0 0 0 0 −1 0

0 0 0 0 −2 0 0 0 −1 0

0 0 0 0 0 −2 0 0 −1 0

0 0 0 0 0 0 −2 0 −1 0

0 0 0 0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 −1 −1 −1 0 3

0 0 0 0 0 0 0 0 3 2


.

We choose the following generators of discriminant groupsDM andDN of the latticesM andN , respectively:

0 0 0 1
2

1
2 0 1

2 0 0 0

0 0 0 0 1
2 0 1

2 0 0 0

0 0 1
2 0 1

2
1
2

1
2 0 0 0

0 0 1
2 0 1

2
1
2 0 0 0 0

0 1
2 0 0 0 0 1

2
1
2 0 1

2

0 1
2

1
2 0 1

2 0 0 1
2 0 1

2
1
2 0 0 0 0 0 0 1

2 0 1
2

0 0 0 0 0 0 0 1
2 0 1

2


,



0 0 1
2

1
2 0 0 1

2 0 1
2

1
2 0 1

2

0 0 1
2

1
2 0 0 0 1

2
1
2

1
2 0 1

2

0 0 0 0 1
2 0 1

2
1
2

1
2 0 0 0

0 0 1
2

1
2

1
2 0 1

2
1
2 0 0 0 1

2

0 0 0 0 0 1
2

1
2

1
2 0 1

2 0 0

0 0 1
2

1
2

1
2

1
2 0 0 1

2 0 0 1
2

0 0 0 1
2 0 0 0 0 0 0 0 1

2

0 0 1
2 0 0 0 0 0 0 0 0 1

2


.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

B(M) =



0 1
2 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 1
2 0


, B(N) =



0 1
2 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0

0 0 1
2 0 0 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 1
2 0


;

Q(M) = (0, 0, 0, 0, 0, 0, 0, 0) , Q(N) = (0, 0, 0, 0, 0, 0, 0, 0) .

The lattices M and N have the signature (1, 17) and (2, 10), respectively, hence M⊥ ≃ N in the K3 lattice.
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Appendix K. Dolgachev–Nikulin duality for parametrized toric Landau–Ginzburg models

K.1. Toric Landau–Ginzburg models of smooth del Pezzo surfaces with very ample anticanonical
class. Let S be a smooth del Pezzo surface. If the anticanonical class −KS is very ample, then the surface S
admits a Gorenstein toric degeneration. More precisely, it is well-known that there exist 16 Gorenstein toric
del Pezzo surfaces, which correspond to 16 reflexive polygones (for example, see [BJ10]). All of them can be
realized as toric degenerations of smooth del Pezzo surfaces (see [Prz17, Section 3]).

Notation K.1. We denote by Ri the i-th reflexive polygon with respect to the numeration in PALP package
(see [KS04]), and by Ti the corresponding Gorenstein toric del Pezzo surface.

X (−KX)2 Gorenstein toric del Pezzo surfaces
P1 × P1 8 T2, T4

P2 9 T1
Bl1(P2) 8 T3
Bl2(P2) 7 T5, T6
Bl3(P2) 6 T7, T8, T9, T10
Bl4(P2) 5 T11, T12
Bl5(P2) 4 T13, T14, T15
Bl6(P2) 3 T16
Bl7(P2) 2 –
Bl8(P2) 1 –

Table 1. Gorenstein toric del Pezzo surfaces

Remark K.2. Toric degenerations T1, T3, T4, T6, T10 correspond to smooth toric del Pezzo surfaces.

It follows from Table 1 that a smooth del Pezzo surface S do not admit a Gorenstein toric degeneration
precisely when the anticanonical degree is equal to 1 or 2. It is well-known that such a surface is either a sextic
hypersurface in P(1, 1, 2, 3) or a quartic hypersurface in P(1, 1, 1, 2). Then S also has a toric degeneration,
but its singularities are worse than Gorenstein (see [Prz17, Remark 14]).

We construct a toric Landau–Ginzburg model for all smooth del Pezzo surfaces S with very ample
anticanonical class by applying Przyjalkowski’s algorithm (see [Prz17, Section 3]).

Notation K.3. For any coefficients of the form α, β, αi ∈ C we put a = e−α, b = e−β , and ai = e−αi .

K.1.1. Quadric surface. Let S ≃ P1 × P1 be a quadric surface, and D be an (α, β)-divisor on S. The surface
S admits two Gorenstein toric degenerations: T4 ≃ S and a quadratic cone T2.

Firstly, let us choose T4 as a Gorenstein toric degeneration T of the surface S, and let D̃ be a divisor on
its crepant resolution T̃ ≃ S. The toric Landau–Ginzburg model for the pair (S,D) = (T̃ , D̃) equals to

f(S,D) = f(T̃ ,D̃) = x+ ax−1 + y + by−1.

Secondly, let us choose T2 as a Gorenstein toric degeneration T of the surface S, and let D̃ be a divisor on
its crepant resolution T̃ . In this case T̃ is the second Hirzebruch surface F2. Consequently, we can present D̃
in the form D̃ = αs + βf , where s is a (−2)-section of T̃ , and f is a fibre of the map T̃ → P1. The toric
Landau–Ginzburg model for the pair (T̃ , D̃) has the form

f(T̃ ,D̃) = y + bx−1y−1 + ay−1 + xy−1,

and the toric Landau–Ginzburg model for the pair (S,D) equals to

f(S,D) = y + ax−1y−1 + (a+ b)y−1 + bxy−1.
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Figure 5. Fan polygons of Gorenstein toric del Pezzo surfaces T2 and T4.

K.1.2. Smooth del Pezzo surface of degree 9. Let S ≃ P2, and D = α1l ∈ Pic(S) ⊗Z C be a divisor on S,
where l is the linear equivalence class of a line. The surface S admits the unique Gorenstein toric degeneration
T1 ≃ S. Let us choose T1 as a Gorenstein toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ )⊗Z C be
the corresponding divisor on its crepant resolution T̃ ≃ S under the identification Pic(S) ≃ Pic(T̃ ).

The toric Landau–Ginzburg model for the pair (S,D) = (T̃ , D̃) equals to

f(S,D) = f(T̃ ,D̃) = x+ y + a1x
−1y−1.

x

y

−1 0 1

−1

0

1

Figure 6. A fan polygon of the smooth toric del Pezzo surface T1.

K.1.3. Smooth del Pezzo surface of degree 8. Let S φ1−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l + α2e1 ∈ Pic(S)⊗Z C be a divisor on S, where e1 is the φ1-exceptional divisor.
The surface S admits a unique Gorenstein toric degeneration T3 ≃ S. Let us choose T3 as a Gorenstein
toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ )⊗Z C be the corresponding divisor on the crepant
resolution T̃ ≃ S under the identification Pic(S) ≃ Pic(T̃ ).
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x

y

−1 0 1

−1

0

1

L

K

R

Figure 7. A fan polygon of the smooth toric del Pezzo surface T3.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = a1 and cR = 1.
Consequently, the toric Landau–Ginzburg model for the pair (S,D) = (T̃ , D̃) equals to

f(S,D) = f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa2x
−1 = x+ y + a1x

−1y−1 + a1a2x
−1.

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.

K.1.4. Smooth del Pezzo surface of degree 7. Let S φ2−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l +

∑2
i=1 αi+1ei ∈ Pic(S)⊗Z C be a divisor on S, where e2 is the φ2-exceptional

divisor. The surface S admits two Gorenstein toric degenerations: T6 ≃ S and T5. Let us choose T6 as
a Gorenstein toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ ) ⊗Z C be a divisor on the crepant
resolution T̃ ≃ S under the identification Pic(S) ≃ Pic(T̃ ).

x

y

−1 0 1

−1

0

1

R K

L

Figure 8. A fan polygon of the smooth toric del Pezzo surface T6.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = 1 and cR = a1.
Consequently, the toric Landau–Ginzburg model for the pair (S,D) = (T̃ , D̃) equals to

f(S,D) = f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa3y
−1 = x+ y + a1x

−1y−1 + a1a2x
−1 + a1a3y

−1,

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.

K.1.5. Smooth del Pezzo surface of degree 6. Let S φ3−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l +

∑3
i=1 αi+1ei ∈ Pic(S)⊗Z C be a divisor on S, where e3 is the φ3-exceptional

divisor. The surface S admits four Gorenstein toric degenerations: T7, T8, T9, and T10 ≃ S. Let us choose T10
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as a Gorenstein toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ )⊗Z C be a divisor on the crepant
resolution T̃ ≃ S under the identification Pic(S) ≃ Pic(T̃ ).

x

y

−1 0 1

−1

0

1 L

R

K

Figure 9. A fan polygon of the smooth toric del Pezzo surface T10.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = 1 and cR = 1.
Consequently, the toric Landau–Ginzburg model for the pair (S,D) = (T̃ , D̃) equals to

f(S,D) = f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa4xy = x+ y + a1x
−1y−1 + a1a2x

−1 + a1a3y
−1 + a4xy.

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.

K.1.6. Smooth del Pezzo surface of degree 5. Let S φ4−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l +

∑4
i=1 αi+1ei ∈ Pic(S)⊗Z C be a divisor on S, where e4 is the φ4-exceptional

divisor. The surface S admits two Gorenstein toric degenerations: T11 and T12. Let us choose T12 as a
Gorenstein toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ ) ⊗Z C be a divisor on the crepant
resolution T̃ under the identification Pic(S) ≃ Pic(T̃ ).

x

y

−1 0 1

−1

0

1K

L

R

V

W

Figure 10. A fan polygon of the Gorenstein toric del Pezzo surface T12.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = a1a2 and
cR = 1. Consequently, the toric Landau–Ginzburg model for the pair (T̃ , D̃) equals to

f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa5x
−1y = x+ y + a1x

−1y−1 + a1a2x
−1 + a1a3y

−1 + a4xy + a1a2a5x
−1y.

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.
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To obtain the toric Landau–Ginzburg model for the pair (S,D), we have to modify the coefficients of
f(T̃ ,D̃) corresponding to non-boundary non-integral points. Let us consider the facets of the fan polygon
containing these points. Their marking polynomials and corresponding modified coefficients have the form

a1a2a5s
2 + a1(a2 + a5)s+ a1 = cKs

2 + c̃Ls+ cV ,

a4s
2 + (a1a2a4a5 + 1)s+ a1a2a5 = cW s

2 + c̃Rs+ cK .

Consequently, the toric Landau–Ginzburg model for the pair (S,D) equals to

f(S,D) = x+ (a1a2a4a5 + 1)y + a1x
−1y−1 + a1(a2 + a5)x

−1 + a1a3y
−1 + a4xy + a1a2a5x

−1y.

K.1.7. Smooth del Pezzo surface of degree 4. Let S φ5−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l +

∑5
i=1 αi+1ei ∈ Pic(S)⊗Z C be a divisor on S, where e5 is the φ5-exceptional

divisor. The surface S admits three Gorenstein toric degenerations: T13, T14 and T15. Let us choose T14 as
a Gorenstein toric degeneration T of the surface S, and let D̃ ∈ Pic(T̃ ) ⊗Z C be a divisor on the crepant
resolution T̃ under the identification Pic(S) ≃ Pic(T̃ ).
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Figure 11. A fan polygon of the Gorenstein toric del Pezzo surface T14.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = a1a3 and
cR = a1. Consequently, the toric Landau–Ginzburg model for the pair (T̃ , D̃) equals to

f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa6x
−1y−2 =

x+ y + a1x
−1y−1 + a1a2x

−1 + a1a3y
−1 + a4xy + a1a2a5x

−1y + a21a3a6x
−1y−2,

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.
To obtain the toric Landau–Ginzburg model for the pair (S,D), we have to modify the coefficients of

f(T̃ ,D̃) corresponding to non-boundary non-integral points. Let us consider the facets of the fan polygon
containing these points. Their marking polynomials and corresponding modified coefficients have the form

a1a2a5s
3 + a1(a1a2a3a5a6 + a2 + a5)s

2 + a1(a1a3a6(a2 + a5) + 1)s+ a21a3a6 = cUs
3 + c̃As

2 + c̃Rs+ cK ,

a4s
2 + (a1a2a4a5 + 1)s+ a1a2a5 = cV s

2 + c̃Bs+ cU ,

a21a3a6s
2 + a1(a3 + a6)s+ 1 = cKs

2 + c̃Ls+ cW .
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Consequently, the toric Landau–Ginzburg model for the pair (S,D) equals to

f(S,D) = x+ (a1a2a4a5 + 1)y + a1(a1a3a6(a2 + a5) + 1)x−1y−1+

a1(a1a2a3a5a6 + a2 + a5)x
−1 + a1(a3 + a6)y

−1 + a4xy + a1a2a5x
−1y + a21a3a6x

−1y−2.

K.1.8. Smooth del Pezzo surface of degree 3. Let S φ6−→ S′ be a blow-up of del Pezzo surface S′ from the
previous case, and D = α1l +

∑6
i=1 αi+1ei ∈ Pic(S)⊗Z C be a divisor on S, where e6 is the φ6-exceptional

divisor. The surface S admits a unique Gorenstein toric degenerations T16. Let us choose T16 as a Gorenstein
toric degeneration T of the surface S, and let D̃ be a divisor on the crepant resolution T̃ ∈ Pic(T̃ ) ⊗Z C
under the identification Pic(S) ≃ Pic(T̃ ).
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Figure 12. A fan polygon of the Gorenstein toric del Pezzo surface T16.

Coefficients corresponding to the neighbour points L,R of the point K have the form cL = a4 and cR = 1.
Consequently, the toric Landau–Ginzburg model for the pair (T̃ , D̃) equals to

f(T̃ ,D̃) = f
(T̃ ′,D̃′)

+ cLcRa7x
2y =

x+ y + a1x
−1y−1 + a1a2x

−1 + a1a3y
−1 + a4xy + a1a2a5x

−1y + a21a3a6x
−1y−2 + a4a7x

2y.

where (T̃ ′, D̃′) is the crepant resolution of the Gorenstein toric degeneration from the previous case.
To obtain the toric Landau–Ginzburg model for the pair (S,D), we have to modify the coefficients of

f(T̃ ,D̃) corresponding to non-boundary non-integral points. Let us consider the facets of the fan polygon
containing these points. Their marking polynomials and corresponding modified coefficients have the form

a1a2a5s
3 + a1(a1a2a3a5a6 + a2 + a5)s

2 + a1(a1a3a6(a2 + a5) + 1)s+ a21a3a6 = cV s
3 + cDs

2 + cCs+ cW ,

a4a7s
3 + (a1a2a4a5a7 + a4 + a7)s

2 + (a1a2a5(a4 + a7) + 1)s+ a1a2a5 = cKs
3 + cLs

2 + cAs+ cV ,

a21a3a6s
3 + a1(a1a3a4a6a7 + a3 + a6)s

2 + (a1a4a7(a3 + a6) + 1)s+ a4a7 = cW s
3 + cCs

2 + cDs+ cW .

Consequently, the toric Landau–Ginzburg model for the pair (S,D) equals to

f(S,D) = (a1a4a7(a3 + a6) + 1)x+ (a1a2a5(a4 + a7) + 1)y + a1(a1a3a6(a2 + a5) + 1)x−1y−1+

a1(a1a2a3a5a6 + a2 + a5)x
−1 + a1(a1a3a4a6a7 + a3 + a6)y

−1 + (a1a2a4a5a7 + a4 + a7)xy+

a1a2a5x
−1y + a21a3a6x

−1y−2 + a4a7x
2y.

K.2. Parametrized toric Landau–Ginzburg models for S × P1 with (−KS)
2 > 2.
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K.2.1. Family №2.34. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + a1x
−1y−1 + z + a2z

−1

(see Subsubsection K.1.2). It is a parametrized Minkowski polynomial №5 (see [Akh+12, Appendix B:
bucket 10]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

0 0 1

0 1 0

1 0 0

 ,

we obtain the Laurent polynomial

x+ y + z + a2x
−1 + a1y

−1z−1.

It coincides with the Laurent polynomial from Subsection B.34 after the specialization ai = 1.

K.2.2. Family №3.27. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ a1x
−1 + y + a2y

−1 + z + a3z
−1.

(see Subsubsection K.1.1). It is a parametrized Minkowski polynomial №31 (see [Akh+12, Appendix B:
bucket 45]). After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection C.27.

K.2.3. Family №3.28. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + a1x
−1y−1 + a1a2x

−1 + z + a3z
−1.

(see Subsubsection K.1.3). It is a parametrized Minkowski polynomial №30 (see [Akh+12, Appendix B:
bucket 28]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

−1 0 0

0 0 1

0 1 0

 ,

we obtain the Laurent polynomial

(a1a2)x+ y + z + a1xz
−1 + a3y

−1 + x−1.

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection C.28.

K.2.4. Family №4.11. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + a1x
−1y−1 + a1a2x

−1 + a1a3y
−1 + z + a4z

−1.

(see Subsubsection K.1.4). It is a parametrized Minkowski polynomial №85 (see [Akh+12, Appendix B:
bucket 48]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

0 −1 0

1 0 0

0 0 1

 ,

we obtain the Laurent polynomial

x+ (a1a2) y + z + a1x
−1y + a4z

−1 + y−1 + (a1a3)x
−1

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection D.11.

K.2.5. Family №5.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + a1x
−1y−1 + a1a2x

−1 + a1a3y
−1 + a4xy + z + a−1

5 .
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(see Subsubsection K.1.5). It is a parametrized Minkowski polynomial №219 (see [Akh+12, Appendix B:
bucket 76]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

0 −1 0

0 0 1

1 0 0

 ,

we obtain the Laurent polynomial

x+ (a1a2)y + z + a1yz
−1 + a4y

−1z + (a1a3)z
−1 + y−1 + a5x

−1.

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection E.3.

K.2.6. Family №6.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ (a1a2a4a5 + 1)y + a1x
−1y−1 + a1(a2 + a5)x

−1 + a1a3y
−1 + a4xy + a1a2a5x

−1y + z + a6z
−1.

(see Subsubsection K.1.6). It is a parametrized Minkowski polynomial №357 from [Akh+12, Appendix B:
bucket 107]. Let us apply the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

 0 1 0

−1 0 0

0 0 1

 ,

to obtain the Laurent polynomial

(a1a3)x+ y + z + a1xy
−1 + a4x

−1y + a6z
−1 + (a1a2 + a1a5) y

−1 + (a1a2a4a5 + 1)x−1 + (a1a2a5)x
−1y−1.

We apply the mutation

(x, y, z) 7→ (x, y, z)(M,f,N), M =

−1 0 1

0 1 0

0 1 −1

 , f = x(a4y+1)(a1a2a5+y)+y
2, N =

−1 1 −1

0 1 0

−1 −1 0

 ,

to obtain the parametrized Minkowski polynomial №1353 from [Akh+12, Appendix B: bucket 107]:

x+ y + (a1a3) z + (a1a3a4)x
−1y + a1y

−1z + (a1a2 + a1a5) y
−1 +

(
a21a2a3a4a5 + a1a3 + a1a4 + a6

)
x−1+

(a4a6)x
−2yz−1 +

(
a21a2a3a5 + a21a2a4a5 + a1

)
x−1y−1 + (a1a2a4a5a6 + a6)x

−2z−1 +
(
a21a2a5

)
x−1y−2+

(a1a2a5a6)x
−2y−1z−1.

We apply the mutation

(x, y, z) 7→ (x, y, z)(M,f,N), M =

 0 −1 0

1 1 0

−1 0 1

 , f = (a4xy + 1)(a1a2a5 + xy), N =

 1 1 0

−1 0 0

−1 0 −1

 ,

to obtain the parametrized Minkowski polynomial №1231 from [Akh+12, Appendix B: bucket 107]:

x+ y + a6z + (a1a3a4)x
−1y + (a1a2 + a1a5) y

−1 +
(
a21a2a3a4a5 + a1a3 + a1a4 + a6

)
x−1+

(a1a3a4)x
−2yz−1 +

(
a21a2a3a5 + a21a2a4a5 + a1

)
x−1y−1 +

(
a21a2a3a4a5 + a1a3 + a1a4

)
x−2z−1+(

a21a2a5
)
x−1y−2 +

(
a21a2a3a5 + a21a2a4a5 + a1

)
x−2y−1z−1 +

(
a21a2a5

)
x−2y−2z−1.

We apply the mutation

(x, y, z) 7→ (x, y, z)(M,f,N), M =

 0 −1 1

1 0 0

−1 0 −1

 , f = xy + 1, N =

 0 1 0

−1 −1 −1

0 −1 −1

 ,
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to obtain the parametrized Minkowski polynomial №284 from [Akh+12, Appendix B: bucket 107]:

x+ y + a6z + (a1a3a4)x
−1y + z−1 + (a1a2 + a1a5) y

−1 +
(
a21a2a3a4a5 + a1a3 + a1a4

)
x−1+(

a21a2a3a5 + a21a2a4a5 + a1
)
x−1y−1 +

(
a21a2a5

)
x−1y−2.

Finally, after the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

1 0 0

0 −1 0

0 0 1

 ,

we obtain the Laurent polynomial

x+ (a1a2 + a1a5)y + (a21a2a5)x
−1y2 + a6z + (a21a2a3a5 + a21a2a4a5 + a1)x

−1y+

z−1 + y−1 + (a21a2a3a4a5 + a1a3 + a1a4)x
−1 + (a1a3a4)x

−1y−1

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection F.1.

K.2.7. Family №7.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ (a1a2a4a5 + 1)y + a1(a1a3a6(a2 + a5) + 1)x−1y−1+

a1(a1a2a3a5a6 + a2 + a5)x
−1 + a1(a3 + a6)y

−1 + a4xy + a1a2a5x
−1y + a21a3a6x

−1y−2 + z + a7z
−1.

(see Subsubsection K.1.7). It is a parametrized Minkowski polynomial №506 (see [Akh+12, Appendix B:
bucket 136]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

 0 −1 0

−1 1 0

0 0 1

 ,

we obtain the Laurent polynomial(
a21a3a6

)
x2y−1 +

(
a21a2a3a6 + a21a3a5a6 + a1

)
x+

(
a21a2a3a5a6 + a1a2 + a1a5

)
y+

(a1a2a5)x
−1y2 + z + (a1a3 + a1a6)xy

−1 + (a1a2a4a5 + 1)x−1y + a7z
−1 + y−1 + a4x

−1

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection G.1.

K.2.8. Family №8.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(a1a4a7(a3 + a6) + 1)x+ (a1a2a5(a4 + a7) + 1)y + a1(a1a3a6(a2 + a5) + 1)x−1y−1+

a1(a1a2a3a5a6 + a2 + a5)x
−1 + a1(a1a3a4a6a7 + a3 + a6)y

−1 + (a1a2a4a5a7 + a4 + a7)xy+

a1a2a5x
−1y + a21a3a6x

−1y−2 + a4a7x
2y + z + a8z

−1.

(see Subsubsection K.1.8). It is a parametrized Minkowski polynomial №769 (see [Akh+12, Appendix B:
bucket 155]). After the monomial change of variables

(x, y, z) 7→ (x, y, z)M , M =

0 1 −1

0 0 1

1 0 0

 ,

we obtain the Laurent polynomial

(a4a7)y
2z−1 + x+ (a1a2a4a5a7 + a4 + a7)y + (a1a2a4a5 + a1a2a5a7 + 1)z + (a1a2a5)y

−1z2+

(a1a3a4a7 + a1a4a6a7 + 1)yz−1 + (a21a2a3a5a6 + a1a2 + a1a5)y
−1z + (a21a3a4a6a7 + a1a3 + a1a6)z

−1+

(a21a2a3a6 + a21a3a5a6 + a1)y
−1 + a8x

−1 + (a21a3a6)y
−1z−1

After the specialization ai = 1 it coincides with the Laurent polynomial from Subsection H.1.
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K.3. Family №2.34. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + a2x
−1 + a1y

−1z−1

(see Subsubsection K.2.1). The pencil S(a) is defined by the equation

X2Y Z +XY 2Z +XY Z2 + a2Y ZT
2 + a1XT

3 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,T ), C5 = C(Z,T ), C6 = C(T,X+Y+Z).

Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 2 0 0 0 −1

1 0 0 3 0 0 −1

0 1 0 0 3 0 −1

0 0 1 1 1 1 −1

 ·


[C1]

· · ·
[C6]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:
[C1]

[C2]

[C6]

[HS(a)]

 =


−2 0 3

−2 3 0

−3 2 2

−2 3 3

 ·

[C3]

[C4]

[C5]

 .

For a general choice of λ ∈ C and a ∈ (C∗)2 the surface S(a)λ has the following singularities:

P1 = P(X,Y,T ): type A4 with the quadratic term X · Y ;
P2 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P3 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P4 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + a2T

2;
P5 = P(Y,T,X+Z): type A2 with the quadratic term Y · (X + Y + Z − λT );
P6 = P(Z,T,X+Y ): type A2 with the quadratic term Z · (X + Y + Z − λT ).

The Q-valued intersection matrix on the group AaS has the following form:

• C3 C4 C5

C3
1
10

1
5

1
5

C4
1
5

2
15

1
3

C5
1
5

1
3

2
15

.

Note that the intersection matrix has the rank 3.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E2

1 E3
1 E4

1 E1
2 E2

2 E3
2 E4

2 E1
3 E2

3 E1
4 E1

5 E2
5 E1

6 E2
6 C̃3 C̃4 C̃5

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
1 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E4
1 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
2 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E4
2 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
3 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
3 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 1 0

E2
5 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0

E2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0 1

C̃3 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 −2 0 0

C̃4 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 −2 0

C̃5 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 −2

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 18. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

(
0 3

3 2

)
.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
3

2
3 0 1

3
2
3

1
3 0 2

3
8
9

1
9 0 1

9
5
9

4
9

8
9 0 2

3
1
3

)
,
(
0 0 7

9
1
3

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(
2
9

)
, BN =

(
7
9

)
; QM =

(
2

9

)
, QN =

(
16

9

)
.

The lattices M and N have the signature (1, 17) and (2, 2), respectively, hence M⊥ ≃ N in the K3 lattice.

K.4. Family №3.27. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ y + z + a3z
−1 + a2y

−1 + a1x
−1

(see Subsubsection K.2.2). The pencil S(a) is defined by the equation

X2Y Z +XY 2Z +XY Z2 + a3XY T
2 + a2XZT

2 + a1Y ZT
2 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,X+Y+Z).
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Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 2 0 0 0 0 −1

1 0 0 1 2 0 0 −1

0 1 0 1 0 2 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:
[C2]

[C4]

[C7]

[HS(a)]

 =


1 0 2 −2

1 2 0 −2

2 1 1 −3

2 2 2 −2

 ·


[C1]

[C3]

[C5]

[C6]

 .

For a general choice of λ ∈ C and a ∈ (C∗)3 the surface S(a)λ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term a3XY + a2XZ + a1Y Z;
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A3 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(X + Y + Z − λT ) + a1T

2;
P6 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + Y + Z − λT ) + a2T

2;
P7 = P(Z,T,X+Y ): type A1 with the quadratic term Z(X + Y + Z − λT ) + a3T

2.

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C5 C6

C1 − 1
2

1
2

1
2 0

C3
1
2 0 1

4
1
4

C5
1
2

1
4 0 1

4

C6 0 1
4

1
4 0

.

Note that the intersection matrix has the rank 4.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E3
3 E1

4 E2
4 E3

4 E1
5 E1

6 E1
7 C̃1 C̃3 C̃5 C̃6

E1
1 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 1

E1
4 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 1

E1
5 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

E1
7 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃1 1 0 1 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

C̃3 0 1 0 0 1 0 0 0 0 0 1 0 0 0 −2 0 0

C̃5 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 −2 0

C̃6 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 −2

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 17. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

0 2 2

2 0 2

2 2 0

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:0 0 0 0 1
2 0 1

2 0 0 0 1
2 0 1

2 0 0 0 0

0 1
2 0 1

2 0 0 0 0 0 0 1
2

1
2 0 0 0 0 0

1
2

3
4

1
2

1
4

1
4

1
2

3
4

1
4

1
2

3
4 0 1

2
1
2 0 0 0 0

 ,

0 0 1
2 0 0

0 0 0 1
2 0

0 0 − 1
4 − 1

4
1
4

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2 0

1
2 0 0

0 0 1
4

 , BN =

0 1
2 0

1
2 0 0

0 0 3
4

 ; QM =

(
0, 0,

1

4

)
, QN =

(
0, 0,

7

4

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

K.5. Family №3.28. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(a1a2)x+ y + z + a1xz
−1 + a3y

−1 + x−1

(see Subsubsection K.2.3). The pencil S(a) is defined by the equation

(a1a2)X
2Y Z +XY 2Z +XY Z2 + a1X

2Y T + a3XZT
2 + Y ZT 2 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(T,a1a2X+Y+Z).



236 DORAN, HARDER, KATZARKOV, OVCHARENKO, AND PRZYJALKOWSKI

Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 2 0 0 0 0 −1

1 0 0 1 2 0 0 −1

0 2 0 1 0 1 0 −1

0 0 1 0 1 1 1 −1

 ·


[C1]

· · ·
[C7]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:
[C2]

[C4]

[C6]

[C7]

 =


−1 −2 0 1

−1 0 −2 1

3 4 2 −2

−3 −5 −3 3

 ·


[C1]

[C3]

[C5]

[HS(a)]

 .

For a general choice of λ ∈ C and a ∈ (C∗)3 the surface S(a)λ has the following singularities:

P1 = P(X,Y,Z): type A2 with the quadratic term Z · (a3X + Y );
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A4 with the quadratic term X · Z;
P4 = P(Y,Z,T ): type A2 with the quadratic term Y · (a2Z + T );
P5 = P(X,T,Y+Z): type A1 with the quadratic term X(a1a2X + Y + Z − λT ) + T 2;
P6 = P(Y,T,a1a2X+Z): type A1 with the quadratic term Y (a2(a1a2X+Y +Z−λT )−T )+a2a3T 2.

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C5 HS

C1 − 1
3

1
2

1
2 1

C3
1
2

1
20

1
4 1

C5
1
2

1
4 − 1

12 1

HS 1 1 1 4

.

Note that the intersection matrix has the rank 4.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E2
3 E3

3 E4
3 E1

4 E2
4 E1

5 E1
6 C̃1 C̃3 C̃5 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1
2 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 1 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 1 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 1 0 0

E2
3 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
3 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0

E4
3 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0

E1
4 0 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 1 0

E2
4 0 0 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0

E1
5 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 1 0

C̃1 1 0 0 1 0 0 0 0 0 0 0 0 0 −2 0 0 1

C̃3 0 0 1 0 0 1 0 0 0 0 0 1 0 0 −2 0 1

C̃5 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 4

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 17. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =

−2 1 0

1 0 3

0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
0 1

2
13
16

1
4

3
16

1
2

5
8

3
4

7
8

3
4

3
8

11
16

9
16

1
2

3
8

1
8

3
4

)
,
(
0 0 − 3

16 − 3
8

1
16

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =
(

1
16

)
, BN =

(
15
16

)
; QM =

(
1

16

)
, QN =

(
31

16

)
.

The lattices M and N have the signature (1, 16) and (2, 3), respectively, hence M⊥ ≃ N in the K3 lattice.

K.6. Family №4.11. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ (a1a2) y + z + a1x
−1y + a4z

−1 + y−1 + (a1a3)x
−1

(see Subsubsection K.2.4). The pencil S(a) is defined by the equation

X2Y Z + (a1a2)XY
2Z +XY Z2 + a1Y

2ZT + a4XY T
2 +XZT 2 + (a1a3)Y ZT

2 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z),

C5 = C(Y,T ), C6 = C(Z,T ), C7 = C(X,Y+a3T ), C8 = C(T,X+a1a2Y+Z).
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Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 1 0 0 0 1 0 −1

1 0 0 1 2 0 0 0 −1

0 1 0 1 0 2 0 0 −1

0 0 1 0 1 1 0 1 −1

 ·


[C1]

· · ·
[C8]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:
[C2]

[C4]

[C7]

[C8]

 =


1 0 2 −2 0

−1 0 −2 0 1

−2 −1 −2 2 1

0 −1 −1 −1 1

 ·


[C1]

[C3]

[C5]

[C6]

[HS(a)]

 .

For a general choice of λ ∈ C and a ∈ (C∗)4 the surface S(a)λ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term a1a3Y Z + a4XY +XZ;
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(X,Z,T ): type A2 with the quadratic term Z · (a2X + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(Y,T,X+Z): type A1 with the quadratic term Y (X + a1a2Y + Z − λT ) + T 2;
P6 = P(Z,T,a1a2Y+X): type A1 with the quadratic term Z(a2(X+a1a2Y +Z−λT )−T )+a2a4T 2.

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C5 C6 HS

C1 − 1
2

1
2

1
2 0 1

C3
1
2 − 7

12
1
4

1
3 1

C5
1
2

1
4 0 1

4 1

C6 0 1
3

1
4 − 1

12 1

HS 1 1 1 1 4

.

Note that the intersection matrix has the rank 5.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E1

2 E2
2 E3

2 E1
3 E2

3 E1
4 E2

4 E3
4 E1

5 E1
6 C̃1 C̃3 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

E2
2 0 1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 0 −2 1 0 0 0 0 0 0 1 0 0 0

E2
3 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0

E3
4 0 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0 0

E1
6 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 1 0

C̃1 1 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 1

C̃3 0 1 0 0 1 0 0 0 0 0 0 0 −2 0 0 1

C̃5 0 0 0 1 0 0 1 0 0 1 0 0 0 −2 0 1

C̃6 0 0 0 0 0 1 0 0 1 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 16. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 −1 0

0 −2 −1 0

−1 −1 0 3

0 0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:(
1
2

1
2 0 1

2 0 0 0 0 0 0 1
2 0 0 0 0 1

2
9
14

1
14 0 9

14
2
7

3
7

5
14

3
7

1
2

9
14

2
7

2
7

1
7

2
7

4
7

13
14

)
,

(
0 0 − 1

2
1
2 0 0

0 0 9
14

1
7

5
7 − 1

14

)
.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

(
0 1

2
1
2

2
7

)
, BN =

(
0 1

2
1
2

5
7

)
; QM =

(
1,

2

7

)
, QN =

(
1,

12

7

)
.

The lattices M and N have the signature (1, 15) and (2, 4), respectively, hence M⊥ ≃ N in the K3 lattice.

K.7. Family №5.3. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ (a1a2)y + z + a1yz
−1 + a4y

−1z + (a1a3)z
−1 + y−1 + a5x

−1

(see Subsubsection K.2.5). The pencil S(a) is defined by the equation

X2Y Z + (a1a2)XY
2Z +XY Z2 + a1XY

2T + a4XZ
2T + (a1a3)XY T

2 +XZT 2 + a5Y ZT
2 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,Z), C5 = C(Y,T ),

C6 = C(Z,T ), C7 = C(Y,a4Z+T ), C8 = C(Z,Y+a3T ), C9 = C(T,X+a1a2Y+Z).
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Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 2 0 0 0 0 0 0 −1

1 0 0 1 1 0 1 0 0 −1

0 1 0 1 0 1 0 1 0 −1

0 0 1 0 1 1 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:


[C2]

[C7]

[C8]

[C9]

 =


−1 −2 0 0 0 1

−1 0 −1 −1 0 1

1 2 −1 0 −1 0

0 −1 0 −1 −1 1

 ·



[C1]

[C3]

[C4]

[C5]

[C6]

[HS(a)]


.

For a general choice of λ ∈ C and a ∈ (C∗)5 the surface S(a)λ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term a1a3XY + a5Y Z +XZ;
P2 = P(X,Y,T ): type A2 with the quadratic term X · (Y + a4T );
P3 = P(X,Z,T ): type A2 with the quadratic term X · (a2Z + T );
P4 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P5 = P(X,T,a1a2Y+Z): type A1 with the quadratic term

X(a2(X + a1a2Y + Z − (a1a2a4 + λ)T )− T ) + a2a5T
2.

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C4 C5 C6 HS

C1 − 5
6

2
3

1
2

1
3 0 1

C3
2
3 − 1

6 0 1
3

1
3 1

C4
1
2 0 − 1

2
1
2

1
2 1

C5
1
3

1
3

1
2 − 7

12
1
4 1

C6 0 1
3

1
2

1
4 − 7

12 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E1

2 E2
2 E1

3 E2
3 E1

4 E2
4 E3

4 E1
5 C̃1 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 0 0 0 0 0 0 0 0 1 0 1 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 1 1 0 0 0 0

E2
2 0 1 −2 0 0 0 0 0 0 0 0 0 1 0 0

E1
3 0 0 0 −2 1 0 0 0 0 0 1 0 0 0 0

E2
3 0 0 0 1 −2 0 0 0 0 0 0 0 0 1 0

E1
4 0 0 0 0 0 −2 1 0 0 0 0 0 1 0 0

E2
4 0 0 0 0 0 1 −2 1 0 0 0 1 0 0 0

E3
4 0 0 0 0 0 0 1 −2 0 0 0 0 0 1 0

E1
5 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 0

C̃1 1 1 0 0 0 0 0 0 0 −2 0 0 0 0 1

C̃3 0 1 0 1 0 0 0 0 1 0 −2 0 0 0 1

C̃4 1 0 0 0 0 0 1 0 0 0 0 −2 0 0 1

C̃5 0 0 1 0 0 1 0 0 0 0 0 0 −2 0 1

C̃6 0 0 0 0 1 0 0 1 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 15. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =


−2 0 0 −1 0

0 −2 0 −1 0

0 0 −2 −1 0

−1 −1 −1 0 3

0 0 0 3 2

 .

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively: 1
2 0 0 0 0 1

2 0 1
2

1
2 0 0 0 0 0 1

2

0 0 1
2 0 0 1

2 0 0 0 1
2 0 1

2 0 0 0
1
12

1
12

1
3

3
4

5
6

2
3

3
4

5
6

1
3

1
6

2
3 0 7

12
11
12

1
6

 ,

0 0 − 1
2 0 1

2 0 0

0 0 − 1
2 0 0 0 1

2

0 0 − 5
12

1
12

1
12 − 1

6
1
4

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =

0 1
2

1
2

1
2 0 1

2
1
2

1
2

7
12

 , BN =

0 1
2

1
2

1
2 0 1

2
1
2

1
2

5
12

 ; QM =

(
1, 0,

7

12

)
, QN =

(
1, 0,

17

12

)
.

The lattices M and N have the signature (1, 14) and (2, 5), respectively, hence M⊥ ≃ N in the K3 lattice.

K.8. Family №6.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

x+ (a1a2 + a1a5)y + (a21a2a5)x
−1y2 + a6z + (a21a2a3a5 + a21a2a4a5 + a1)x

−1y+

z−1 + y−1 + (a21a2a3a4a5 + a1a3 + a1a4)x
−1 + (a1a3a4)x

−1y−1

(see Subsubsection K.2.6). The pencil S(a) is defined by the equation

X2Y Z + (a1a2 + a1a5)XY
2Z + (a21a2a5)Y

3Z + a6XY Z
2 + (a21a2a3a5 + a21a2a4a5 + a1)Y

2ZT+

XY T 2 +XZT 2 + (a21a2a3a4a5 + a1a3 + a1a4)Y ZT
2 + (a1a3a4)ZT

3 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).
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The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Z), C2 = C(Y,Z), C3 = C(Y,T ), C4 = C(Z,T ), C5 = C(X,Y+a3T ), C6 = C(X,Y+a4T ),

C7 = C(X,a1a2a5Y+T ), C8 = C(Y,X+a1a3a4T ), C9 = C(T,(X+a1a2Y )(X+a1a5Y )+a6XZ).

Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 0 0 0 1 1 1 0 0 −1

0 1 2 0 0 0 0 1 0 −1

1 1 0 2 0 0 0 0 0 −1

0 0 1 1 0 0 0 0 1 −1

 ·

 [C1]

[C9]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:


[C2]

[C7]

[C8]

[C9]

 =


−1 0 −2 0 0 1

−1 0 0 −1 −1 1

1 −2 2 0 0 0

0 −1 −1 0 0 1

 ·



[C1]

[C3]

[C4]

[C5]

[C6]

[HS(a)]


.

For a general choice of λ ∈ C and a ∈ (C∗)6 the surface S(a)λ has the following singularities:

P1 = P(X,Y,T ): type A2 with the quadratic term X · Y ;
P2 = P(Y,Z,T ): type A3 with the quadratic term Y · Z;
P3 = P(Y,T,X+a6Z): type A1 with the quadratic term Y (X+a1a2Y +a6Z−λT )+(a1a5Y

2+T 2);
P4 = P(Z,T,X+a1a2Y ): type A1 with the quadratic term

a2a6Z
2 − (a1a2a5(a3 + a4) + a2λ+ 1)ZT + a2T

2 + (a2 − a5)Z(X + a1a2Y );

P5 = P(Z,T,X+a1a5Y ): type A1 with the quadratic term

a5a6Z
2 − (a1a2a5(a3 + a4) + a5λ+ 1)ZT + a5T

2 − (a2 − a5)Z(X + a1a5Y ).

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C4 C5 C6 HS

C1 −2 0 1 1 1 1

C3 0 − 1
12

1
4

1
3

1
3 1

C4 1 1
4 − 1

4 0 0 1

C5 1 1
3 0 − 4

3
2
3 1

C6 1 1
3 0 2

3 − 4
3 1

HS 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 6.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:
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• E1
1 E2

1 E1
2 E2

2 E3
2 E1

3 E1
4 E1

5 C̃1 C̃3 C̃4 C̃5 C̃6 H̃S

E1
1 −2 1 0 0 0 0 0 0 0 1 0 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 0 0 1 1 0

E1
2 0 0 −2 1 0 0 0 0 0 1 0 0 0 0

E2
2 0 0 1 −2 1 0 0 0 0 0 0 0 0 0

E3
2 0 0 0 1 −2 0 0 0 0 0 1 0 0 0

E1
3 0 0 0 0 0 −2 0 0 0 1 0 0 0 0

E1
4 0 0 0 0 0 0 −2 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 0 −2 0 0 1 0 0 0

C̃1 0 0 0 0 0 0 0 0 −2 0 1 1 1 1

C̃3 1 0 1 0 0 1 0 0 0 −2 0 0 0 1

C̃4 0 0 0 0 1 0 1 1 1 0 −2 0 0 1

C̃5 0 1 0 0 0 0 0 0 1 0 0 −2 0 1

C̃6 0 1 0 0 0 0 0 0 1 0 0 0 −2 1

H̃S 0 0 0 0 0 0 0 0 1 1 1 1 1 4

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 14. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 −1 0

0 −2 0 0 −1 0

0 0 −2 0 −1 0

0 0 0 −2 −1 0

−1 −1 −1 −1 0 3

0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:
0 0 1

2 0 1
2

1
2

1
2 0 0 0 0 0 0 0

0 0 1
2 0 1

2
1
2 0 1

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0

1
2 0 0 0 0 0 0 0 1

2 0 0 1
2 0 1

2
4
5

2
5

4
5

2
5 0 3

5
4
5

4
5

2
5

1
5

3
5 0 0 1

5

 ,


0 0 0 1

2 0 0 0 1
2

0 0 1
2 0 0 0 0 1

2

0 0 1
2

1
2

1
2 0 0 1

2

0 0 1
2

1
2 0 1

2 0 1
2

0 0 2
5

2
5

2
5

2
5

1
5

1
5

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 3
5

 , BN =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 2
5

 ; QM =

(
0, 0, 1, 1,

8

5

)
, QN =

(
0, 0, 1, 1,

2

5

)
.

The lattices M and N have the signature (1, 13) and (2, 6), respectively, hence M⊥ ≃ N in the K3 lattice.

K.9. Family №7.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial(
a21a3a6

)
x2y−1 +

(
a21a2a3a6 + a21a3a5a6 + a1

)
x+

(
a21a2a3a5a6 + a1a2 + a1a5

)
y+

(a1a2a5)x
−1y2 + z + (a1a3 + a1a6)xy

−1 + (a1a2a4a5 + 1)x−1y + a7z
−1 + y−1 + a4x

−1
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(see Subsubsection K.2.7). The pencil S(a) is defined by the equation(
a21a3a6

)
X3Z +

(
a21a2a3a6 + a21a3a5a6 + a1

)
X2Y Z +

(
a21a2a3a5a6 + a1a2 + a1a5

)
XY 2Z + (a1a2a5)Y

3Z+

XY Z2 + (a1a3 + a1a6)X
2ZT + (a1a2a4a5 + 1)Y 2ZT + a7XY T

2 +XZT 2 + a4Y ZT
2 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(Y,Z), C4 = C(Z,T ), C5 = C(X,Y+a4T ),

C6 = C(X,a1a2a5Y+T ), C7 = C(Y,a1a3X+T ), C8 = C(Y,a1a6X+T ), C9 = C(T,a1(X+a2Y )(X+a5Y )(a1a3a6X+Y )+XY Z).

Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[Sk · S(X)]− [HS ]

[Sk · S(Y )]− [HS ]

[Sk · S(Z)]− [HS ]

[Sk · S(T )]− [HS ]

 =


1 1 0 0 1 1 0 0 0 −1

1 0 1 0 0 0 1 1 0 −1

0 1 1 2 0 0 0 0 0 −1

0 0 0 1 0 0 0 0 1 −1

 ·


[C1]

· · ·
[C9]

[HS ]

 .

We can reduce the number of linear equivalence classes using these identities:


[C2]

[C6]

[C8]

[C9]

 =


0 −1 −2 0 0 1

−1 1 2 −1 0 0

−1 −1 0 0 −1 1

0 0 −1 0 0 1

 ·



[C1]

[C3]

[C4]

[C5]

[C7]

[HS ]


.

For a general choice of λ ∈ C and a ∈ (C∗)7 the surface S(a)λ has the following singularities:

P1 = P(X,Y,Z): type A1 with the quadratic term a7XY + a4Y Z +XZ;
P2 = P(X,Y,T ): type A3 with the quadratic term X · Y ;
P3 = P(Z,T,X+a2Y ): type A1 with the quadratic term

a2(Z
2 + a7T

2)− (a1a2(a2(a3 + a6) + a4a5) + a2λ+ 1)ZT − a1(a2 − a5)(a1a2a3a6 − 1)Z(X + a2Y );

P4 = P(Z,T,X+a5Y ): type A1 with the quadratic term

a5(Z
2 + a7T

2)− (a1a5(a5(a3 + a6) + a2a4) + a5λ+ 1)ZT + a1(a2 − a5)(a1a3a5a6 − 1)Z(X + a5Y );

P5 = P(Z,T,a1a3a6X+Y ): type A1 with the quadratic term

a3a6(Z
2+a7T

2)−(a1(a3a6)
2(a1a2a4a5+1)+a3a6λ+a3+a6)ZT−(a1a2a3a6−1)(a1a3a5a6−1)Z(a1a3a6X+Y ).

The Q-valued intersection matrix on the group AaS has the following form:

• C1 C3 C4 C5 C7 HS

C1 − 1
2

1
2 0 1

2
1
2 1

C3
1
2 − 3

2 1 0 1 1

C4 0 1 − 1
2 0 0 1

C5
1
2 0 0 − 5

4
1
4 1

C7
1
2 1 0 1

4 − 5
4 1

HS 1 1 1 1 1 4

.
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Note that the intersection matrix has the rank 6.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:

• E1
1 E1

2 E2
2 E3

2 E1
3 E1

4 E1
5 C̃1 C̃3 C̃4 C̃5 C̃7 H̃S

E1
1 −2 0 0 0 0 0 0 1 1 0 0 0 0

E1
2 0 −2 1 0 0 0 0 0 0 0 1 0 0

E2
2 0 1 −2 1 0 0 0 1 0 0 0 0 0

E3
2 0 0 1 −2 0 0 0 0 0 0 0 1 0

E1
3 0 0 0 0 −2 0 0 0 0 1 0 0 0

E1
4 0 0 0 0 0 −2 0 0 0 1 0 0 0

E1
5 0 0 0 0 0 0 −2 0 0 1 0 0 0

C̃1 1 0 1 0 0 0 0 −2 0 0 0 0 1

C̃3 1 0 0 0 0 0 0 0 −2 1 0 1 1

C̃4 0 0 0 0 1 1 1 0 1 −2 0 0 1

C̃5 0 1 0 0 0 0 0 0 0 0 −2 0 1

C̃7 0 0 0 1 0 0 0 0 1 0 0 −2 1

H̃S 0 0 0 0 0 0 0 1 1 1 1 1 4

.

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 13. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 −1 0

0 −2 0 0 0 −1 0

0 0 −2 0 0 −1 0

0 0 0 −2 0 −1 0

0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 0 3

0 0 0 0 0 3 2


.

We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:
1
2

1
2 0 0 1

2 0 1
2

1
2

1
2 0 0 0 1

2
1
2 0 1

2 0 0 0 0 0 0 0 1
2

1
2 0

1
2 0 1

2 0 1
2

1
2 0 0 0 0 1

2
1
2 0

0 0 0 0 1
2 0 1

2 0 0 0 0 0 0
1
8

3
8

1
4

5
8

3
8

3
8

3
8

1
2

3
4

3
4

1
2 0 5

8

 ,


0 0 1

2
1
2

1
2 0 1

2 0 0

0 0 1
2

1
2 0 1

2
1
2 0 0

0 0 1
2 0 0 0 1

2 0 0

0 0 1
2

1
2 0 0 0 0 0

0 0 1
8

1
8

1
8

1
8

1
8

3
4

7
8

 .

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 5
8

 , BN =


0 1

2 0 0 0
1
2 0 0 0 0

0 0 0 1
2 0

0 0 1
2 0 0

0 0 0 0 3
8

 ; QM =

(
0, 0, 1, 1,

13

8

)
, QN =

(
0, 0, 1, 1,

3

8

)
.

The lattices M and N have the signature (1, 12) and (2, 7), respectively, hence M⊥ ≃ N in the K3 lattice.
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K.10. Family №8.1. The toric Landau–Ginzburg model for this family is given by the Laurent polynomial

(a4a7)y
2z−1 + x+ (a1a2a4a5a7 + a4 + a7)y + (a1a2a4a5 + a1a2a5a7 + 1)z + (a1a2a5)y

−1z2+

(a1a3a4a7 + a1a4a6a7 + 1)yz−1 + (a21a2a3a5a6 + a1a2 + a1a5)y
−1z + (a21a3a4a6a7 + a1a3 + a1a6)z

−1+

(a21a2a3a6 + a21a3a5a6 + a1)y
−1 + a8x

−1 + (a21a3a6)y
−1z−1

(see Subsubsection K.2.8). The pencil S(a) is defined by the equation

(a4a7)XY
3 +X2Y Z + (a1a2a4a5a7 + a4 + a7)XY

2Z + (a1a2a4a5 + a1a2a5a7 + 1)XY Z2 + (a1a2a5)XZ
3+

(a1a3a4a7 + a1a4a6a7 + 1)XY 2T + (a21a2a3a5a6 + a1a2 + a1a5)XZ
2T + (a21a3a4a6a7 + a1a3 + a1a6)XY T

2+

(a21a2a3a6 + a21a3a5a6 + a1)XZT
2 + a8Y ZT

2 + (a21a3a6)XT
3 = λXY ZT.

The following members S(a)λ of the pencil are reducible:

S(a)∞ = S(X) + S(Y ) + S(Z) + S(T ).

The base locus of the pencil S(a) consists of the following curves:

C1 = C(X,Y ), C2 = C(X,Z), C3 = C(X,T ), C4 = C(Y,a2Z+T ), C5 = C(Y,a5Z+T ), C6 = C(Y,Z+a1a3a6T ),

C7 = C(Z,Y+a1a3T ), C8 = C(Z,Y+a1a6T ), C9 = C(Z,a4a7Y+T ), C10 = C(T,(a4Y+Z)(a7Y+Z)(Y+a1a2a5Z)+XY Z).

Their linear equivalence classes on the generic member S(a)k of the pencil satisfy the following relations:
[S(a)k · S(X)]− [HS(a)]

[S(a)k · S(Y )]− [HS(a)]

[S(a)k · S(Z)]− [HS(a)]

[S(a)k · S(T )]− [HS(a)]

 =


1 1 2 0 0 0 0 0 0 0 −1

1 0 0 1 1 1 0 0 0 0 −1

0 1 0 0 0 0 1 1 1 0 −1

0 0 1 0 0 0 0 0 0 1 −1

 ·


[C1]

· · ·
[C10]

[HS(a)]

 .

We can reduce the number of linear equivalence classes using these identities:


[C2]

[C6]

[C9]

[C10]

 =


−1 −2 0 0 0 0 1

−1 0 −1 −1 0 0 1

1 2 0 0 −1 −1 0

0 −1 0 0 0 0 1

 ·



[C1]

[C3]

[C4]

[C5]

[C7]

[C8]

[HS(a)]


.

For a general choice of λ ∈ C and a ∈ (C∗)8 the surface S(a)λ has the following singularities:

P1 = P(Y,Z,T ): type A2 with the quadratic term Y · Z;
P2 = P(X,T,a4Y+Z): type A1 with the quadratic term

(a4 − a7)(a1a2a4a5 − 1)X(a4Y + Z)− a4(X
2 + a8T

2)+

(a1a4(a1a2a3a4a5a6 + a4(a2 + a5) + a7(a3 + a6)) + a4λ+ 1)XT ;

P3 = P(X,T,a7Y+Z): type A1 with the quadratic term

(a4 − a7)(a1a2a5a7 − 1)X(a7Y + Z) + a7(X
2 + a8T

2)−
(a1a7(a1a2a3a5a6a7 + a4(a3 + a6) + a7(a2 + a5)) + a7λ+ 1)XT ;

P4 = P(X,T,Y+a1a2a5Z): type A1 with the quadratic term

(a1a2a4a5 − 1)(a1a2a5a7 − 1)X(Y + a1a2a5Z)− a1a2a5(X
2 + a8T

2)

a1(a1a2a5(a1a2a4a5a7(a3 + a6) + a2a5 + a3a6) + a2a5λ+ a2 + a5)XT.

The Q-valued intersection matrix on the group AaS has the following form:
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• C1 C3 C4 C5 C7 C8 HS

C1 −2 1 1 1 0 0 1

C3 1 − 1
2 0 0 0 0 1

C4 1 0 − 4
3

2
3

1
3

1
3 1

C5 1 0 2
3 − 4

3
1
3

1
3 1

C7 0 0 1
3

1
3 − 4

3
2
3 1

C8 0 0 1
3

1
3

2
3 − 4

3 1

HS 1 1 1 1 1 1 4

.

Note that the intersection matrix has the rank 7.
Let S̃(a)λ and S̃(a)k be the minimal resolution of a general member S(a)λ and the generic member S(a)k

of the pencil, respectively. Denote by Laλ ⊂ Pic(S̃(a)λ) and Lak ⊂ Pic(S̃(a)k) the subgroups generated by
linear equivalence classes of exceptional divisors of the resolution and by linear equivalence classes of strict
transforms C̃i, H̃S(a) of the above-introduced curves. By construction Laλ is equipped with the Gal(k)-action,
and Lak can be identified with the subgroup (Laλ)

Gal(k) ⊂ Laλ. In our case we have Laλ = Lak .
The intersection matrix on the lattice Laλ has the following form:

• E1
1 E2

1 E1
2 E1

3 E1
4 C̃1 C̃3 C̃4 C̃5 C̃7 C̃8 H̃S

E1
1 −2 1 0 0 0 0 0 1 1 0 0 0

E2
1 1 −2 0 0 0 0 0 0 0 1 1 0

E1
2 0 0 −2 0 0 0 1 0 0 0 0 0

E1
3 0 0 0 −2 0 0 1 0 0 0 0 0

E1
4 0 0 0 0 −2 0 1 0 0 0 0 0

C̃1 0 0 0 0 0 −2 1 1 1 0 0 1

C̃3 0 0 1 1 1 1 −2 0 0 0 0 1

C̃4 1 0 0 0 0 1 0 −2 0 0 0 1

C̃5 1 0 0 0 0 1 0 0 −2 0 0 1

C̃7 0 1 0 0 0 0 0 0 0 −2 0 1

C̃8 0 1 0 0 0 0 0 0 0 0 −2 1

H̃S 0 0 0 0 0 1 1 1 1 1 1 4

The intersection matrix is non-degenerate, hence we have rank(Laλ) = 12. Recall that Pic(S̃(a)λ) is
generated by linear equivalence classes of the exceptional curves Eji and of strict transforms of curves on
S(a)λ. Denote by M the corresponding intersection matrix.

The conjectural orthogonal complement to the lattice LS has the form

N = H ⊕ Pic(X), Pic(X) =



−2 0 0 0 0 0 −1 0

0 −2 0 0 0 0 −1 0

0 0 −2 0 0 0 −1 0

0 0 0 −2 0 0 −1 0

0 0 0 0 −2 0 −1 0

0 0 0 0 0 −2 −1 0

−1 −1 −1 −1 −1 −1 0 3

0 0 0 0 0 0 3 2


.
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We choose the following generators of discriminant groups DM and DN of the lattices M and N , respectively:

0 0 1
2

1
2 0 0 0 0 0 1

2
1
2 0

0 0 1
2 0 1

2 0 0 0 0 1
2

1
2 0

1
2 0 1

2 0 0 1
2 0 0 0 0 1

2 0
1
2 0 1

2 0 0 1
2 0 0 0 1

2 0 0

0 0 0 0 0 0 0 1
2

1
2 0 0 0

0 1
2 0 0 0 1

2 0 1
2 0 0 0 1

2
1
3

2
3

2
3

2
3

2
3

1
3

1
3 0 0 0 0 1

3


,



0 0 1
2

1
2

1
2 0 1

2
1
2 0 1

2

0 0 1
2

1
2 0 1

2
1
2

1
2 0 1

2

0 0 0 1
2 0 0 0 0 0 1

2

0 0 1
2 0 0 0 0 0 0 1

2

0 0 1
2

1
2 0 0 1

2 0 0 1
2

0 0 1
2

1
2 0 0 0 1

2 0 1
2

0 0 2
3

2
3

2
3

2
3

2
3

2
3

2
3 0


.

Then bilinear and quadratic discriminant forms on DM and DN can be represented as

BM =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 2
3


, BN =



0 1
2 0 0 0 0 0

1
2 0 0 0 0 0 0

0 0 0 1
2 0 0 0

0 0 1
2 0 0 0 0

0 0 0 0 0 1
2 0

0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
3


;

QM =

(
0, 0, 0, 0, 1, 1,

2

3

)
, QN =

(
0, 0, 0, 0, 1, 1,

4

3

)
.

The lattices M and N have the signature (1, 11) and (2, 8), respectively, hence M⊥ ≃ N in the K3 lattice.
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