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Algebraic cycles and local quantum cohomology

Charles F. Doran and Matt Kerr

We review the Hodge theory of some classic examples from mirror
symmetry, with an emphasis on what is intrinsic to the A-model.
In particular, we illustrate the construction of a quantum Z-local
system on the cohomology of KP2 and suggest how this should be
related to the higher algebraic cycles studied in [10].

This note concerns three types of polarized variations of mixed Hodge struc-
ture (PVMHS) which arise in mirror symmetry:

In each case, at the large complex structure boundary point one obtains a
limiting mixed Hodge structure (LMHS) of Hodge–Tate type. It follows that
replacing W• by the relative weight filtration M• produces a new PVMHS
of the form

simultaneously in the A and B models. In particular, the F p ∩M2p subspaces
identify with H3−p,3−p in quantum cohomology.
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Let Δ∗ denote the punctured unit disk and write OΔ∗ =: O, Ω1
Δ∗ =: Ω1.

A PVMHS (V,V,F•, W•,∇, Q) over Δ∗ comprises

• a Z-local system V on Δ∗,

• the holomorphic vector bundle V with sheaf of sections V⊗O,
• a decreasing filtration by holomorphic subbundles F j ⊂ V,
• an increasing filtration by sublocal systems Wi ⊂ VQ := V⊗Q,

• a flat connection ∇ : V → V ⊗ Ω1 with ∇(F•) ⊂ F•−1 and ∇(V) = 0
and

• bilinear forms Qi :
(
GrWi V

)⊗2 → Z,

such that each (GrWi Vs,GrWi F•s , Qi) (s ∈ Δ∗) yields a polarized Hodge struc-
ture. The PVMHS considered here, as well as all PVMHS arising from geom-
etry, are admissible — i.e., have well-defined LMHS at 0.

In the above pictures, the number of bullets in position (p, q) signifies the
dimension of the summand in the Deligne bigrading on V defined pointwise
by

Ip,q(Vs) := F p ∩Wp+q ∩

⎛
⎝F q +

∑
j≥0

{
F q−j−1 ∩Wp+q−j−2

}⎞⎠ .

This bigrading is uniquely determined by the properties

(1) ⊕p≥j ⊕q Ip,q(Vs) = F j
s ,

(2) ⊕p+q≤iI
p,q(Vs) = (Wi)s ⊗ C,

(3) Ib,a(Vs) ≡ Ia,b(Vs) modulo ⊕p<a ⊕q<b Ip,q(Vs).

In passing to the limit, heuristically one may visualize the bullets in each
line p+ q = i moving up and down in such a way that the end result remains
symmetric about this line.

Notation: Set �(s) := log(s)
2πi . We shall often write V (instead of the six-

tuple) for a PVMHS.

1. Closed string

Beginning on the B-model side, recall how the LMHS construction works
for a pure (Z-)VHS V of weight 3 over Δ∗ with unimodular polarization
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Q. The weight filtration is the trivial one W3 = V ⊃ W2 = {0}. Denote the
(unipotent part of the) monodromy operator by T , with nilpotent logarithm

N := log(T ) : VQ → VQ.

There exists an unique filtration

M−1 = {0} ⊂M0 ⊂M1 ⊂ · · · ⊂M6 = VQ

satisfying N(Mα) ⊂Mα−2 and N � : GrM3+�

∼=→ GrM3−�. Untwisting the local
system by

Ṽ := e−�(s)NV,

we obtain the canonical extension

Ve := Ṽ⊗OΔ.

Let {γi} be a multivalued basis of V generating the steps of the integral
filtration MZ

m := V ∩Mm, and set γ̃i := e−�(s)Nγi ∈ Γ(Δ, Ṽ).

Definition 1.1. The LMHS of V, denoted informally Vlim, is given by the
data V Z

lim := Z〈{γ̃i(0)}〉, F•lim := Fp
e (0) and (monodromy weight) filtration

M• on Vlim := Ve(0).

Assume that Vlim is Hodge–Tate, i.e., GrM2j
∼= Z(−j)⊕dj for j = 0, 1, 2, 3

and {0} otherwise. (For example, the large complex structure LMHS for H3

of the quintic mirror is of this type, whereas that for the Fermat quintic
pencil1 is not.) In the rank 4 setting, where we must have all dj = 1, we
may pick (for each j) a holomorphic section ej ∈ Γ(Δ,F j

e ∩MC
2j) mapping

to the image of γj ∈ Γ(H, MZ
2j) in Γ(Δ

∗,GrM2jV) hence generating the latter.
(Here H denotes the upper half-plane.) Write e = {e3, e2, e1, e0} and γ =
{γ3, γ2, γ1, γ0} for the two bases.

1The t = 0 LMHS H3
lim(Yt) of the pencil Yt :=

{
t
∑4

i=0 X5
i =

∏4
i=0 Xi

}
⊂ P4 has

nonzero GrW3 (cf. the analysis in [13, Section IV]).
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To make things explicit, we have (for some a, b ∈ Z and e, f ∈ Q)

(1.1) [Q]γ =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎠ = [Q]e and [N ]γ =

⎛
⎜⎜⎝
0 0 0 0
a 0 0 0
e b 0 0
f e −a 0

⎞
⎟⎟⎠

(cf. [12]), in which we shall demand that |a| = 1. Replacing the local coordi-
nate s by q := e2π

√
−1τ , where τ := Q(γ1, e3), and making full use of the bilin-

ear relations (e.g., Q(F1,F3) = 0 = Q(F2,F2)), the limiting period matrix
becomes (cf. [op. cit.])

(1.2) γ̃(0)[1]e(0) =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
f
2 e 1 0

α0
f
2 0 1

⎞
⎟⎟⎠ .

Example 1.2. For the mirror quintic family, we have (cf. [op. cit.], where
the computation is based on [1]) a = −1, b = 5, e = 11

2 , f = −25
6 and α0 =

25i
π3 ζ(3) =: C.

Following Deligne [9], the ej(q)|Δ∗ provide the Hodge(-Tate) basis of a
PVMHS (V,V,F•, M•,∇) on Δ∗, denoted Vrel for short. For the connection,
we have

[∇]e = d+

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 −Y (q) 0 0
0 0 −1 0

⎞
⎟⎟⎠⊗ dq

(2π
√
−1)q ,

where Y (q) defines the Yukawa coupling. In the event that V comes from
H3(X), and Φ denotes the Gromov–Witten prepotential of the mirror X◦

(composed with the inverse mirror map), according to mirror symmetry we
have Y = Φ′′′ := d3Φ

dτ3 .

Example 1.3. The mirror quintic VHS arises from H3 of Xξ, which is a
smooth compactification of

{
1− ξ

(
4∑

i=1

xi +
1∏4

i=1 xi

)
= 0

}
⊂ (C∗)×4 .
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Taking s := ξ5, we obtain τ and q as above, and

Φ(q) =
5
6
τ3 +Φh(q),

where the holomorphic part

Φh(q) =
1

(2πi)3
∑
d≥1

Ndq
d.

From [1, 12, 23], we have the mixed Hodge basis

e0 = γ0,

e1 = γ1 − τγ0,

e2 = γ2 −
(
5τ +

11
2
+ Φ′′h

)
γ1 +

(
5
2
τ2 +

25
12

+ τΦ′′h − Φ′h

)
γ0,

e3 = γ3 + τγ2 −
(
5
2
τ2 +

11
2

τ − 25
12

+ Φ′h

)
γ1

+
(
5
6
τ3 +

25
12

τ − C + τΦ′h − 2Φh

)
γ0.

Here e3 can also be viewed as the class of a holomorphic 3-form in the
original VHS, whose LMHS is reflected by the presence of C. The mirror
X◦ is the Fermat quintic.

Turning to the A-model, we need to define an integral structure, Hodge
and weight filtrations on

Heven(X◦) = H3,3 ⊕H2,2 ⊕H1,1 ⊕H0,0,

which will lead to VHS, LMHS and VMHS isomorphic to those on H3(X).
These variations will be defined over a small disk 0 < |q| < ε. For construct-
ing them, the general idea is to use the family of algebraic structures onHeven

parametrized by τ [H] ∈ H1,1(X◦), known as the (small) quantum cohomol-
ogy. (Here [H] the the class of a hyperplane section and τ = �(q), and we
are working in the rank 4 setting.)

For the filtrations, we set

F aHeven = ⊕i≤3−aH
i,i, MbH

even = ⊕j≥3− b

2
Hj,j ,

so that F3−k ∩M6−2k = H i,i(X◦, C) as a subspace of Heven. This is where
the “naive” fundamental classes of coherent sheaves or algebraic cycles of
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codimension i lie. In contrast, the integral local system will be generated
by quantum-deformed fundamental classes of algebraic cycles on X◦. Alter-
nately, we can regard the flat structure as given by the solution to a quantum
differential equation

∇ = d+ E ⊗ dq

(2π
√
−1)q ,

which gives the integral structure up to a constant. (Note that d differ-
entiates with respect to ⊕iH

i,i(X◦, C); E is an O(Δ∗)-linear operator we
shall illustrate in the example below.) Since E kills M -graded pieces, we
get a natural identification between GrM2i of this “integral structure” and
H i,i(X◦, Z).

Example 1.4. For X◦ the Fermat quintic, we have Hodge basis

[X◦] = e3, [H] = e2, −[L] = e1, [p] = e0,

where H is a hyperplane section, L a line and p a point. The minus sign on
[L] ensures that the form

Q(α, β) := (−1)
deg(α)

2

∫
X◦

α ∪ β

has matrix [Q]e as above, which is necessary for equality of polarized VHS.
For the quantum deformed classes, we invert the relations of Example 1.3

to obtain

[X◦]Q = γ3 = [X◦]− τ [H] +
(
5
2
τ2 +

25
12

+ τΦ′′h − Φ′h

)
[L]

+
(
−5
6
τ3 − 25

12
τ + C − τΦ′h + 2Φh

)
[p],

[H]Q = γ2 = [H]−
(
5τ +

11
2
+ Φ′′h

)
[L] +

(
5
2
τ2 +

11
2

τ − 25
12

+ Φ′h

)
[p],

[L]Q = −γ1 = [L]− τ [p],
[p]Q = γ0 = [p].

These are solutions to the above differential equation with E given by the
(small) quantum product [H]∗ defined by

[H] ∗ [X◦] = [H], [H] ∗ [H] = Φ′′′[L], [H] ∗ [L] = [p], and [H] ∗ [p] = 0.
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(Note that this is consistent with cup product, in the sense that [H] ∪ [H] =
5[L] = Φ′′′(0)[L].) The resulting variations of HS on Heven(X◦) and H3(X)
match by construction.

The natural question at this point is: how much of this “common Z-
VHS” is intrinsic to the A-model, and not just the B-model? Clearly the
issue lies not in the Hodge and monodromy weight filtrations (given by the
grading of Heven by degree), or the polarizing form Q, or the ∇-flat complex
local system (given by the quantum product), but in the integral structure
on the latter. Another way to think of this (cf. [9]) is that we must determine
the “constant of integration” of the VHS, or equivalently the LMHS (1.2).

Naively, one could try to find a basis δ of the local system with integral
[Q]δ and integral monodromy matrices (which are computable in principle
by analytic continuation). Unfortunately the result may not be unique, even
after identifying bases related by a rational symplectic matrix. In the above
example, one could have

δ3 =
γ3√
5
+

γ2√
5
, δ2 =

γ2√
5
− 3γ1√

5
− 3γ0√

5
, δ1 =

√
5ξ1, δ0 =

√
5γ0,

which produces the (distinct) quintic twin mirror Z-VHS. Indeed, in [11] this
phenomenon is responsible for the bifurcation of each R-VHS into finitely
many distinct Z-VHS.

Instead, what is needed is a direct construction of an integral structure
on quantum cohomology, which has only recently been realized by Iritani
[15, 16] and Katzarkov–Kontsevich–Pantev [18]. We illustrate how this works
in the setting where X◦ is a smooth CY 3-fold, and dimHeven(X◦) = 4.
A map σ from Heven to multivalued ∇-flat sections (in a neighborhood of
q = 0), defined in terms of Gromov–Witten theory, has been known for some
time (cf. [7, Sections 8.5.3, 10.2.2]). If αi ∈ H2(3−i)(X◦) (i = 0, 1, 2, 3) denote
a Q-symplectic basis with α2 = [H], this boils down to first setting

σ̃(α0) := α0, σ̃(α1) := α1, σ̃(α2) := α2 +Φ′′hα1 +Φ′hα0,

σ̃(α3) := α3 +Φ′hα1 + 2Φhα0

and then

σ(α) := σ̃
(
e−τ [H] ∪ α

)
:=

∑
k≥0

(−1)k
k!

σ̃
(
[H]k ∪ α

)
.
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(In our running example, we obviously have in mind α3 = [X◦], α2 = [H],
α1 = −[L], and α0 = [p].) These are ∇-flat sections with monodromy

(1.3) T (σ(α)) = σ
(
e−[H] ∪ α

)
.

We also set σ∞(α) := σ̃(α)|q=0.
The key new ingredient introduced by the authors [15, 18] is a character-

istic class defined using the Γ-function, and which in our setting specializes
to

(1.4) Γ̂(X◦) := exp

⎛
⎝∑

k≥2

(−1)k(k − 1)!
(2πi)k

ζ(k)chk(TX◦)

⎞
⎠ ∈ Heven(X◦).

Using it, we may assign a flat section

(1.5) γ(ξ) := σ
(
Γ̂(X◦) ∪ ch(ξ)

)
to each ξ ∈ Knum

0 (X◦), which defines a Z-local system. (Similarly, we can
define γ̃(ξ), γ∞(ξ) by applying σ̃, σ∞.) A strong indication that Γ̂ gives
the right “correction” is Iritani’s result (cf. [15, Proposition 2.10]) that the
Mukai pairing

〈
ξ, ξ′

〉
:=

∫
X◦

ch(ξ∨ ⊗ ξ′) ∪ Td(X◦) = Q(γ(ξ), γ(ξ′)).

Moreover, since ch(O(−1)) = e−[H], (1.3) implies that

T (γ(ξ)) = γ(O(−1)⊗ ξ)

— an elementary example of how a categorical autoequivalence of Db(X◦)
corresponds to monodromy. The autoequivalences corresponding to mon-
odromies arising away from q = 0 have been explicitly identified in [5].

Example 1.5. Once more we take X◦ to be the Fermat quintic, which
has total Chern class c(X◦) = 1 + 50[L]− 200[p] and Todd class Td(X◦) =
1 + 25

6 [L]. A Mukai-symplectic basis of Knum
0 (X◦) is

ξ3 := OX◦ , ξ2 := OH − 3OL − 8Op, ξ1 := −OL −Op ≡ −OL(1),
ξ0 := Op;

this in fact (referring to Example 1.2 and (1.1)) satisfies [O(−1)⊗]ξ =
exp ([N ]γ). (Note that taking ξ2 = OH and ξ1 = OL does not yield a
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symplectic basis.) From

ch(ξ3) = [X◦], ch(ξ2) = [H]− 11
2
[L]− 25

6
[p], ch(ξ1) = −[L],

ch(ξ0) = [p]

and Γ̂(X◦) = [X◦] + 25
12 [L] + C[p], a straightforward computation gives that

γ(ξi) = γi (i = 0, 1, 2, 3),

with the {γi} exactly as in Example 1.4. Moreover, the {γ∞(ξi)} recover the
LMHS matrix (1.2) (with e, f, α0 as in Example 1.2), including the crucial
constant C which visibly comes from Γ̂.

Remark 1.6. The toric-hypersurface CY 3-fold families from which B-
model VHS’s are often produced are intrinsically defined over Q. More-
over, by virtue of its toric nature, the large complex structure limit may
be regarded as a Q-semistable degeneration. The general conjectural frame-
work surrounding the limiting motive (cf. [12, (III.B.5)]) therefore predicts
that the class α0 ∈ Ext1MHS(Q(−3), Q(0)) ∼= C/Q arising in the correspond-
ing LMHS is always a rational multiple of the constant ζ(3)

(2πi)3 , motivating its
appearance in (1.4).2

The “non-toric” degenerations at the conifold and Gepner points, on the
other hand, produce singular fibers whose desingularization may introduce
an algebraic extension of Q, leading to an arithmetically richer LMHS. One
should try to use mirror symmetry to get at this, perhaps beginning with

Problem 1.7. Adapt the (A-model) Γ̂-integral structure on FJRW theory
introduced in [5] to the explicit computation of the periods of (B-model)
LMHS at the Gepner point (s =∞).

Remark 1.8. The periods of an LMHS are the entries of a matrix (such
as (1.2)) relating rational (or integral) and Hodge bases, which are chosen
compatibly with the monodromy weight filtration.3 Of greatest interest in
Problem 1.7 (at least, when the monodromy about the Gepner point is not
finite) is the explicit computation of nontorsion extension classes between

2Note that we are interested in the arithmetic of locally complete CY families;
taking irrational “slices” of such to force an extension both misses the point and
will not affect α0.

3For instance, one can take the {ei(0)} to give a basis of the Deligne bigrading
of (F •

lim,M•).
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the {GrMk }— possibly in terms of Gamma- and zeta-values, hypergeometric
special values and the like. While Section 4 (also see Corollary 1.4) of [op.
cit.] does not carry this out, it appears to contain the technical background
for doing so.

See Section 4 for another source of algebraic extensions.

2. Local string

This section is based on a simple example studied by [8, 10, 14, 21]. Once
and for all we set
(2.1)

Yξ :=
{
(x, y;u, v) ∈ (C∗)2 × C2

∣∣∣∣1− ξ

(
x+ y +

1
xy

)
+ u2 + v2 = 0

}
,

the so-called Hori–Vafa mirror of Y ◦ = KP2 . The canonical holomorphic
(3, 0) form on Yξ is given by

ηξ = 2
√
−1ResYξ

(
dx
x ∧

dy
y ∧ du ∧ dv

1− ξ(x+ y + 1
xy ) + u2 + v2

)
.

The 3-cycles are spanned in homology by (a) a real 3-torus T3 and (b) circle-
bundles over membranes in (C∗)2 bounding 1-cycles on the thrice-punctured
elliptic curve W ∗

ξ :=
{
(x, y) ∈ (C∗)2

∣∣∣1− ξ(x+ y + 1
xy ) = 0

}
. The circle is

pinched to a point over the 1-cycles.

We write Wξ for the complete elliptic curve, ω̃ξ := 1
2πiResWξ

(
dx

x
∧ dy

y

1−ξ(x+y+ 1
xy

)

)
for the canonical holomorphic 1-form, and ϕ0, ϕ1 for 1-cycles spanning H1
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(Wξ, Z) with periods πi :=
∫
ϕi

ω̃ξ. In particular, we let ϕ0 be the vanishing
cycle and ωξ := ω̃ξ/π0 the normalization of the 1-form so that

∫
ϕ0

ωξ ≡ 1.
Denoting the membrane construction (b) byM, we have the short exact

sequence

0 �� Z〈T3〉 �� H3(Y ) �� ker
{
H1(W ∗)→ H1((C∗)2)

}
(1) ��

∼=
��M

�� �
�����

�
0

H1(W )(1)

(cf. [DK, Section 5]).4 Its dual

0 Z(−3)�� H3(Y )�� H1(W )(−1)μ�� 0��

yields an extension class

ε ∈ Ext1MHS

(
Z(−2), H1(W )

) ∼= Hom(H1(W ), C/Z(2)) .

Miraculously, this is the image of a higher cycle Ξ ∈ Kalg
2 (W ) by a general-

ized Abel–Jacobi map [10], and the periods of η may be described by

1
2π
√
−1

∫
M(γ)

η ≡
Z(2)

〈AJ(Ξ), γ〉W ,
1

(2π
√
−1)3

∫
T3

η = 1.

Normalizing the local coordinate s := ξ3 to q where

�(q) := τ :=
π1

π0
=

∫
ϕ1

ωξ,

we remark that s �→ q gives the mirror map for the family W of elliptic
curves. Similarly, if we set

�(Q) := T :=
1

(2π
√
−1)3

∫
M(3ϕ0)

η,

then s �→ Q is the local mirror map for Y . The initial VMHS V is that on
H3(Y ), with integral basis5 γ = {γ3, γ2, γ1} where

γ3 := T∨, γ2 =M(3ϕ0)∨, γ1 =M(3ϕ1)∨.

4The isomorphism is valid only rationally, but can be made integral by replacing
H1(W, Z) by Z〈3ϕ0, ϕ1〉, which is done tacitly below.

5We will ignore for now the fact that γ1 is really 1
3 of an integral class; it is a

more convenient choice for our purposes thanM(ϕ1)∨.
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From the exact sequence we can read off the weight filtration

W6 = V ⊃ W5 = W4 = W3 = 〈γ2, γ1〉 = im{μ} ⊃ W2 = {0},

and Hodge filtration (except for F3 = 〈η〉). The extension data are recorded
by T = 〈AJ(Ξ), 3ϕ0〉 and Φ := 〈AJ(Ξ), 3ϕ1〉.

The monodromy logarithm

[N ]γ =

⎛
⎝ 0 0 0
−1 0 0
1
2 −1 0

⎞
⎠

leads to a relative weight filtration M•. The resulting Vrel has Hodge–Tate
basis

e3 :=
η

(2π
√
−1)3 = γ3 + T γ2 +Φγ1 ∈ F3 ∩M6,

e2 := μ(ω) = γ2 + τγ1 ∈ F2 ∩M4,

e1 = γ1 ∈ F1 ∩M2.

From transversality

γ2 +
dΦ
dT γ1 = ∇∂T e3 ∈ F2,

we deduce that dΦ
dT = τ , which may also be derived from the fact that loga-

rithmic derivatives of the extension classes give periods6 of ω̃ξ [op. cit.]:

dΦ
dT =

s · dΦ/ds

s · dT /ds
=

π1

π0
= τ.

This equality has the important consequence

Φ′′ :=
d2Φ
dT 2

=
dτ

dT =
δs(π1/π0)

δsT
=
2π
√
−1(π0δsπ1 − π1δsπ0)

π3
0

=
Y
π3

0

,

where Y is the (suitably normalized) Yukawa coupling for the family {Wξ}
of elliptic curves. Noting as well that ∇∂T e2 = dτ

dT e1, we conclude that

[∇]e = d+

⎛
⎝0 0 0
1 0 0
0 Φ′′ 0

⎞
⎠⊗ dQ

(2π
√
−1)Q,

where e = {e3, e2, e1}.

6That is, we have δsT = 1
2πiπ0, δsΦ = 1

2πiπ1.
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Turning to the A-model, we shall seek a quantum interpretation of ∇.
Before doing so, we remark that by [14] and [10], under the local mirror map
Φ may be identified as the local Gromov–Witten prepotential

(2.2) Φ ≡ 1
2
T 2 − 1

(2π
√
−1)2

∑
d

3dNdQ
d.

modulo lower-order terms in T .7 Differentiating (2.2) twice, we have

1−
∑

d

3d3NdQ
d =

Y
π3

0

,

in which the right-hand side has a pole where the family W degenerates.
Directly computing 〈AJ(Ξ), ϕ0〉 at this singular elliptic curve gives �(T0) =
27
√

3
8π2 L(χ−3, 2) [10], and hence Q0 = |e2π

√
−1T0 | = e−2π�(T0) for the radius of

convergence. This ties the asymptotic growth rate

lim sup
d→∞

|Nd|
1
d = e2π�(T0)

of the local Gromov–Witten numbers directly to the Beilinson regulator of
an algebraic cycle.

For the quantum interpretation, we consider the dual VMHS V∨ on
H3(Y ) under the pairing H3(Y )×H3(Y )→ H0(Y ) = Z. The dual integral
(flat) basis is of course

γ∨1 = T3, γ∨2 =M(3ϕ0), γ∨1 =M(3ϕ1),

and in the dual Hodge basis e∨ = {e∨3 , e∨2 , e∨1 } we have

(2.3) [∇]e∨ = d−

⎛
⎝0 1 0
0 0 Φ′′

0 0 0

⎞
⎠⊗ dQ

2π
√
−1Q.

Now recalling that Y ◦ = KP2 , Hosono [14] proposed a homological mirror
map

mir : Kc
0(Y

◦)→ H3(Y, Z)

7A different form of this result is already present in Section 6.2 of [8], about
which we shall say more in the next section.
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from coherent sheaves with compact support to homology classes of
Lagrangian 3-cycles, given explicitly by

(2.4) Op �→ γ∨3 , OP1(−1) �→ γ∨2 , OP2(−2) �→ γ∨1 .

(The sheaves are all supported on the zero-section P2 ⊂ Y ◦.) Making the
identifications e∨3 = [p], e∨2 = [P1], e∨1 = [P2] under mir : Heven(Y ◦)

∼=→ H3

(Y ), we impose as before an integral structure on the A-model side by means
of the quantum deformed classes

([p] =) [p]Q := γ∨3 , [P1]Q := γ∨2 , [P2]Q := γ∨1 .

Together with the filtrations W−6 = W−5 = W−4 = 〈[p]〉 ⊂W−3 = Heven,
and 〈[p]〉 = F−3 ∩M−6, 〈[P1]〉 = F−2 ∩M−4, 〈[P2]〉 = F−1 ∩M−2, this
determines the A-model (relative) variation matching that on the B-model.

Finally, consider the formal quantum product

e∨1 ∗ e∨3 = 0, e∨1 ∗ e∨2 = −3e∨3 , e∨1 ∗ e∨1 = −3Φ′′e∨2 ,(2.5)
e∨2 ∗ e∨3 = 0, e∨3 ∗ e∨3 = 0, e∨2 ∗ e∨2 = 0,

where we continue to identify classes under mir. This is compatible with the
ordinary cup product in the sense that

e∨1 ∪ e∨3 = [P2] ∪ [p] = 0,

e∨1 ∪ e∨2 = [P2] ∪ [P1] = (P2 · P1)Y ◦ [p] = −3[p] = −3e∨3 , and

e∨1 ∪ e∨1 = [P2] ∪ [P2] = −3[P1] = −3e∨2 ,

the last of which contains the leading term of −3Φ′′ = −3 + · · · .

Proposition 2.1. With the product (2.5), (2.3) may be rewritten

∇ = d+
(
1
3
e∨1 ∗

)
⊗ dQ

2π
√
−1Q

in terms of the quantum product with the zero-section P2 ⊂ KP2.

This motivates the following

Problem 2.2. Develop a general theory of quantum cohomology for the
local setting recovering W• and ∇ on Heven(Y ◦) as above. In particular, this
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will entail the construction of dual admissible PVMHS on Heven and Heven

for the total space of the canonical line bundle over a toric Fano orbifold.

We will obtain a solution for our running example in the next section.
Remark that the required ∇ is defined in passing in [17, Section 2.5], which
we shall comment in below (see Remark 3.2).

The Abel–Jacobi maps from [10] touched on above may be viewed as
maps from Kalg

2 (W ) = K2(Coh(W )) to (C/Z(2)-valued) functionals on
(classes of) Lagrangian 1-cycles on W . Noting that W ◦ is also an elliptic
curve, we propose

Problem 2.3. Derive (in general) a homological mirror to AJ . This would
produce a “symplectic regulator” map from K2(Fuk(W ◦)) to functionals
on coherent sheaves on W ◦. The functional mirroring the AJ class in our
example would send Op �→ (2π

√
−1)2

3 T and OW ◦ �→ (2π
√
−1)2

3 Φ.

The motivation for such a quantum AJ map is clear: it would bring
Beilinson’s conjectures directly to bear upon the arithmetic of Gromov–
Witten (GW) invariants, in the context of the A-model VHS on quantum
cohomology. A first step might be to construct, in our example, a mirror in
K2(Fuk(W ◦)) to the toric symbol {x, y} ∈ Kalg

2 (W ) (i.e., the higher cycle),
by representingKalg

2 (W ) using the Quillen category of Coh(W ) and applying
homological mirror symmetry for elliptic curves.

3. Closed to local

We begin by summarizing a computation from [8]. The setting is a 2-
parameter family Xξ1,ξ2 of h2,1 = 2 CY 3-folds over a product (Δ∗)2 of
punctured disks, with η̂ ∈ Ω3(X). The mirror (h1,1 = 2) CY has an ellip-
tic fibration

X◦ ρ̄→ P2

with

• zero-section D2
∼= P2,

• a line C2
∼= P1 ⊂ D2 with preimage D1 = ρ̄−1(C2) and

• a fiber C1 = ρ̄−1(p).
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We will use the bases{
J1 = [D2] + 3[D1], J2 = [D1] for H1,1(X◦),

C1, C2 for H2,2(X◦),

which are dual under cup product. The period vector for η̂ takes the form(
Π0, τ1Π0, τ2Π0, ∂τ1Φ̃, ∂τ2Φ̃, 2Φ̃− δτ1Φ̃− δτ2Φ̃

)
,

where Π0 is the “holomorphic period” and

Φ̃ := 3
2
τ3
1 + 3

2
τ2
1 τ2 + 1

2
τ1τ

2
2 +

{
17
4

τ1 + 3
2
τ2 + C

}
+ 1

(2π
√−1)3

∑
d1,d2

Ñd1,d2qd1
1 qd2

2

is the prepotential.8 Here, qj = e2π
√
−1τj (j = 1, 2) are the disk-coordinates9

and Ñd1,d2 is the GW invariant of the class d1[C1] + d2[C2] on X◦; the Kähler
class is simply τ1J1 + τ2J2.

Now we take τ1 → i∞ (q1 → 0) considered as the “large volume limit”
for the fibers of ρ̄. For the purposes of GW theory on the A-model, in this
limit X◦ is equivalent to the total space of ND2/X◦ ∼= KP2 , i.e., Y ◦ in the
last section (with the map ρ : Y ◦ � P2). On the B-model, which we shall
henceforth ignore, the periods remaining finite are Π0, τ2Π0, and

(3.1) (∂τ1 − 3∂τ2)Φ̃ =
1
2
τ2
2 −

1
4
+

1
(2π
√
−1)2

∑
d1,d2

Ñd1,d2(d1 − 3d2)qd1
1 qd2

2 .

Indeed, actually taking the limit of (3.1) (and writing T := τ2, Q :=
e2π

√
−1T , Nd := Ñ0,d) defines the local prepotential

Φloc :=
1
2
T 2 − 1

4
− 1
(2π
√
−1)2

∑
d

3dNdQ
d

in agreement with (2.2).10

The next step is to consider the limit of the quantum products of classes
in Heven(X◦) which come from Heven

c (Y ◦)(∼= Heven(Y ◦)), namely [p], [C2],

8This is the usual GW prepotential plus the bracketed lower-order correction
terms.

9That is, the mirror map sends (ξ1, ξ2) �→ (q1, q2) [op. cit., Section 6.1] and we
may replace the former by the latter as coordinates on Δ2.

10In fact, by a computation in [14], Φ = Φloc − 1
2T + 1

2 .
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and

[D2] = J1 − 3J2.

In general, the only interesting products (not given by the cup product) are

Jj ∗ Jk =
∑

�

(
∂τj

∂τk
∂τ�
Φ̃
)
[C�].

So (using (3.1)) we have

[D2] ∗ [D2] = (∂τ1 − 3∂τ2)
2
(
∂τ1Φ̃[C1] + ∂τ2Φ̃[C2]

)
= −3[C2] +

∑
d1,d2

Ñd1,d2(d1 − 3d2)2(d1[C1] + d2[C2])qd1
1 qd2

2 ,

whereupon taking the limit

lim
q1→0

[D2] ∗ [D2] =

{
−3 +

∑
d

Nd(−3d)2dQd

}
[C2]

= −3
{
1−

∑
d

3d3NdQ
d

}
[C2]

gives [P2] ∗ [P2] = −3Φ′′[P1], which is exactly what we wanted.
This makes a case for the general principle that the “local restriction” of

the quantum product in a closed CY should remain finite under an appropri-
ate large volume limit. Beyond establishing this, a solution to Problem 2.2
would have to show the result is consistent with a formula of the shape11

(3.2) α ∗loc β :=
∑

k

∑
d

〈α, β, φk〉loc
0,3,dφke

〈d,T 〉

for α, β ∈ Heven
∼= Heven

c , T ∈ H2, d ∈ H2, and φk resp. φk dual bases of
Heven resp. Heven.

The resulting local quantum cohomology would then provide a direct
A-model approach to “most” of the variation of mixed Hodge structure (the
{Ip,q} and ∇-flat structure), leaving only the

11For Y ◦ ∼= KP → P with P a toric Fano surface, negativity of KP allows us to
express the local invariants as closed invariants 〈α, β, φk〉0,3,ι∗(d)for Y ◦ := P(O ⊕
KP)

ι⊃ Y ◦; cf. [6, Section 9].
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Problem 3.1. Extend Iritani’s construction of an integral structure on ∇-
flat sections of Heven(Y ◦) to the local CY setting (with Y ◦ = KPΔ).

This is easily accomplished in our running example by “taking LMHS
along q1 = 0” of the Z-VHS over (Δ∗)2 (common to both the A- and B-
models). More precisely, if T1 denotes the monodromy about q1 = 0, with
logarithm N1, then the limiting variation of MHS takes the form

where the circled bullets denote ker(N1) = ker(T1 − id). For our purposes, it
will suffice to compute the limit of the T1-invariant “cycles” in the Γ̂-integral
structure on the closed A-model VHS Heven(X◦).

Indeed, together with the Clemens–Schmid sequence, the assumption
that “Y ◦ is the A-model limit of X◦” implies that

0 → H3(Y )(−2) �� lim
q1→0

H3(X)(1)
N1 �� lim

q1→0
H3(X) �� H3(Y ) → 0

0 → Heven(Y ◦)(−2) �� lim
q1→0

Heven(X◦)(1)
N1 �� lim

q1→0
Heven(X◦) �� Heven(Y ◦) → 0

is an exact sequence of VMHS (in q2). Iritani’s procedure necessarily gives
integral∇-flat sections {γ̂i}6i=1 in Heven(X◦), with {γ̂4, γ̂5, γ̂6} ⊂ im(N1) and
{γ̂∨1 , γ̂∨2 , γ̂∨3 } ⊂ ker(N1), such that12

[X◦]
(
=

η̂

Π0

)
= γ̂1 + τ2γ̂2 +

{
(∂τ1 − 3∂τ2)Φ̃

}
γ̂3 +

6∑
j=4

π̂j(τ)γ̂j .

12Here the {πj(τ)} are defined by the equation, and the {γ̂i} exist by virtue of
the agreement between γ(Knum

0 (X◦)) (cf. (1.5)) and the B-model Z-structure. (The
authors do not know explicit ξi ∈ Knum

0 (X◦) with γ(ξi) = γ̂i; whereas by [15] these
must exist, the argument here uses only what we know from the B-model, and so
does not require them.)
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Taking the limit whilst killing im(N1), then making the change of basis13

{γ̂1, γ̂2, γ̂3} =: {γ1 + 1
2γ3, γ2 − 1

2γ3, γ3}, recovers

e3 = γ1 + T γ2 +Φγ3

in Heven(Y ◦).
Of course, in analogy to (3.2), it would be better to solve Problem 3.1

in a manner intrinsic to the local A-model. That is, there should be a direct
construction as in (1.5) assigning flat sections of Heven(Y ◦) to classes in
Kc

0(Y
◦), and “compatible with monodromy”. In our example, (2.4) has this

compatibility, since ⊗OY ◦(−J2) on the coherent sheaves and monodromy
about q = 0 on the cycles have the same matrix⎛

⎝1 1 0
0 1 1
0 0 1

⎞
⎠ .

Remark 3.2. As mentioned above, Iritani [15, Section 2.5] briefly describes
an extension of the Dubrovin connection and Γ̂–Z-structure which should
provide such a “direct” solution to Problem 3.1. Whether this produces an
admissible Z-PVMHS, or (more precisely) matches the VMHS on the middle
cohomology of the Hori–Vafa mirror Y , remains to be verified. It would, for
example, suffice to exhibit a degenerating family of CY n-foldsXξ1,ξ2 over Δ

2

with isomorphisms (a) Hn(X0,ξ) ∼= Hn(Yξ)(−n) and (b) Heven(Y ◦)(−n) ∼=
ker(N1) ⊆ limq1 → 0Heven(X◦) of VMHS. Here (a) is a geometric/Hodge-
theoretic calculation on the B-model side, while (b) is a compatibility check
for the A-model Z-structures in the compact and noncompact cases.

Apparently, either solution to Problem 3.1 still leaves us a long way from
the “holy grail” of Problem 2.3.

4. Open string

Problem 2.3 is probably intractable without major theoretical developments.
However, its rough analog in the relative situation studied by Morrison and
Walcher [22] appears to be more accessible. In particular, there is nothing
mysterious about the mirror of the (usual, not higher) algebraic cycle — it
is just a Lagrangian.

13Note that Clemens–Schmid is only rationally exact, and that N1, N2 are only
defined over Q.
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The B-model in the example we consider (following [op. cit.]) comprises:

• X = a double-cover of the mirror quintic family, with holomorphic
form ω ∈ Ω3(X);

• Z ∈ CH2(X)hom a family of algebraic 1-cycles (for analogy to Sec-
tion 2, think “K0(Coh(X))”); and

• 〈AJ2
X(Z), ω〉 = the resulting “truncated normal function”, solving

• the inhomogeneous Picard–Fuchs equation Dω
PF〈AJ2

X(Z), ω〉 =: g.

On the A-model side these data mirror to:

• X◦= the Fermat quintic;

• Z◦ ∼= RP3 the real quintic, viewed as a Lagrangian 3-cycle (think
“K0(Fuk(X))”); and

• the open Gromov–Witten generating function whose coefficients count
holomorphic disks bounding on Z◦,

which (under the mirror map) solves the same PF equation.
As in the closed and local stories, GW numbers are therefore obtained

as power-series coefficients of a Hodge-theoretic function, with (in this latter
role) the Yukawa coupling replaced by the truncated normal function.

Problem 4.1. Work out (in analogy with Sections 1 and 2) the [∇]e story.
This will require the full normal function (not considered in [op. cit.]), which
means computing also 〈AJ2

X(Z),∇∂τ
ω3,0〉.

Since the B-model VMHS is an extension of the constant variation Z(−2)
by the pure VHS H3(X), the extension class is defined over R hence given
completely by 〈AJ2

X(Z), ω
3,0〉 and 〈AJ2

X(Z),∇∂τ
ω3,0〉. The extension arises

geometrically from the residue exact sequence

0 �� H3(X) �� H3(X \ |Z|) �� ker
(
H4
|Z|(X) → H4(X)

) �� 0

0 �� H3(X) �� E
��

��

�� Q(−2)
��

��

�� 0

Completely missing, however, is an approach to the following.
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Problem 4.2. Can one produce the extension class from the pair X◦, Z◦

from the standpoint of quantum cohomology and the A-model VMHS?

To illustrate its difficulty, a naive attempt to mirror the exact sequence
approach, viz.

0→ Heven(X◦)
H6

Z◦(X◦)
→ Heven(X◦\Z◦)→ ker

(
H3

Z◦(X◦)→ H3(X◦)
)
→ 0,

fails due to the vanishing of the third term. The result of [op. cit.], however,
that the “truncated” extension class is given by the open GW generating
function, gives one reason to believe the problem has interesting content.

Remark 4.3. We briefly note another interesting phenomenon that arises
in the open setting, related to Remark 1.6. Even on a family of CY 3-folds
defined over Q, algebraic cycles often force an algebraic extension L/Q upon
us, as in the case of the van Geemen lines on the mirror quintic family studied
by Laporte and Walcher [19]. The resulting limits of truncated normal func-
tions can then often be expressed in terms of the Borel regulator on K ind

3 (L)
(see [13] for the theoretical reason). This makes the open setting ideal ter-
rain for exploring generalizations of the A-model Γ̂-construction where the
B-model LMHS does not correspond to a Q-rational limiting motive.

4.1. Local to open

Recent work of Chan, Lau, Leung, Tseng and Wu [3, 4, 20] has brought to
light an interesting relation between the (local) mirror map and certain open
Gromov–Witten invariants for a toric Calabi–Yau manifold Y ◦. The first
three authors conjecture in [3] that the SYZ mirror construction (applied to
Y ◦) inverts the mirror map given by a normalized integral basis of single-log-
divergent periods of the Hori–Vafa mirror Y . With the integrality hypothesis
dropped, the conjecture is established in [4] for Y ◦ = KZ with Z a compact
toric Fano variety; it is known integrally for toric surfaces [20] and a handful
of other examples [3], including KP2 .

We briefly describe the case Y ◦ = KP2 in the notation of Section 2. Let �
be the class of a line L (∼= P1) contained in the zero section D (∼= P2) ⊂ Y ◦,
and T [ρ−1(L)] ∈ H2(Y ◦, C) be the Kähler class with corresponding Kähler
parameter Q = e2πiT . Take β0 to denote the class of a holomorphic disk with
β0 ·D = 1 bounding on a Lagrangian torus (see [3, Section 4.2.3] for the pre-
cise definition). Then the SYZ construction in [3] produces the noncompact
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Calabi–Yau in (C∗)2 × C2 given by

(4.1) UV = c(Q) +X + Y +
Q

XY
,

where c(Q) = 1 +
∑

k≥1 nβ0+k�Q
k is an open Gromov–Witten generating

series. An easy change of coordinates exhibits (4.1) as the Hori–Vafa mani-
fold Yξ of (2.1), with ξ = − Q

1
3

c(Q) ; taking the cube gives

(4.2) s(Q) = − Q

c(Q)3
.

The observation of [op. cit.] is that (4.2) inverts the local mirror map

Q(s) = e2π
√
−1T (s) = exp

(
1

(2π
√
−1)2

∫
M(3ϕ0)

η

)

in Section 2. So just as for Φ, we have an enumerative interpretation for T ,
and one can use the computation14

T (s) = �(s) +
1
2
+

1
2π
√
−1

∑
k≥1

(−1)k
(

3k
k,k,k

)
k

sk

in [3] or [10] to compute c(Q) = 1− 2Q+ 5Q2 − 32Q3 + · · · .
We conclude with one final

Problem 4.4. Can one use the formulae in Section 5 of [10] for the integral
periods of Hori–Vafa mirrors, to establish integrality in [4]?

Remark 4.5. While this paper was under review, Problem 4.4 was
answered affirmatively for Y ◦ = KZ a threefold (cf. the footnote in [2, Sec-
tion 1]). We expect that the relevant computations in [10, Section 5] gener-
alize to dimensions n > 3 as well; the more interesting question is whether
similar constructions exist for more general semi-projective toric Calabi–Yau
varieties (not of the form KZ).

14up to the sign and term 1
2 which are required for consistency with Section 2

and [14].
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