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Normal functions, Picard–Fuchs equations,
and elliptic fibrations on K3 surfaces

By Xi Chen at Edmonton, Charles Doran at Edmonton, Matt Kerr at St. Louis and
James D. Lewis at Edmonton

Abstract. Using Gauss–Manin derivatives of generalized normal functions, we arrive at
results on the non-triviality of the transcendental regulator for Km of a very general projective
algebraic manifold. Our strongest results are for the transcendental regulator for K1 of a very
general K3 surface and its self-product. We also construct an explicit family of K1 cycles on
H˚E8˚E8-polarizedK3 surfaces, and show they are indecomposable by a direct evaluation
of the real regulator. Critical use is made of natural elliptic fibrations, hypersurface normal
forms, and an explicit parametrization by modular functions.

1. Introduction

The subject of this paper is the existence, construction, and detection of indecomposable
algebraic K1-cycle classes on K3 surfaces and their self-products. We begin by treating the
existence of regulator-indecomposable cycles on a very general K3 with fixed polarization by
a lattice of rank less than 20 (Section 2), as well as on their self-products in the rank one pro-
jective case (Section 4). This is intertwined with a discussion (Section 3) of homogeneous and
inhomogeneous Picard–Fuchs equations for truncated normal functions – a subject of increas-
ing interest due to their recent spectacular use in open string mirror symmetry [24] – which is
further amplified by explicit examples in Section 5.

The second half of the paper takes up the question of how to use the geometry of po-
larized K3 surfaces with high Picard rank to construct indecomposable cycles (Sections 5 and
6). Elliptic fibrations yield an extremely natural source of families of cycles, whose image
under the real and transcendental regulator maps have apparently not been previously studied.
Our computation of their real regulator not only proves indecomposability, but turns out to be
related to higher Green’s functions on the modular curve X.2/ (cf. [20], which depends upon
the present Section 6). The paper concludes (Section 7) with a discussion of the mysterious
Picard-rank 20 case and its relationship to open irrationality problems. In the remainder of this
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44 Chen, Doran, Kerr and Lewis, Normal functions

introduction, we shall state the main existence results of Sections 2–4, and place the construc-
tions of Section 6 in historical context.

Background on cycle class maps. Let X be a projective algebraic manifold of dimen-
sion d , and CHr.X;m/ the higher Chow group introduced by Bloch [4]. We are mainly in-
terested in working modulo torsion, thus we will restrict ourselves to the corresponding group
CHr.X;mIQ/´ CHr.X;m/˝Q. We shall be especially interested in the case m D 1, and
the indecomposable cycles

CHrind.X; 1IQ/´
CHr.X; 1IQ/

image.C� ˝ CHr�1.X IQ//
:

An explicit description of the Bloch cycle class map to Deligne cohomology,

clr;m W CHrhom.X;mIQ/! J
�
H 2r�m�1.X;Q.r//

�
� H 2r�m

D .X;Q.r//;

is given in [22], where

J
�
H 2r�m�1.X;Q.r//

�
´ Ext1Q-MHS

�
Q.0/;H 2r�m�1.X;Q.r//

�
'

H 2r�m�1.X;C/

F rH 2r�m�1.X;C/CH 2r�m�1.X;Q.r//

'
¹F d�rC1H 2d�2rCmC1.X;C/º_

H2d�2rCmC1.X;Q.d � r//
:

(Note that CHr.X;mIQ/ D CHrhom.X;mIQ/ for m � 1, and by convention, for singular
homology, Hi .X;Q.r//´ Hi .X;Q/˝Q.�r/, which has weight 2r � i .) Composing clr;m
with the natural map

Ext1Q-MHS

�
Q.0/;H 2r�m�1.X;Q.r//

�
! Ext1R-MHS

�
R.0/;H 2r�m�1.X;R.r//

�
defines the real regulator

(1.1) rr;m W CHr.X;m/! Ext1R-MHS

�
R.0/;H 2r�m�1.X;R.r//

�
;

where explicitly (noting C D R.m � 1/˚R.m/)

Ext1R-MHS

�
R.0/;H 2r�m�1.X;R.r//

�
'

H 2r�m�1.X;C/

F rH 2r�m�1.X;C/CH 2r�m�1.X;R.r//

' Hom
�
F d�rC1 \H 2d�2rCmC1.X;R/;R.r � 1/

�
:

We will now assume that X is a member of a family � W X! S , where X, S are smooth
complex quasi-projective varieties and � is smooth and proper, and where X ´ ��1.0/ cor-
responds to 0 2 S . Associated to this is the Kodaira–Spencer map � W T0.S/! H 1.X;‚X /,
whose image we will denote by H 1

alg.X;‚X /, where ‚X is the sheaf of holomorphic vec-
tor fields on X . The cohomology of the fibers of � defines a variation of Hodge structure,
and roughly speaking, a normal function is a “locally liftable holomorphic” cross-section:
S !

`
t2S J.H

2r�m�1.��1.t/;Q.r///. The Hodge structure

H 2r�m�1.X;Q.r// D H 2r�m�1
f .X;Q.r//

M
H 2r�m�1
v .X;Q.r//

Brought to you by | University of Colorado - Boulder
Authenticated

Download Date | 1/3/17 10:06 PM



Chen, Doran, Kerr and Lewis, Normal functions 45

decomposes, where

H 2r�m�1
f .X;Q.r//´ H 2r�m�1.X;Q.r//�1.S/

is the fixed part of the corresponding monodromy group action on H 2r�m�1.X;Q.r//, and
H 2r�m�1
v .X;Q.r// is the orthogonal complement. A well-known result of Deligne [13] tells

us that

H 2r�m�1
f .X;Q.r// D Image

�
H 2r�m�1.X;Q.r//! H 2r�m�1.X;Q.r//

�
:

Accordingly, one has a reduced cycle class map

clr;m W CHr.X;mIQ/! J
�
H 2r�m�1
v .X;Q.r//

�
:

Such a regulator map already plays a key role in detecting interesting CHr.X;m/ classes, such
as indecomposables (see for example [23] and [25]).

By taking a further quotient of the Jacobian, we pass to the transcendental regulator

(1.2) ˆr;m W CHr.X;mIQ/!
¹F d�rCmC1H 2d�2rCmC1

v .X;C/º_

H v
2d�2rCmC1

.X;Q.d � r//
:

Since the Q-dimension of the denominator usually exceeds twice the C-dimension of the nu-
merator, ˆr;m is primarily of use in families, where suitable Picard–Fuchs operators kill sec-
tions of the denominator.

To give a formula for (1.2), we shall associate to � 2 CHr.X;mIQ/ a functional

ê
r;m.�/ 2 Hom

�
F d�rCmC1H 2d�2rCmC1

v .X;C/;C
�
;

whose image in the right-hand side of (1.2) yields ˆr;m.�/. Let

! 2 ker.d/ � F d�rCmC1A2d�2rCmC1.X/

be a representative form. According to the moving lemma of [21, 22], we may assume the
irreducible components of � meet the real cubeX�Œ�1; 0�m properly. Viewing j�j � X�Cm

as a closed subset of codimension r , we have dim PrX .j�j/ � d � r C m. Together with the
depth of ! in the Hodge filtration, this eliminates most of the terms in the [22] formula for
clr;m.�/.!/, leaving us with

ê
r;m.�/.!/´˙

1

.2� i/d�r

Z
�

!;

for � a choice of C1 .2d � 2r CmC 1/-chain on X with à� D PrX .� \ ¹X � Œ�1; 0�mº/.
The ambiguity in this choice lies in the denominator of the right-hand side of (1.2).

We observe that ifm D 1, then (1.2) factors through the indecomposable classes. A class
� for which ˆr;1.�/ ¤ 0 is thus called regulator-indecomposable. Of particular interest is the
case .d; r;m/ D .2; 2; 1/, where (1.2) and (1.1) take the form

ˆ2;1 W CH2.X; 1/!
H
2;0
v .X/_

H v
2 .X;Q/

; r2;1 W CH2.X; 1/! H 1;1.X;R.1//:
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46 Chen, Doran, Kerr and Lewis, Normal functions

Existence of regulator indecomposables. To explain the results of Sections 2–4, we
first need to recall the main theorem of [5]. Recall that a point p 2 S.C/ is general (resp. very
general) if it lies in the complement of a finite (resp. countable) union of algebraic subvarieties.
When making statements about the real regulator, more analytic notions are required. By a
real-analytic Zariski-open subset U of S , we shall mean the complement of a real-analytic
subvariety in San

C (viewed as a real analytic variety). Given some set of algebraic subvarieties
of S , an Ran-general member of this set is one which meets such a U .

Theorem 1.1 ([5]). Let � W X! S be the universal family of polarized K3 surfaces of
genus g .� 2/, and write Xs ´ ��1.s/. Then the real regulator

r2;1Is W CH2.Xs; 1/˝R! H 1;1.Xs;R.1//

is surjective for s in a real-analytic Zariski-open subset U � S .

Pick ` 2 Œ1; 19� \ Z. Let XT ! T , with T � S irreducible and dim.T / D 20 � `, be
an Ran-general subfamily of generic Picard rank `, so that V ´ T an

C \ U is non-empty. Our
first result about these maximal families is the following.

Theorem 1.2. Let t 2 V be very general in T . Then the transcendental regulatorˆ2;1It
is non-zero.

From the proof of Theorem 1.2, one may infer:

Corollary 1.3. Let X=C be a very general member of a family of surfaces for which
H 1

alg.X;‚X /˝H
2;0
v .X/! H

1;1
v .X/ is surjective. If the real regulator

r2;1 W CH2.X; 1/! H 1;1
v .X;R.1//

is non-zero, then so is the transcendental regulator ˆ2;1.

Now consider X of dimension d as a very general member of a family � W X! S . With
a little bit of effort, one can also show the following.

Theorem 1.4. Suppose that the map

H 1
alg.X;‚X /˝H

d�rCmC1�`;d�rC`
v .X/! Hd�rCm�`;d�rC`C1

v .X/;

induced by cup-product, is surjective for all ` D 0; : : : ; m � 1. Then clr;m ¤ 0) ˆr;m ¤ 0.

Theorems 1.2, 1.4 and Corollary 1.3 will be proved in Section 2.2. We deduce from
Theorem 1.4 the following corollary.

Corollary 1.5. Let X be a very general projective K3 surface, so that H 2
v .X;C/ is

transcendental cohomology. Then the transcendental regulator

ˆ3;1 W CH3.X �X; 1/!
¹F 3.H 2

v .X;C/˝H
2
v .X;C//º

_

H4.X �X;Q.1//

is non-zero.
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We prove Corollary 1.5 in Section 4. It turns out however, that with more effort, we can
actually prove the following stronger result.

Theorem 1.6. The truncated transcendental regulator

‰3;1 W CH3.X �X; 1/!
H 4;0.X �X;C/_

H4.X �X;Q.1//

is non-zero for a very general K3 surface X .

The proofs of all the above results rely on a very simple trick involving the infinitesi-
mal invariant of a normal function associated to a family of cycles on X=S inducing a given
transcendental regulator value on X . A deeper question asks whether such a normal function
is detected by a Picard–Fuchs operator. A blanket answer to this question is “yes”; but rather
than explaining it here, we shall provide a complete clarification in Section 3.

Construction of regulator indecomposables. Returning to Theorem 1.2, two ques-
tions arise. First, the method of [5], which proves the existence of deformations of decompos-
ables on Picard-rank 20 K3’s, to indecomposables on an Ran-general polarized K3, is highly
non-explicit. How can one construct interesting explicit examples of cycles with non-zeroˆ2;1
on subfamilies with Picard rank ` > 1? Second, on a Picard-rank 20K3, does one expect there
to be any cycles at all which have non-zero ˆ2;1, and which are therefore indecomposable?

The first question is our main concern for the remainder of the paper. In Section 5, we
introduce the tools required for explicit computations in this setting. The notion of a polarized
K3 surface is extended to that of a lattice polarization, and algebraic hypersurface normal forms
are given for certain families of lattice polarized K3 surfaces of high Picard rank `. We then
describe a very useful “internal structure” consisting of an elliptic fibration with section(s).
Explicit Picard–Fuchs operators are given and related to parametrizations of coarse moduli
spaces by modular functions and their generalizations.

Starting in Section 6, we restrict our considerations to ` D 18 or 19, where the literature
has not been especially reliable. The article [12] considers a family of cycles Zt 2 CH2.Xt ; 1/
on a 1-parameter family of elliptically fiberedK3’s with ` D 19, and a choice of section ¹!tº of
the relative canonical bundle. In this context, F.t/´ ˆ2;1.Zt /.!t / is a multivalued holomor-
phic function, and the indecomposability of Zt may be detected by showing the Picard–Fuchs
operator for ! does not annihilate it. Unfortunately, Zt turns out to be 2-torsion,1) and the com-
putation of F leaves out a part of the membrane integral which cancels the part written down.
For ` D 18, one can try to construct regulator-indecomposable cycles on a product E1 � E2
of elliptic curves and then pass to the Kummer. Such a construction is attempted in [17] but
this cycle, too, was shown by M. Saito to be decomposable. (That construction can, however,
be corrected [27].) When E1 Š E2, other authors (cf. [29]) have investigated “triangle cycles”
supported on E � ¹pº, ¹qº � E, and the diagonal �E , where Œp� � Œq� is N -torsion. But this
cannot produce indecomposable cycles, since the sum of the N 2 natural N -torsion translates
of such a cycle (by integer multiples of p � q on the two factors) is both visibly decomposable
and (up to torsion) equivalent to N 2 times the original cycle.

1) The cycle Zt , which is supported over ¹Z D 0º [ ¹Z D 1º [ ¹X D 0º [ ¹X D 1º in the notation of
[12], is in fact one-half the residue of the symbol ¹X; 1 � 1

Z
º.
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48 Chen, Doran, Kerr and Lewis, Normal functions

With this discouraging history, it is easy to imagine that when X is an elliptically fibered
K3, the very natural CH2.X; 1/ classes supported on semistable singular (Kodaira type In)
fibers might be decomposable as well. Indeed one knows in the case of a modular elliptic
fibration (K3 or not), that Beilinson’s Eisenstein symbols [2] kill all such classes. On the other
hand, using arithmetic methods to bound the rank of the dlog image, Asakura [1] demonstrated
that for elliptic surfaces with general fiber y2 D x3 C x2 C tn (n 2 Œ7; 29� prime), the type
I1 fibers generate n � 1 independent indecomposable K1-classes. His paper stops short of
attempting any regulator computations for such cycles, and this is what we take up in Section 6
in the context where the surface and cycle are allowed to vary.

Specifically, using an I1 fiber in an internal elliptic fibration of the 2-parameter family
¹Xa;bº of Shioda–Inose K3’s (` D 18) [7], we write down a (multivalued) family of cycles
Za;b 2 CH2.Xa;b; 1/. Passing to the associated Kummer family with parameters ˛; ˇ (and
cycle Z˛;ˇ ), we find that the family of cycles becomes single-valued over the diagonal (` D 19)
sublocus ˛ D ˇ, which is the Legendre modular curve P1n¹0; 1;1º Š H=�.2/. At this point
we write down a smooth family of real closed .1; 1/-forms �˛ and compute directly the function

 .˛/´ r2;1.Z˛;˛/.�˛/

D �8j˛ C 1j Im
Z

C
z � log

ˇ̌̌z C i
z � i

ˇ̌̌
¹.˛2 � ˛ � 1/z4 C 2z2 C .˛3 � ˛2 � 2˛ C 1/º

jz2 � ˛j j1 � ˛z2j jz2 C 1j jz2 � .1C ˛ � ˛2/j

�
¹.˛3 � ˛2 � 2˛ C 1/z4 C 2z2 C .˛2 � ˛ � 1/º

j.1C ˛ � ˛2/z2 � 1j jz4 C .˛3 � 3˛/z2 C 1j
dx ^ dy

to be non-zero. By Corollary 1.3 we have immediately the following result.

Theorem 1.7. ˆ2;1.Za;b/ is non-zero for .a; b/ in a real-analytic Zariski-open subset
of C2, and so Za;b is indecomposable for very general .a; b/.

In light of the past confusion surrounding such constructions, such a natural source of
indecomposable cycles seems to us an important development. While the explicit formula
above may not look promising,  .˛/ is in fact a very interesting function. Dividing out by
the volume of the Legendre elliptic curve and pulling back by the classical modular function
� to obtain a function Q .�/ on H, yields a “Maass cusp form with two poles”. That is, Q 
is �.2/-invariant, is smooth away from the �-preimage of ˛ D ¹�1; 2º (where it has logj�j
singularities), dies at the three cusps, and (away from these bad points) is an eigenfunction of
the hyperbolic Laplacian �y2�. This is shown by the third author in the follow-up paper [20]
(which, it should be noted, relies crucially on the computation here).

Finally, we turn briefly to the second question, concerning the case ` D 20, in Section 7.
Due to the vanishing of H 1;1

v .X;R/, r2;1 is zero by definition, but this is no reason for the
transcendental Abel–Jacobi map ˆ2;1 to vanish. In the example we work out, whether or not
ˆ2;1.Z/ is non-torsion boils down to the irrationality of a single number (cf. (7.1)), which we
do not know how to prove directly. It seems likely both that the cycle is indecomposable and
that this may be shown by using the methods in [1] to compute the dlog image.
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are very grateful to the referee for providing very useful suggestions on how to improve the
presentation of this paper.

2. Derivatives of normal functions I

2.1. Gauss–Manin derivatives. Consider a smooth projective family � W X ! S of
varieties, polarized by a relatively ample line bundle L, over a polydisk S , with central fiber
X D ��1.0/. Write

F
p
OS
Rq��C´ Rq���

��p

X=S
� Rq���

�
X=S D OS ˝R

q��C

for the Hodge filtration. We have the Gauss–Manin (GM) connection

r W OS ˝R
q��C ! �1S ˝R

q��C

which is a flat connection satisfying Griffiths transversality:

r
�
F
p
OS
Rq��C

�
� �1S ˝ F

p�1
OS

Rq��C:

Let ‚S be the holomorphic tangent bundle of S . We can think of ‚S as the sheaf
of holomorphic linear differential operators. By identifying à=àzk with rà=àzk , ‚S acts on
OS ˝R

q��C via
u � ! D ru!

for u 2 H 0.‚S /, where we write H 0.�/ for H 0.S;�/. If h�; �i denotes the polarizing form
on OS ˝R

q��C, then uh�; �i D hru.�/; �i C .�1/qh�;ru.�/i.
Now assume the fibers of � are (polarized) K3 surfaces. We fix a non-zero section

! 2 H 0.KX=S /, where KX=S is the relative canonical sheaf of X over S . For all u 2 H 0.‚S /

and all  2 H 2.X;C/ (where H 2.X;C/ is identified with H 0.S;R2��C/), we have

uh; !i D h;ru!i:

Let � 2 CH2.X=S; 1/ be the result of an algebraic deformation of a cycle in the central fiber X
restricted to X=S , and cl2;1 be the regulator map

cl2;1 W CH2.X=S; 1/! H 0

�
OS ˝R

2��C

F 2
OS
R2��C CR2��Q.2/

�
:

Take � to be a lift of cl2;1.�/ to H 0.OS ˝R
2��C/. Then

(2.1) hru�; !i D 0

since the map

r ı cl2;1 W CH2.X=S; 1/
cl2;1
���! H 0

�
OS ˝R

2��C

F 2
OS
R2��C CR2��Q.2/

�
(2.2)

r
�! H 0

�
�1S ˝

�
OS ˝R

2��C

F 1
OS
R2��C

��
induced by the GM connection is trivial. This follows from the quasi-horizontality of (higher)
normal functions associated to generalized algebraic cycles.
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50 Chen, Doran, Kerr and Lewis, Normal functions

Remark 2.1. For the non-expert reader, here is an efficient proof of this quasi-hori-
zontality. Let X=S be a smooth projective family, and recall the analytic Deligne complex
0! Z.r/! ��<rX , which leads to an exact sequence

H2r�m�1.��<rX /! H 2r�m
D .X;Z.r//! H 2r�m.X;Z.r//:

We consider a relatively null-homologous cycle in CHr.X=S;m/, which will map to zero
in H 2r�m.X;Z.r// (as S is a polydisk). Hence the induced normal function has a lift in
H2r�m�1.��<rX /, which is all we shall need.

The Leray spectral sequence for X=S gives us an edge map

H2r�m�1.��<rX /! H 0.S;R2r�m�1���
�<r
X /:

One has a filtering of the complex

L���<rX ´ Image
�
����S ˝�

�<r��
X ! ��<rX

�
;

with
Gr�L D �

���S ˝�
�<r��
X=S ' ��S ˝�

�<r��
X=S :

There is a spectral sequence computing RpCq����<rX with

E
p;q
1 D RpCqGrp

L
D �

p
S ˝Rq���

�<r�p

X=S
:

So we have the composite

H 0.S;R2r�m�1���
�<r
X /! H 0.S;E

0;2r�m�1
1 /

d1
�! H 0.S;E

1;2r�m�1
1 /;

which must be zero by spectral sequence degeneration, using the fact that

E0;2r�m�11 � ker
�
d1 W E

0;2r�m�1
1 ! E

1;2r�m�1
1

�
:

But H 0.S;E
0;2r�m�1
1 /

d1
�! H 0.S;E

1;2r�m�1
1 / is precisely the Gauss–Manin connection

H 0.S;R2r�m�1���
�<r
X=S /

r
�! H 0.S;�1S ˝R2r�m�1���

�<r�1
X=S /:

Specializing .r;m/ D .2; 1/ now gives the vanishing asserted in (2.2).

2.2. Transcendental regulators. We continue with the notation of the last subsection,
with X the central fiber of a smooth non-trivial family of algebraicK3 surfaces X over a poly-
disk S . Suppose thatˆ2;1.�/.!/ � 0 over S , so that h�; !i is a period; that is, h�; !i D h; !i
for some  2 H 2.X;Q.2//. Applying (2.1),

(2.3) h;ru!i D uh; !i D uh�; !i D hru�; !i C h�;ru!i D h�;ru!i:

Now write
� W ‚S;0 ! H 1.X;‚X /

for the Kodaira–Spencer map, and

(2.4) " W H 1.X;‚X /˝H
2;0.X/! H 1;1.X/

for the map induced by the contraction ‚X ˝^2�1X ! �1X . Then

ru! D "
�
�.u/ [ !

�
;

and we have the following elementary proposition.
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Proposition 2.2. " is an isomorphism.

Proof. By Serre duality, this follows from non-degeneracy of the map

(2.5) H 1.X;‚X /˝H
1.X;�1X /! H 2.X;OX /

induced by contraction ‚X ˝�1X ! OX . But since OX D KX (and �1X D .‚
1
X /
_˝KX ) for

a K3, (2.5) is the Serre pairing and hence non-degenerate.

Note that H 1.X;‚X / corresponds to all deformations of X , including non-algebraic
ones.

Proof of Theorem 1.2. Take S to be an open polydisk in V with center 0 at t 2 V , and
put H 1

alg.X;‚X /´ �.‚S;0/. Suppose that ˆ2;1.�/ D 0 for all � 2 CH2.X=S; 1/. Denote by

"S W H
1
alg.X;‚X /˝H

2;0.X/! H 1;1
v .X/

the restriction of (2.4). In the setting of the theorem, dimH
1;1
v .X/ D 20 � ` and � is in-

jective. Thus by Proposition 2.2, "S is surjective, and the ¹ru!ºu2H0.‚S /
together with !

generate F 1H 2
v .X;C/. Applying (2.3), we see that cl2;1.�/ D 0 for any � 2 CH2.X=S; 1/.

But by Theorem 1.1, this is impossible since the composition of r2;1 with the projection to
H
1;1
v .X;R.1// is non-zero and factors through cl2;1.

This argument carries over essentially verbatim to the more general setting of Corol-
lary 1.3.

Proof of Theorem 1.4. Let us assume that ˆr;m.�/ is zero. That means that clr;m.�/ is
a period with respect to (acting on forms in) F d�rCmC1H 2d�2rCmC1

v .X;C/. Then from the
surjection of

H 1
alg.X;‚X /˝H

d�rCmC1�`;d�rC`
v .X/! Hd�rCm�`;d�rC`C1

v .X/;

in the case where ` D 0, we deduce likewise that clr;m.�/ is a period with respect to
F d�rCmH 2d�2rCmC1

v .X;C/. By iterating the same argument for ` D 1; : : : ; m � 1, we
deduce that clr;m.�/ is a period with respect to F d�rC1H 2d�2rCmC1

v .X;C/, which implies
that clr;m.�/ D 0.

3. Derivatives of normal functions II

Consider the setting in Section 1, where � W X ! S is a smooth and proper map
of smooth quasi-projective varieties, and where X is a very general member. In this sec-
tion, we will further assume that S is affine. Associated to the Gauss–Manin connection r
and the algebraic vector fields H 0.S ; ‚S / is a D-module of differential operators. Suppose
! 2 H 0.S ;OS ˝R

i��C/ D H 0.S ;Ri����X=S / is an algebraic form, where we note that
Ri����X=S is algebraic and locally free in the Zariski topology. One can consider the ideal
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I
C.S/
! of partial differential operators with coefficients in C.S/ annihilating !, which will al-

ways be non-zero using the finite dimensionality of cohomology of the fibers of � and the fact
that r is algebraic, where C.S/ is the field of rational functions on S . This section addresses
the following question.

Question 3.1. If the transcendental regulator ˆr;m.�/ is non-trivial, is the normal func-
tion N�.t/ D clr;m.�t / associated to � detectable by a Picard–Fuchs operator P 2 IC.S/

! , for
some ! 2 F d�rCmC1H 2d�2rCmC1

v .X;C/; namely, is P h�; !i ¤ 0?

Proposition 3.2. The answer to Question 3.1 is affirmative under the hypotheses of
Theorem 1.4, together with the following mild assumption.

Assumption 3.3. For the given choice of r and m,®
R2r�m�1v ��C

¯
\
®
F rH2r�m�1

v

¯
D 0

as subsheaves of H2r�m�1
v ´OS ˝R

2r�m�1
v ��C: Equivalently,

r W F rH2r�m�1
v ! �1S ˝H2r�m�1

v

is injective.

This assumption holds automatically for the families of K3 surfaces in Theorem 1.2
(with .r;m/ D .2; 1/), as well as for the fiber products of such in Corollary 1.5 and Theorem
1.6 (with .r;m/ D .3; 1/).

Proposition 3.2 will be proved at the end of this section.

3.1. Picard–Fuchs equations associated to regulators. This section takes inspiration
from [18]. Since r is algebraic, Question 3.1 reduces to a local calculation over a polydisk
S � San

C in the analytic topology, cf. Proposition 3.4 below.
Recall that ‚S is the holomorphic tangent bundle of S . We can think of ‚S as the

sheaf of holomorphic linear differential operators which generates the ring DS of differential
operators: in local coordinates,

DS D OS

�
à
àz1

;
à
àz2

; : : : ;
à
àzn

�
:

Identifying à=àzk with rà=àzk , DS acts on OS ˝R
q��C via

(3.1) .v1v2 : : : vl/! D rv1rv2 : : :rvl!

for sections v1; v2; : : : ; vl 2 H 0.‚S /, where we write H 0.�/ for H 0.S;�/. For
! 2 H 0.OS ˝ Rq��C/, we let I!� H 0.DS / be the Picard–Fuchs ideal annihilating !,
i.e., the left ideal consisting of differential operators P 2 H 0.DS / satisfying P! D 0.

Proposition 3.4. The analytic ideal I! , viewed as a Mer.S/ vector space, is generated
by the restriction of the corresponding algebraic ideal IC.S/

! to the polydisk S , where Mer.S/
is the field of the meromorphic functions on S and we extend the scalars in I! fromH 0.S;Oan

S /

to Mer.S/ by replacing I! by I! ˝H0.S;Oan
S /

Mer.S/.
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Proof. Let S be affine, and let ! 2 H 0.S ;Ri����X=S / be an algebraic form. By
shrinking S , we may assume that the algebraic vector bundles Ri����X=S and ‚S are trivial,
e.g., Ri����X=S D ON

S
. Given v1; v2; : : : ; vl 2 H 0.‚S /, in the notation of (3.1) we have

.v1v2 : : : vl/! 2 H
0.S ;ONS / D H

0.S ;OS /
N
� C.S/N ;

since r is algebraic.
Now we shall pass to the generic point of S . Given V1; : : : ; VM 2 C.S/N of the

form ¹.v1v2 : : : vl/!º, let ƒ be the N �M matrix with j th column Vj . Evidently, solutions
A 2 C.S/M toƒA D 0 define elements of IC.S/

! , and all elements are obtained in this way for
someM and ¹Viº. Moreover, all elements of I! are obtained from solutions A 2 Mer.S/M to
.ƒjS /A D 0, and (by Gaussian elimination) the vector space of these solutions is defined over
C.S/ � Mer.S/. The proposition follows.

As in Section 2 let us again for simplicity restrict to the situation of a family of K3
surfaces over a polydisk S . We fix a non-zero section ! 2 H 0.KX=S /. For any u 2 H 0.‚S /

and all Picard–Fuchs operators P 2 Iru! , it is obvious that .Pu/! D 0 and hence

(3.2) .Pu/h; !i D 0

for all  2 H 2.X;C/ D H 0.S;R2��C/.
Let � and � be as in Section 2.1. Since Pu 2 I! “kills” all the periods h; !i for

 2 H 2.X;Q.2//, .Pu/h�; !i is independent of the choice of lifting � of cl2;1.�/. By (2.1),
we have

Puh�; !i D P
�
hru�; !i C h�;ru!i

�
D P h�;ru!i;

and thus part (i) of the following proposition.

Proposition 3.5. Let X=S , �, ! and u be given as above.

(i) For all P 2 Iru! , we have

(3.3) P
�
uh�; !i � h�;ru!i

�
D 0:

(ii) There exists a  2 H 2.X;C/ D H 0.S;R2��C/ such that

uh�; !i � h�;ru!i D h;ru!i:

For part (ii), we need to check that the solutions of Py D 0 for P 2 Iru! are generated
by h;ru!i for all r D 0. This is an elementary consequence of the following observation.

Lemma 3.6. Let E be a flat holomorphic vector bundle over the polydisk S with flat
connection r, and let I� be the Picard–Fuchs ideal associated to an � 2 H 0.E/. Then the
solution set .in O.S// of the system of differential equations ¹P.�/ D 0 j P 2 I�º is generated,
as a vector space over C, by ¹h; �i j  2 H 0.OS .E

_/r/º.

A short proof in the case where DS� D O.E/ is given in Remark 3.7 below.
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Proof. We need to establish the following algebraic result: For f1; f2; : : : ; fm; f 2 OS ,
If1 \ If2 \ : : :\ Ifm � If if and only if f D c1f1 C c2f2 C � � � C cmfm for some constants
c1; c2; : : : ; cm 2 C, where Ig D ¹P 2 DS j Pg D 0º for g 2 OS .

The “if” part is trivial. Suppose that If1\If2\: : :\Ifm � If . Without loss of generality,
we may assume that f1; f2; : : : ; fm are linearly independent over C.

Let n D dimS . For ˛ D .a1; a2; : : : ; an/ 2 Nn, we write

à˛

àz˛
D
àa1Ca2C���Can

àza11 àz
a2
2 : : : àzann

and then every P 2 DS can be written as

(3.4) P D
X
˛2Nn

p˛
à˛

àz˛
;

where p˛ 2 OS vanishes except for finitely many ˛ 2 Nn. Then we can identify

DS '

M
˛2Nn

OS

as OS -modules by sending P in (3.4) to .p˛/. For every g 2 OS , we have a homomorphism
'g W DS ! OS of OS -modules given by

'g.P / D
X
˛2Nn

p˛
à˛g
àz˛

for P given in (3.4). Clearly, Ig is the kernel of 'g , i.e., Ig D ker.'g/. Therefore,

If1 \ If2 \ : : : \ Ifm D ker.'f1;f2;:::;fm/;

where 'f1;f2;:::;fm is the map DS ! O˚mS given by

'f1;f2;:::;fm D .'f1 ; 'f2 ; : : : ; 'fm/:

Let F be the vector space spanned by f1; f2; : : : ; fm over C. We can choose f1; f2; : : : ; fm
to be a basis of F such that there exist ˛1; ˛2; : : : ; ˛m 2 Nn with the property that

à˛ifj
àz˛i

.0/ D

´
1 if i D j;

0 if i ¤ j

for all 1 � i; j � m. Then

(3.5) det
�
à˛ifj
àz˛i

�
m�m

2 O�S :

It follows that 'f1;f2;:::;fm is surjective. Combining this with the hypothesis that

If1 \ If2 \ : : : \ Ifm D ker.'f1;f2;:::;fm/ � If D ker.'f /;

we see that the map 'f W DS ! OS factors through 'f1;f2;:::;fm . Namely, there exists
� W O˚mS ! OS such that

(3.6) 'f D � ı 'f1;f2;:::;fm :

Brought to you by | University of Colorado - Boulder
Authenticated

Download Date | 1/3/17 10:06 PM



Chen, Doran, Kerr and Lewis, Normal functions 55

Suppose that � is given by

�.g1; g2; : : : ; gm/ D c1g1 C c2g2 C � � � C cmgm

for some c1; c2; : : : ; cm 2 OS . It then follows from (3.6) that

(3.7)
à˛f
àz˛
D c1
à˛f1
àz˛

C c2
à˛f2
àz˛

C � � � C cm
à˛fm
àz˛

for all ˛ 2 Nn. Differentiating both sides of (3.7), we obtain

(3.8)
�àc1
àzk

��à˛f1
àz˛

�
C

�àc2
àzk

��à˛f2
àz˛

�
C � � � C

�àcm
àzk

��à˛fm
àz˛

�
D 0

for all ˛ 2 Nn and 1 � k � n.
Combining (3.5) and (3.8), we conclude that

àci
àzk
D 0

for all i D 1; 2; : : : ; m and k D 1; 2; : : : ; n. That is, c1; c2; : : : ; cm are constants. Thus,
f D c1f1 C c2f2 C � � � C cmfm 2 F by (3.7). We are done.

Remark 3.7. Suppose given a left DS -module of the form E D DSg Š DS=Ig ,
and another DS -module F 3 f , with Igf D 0. Then the morphism DS ! F of DS -
modules sending 1S 7! f clearly factors through DS=Ig , producing h 2 HomDS

.E;F/ with
h.g/ D f . Taking F´ OS , E´ OS .E/ and g D �, we have

HomDS
.E;F/ D H 0.OS .E

_/r/;

so that h D  (and f D h; �i) as in the statement of Proposition 3.5.
However, this quick proof does not seem to easily extend to the more general setting (of

Lemma 3.6) where � does not generate O.E/ as a DS -module.

3.2. Non-triviality of Picard–Fuchs operators. Suppose that any Picard–Fuchs op-
erator in I! annihilates cl2;1.�/.!/. According to Lemma 3.6, h�; !i D h; !i for some
 2 H 2.X;C/. By (3.2) and (3.3), it follows that

(3.9) P h�;ru!i D 0

for all u 2 H 0.‚S / and P 2 Iru! and (again applying Lemma 3.6)

(3.10) h�;ru!i D h;ru!i

for some  2 H 2.X;C/. This is just (2.3), and the same proof as in Section 2.2 now shows that
cl2;1.�/ D 0 (hence ˆ2;1.�/ D 0), assuming X ! S is one of the families of Theorem 1.2.
Briefly, from the surjection H 1.X;‚X /˝H

2;0.X/! H
1;1
v .X/ and (3.10) we have

(3.11) � 2 H 0.F 1H2
v /
?
CH 2.X;C/:
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To arrive at a more general treatment, we consider infinitesimal and topological invariants
of normal functions. Let � W X! S be a smooth and proper morphism as in Section 1, with S

affine. Choose .r;m/ and impose Assumption 3.3. The short exact sequence

0! J
�
H 2r�m�1
f .X;Q.r//

�
! Ext1VMHS

�
Q.0/; R2r�m�1��Q.r/

�
ı
�! HomMHS

�
Q.0/;H 1.S ; R2r�m�1��Q.r//

�
! 0

induces injections

Ext1VMHS

�
Q.0/; R2r�m�1v ��Q.r/

�
,! HomMHS

�
Q.0/;H 1.S ; R2r�m�1v ��Q.r//

�
;

and
HomMHS

�
Q.0/;H 1.S ; R2r�m�1v ��Q.r//

�
,! r�J;

where

r�J ´
ker
®
r W H 0.S ; �1

S
˝ F r�1H2r�m�1

v /! H 0.S ; �2
S
˝ F r�2H2r�m�1

v /
¯

rH 0.S ; F rH2r�m�1
v /

:

Now let � 2 CHr.X=S ; m/ be a relative higher Chow cycle. Denoting by

N� 2 Ext1VMHS

�
Q.0/; R2r�m�1��Q.r/

�
the (higher) normal function associated to clr;m.�/, ı N� gives the topological invariant of N�.
Next, consider the sheaf

rJ ´
ker
®
r W �1

S
˝ F r�1H2r�m�1

v ! �2
S
˝ F r�2H2r�m�1

v

¯
r.F rH2r�m�1

v /
;

with corresponding �rJ ´ H 0.S ;rJ / and Griffiths infinitesimal invariant ıG N� 2 �rJ .
Moreover, the natural map r�J ! �rJ is an isomorphism. Indeed, by Assumption 3.3, this
follows from the short exact sequence

0! F rH2r�m�1
v

r
�!

�
�1S ˝ F

r�1H2r�m�1
v

�r
! rJ ! 0:

So if we have ıG N� D 0, then ı N� D 0 and N� lies in J.H 2r�m�1
f

.X;Q.r///, with trivial image
in Ext1VMHS.Q.0/; R

2m�r�1
v ��Q.r//, rendering clr;m.�/ (hence ˆr;m.�/) trivial.

Proof of Proposition 3.2. Impose the hypothesis of Theorem 1.4, and write

� 2 H 0.OS ˝R
2r�m�1��Q.r//

for a local lifting of clr;m.�/ over a polydisk.
Suppose that we have P h�; !i D 0 for all ! 2 H 0.S ; F d�rCmC1H2d�2rCmC1

v / and
P 2 I

C.S/
! . Then from the surjection of

H 1
alg.X;‚X /˝H

d�rCmC1�`;d�rC`
v .X/! Hd�rCm�`;d�rC`C1

v .X/;

in the case ` D 0, we deduce exactly as in (3.9)–(3.11) that

� 2
�
H 0.F d�rCmH2d�2rCmC1

v /
�?
CH 2d�2rCmC1.X;C/:

By iterating the same argument for ` D 1; : : : ; m � 1, we deduce that

� 2
�
H 0.F d�rC1H2d�2rCmC1

v /
�?
CH 2d�2rCmC1.X;C/;

which implies that the associated normal function has (everywhere locally) zero infinitesimal
invariant, and so ˆr;m.�/ � 0.
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4. Proof of Theorem 1.6

In this section we restrict to the case where X is a projective K3 surface. We recall the
real regulator

r3;1 W CH3.X �X; 1/! H 2;2.X �X;R.2//:

The image of r3;1 thus contains

r3;1.CH1.X/˝ CH2.X; 1//˝R D H 1;1.X;Q.1//˝H 1;1.X;R.1//

for X general and it also contains the class Œ�X � of the diagonal. So it is natural to look at the
reduced real regulator

r3;1 W CH3.X �X; 1/
r3;1
��! H 2;2.X �X;R/

projection
������! VX ;

where

VX D H
2;2.X �X;R/ \

�
H 1;1.X;Q.1//˝H 1;1.X;R.1//

�?
\
�
H 1;1.X;R.1//˝H 1;1.X;Q.1//

�?
\ Œ�X �

?:

It was proven in [6] that

(4.1) Im.r3;1/˝R ¤ 0:

Of course, this implies that the indecomposables CH3ind.X � X; 1/ ˝ Q are non-zero for a
general projective K3 surface X [6, Corollary 1.3].

Now let us look at the transcendental part of cl3;1:

ˆ3;1 W CH3.X �X; 1/!

®
F 3.H 2

v .X;C/˝H
2
v .X;C//

¯_
H4.X �X;Q.1//

;

where nowX is a very generalK3 andH 2
v .X;C/ is the transcendental cohomology. The proof

of Corollary 1.5 is a stepping stone to the proof of the stronger Theorem 1.6.

4.1. The transcendental regulator ˆ3;1. It is instructive to explain precisely how
Theorem 1.4 leads to Corollary 1.5, viz., to the non-triviality of ˆ3;1 for Y ´ X � X ,
where X is a very general projective K3 surface. In this case Y takes the role of X in the
proof of Theorem 1.2, with .d; r;m; `/ D .4; 3; 1; 1/, H 1

alg.Y;‚Y / will be identified with
H 1

alg.X;‚X / ' C19, and H 2d�2rCmC1
v .Y;Q/ D H 4

v .Y;Q/ will be replaced by

Œ�X �
?
\
®
H 2
v .X;Q/˝H

2
v .X;Q/

¯
;

where Œ�X � is the diagonal class. The pairing in Theorem 1.4 amounts to studying the proper-
ties of the pairing

H 1.‚X /˝H
3;1.X �X/! H 2;2.X �X/;

which amounts to a Gauss–Manin derivative calculation. So let X=S be a smooth projective
family of K3 surfaces over a polydisk S (arising from a universal family), Y D X �S X,
X D X0 be a very general fiber of X=S , Y D X � X and �X be the projection X ! S . Let
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r be the GM connection associated to X=S and let ˛ 2 H 1.‚X / be a tangent vector of S
at 0. For ! 2 H 0..�X/� ^

2 �X=S / and � 2 H 0.R1.�X/��X=S /, i.e., for ! 2 H 2;0.X/ and
� 2 H 1;1.X/ when restricted to X , we claim that

(4.2)
\
˛;!;�

�
.r˛.! ˝ �//

?
\ .r˛.�˝ !//

?
�
\ Œ�X �

?
D ¹0º

in H 2;2.Y / and hence the condition on the cup product pairing in Theorem 1.4 holds. Note
that

Œr˛.! ˝ �/� D Œr˛!�˝ �C ! ˝ Œr˛��;

where Œr˛.! ˝ �/�, Œr˛!� and Œr˛�� are the projections of r˛.! ˝ �/, r˛! and r˛� onto
H 2;2.Y /, H 1;1.X/ and H 0;2.X/, respectively. We know that

Œr˛!� D h˛; !i and Œr˛�� D h˛; �i

where h�; �i is the pairing

H 1.‚X /˝ .H
1;1.X/˚H 2;0.X//! H 0;2.X/˚H 1;1.X/:

We write h˛; !i D ı˛! and h˛; �i D ı˛�. Then (4.2) follows directly from the following
statement.

Proposition 4.1. For every complex K3 surface X ,

(4.3)
\
˛;!;�

�
.ı˛! ˝ �C ! ˝ ı˛�/

?
\ .ı˛�˝ ! C �˝ ı˛!/

?
�
\ Œ�X �

?
D ¹0º

in H 2;2.X �X;C/, where ˛ 2 H 1.‚X /, ! 2 H 2;0.X/ and � 2 H 1;1.X/.

Proof. Combining Proposition 2.2 with the fact that

(4.4) hı˛!; �i C h!; ı˛�i D 0;

we obtain
hŒ�X �; ı˛! ˝ �C ! ˝ ı˛�i D 0

and hence

Span¹ı˛! ˝ �C ! ˝ ı˛�º

D Œ�X �
?
\
�
H 1;1.X/˝H 1;1.X/˚H 2;0.X/˝H 0;2.X/

�
:

Similarly,

Span¹ı˛�˝ ! C �˝ ı˛!º

D Œ�X �
?
\
�
H 0;2.X/˝H 2;0.X/˚H 1;1.X/˝H 1;1.X/

�
and (4.3) follows easily.

Note thatH 2
f
.X;C/ D H 1;1.X;Q.1//˝C and �1.S/ acts onH 2

v .X;C/ irreducibly. It
is then not hard to see that

H 4
f .Y;C/ \H

2
v .X;C/˝H

2
v .X;C/ \ Œ�X �

?
D ¹0º

and hence
H 4
f .Y;C/ � V

?
X :

Since r3;1.�/ ¤ 0, this shows that ˆ3;1 is non-trivial.
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4.2. The truncated transcendental regulator ‰3;1. We now turn our attention to
the proof of Theorem 1.6. More explicitly, we fix a non-vanishing holomorphic two-form
! 2 H 2;0.X/ and look at

hcl3;1.�/; ! ˝ !i

modulo the periods
R
 ! ˝ ! for  2 H4.X � X;Q.1//. We claim ‰3;1 is non-trivial, or

equivalently, hcl3;1.�/; ! ˝ !i is not a period for some � 2 CH3.X � X; 1/. Here we go
slightly beyond the range of ` in Theorem 1.4, namely we allow ` D �1; 0. More specifically
we consider

(4.5)

´
H 1

alg.Y;‚Y /! Hom
�
H 4;0.Y /;H 3;1.Y /

�
;

H 1
alg.Y;‚Y /

˝2
! Hom

�
H 4;0.Y /;H 2;2.Y /

�
;

where again Y D X � X is a self product of a very general projective K3 surface X , and
H 1

alg.Y;‚Y / is identified with the first order deformation space of a universal family of projec-
tive K3’s. Of course if the former map in (4.5) were surjective, then the latter map could be
replaced by

H 1
alg.Y;‚Y /! Hom

�
H 3;1.Y /;H 2;2.Y /

�
:

Let us assume for the moment that both maps in (4.5) are surjective. Then by the same rea-
soning as in the previous section, one could argue that ‰3;1 is non-trivial. However by a
dimension count, it is clear that both maps in (4.5) are not surjective. We remedy this by pass-
ing to the symmetric product OY D Y=h�i, where h�i is the symmetric group of order 2 acting
on Y D X � X . In fact, instead of working directly on OY , we will work with the equivariant
cohomologiesH 4.Y;Q/� and CH3.Y; 1/� . That is, they consist of classes fixed under � . Note
thatH 4.Y;Q/� is still a Hodge structure. With the same setup forˆ3;1 and following the same
argument by differentiating, we consider the orthogonal complements

.r˛.! ˝ !//
? and .rˇr˛.! ˝ !//

?;

following the situation in (4.5). In particular, we are interested in the subspace\
˛;ˇ

�
ı˛ıˇ! ˝ ! C ı˛! ˝ ıˇ! C ıˇ! ˝ ı˛! C ! ˝ ı˛ıˇ!

�?
\

\
˛

.ı˛! ˝ ! C ! ˝ ı˛!/
?
\ .! ˝ !/? \ Œ�X �

?

when restricted to Y . Note that

(4.6) hı˛!; ıˇ!i C h!; ı˛ıˇ!i D hı˛!; ıˇ!i C h!; ıˇ ı˛!i D 0

by (4.4) and hence

(4.7) ı˛ıˇ! ˝ ! C ı˛! ˝ ıˇ! C ıˇ! ˝ ı˛! C ! ˝ ı˛ıˇ! 2 Œ�X �
?

for all ˛; ˇ 2 H 1.‚X /. Similarly,

(4.8) ı˛! ˝ ! C ! ˝ ı˛! 2 Œ�X �
?
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60 Chen, Doran, Kerr and Lewis, Normal functions

for all ˛ 2 H 1.‚X /. Although we do not need it, (4.6) also implies that ı˛ıˇ D ıˇ ı˛ and
hence the map

(4.9) H 1.‚X /˝H
1.‚X /! hom.H 2;0.X/;H 0;2.X//

induced by H 1.‚X / ˝ H 1.‚X / ˝ H 2;0.X/ ! H 0;2.X/ is a symmetric non-degenerate
pairing. Obviously,

Span
®
ı˛ıˇ! ˝ ! C ı˛! ˝ ıˇ! C ıˇ! ˝ ı˛! C ! ˝ ı˛ıˇ!

¯
D Œ�X �

?
\H 2;2.Y /�

and
Span

®
ı˛! ˝ ! C ! ˝ ı˛!

¯
D Œ�X �

?
\H 3;1.Y /�

by (4.7), (4.8) and the non-degeneracy of (4.9). Therefore,\
˛;ˇ

�
ı˛ıˇ! ˝ ! C ı˛! ˝ ıˇ! C ıˇ! ˝ ı˛! C ! ˝ ı˛ıˇ!

�?
\

\
˛

.ı˛! ˝ ! C ! ˝ ı˛!/
?
\ .! ˝ !/? \ Œ�X �

?
\H 4.Y;C/� D ¹0º:

Thus, in order to prove Theorem 1.6, we just have to find � such that r3;1.�/ ¤ 0 and
cl3;1.�/ 2 H 4.Y;C/� . The obvious way to do this is to find an equivariant higher Chow
class � 2 CH3.Y; 1/� with r3;1.�/ ¤ 0. Namely, we need a slightly stronger statement than
(4.1). That is,

Theorem 4.2. There exists � 2 CH3.X � X; 1/� such that r3;1.�/ ¤ 0 for a general
projective K3 surface X .

Proof. This is a consequence of the explicit construction of the cycle in [6].

5. Intermezzo: Lattice polarized K3 surfaces, hypersurface normal forms,
and modular parametrization

At this point it is natural to ask how one might construct explicit families of K3 sur-
faces satisfying the conditions of Theorem 1.2, with enough “internal structure” to make it
possible to construct explicit cycles with non-zero ˆ2;1. In light of Section 3, it would also
be highly desirable to have a means of explicitly constructing the Picard–Fuchs operators for
these families.

Families of the sort required by Theorem 1.2 with a fixed generic Néron–Severi lattice are
known as lattice polarizedK3 surfaces [14], and defined with specific reference to a polarizing
lattice as follows. LetX be an algebraicK3 surface over the field of complex numbers. IfM is
an even lattice of signature .1; `� 1/ (with ` > 0), then an M -polarization on X is a primitive
lattice embedding

i WM ,! NS.X/

such that the image i.M/ contains a pseudo-ample class. There is also a coarse moduli space
MM for equivalence classes of pairs .M; i/, which satisfies a version of the global Torelli
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Chen, Doran, Kerr and Lewis, Normal functions 61

theorem. Moreover, surjectivity of the period map holds for families which are maximal in the
sense of Theorem 1.2.

An elliptic K3 surface with section consists of a triple .X; �; S/ of a K3 surface X , an
elliptic fibration � W X ! P1, and a smooth rational curve S � X forming a section of �.
This “internal structure” of an elliptic fibration with section on aK3 surface X is equivalent to
a lattice polarization of X by the even rank two hyperbolic lattice

H ´

 
0 1

1 0

!
(see [8, Theorem 2.3] for details). The moduli space MH of H -polarized K3 surfaces has
complex dimension 18, and the generic elliptic K3 surface with section has 24 singular fibers
of Kodaira type I1. Instead of working with a very general member of this family, which
will have Picard rank ` D 2, one can enhance the lattice polarization by considering a higher
rank lattice M , with H as a sublattice. For each distinct embedding of H into M , up to
automorphisms of the ambient lattice M , we find an elliptic surface structure with section on
all M -polarized K3 surfaces. There is a decomposition of the Néron–Severi lattice

NS.X/ D H ˚WX ;

where WX is the negative definite sublattice of NS.X/ generated by classes associated to alge-
braic cycles orthogonal to both the elliptic fiber and the section. The sublattice

W root
X ´

®
r 2 WX j hr; ri D �2

¯
is called the ADE type of the elliptic fibration with section, as it decomposes naturally into
the sum of ADE type sublattices spanned by c1 of the irreducible (rational) components of the
singular fibers of the elliptic fibration (see [8, Section 6]).

For the explicit computations in Sections 6 and 7 we will make essential use of one
particular elliptic fibration with section on a family of K3 surfaces polarized by the lattice
H˚E8˚E8. It is not, in fact, the “standard” fibration, which corresponds toWX D E8˚E8,
but the “alternate fibration” for which WX D DC16 (the other even negative definite rank 16
lattice). Up to ambient lattice automorphisms, these are the only two distinct embeddings of
the lattice H into H ˚ E8 ˚ E8. As a result, we know that these are the only two elliptic
fibrations with section on a very general member of this family of K3 surfaces [7].

5.1. Normal forms and elliptic fibrations. The natural setting for Theorem 1.2 is fam-
ilies of lattice-polarizedK3 surfaces which cover their corresponding coarse moduli spaces. In
order to effectively compute, we first need to construct such maximal families of K3 surfaces.

The most classical construction of K3 surfaces is as smooth quartic (anticanonical) hy-
persurfaces in P3. A very general member of this family will have a 4-polarization and Picard
rank ` D 1. It is possible, however, to construct subfamilies of smooth quartics with natural
polarization by lattices of much higher rank. For example, consider the “Fermat quartic pencil”

(5.1) Xt ´
®
x4 C y4 C z4 C w4 C t � xyzw D 0

¯
� P3:

For generic t 2 P1, the group G ´ .Z=4Z/2 acts on Xt by

x 7! � � x; y 7! � � y; z 7! ��1��1 � z;

where � and � are fourth roots of unity.
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62 Chen, Doran, Kerr and Lewis, Normal functions

The induced action of this group on the cohomology of Xt fixes the holomorphic two-
form !t (i.e., it acts symplectically). Nikulin’s classification of symplectic actions on K3
surfaces then implies that there is a rank 18 negative definite sublattice in the Néron–Severi
group of Xt , which together with the (fixed) 4-polarization class means that the Picard rank
of Xt is at least 19. As the family is not isotrivial, the Picard rank is not generically equal to
20, and we conclude that the family Xt , t 2 P1 satisfies the conditions of Theorem 1.2 with
` D 19. (See [28] for a general set of tools to bound the Picard rank of pencils of hypersurfaces
with a high degree of symmetry.) This is an example of a normal form for the corresponding
class of lattice polarized K3 surfaces, in this case providing a natural generalization of the
Hesse pencil normal form for cubic curves in P2.

There is another family Yt of K3 surfaces with ` D 19 easily derivable from the Xt
in (5.1) by quotienting each Xt by the group G and simultaneously resolving the resulting
singularities in the family. The family Yt , known as the “quartic mirror family,” has rank 19
lattice polarization by the lattice M2´ H ˚E8 ˚E8 ˚ h�4i.

Another way to construct families of 4-polarized K3 surfaces with an enhanced lattice
polarization is to consider singular quartic hypersurfaces in P3. By introducing ordinary dou-
ble point singularities of ADE type, it is a simple matter to engineer (upon minimal resolution)
K3 surfaces with large negative definite sublattices of ADE type in their Néron–Severi groups.
One feature that both the smooth and singular quartic hypersurface constructions enjoy is that
for each line lying on the surface there is a corresponding elliptic fibration structure, defined
by taking the pencil of planes passing through the line and considering the excess intersection
of each (a pencil of cubic curves). In this way, suitably nice quartic normal forms readily ad-
mit the structure of elliptic fibrations with section corresponding to various embeddings of the
hyperbolic lattice H into their polarizing lattices.

Let us illustrate this with the key example for the constructions in Sections 6 and 7, the
singular quartic normal form for K3 surfaces polarized by the lattice

M ´ H ˚E8 ˚E8

(see [7]). Let .X; i/ be an M -polarized K3 surface. Then there exists a triple .a; b; d/ 2 C3,
with d ¤ 0 such that .X; i/ is isomorphic to the minimal resolution of the quartic surface

QM .a; b; d/ W y
2zw � 4x3z C 3axzw2 C bzw3 �

1

2
.dz2w2 C w4/ D 0:

Two such quartics QM .a1; b1; d1/ and QM .a2; b2; d2/ determine via minimal resolution iso-
morphic M -polarized K3 surfaces if and only if

.a2; b2; d2/ D .�
2a1; �

3b1; �
6d1/

for some � 2 C�. Thus the coarse moduli space for M -polarized K3 surfaces is the open
variety

MM D
®
Œa; b; d � 2W P .2; 3; 6/ j d ¤ 0

¯
with fundamental invariants

a3

d
and

b2

d
:

On the singular quartic hypersurface QM .a; b; d/ � P3 there are two distinct lines

¹x D w D 0º and ¹z D w D 0º;
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and the points
P1´ Œ0; 1; 0; 0� and P2´ Œ0; 0; 1; 0�

are rational double point singularities on QM .a; b; d/ of ADE types A11 and E6, respec-
tively. The standard fibration is induced by the projection to Œz; w�, and the alternate fibration
is induced by the projection to Œx; w�. Moreover, among the exceptional rational curves in
the resolution of P1 are sections of both elliptic fibrations on X.a; b; d/; among the excep-
tional rational curves in the resolution of P2 is a second section of the alternate fibration on
X.a; b; d/.

It is useful to note that both the quartic mirror normal form Yt for M2-polarized K3
surfaces and the M -polarized normal form X.a; b; d/ admit natural reinterpretations as the
generic anticanonical hypersurfaces in certain toric Fano varieties [11,15,16]. In both cases we
build the toric Fano variety from the normal fan of a reflexive polytope. For the M2-polarized
case, the polytope is the convex hull of®

.1; 0; 0/; .0; 1; 0/; .0; 0; 1/; .�1;�1;�1/
¯
� R3;

polar to the Newton polytope for P3. For theM -polarized case, the polytope is the convex hull
of ®

.1; 0; 0/; .0; 1; 0/; .0; 0; 1/; .�1;�4;�6/
¯
;

polar to the Newton polytope for W P .1; 1; 4; 6/. What is more, the two elliptic fibrations with
section on a very general X.a; b; d/ are themselves induced by ambient toric fibrations on the
toric variety in which it sits as a hypersurface. Combinatorially, these correspond to reflexive
“slices” of the corresponding polytope, i.e., planes in R3 which slice the reflexive polytope in
a reflexive polygon.

5.2. Picard–Fuchs equations and modular parametrization. There is a reverse nest-
ing of moduli spaces corresponding to embeddings of the polarizing lattices. In the context of
the families Yt and X.a; b; d/ above, the usual embedding

H ˚E8 ˚E8 ,! H ˚E8 ˚E8 ˚ h�4i

corresponds to an algebraic parametrization

a.t/ D .t C 16/.t C 256/; b.t/ D .t � 512/.t � 8/.t C 64/; d.t/ D 212 36 t3

of a genus zero modular curve. To see the connection with classical modular curves, and
indeed the Hodge-theoretic evidence for the underlying geometry, it is instructive to consider
the Picard–Fuchs systems annihilating periods on the K3 surfaces involved.

Let f .t/ denote a period of the holomorphic two-form on X.a; b; d/. The Griffiths–
Dwork method for producing Picard–Fuchs systems yields (in an affine chart, where we have
set a D 1) � à2

àb2
� 4d
à2

àd2
� 4
à
àd

�
f .b; d/ D 0

and �
.�1C b2 C d/

à2

àb2
C 2b
à
àb
C 4bd

à2

àbàd
C 2d
à
àd
C

5

36

�
f .b; d/ D 0
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64 Chen, Doran, Kerr and Lewis, Normal functions

(see [11]). By reparametrizing in terms of variables j1 and j2,

b2 D
.j1 � 1/.j2 � 1/

j1j2
; d D

1

j1j2
;

we find that the Picard–Fuchs system completely decouples as

72j1

�
2.j1 � 1/j1

à2

àj 21
C .2j1 � 1/

à
àj1

�
f .j1; j2/ � 5f .j1; j2/ D 0

and

72j2

�
2.j2 � 1/j2

à2

àj 22
C .2j2 � 1/

à
àj2

�
f .j1; j2/ � 5f .j1; j2/ D 0:

This implies that the periods of the M -polarized K3 surfaces split naturally as products

f .j1; j2/ D f1.j1/ � f2.j2/:

At this point it is natural to ask whether the second order ordinary differential equation
satisfied by f .j / is itself a Picard–Fuchs equation for a family of elliptic curves. One can
check for a family of elliptic curves over P1t in Weierstrass normal form

¹Etº ´
®
y2z � 4x3 C g2.t/xz

2
C g3.t/z

3
D 0

¯
� P2

that the periods of a suitably normalized holomorphic one-form on Et ,

g2.t/
1
4
dx

y
;

satisfy Picard–Fuchs equations of the form of the second order equations above. Thus, by the
Hodge conjecture, we expect there to be an algebraic correspondence between M -polarized
K3 surfaces and abelian surfaces (with principal polarization) which split as a product of a
pair of elliptic curves. This correspondence was made explicit in [7]; we recall the necessary
features for our higher K-theory computations in Section 6 below.

What then is the meaning of the special subfamily Yt in terms of these split abelian
surfaces? When specialized to the subfamily Yt D X.a.t/; b.t/; c.t//, the Griffiths–Dwork
method produces the following Picard–Fuchs differential equation

f .iii/.t/C
3.3t C 128/

2t.t C 64/
f 00.t/C

13t C 256

4t2.t C 64/
f 0.t/C

1

8t2.t C 64/
f .t/ D 0:

On a general parametrized disk in the moduli space MM , the Picard–Fuchs ODE will have
rank 4, just as the full Picard–Fuchs system. The drop in rank indicates a special relationship
between the two elliptic curves E�1 and E�2 corresponding to Yt . A differential algebraic
characterization of the curves in MM on which the Picard–Fuchs ODE drops in rank was
given in [11, Theorem 3.4]. In fact, in the M2-polarized case, the relationship is simply the
existence of a two-isogeny between the two elliptic curves, i.e., �2 D 2 � �1. More generally,
the Mn-polarized case corresponds to a cyclic n-isogeny, i.e., �2 D n � �1.

Given that M -polarized K3 surfaces correspond to abelian surfaces which are the prod-
ucts of a pair of elliptic curves, the natural modular parameters on the (rational) coarse moduli
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space MM are the elementary symmetric polynomials in the two j -invariants j1 D j.�1/ and
j2 D j.�2/,

� ´ j1 C j2 and � ´ j1 � j2:

In this notation, it is easy to identify explicit rational curves in MM over which the Picard–
Fuchs differential equation has maximal rank (D 4). One such locus, which arises in the
context of the construction of K3 surface fibered Calabi–Yau threefolds realizing hypergeo-
metric variations, is specified by simply setting � D 1; see [26]. The Picard–Fuchs ODE has
fourth order and takes the following form:

f .iv/.s/C
2.4s2 � 3s � 2/

s.s � 1/.s C 1/
f .iii/.s/C

1031s3 � 553s2 � 1175s � 167

72s2.s � 1/.s C 1/2
f 00.s/

C
167s2 � 239s � 118

36s2.s � 1/.s C 1/2
f 0.s/C

385.s � 1/2

20736s4.s C 1/2
f .s/ D 0

which splits as a tensor product of two very closely related factor second order ODEs

f 001 .s/C
3s C 1

2s.s C 1/
f 01.s/C

5

144s.s C 1/
f1.s/ D 0

and
f 002 .s/C

3s C 1

2s.s C 1/
f 02.s/C

5

144s2.s C 1/
f2.s/ D 0

corresponding to the two families of elliptic curves satisfying j1.s/ C j2.s/ D 1. Examples
such as this provide a source of families of explicit non-maximal families of K3 surfaces to
explore.

Instead of looking at superlattices of H ˚ E8 ˚ E8 such as Mn, one can consider sub-
lattices such as N ´ H ˚ E7 ˚ E8 and S ´ H ˚ E7 ˚ E7; see [9, 10]. Moduli spaces of
K3 surfaces polarized by these sublattices are themselves parametrized by modular functions
(and contain MM as a natural sublocus). For example, there is a normal form for N -polarized
K3 surfaces extending the singular quartic normal form forM -polarizedK3 surfaces with one
additional monomial deformation

QN .a; b; c; d/ W y
2zw � 4x3z C 3axzw2 C bzw3 C cxz2w �

1

2
.dz2w2 C w4/ D 0:

The associated coarse moduli space MN is again an open subvariety of a weighted projective
space

MN D
®
Œa; b; c; d � 2W P .2; 3; 5; 6/ j c ¤ 0 or d ¤ 0

¯
with modular parametrization

Œa; b; c; d � D ŒE4;E6; 2
1235C10; 2

1236C12�;

where E4 and E6 are genus-two Eisenstein series of weights 4 and 6, and C10 and C12 are
Igusa’s cusp forms of weights 10 and 12; see [10, Theorem 1.5].

The connection to genus two curve moduli here is suggestive of the fundamental geo-
metric fact that N -polarized K3 surfaces are Shioda–Inose surfaces coming from principally-
polarized abelian surfaces. The hypersurface normal form once again has two natural elliptic
fibration structures with section, just as in the M -polarized case, and the Nikulin involution
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which gives rise to the Shioda–Inose structure can be seen most naturally as the operation of
“translation by 2-torsion” in the alternate elliptic fibration [9]. There is a further extension to
a normal form for S -polarized K3 surfaces. In this case, most of the related geometric struc-
tures are still present, and we find a still more general modular parametrization of MS . For all
these families of lattice-polarized K3 surfaces in normal form, Picard–Fuchs equations can be
obtained via the Griffiths–Dwork method applied directly to the singular quartic equations or
in their realization as anticanonical hypersurfaces in Gorenstein toric Fano threefolds.

The explicit computations which follow in Sections 6 and 7 offer a glimpse of the range
of phenomena surrounding Theorem 1.2 which become accessible when we work with modu-
lar parametrizations of hypersurface normal forms for lattice polarized K3 surfaces equipped
with well-chosen elliptic fibrations. Both generalization to related higher-dimensional moduli
spaces and manipulation of the associated explicit Picard–Fuchs systems now become possible.

6. Explicit K1-class on a family of Shioda–Inose K3 surfaces

We will now turn to a direct computation on the modular 2-parameter family Xa;b of
M ´ H ˚ E8 ˚ E8-polarized (Picard-rank 18) K3’s introduced by Clingher and Doran [7].
Here Xa;b (a; b 2 C) is the minimal desingularization of°

Y 2Z � P.�/W 2Z �
1

2
Z2W �

1

2
W 3
D 0

±
� P2ŒY WZWW � � P1� ;

where P.�/´ 4�3 � 3a� � b. Consider the real regulator map

(6.1) r2;1 W CH2.Xa;b; 1/! HomR.H
1;1
v .Xa;b;R/;R/:

The results of [5] already tell us that generically spanR¹image.r2;1/º equals the right-hand side
of (6.1), makingˆ2;1 non-zero for very general .a; b/. (We note that for those Xa;b with Picard
rank 18, H 1;1

v D H
1;1
tr .) The proof is based on non-explicit deformations of decomposable

classes on Picard-rank 20 K3’s.
What we felt was missing here and in the literature are concrete indecomposable cycles

on which r2;1 and ˆ2;1 are non-zero, particularly those which arise naturally in the context
of an internal elliptic fibration. In our example, the projection Xa;b ! P1

�
produces the so-

called alternate fibration with six fibers of Kodaira type I1 and one fiber of type I�12. If D
is an I1 fiber, with P1z Š QD � D its normalization (attaching z D 0 and z D 1), then
.D; z/ (or .D; z�1/) generates CH2D.Xa;b; 1/ Š Z, and we may consider its image under
CH2D.Xa;b; 1/! CH2.Xa;b; 1/. Clearly then, the I1 fibers provide the most natural source of
classes in CH2.Xa;b; 1/ provided one can show their real regulators are non-zero.

This turns out to require some serious and interesting work, by first passing to a Kummer
K3 family K˛;ˇ which is the minimal resolution of both the quotient of Xa;b by the Nikulin
involution and the quotient of a product of elliptic curves E˛ � Eˇ by .�id;�id/. This “in-
termediate” setting seems to be the one place where both the normalization of the rational
curves supporting the family of K1-classes (namely, a Néron 2-gon) and the closed .1; 1/-
form, against which we integrate its regulator current to compute r2;1, are tractable. In fact, the
form has some singularities, even after pulling back the rational curves, and so the computation
requires careful additional justification.
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Figure 1. A.1;1/ stands for ¹W D 0;XY D Z2º.

6.1. Kummer K3 geometry. We begin with a review of special features of the Kum-
mer family from [7], which has two parameters ˛; ˇ 2 P1n¹0; 1;1º:

LK0˛;ˇ ´
®
Z2XY D .X �W /.X � ˛W /.Y �W /.Y � ˇW /

¯
� P3

is the singular model, with affine equation

z2xy D .x � 1/.x � ˛/.y � 1/.y � ˇ/ .x D X
W
; y D Y

W
; z D Z

W
/

and K˛;ˇ shall denote its minimal desingularization. Recall that a Kummer is usually con-
structed by taking a pair of elliptic curves, in this case®

u2 D x.x � 1/.x � ˛/
¯
DW E˛ jj |˛ W .x; u/ 7! .x;�u/;®

v2 D y.y � 1/.y � ˇ/
¯
DW Eˇ kk |ˇ W .y; v/ 7! .y;�v/;

then taking the quotient LK˛;ˇ of E˛ �Eˇ by the automorphism |˛ � |ˇ . This is singular at the
image of the 16 products of 2-torsion points – ordinary double points whose resolution yields
16 exceptional P1’s , and produces K˛;ˇ .

Figure 1 shows a diagram of rational curves on K˛;ˇ . The exceptional divisors are rep-
resented by arcs; while the proper transforms of the quotients of E˛ � ¹2-torsion pointº resp.
¹2-torsion pointº �Eˇ are represented by horizontal resp. vertical lines. The projective model
LK0
˛;ˇ

is the blow-down of K˛;ˇ along the 13 rational curves depicted more faintly. Notice that
the configuration shown in Figure 2 has Dynkin diagram D10, hence Kodaira type I�6 .

We now describe an elliptic fibration of K˛;ˇ which shall have:

� this I�6 as its singular fiber at1;

� the lines y D 1, y D ˇ, x D 1, x D ˛ as sections;

� the lines marked A.1; 0/, A.˛; 0/, A.0; 1/, A.0; ˇ/ as bi-sections;
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68 Chen, Doran, Kerr and Lewis, Normal functions

Figure 2. Sub-configuration of Figure 1.

� the line marked B.1;1/ as a 4-section; and

� six I2 singular fibers, four of which have one of the lines marked A.1; ˇ/, A.˛; ˇ/, A.1; 1/, or
A.˛; 1/ as one component.

Write

R.X; Y;W /´ �
X2

˛
�
Y 2

ˇ
C
˛ C 1

˛
XW C

ˇ C 1

ˇ
YW �W 2:

Then the fibration, which is really nothing but the pencil jI�6 j, is given on the (singular) pro-
jective model by

LK0˛;ˇ ! P1; ŒX W Y W Z W W � 7! ŒR.X; Y;W / W XY � DW Œ� W 1�:

In either case, the smooth elliptic fibers E� (resp. LE 0�) are double covers of the smooth conic
curves

C�´
®
R.X; Y;W / D �XY

¯
� P2;

branched over

.x; y/ D
�
1; .1 � �/ˇ C 1

�
;
�
˛; .1 � �˛/ˇ C 1

�
;
�
.1 � �/˛ C 1; 1

�
;
�
.1 � �ˇ/˛ C 1; ˇ

�
:

By [7], E� is singular if and only if one of the following holds:

� � D1: then E1 D I
�
6 ;

� � 2 ¹1; 1
˛
; 1
ˇ
; 1
˛ˇ
º: then two of the branch points collide, making LE 0� into an I1. The fiber

E� is then the (Kodaira type I2) union of its proper transform . LE 01/
� with the exceptional

divisor over the collision point – for example, for � D 1, E1 D . LE
0
1/
� [A.1; 1/; or

� � 2 ¹˛ˇC1
˛ˇ

; ˛Cˇ
˛ˇ
º: then the rational curve C� acquires a node, so E� has two nodes

(again of type I2).

This is all in case J.E˛/ ¤ J.Eˇ /, i.e., ˇ … ¹˛; 1
˛
; 1 � ˛; 1

1�˛
; ˛
˛�1

; ˛�1
˛
º. Below we will

eventually specialize to the case ˇ D ˛, for which generically E1 is still an I2 but E1=˛D1=ˇ
becomes an I4.
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Chen, Doran, Kerr and Lewis, Normal functions 69

6.2. Normalization of . LE 0
1
/�. We will build our higher Chow cycle on E1. One can

see right away that the cycle must have order-two monodromies about the components of
.P1 � ¹0; 1;1º/ [ .¹0; 1;1º � P1/, since the tangent vectors of the I1 fiber LE 01 at its sin-
gular point .x; y; z/ D .1; 1; 0/ are�

1;�
ˇ

˛
;˙

r
ˇ

˛
.1 � ˛/.1 � ˇ/

�
:

Notice that with ˛ D ˇ, the branches of the square root become single-valued hence the
monodromy will disappear; this will have consequences later.

In order to compute, we need to parametrize LE 01 by a P1. The first step is to do this for
C1 using stereographic projection. Putting x D � C 1, y D �� C 1 in its equation

0 D �
x2

˛
�
y2

ˇ
C
˛ C 1

˛
x C

ˇ C 1

ˇ
y � 1 � xy(6.2)

D � � � D �

� 1
˛
C
�2

ˇ
C �

�
�2 �

� 1
˛
C
�

ˇ

�
�

and solving for � , yields

�
x.�/; y.�/

�
D

�˛�2 C ˛.ˇ � 1/�
�.�/

;
ˇ.˛ � 1/� C ˇ

�.�/

�
;

where �.�/´ ˛�2 C ˛ˇ� C ˇ.
The second step is to pull the affine equation of LK0

˛;ˇ
back along � 7! .x.�/; y.�// and

again use an analogue of stereographic projection:

z2 D
.x � 1/.x � ˛/.y � 1/.y � ˇ/

xy
D � � � D

.˛� C ˇ/2.� C ˇ/.˛� C 1/

.�.�//2
:

So the equation of the I1 fiber LE 01 is

(6.3) .�.�//2z2 D .� C ˇ/.1C ˛�/.ˇ C ˛�/2;

which regarded as a curve in P1
�
� P1z has bidegree .4; 2/ and three nodes (hence of course

genus 0). A curve of bidegree .2; 1/ must meet LE 01 in eight points with multiplicity; so taking
it to pass through the nodes

�
�
ˇ

2
C

s
ˇ2

4
�
ˇ

˛
;1

�
;

�
�
ˇ

2
�

s
ˇ2

4
�
ˇ

˛
;1

�
;

�
�
ˇ

˛
; 0
�

and the smooth point .�ˇ; 0/, it must pass through one more point of LE 01. Explicitly, these
curves are of the form

(6.4) �.�/z D .˛� C ˇ/.� C ˇ/;

where  2 C is a constant. To find the �-coordinate of the residual point we square the right-
hand side of (6.4) and set equal to the right-hand side of (6.3), which yields

(6.5) �./ D
1 � ˇ2

2 � ˛
:
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70 Chen, Doran, Kerr and Lewis, Normal functions

2 � .x; y/

0 �1=˛ .˛.1 � ˇ/C 1; ˇ/

1 �ˇ .˛; ˇ.1 � ˛/C 1/

ı �ˇ=˛ .1; 1/

1=ˇ 0 .0; 1/

˛ 1 .1; 0/

�˛ˇ C ˛ C 1 1 � ˇ .0; ˇ/
1

1Cˇ�˛ˇ
1
1�˛

.˛; 0/

roots of �.�.2// roots of �.�/ .1;1/

Table 1

Thinking of P1 as . LE 01/
� and P1

�
as C1, (6.5) gives the branched double cover

. LE 01/
� � LE 01 � C1;

where the first map just identifies a pair of points – namely, those with 2 D ı´ ˛ˇ�˛
ˇ�˛ˇ

.
Table 1 illustrates the relationship between functions on LE 01. The rows starting with 0 and
1 correspond to the branch points of LE 01 ! C1.

The third and last step is to find a coordinate z on . LE 01/
� (Š P1) which is 0 and1 (rather

than ˙
p
ı) at the two points mapping to the node of LE 01, and ˙1 at the two branch points of

. LE 01/
� ! C1. This is given by

z D
 C
p
ı

 �
p
ı
 !  D

p
ı

zC 1

z � 1
:

Our higher Chow cycle in CH2.K˛;ˇ ; 1/ will then simply be

Z˛;ˇ ´
�
. LE 01/

�; z
�
C
�A.1; 1/; g�;

where g has zero and pole cancelling with those of z. (Note that while z is the “preferred”
coordinate on the P1, we will work mainly in  below since this simplifies computations.) We
remark that Z˛;ˇ is defined as long as ˛; ˇ … ¹0; 1;1º and 1 … ¹ 1

˛
; 1
ˇ
; 1
˛ˇ
; ˛ˇC1
˛ˇ

; ˛Cˇ
˛ˇ
º, but

not quite well-defined: there is the issue of sign in z˙1 (or equivalently, ˙
p
ı) which leads to

the predicted order-2 monodromies.

6.3. The .1; 1/-current. On E˛ �Eˇ there is the closed, real-analytic .1; 1/-form

(6.6) ! D
dx

u
^

�
dy

v

�
D

dxp
x.x � 1/.x � ˛/

^

�
dyp

y.y � 1/.y � ˇ/

�
;

and ! C N!, i.! � N!/ obviously span H 1;1
tr;R. Clearly ! is invariant under |˛ � |ˇ , hence is the

pullback of a .1; 1/-current on LK˛;ˇ , whose pullback2) !K to K˛;ˇ has integrable singularities

2) Technically these observations should be expressed in terms of push-forwards, but the computations are
better done as formal pullbacks.
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along the exceptional divisors: if locally the equation of one looks like w D 0, then there
is a term of the form .dw ^ d Nw/=jwj. Now we could argue that this current !K is closed
and represents a class in H 1;1

tr .K˛;ˇ ;C/; but this approach runs into trouble because A.1; 1/,
where part of the cycle is supported, is an exceptional divisor. (The current’s singularity along
this divisor makes the pairing “improper”, even though it “formally pulls back” to zero there.)
Therefore, we will simply carry out an ad hoc pairing between3) r2;1.Z˛;ˇ / and !K on . LE 01/

�,
then interpret it on E˛ �Eˇ where ! is smooth.

So taking {1 to denote the inclusion . LE 01/
� ,! K˛;ˇ , we must compute {�1!K. This is

done by “formally” pulling back the above form (6.6) under � 7! .x.�/; y.�//: after some
calculation, we obtain

�.˛�2 C 2ˇ� C ˇ.ˇ � 1//.˛.˛ � 1/�2 C 2˛� C ˇ/ d� ^ d N�

j�.�/j j�j j˛� C ˇj j� C .ˇ � 1/j j.˛ � 1/� C 1j

q
.� C ˇ/.˛� C 1/

;

a sort of multivalued form on C1. Pulling this back (again “formally”) to . LE 01/
� Š P1 via

 7! �./ then yields (with apologies to the reader)

{�1!K D
�4j˛ˇ � 1j

jˇj j1 � ˛j
�

®
.˛ˇ2 � ˇ2 � ˇ/4 C 2ˇ2 C .˛2ˇ2 � ˛2ˇ C ˛ � 2˛ˇ/

¯
d

j2 � ˛j j1 � ˇ2j j2 � ıj j2 � .1C ˛ � ˛ˇ/j

(6.7)

^

®
.˛2ˇ2 � ˛ˇ2 C ˇ � 2˛ˇ/4 C 2˛2 C .˛2ˇ � ˛2 � ˛/

¯
d N

j.1C ˇ � ˛ˇ/2 � 1j jˇ4 C .˛2ˇ2 � 3˛ˇ/2 C ˛j
:

While complicated, the 14 poles of this .1; 1/-current are all of the integrable form mentioned
above, and their locations are precisely the points where LE 01 hits the exceptional divisors: A.1; 1/,
A.1; 0/, A.˛; 0/, A.0; 1/, A.0; ˇ/ twice each; B.1;1/ four times.

Along the locus ˛ D ˇ, this form simplifies a little:

{�1!K D �4j˛ C 1j �

®
.˛2 � ˛ � 1/4 C 22 C .˛3 � ˛2 � 2˛ C 1/

¯
d

j2 � ˛j j1 � ˛2j j2 C 1j j2 � .1C ˛ � ˛2/j
(6.8)

^

®
.˛3 � ˛2 � 2˛ C 1/4 C 22 C .˛2 � ˛ � 1/

¯
d N

j.1C ˛ � ˛2/2 � 1j j4 C .˛3 � 3˛/2 C 1j
:

6.4. The pairing. The next step is simply to integrate log jzj against {�1!K on . LE 01/
�. As

log jzj D logj. C
p
ı/=. �

p
ı/j, this integral will have a multivalued behavior as indicated

above. It is singular but absolutely convergent: the worst behavior is at  D ˙
p
ı where it

locally takes the form Z
D�

log jzj
jzj

dz ^ d Nz;

which is equivalent to
R �
0 .log r/dr .

3) Pairing the regulator with !K C !K and i.!K � !K/ to get two real numbers is equivalent to pairing it
with !K to get a single complex number.
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72 Chen, Doran, Kerr and Lewis, Normal functions

But setting ˛ D ˇ (which makes ı D �1) kills this monodromy, allowing for a well-
defined choice of Z˛;˛ 2 CH2.Xa;b; 1/ over P1n¹0; 1;1;�1; 2º (see the end of Section 6.2).
On a smooth compactification of the total space X

�
! P1˛ , the “total cycle” is easily seen to

have residues (i.e., log jzj blows up) along X�1;�1 [ X2;2 only (cf. the proof of [20, Theo-
rem 3.7]). By the localization sequence for higher Chow groups, it can in fact be extended to
all of ��1.P1n¹�1; 2º/. Most importantly, eliminating the monodromy makes the integrals

(6.9)  .˛/ D

Z
P1

log
ˇ̌̌ C i
 � i

ˇ̌̌
<.{�1!K/; �.˛/ D

Z
P1

log
ˇ̌̌ C i
 � i

ˇ̌̌
=.{�1!K/

real-analytic functions of ˛ 2 P1n¹0; 1;1;�1; 2º.
Now on E˛ � E˛, by considering pullbacks to the diagonal, one sees immediately that

i.! � N!/ is the algebraic class whilst ! C N! is the transcendental one. Clearly the same
story holds on K˛;˛. So to check generic indecomposability of Z˛;˛ we need to demonstrate
that  .˛/ (rather than �.˛/) is generically non-zero.4) Clearly it will suffice to show that
lim˛!1  .˛/ ¤ 0.

Setting ˛ D 1 in (6.8) yields

{�1!K D
�8j2 � 1j4 d ^ d N

j2 � 1j6j2 C 1j

D
�8d ^ d N

j2 � 1j2j2 C 1j
D
16r¹i cos � � sin �ºdx ^ dy

j2 � 1j2j2 C 1j
;

where  D x C iy D rei� . Because of the cancellations in the second step, it requires some
analysis to prove that

R
P1 log jzj<.{�1!K/ at ˛ D 1 actually computes the limit of  . This is

done in the appendix to this section, and so we have

(6.10) �
1

16
lim
˛!1

 .˛/ D

Z
P1

logjCi
�i
jr sin �

j2 � 1j2j2 C 1j
dx ^ dy:

Now simply notice that

� the integral over P1 in (6.10) is double that over the upper half plane, since log
ˇ̌
Ci
�i

ˇ̌
and

sin � are both odd in  ; and

� the integrand is (where non-singular) strictly positive on the upper half plane.

We conclude that (6.10) is a positive real number, finishing this part of the argument.

Remark 6.1. It is more natural to normalize !K , and hence  , by dividing out byˇ̌̌̌Z
E˛

dx

y
^

�
dx

y

�ˇ̌̌̌
:

One can show – either using formula (6.9) or from general principles to be explained in [20] –
that this modified  is asymptotic to a constant times log j˛C 1j (resp. log j˛� 2j) as ˛ ! �1
(resp. 2), and goes to zero as ˛ ! 0; 1;1. The first approach is indicated in the appendix.

4) In fact, a simple change of coordinates to Qz D 1
z shows that �.˛/ is identically zero.
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A
2

2

4

2 2

1

1

1

1

B

Figure 3

6.5. Interpretation of the integrals. From the generic non-triviality of .˛/, we know
that

(6.11)
Z
. LE 01/

�

.log jzj/{�1!K

is non-zero for generic ˛; ˇ. We will show that this integral has meaning as an invariant of
Z˛;ˇ in roundabout fashion, by first exhibiting it as an invariant of a related cycle on E˛ �Eˇ .

For generic�, the image LE� of . LE 0�/
� in LK˛;ˇ is a curve with intersection numbers shown

in Figure 3, where the horizontal and vertical lines have the same meaning as in Figure 1.
Obviously its normalization is elliptic, with four smooth branch points over the conic C� at
the points of type (A) in the figure. Its preimage D� in E˛ � Eˇ is an irreducible curve with
singularities at the points of type (B); and its normalization can be thought of as a double
cover of the normalization of LE�, branched at the points lying over these singularities. An easy
Riemann–Hurwitz calculation shows that eD� has genus 7.

As �! 1, D� and LE� each acquire a new node, one mapping to the other: O 7! .1; 1/.
The local description (at the nodes) of the map D1 � LE1 is “z 7! z2” on each branch
separately. (Note that fD1 has genus 6.) Therefore, the pullback Qz 2 C.fD1/

� of the function
z on . LE1/� pushes forward to D1 to yield a K1-class: its double-zero and double-pole cancel
at O. That is, W˛;ˇ ´ �2;�.fD1; Qz/ belongs to CH2.E˛ � Eˇ ; 1/. Further, the real regulator
current log jQzjıD1

pairs against ! 2 �.E˛ �Eˇ ; A1;1/d -closed from (6.6) to yield

(a) an honest invariant of this K1-class W˛;ˇ ; and

(b) twice the value of the integral (6.11), since ! and Qz are both invariant under the involution
flipping fD1 over . LE1/�.

Consider the diagram

QK˛;ˇ
�2

zzzz

�1

"" ""

QK0
˛;ˇ

� 01

||||

� 02

"" ""

E˛ �Eˇ

2W1

$$ $$

K˛;ˇ

|||| "" ""����

Xa;b

2W1||||

LK˛;ˇ LK0
˛;ˇ

LK00
˛;ˇ
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74 Chen, Doran, Kerr and Lewis, Normal functions

in which Xa;b is the Shioda–Inose K3, LK00
˛;ˇ

its quotient by the Nikulin involution, and the
relationship between the two sets of parameters is given by

J.E˛/C J.Eˇ / D a
3
� b2 C 1; J.E˛/ � J.Eˇ / D a

3:

The preimage of D1 under �2 consists of fD1 and W (an exceptional P1 with coordinate “w”)
meeting at w D 0 and w D 1 on W . The map �1 pushes this down to E1 D . LE 01/

� [A.1; 1/,
where the map from W to A.1; 1/ is given by w 7! w2. Setting

(6.12) QZ˛;ˇ ´ .fD1; Qz/C .W ; w2/ 2 CH2. QK˛;ˇ ; 1/;

we have �1;�. QZ˛;ˇ / D 2Z˛;ˇ and �2;�. QZ˛;ˇ / D �2;�.fD1; Qz/ D W˛;ˇ . By (a), (b), and
functoriality of r2;1, it now follows that the pairing (6.11) indeed computes the regulator of
Z˛;ˇ .

What about cycles on Xa;b? The 2:1 birational correspondence provided by � 01 and
� 02 identifies its alternate fibration with the elliptic fibration of K˛;ˇ (generically in 2:1 étale
fashion). More precisely, we have a diagram

K˛;ˇ

��

Xa;b
2W1oo

��

P1� P1
�

oo

in which (a) the bottom map is of the form � 7! q� C p (with p and q constants dependent on
˛; ˇ), and (b) the six I1 fibers of Xa;b ! P1 exactly match the six I2 fibers of K˛;ˇ ! P1�;
see [7]. On QK0

˛;ˇ
there is a K1-cycle QZ0

˛;ˇ
supported on an I2, � 01;� of which is 2Z˛;ˇ . By (b),

its push-forward
Za;b ´ � 02;�. QZ

0
˛;ˇ / 2 CH2.Xa;b; 1/

is supported on an I1 fiberD. Imitating the argument around (6.12), one sees that Za;b is both
indecomposable and the image of a generator of CH2D.Xa;b; 1/, hence the cycle we seek.

Summing up, we have the following theorem.

Theorem 6.2. The real and imaginary parts of the (multivalued) integral (6.11) com-
pute r2;1 (cf. (6.1)) for the three (multivalued)5) families of cycles W˛;ˇ 2 CH2.E˛ � Eˇ ; 1/,
Z˛;ˇ 2 CH2.K˛;ˇ ; 1/, and Za;b 2 CH2.Xa;b; 1/. For .˛; ˇ/ (resp. .a; b/) in a real-analytic
Zariski-open subset of C2, this integral is non-zero, and the cycles are therefore regulator-
indecomposable. The same result holds along the locus ˛ D ˇ (resp. 4a3 D .a3 � b2 C 1/2).

Appendix to Section 6. Here we perform the analytic estimate which establishes the
limiting assertion in Section 6.4, for ˛ ! 1. It will suffice to consider the behavior of the
integral in a fixed neighborhood of one of the points (we use  D C1) where zeroes and poles
collide. Write � D ˛ � 1, 2 D � C 1, and let Dr.c/ denote the open disk about c of radius r .

We may leave out the polynomial factors with no zero or pole approaching � D 0, and
approximate the locations of zeroes and poles to the lowest order required to distinguish them.

5) Again, the multivaluedness arises from the action of monodromy sending z 7! z�˙1.
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The problem is then to show that
(6.13)Z

j� j< 1
2

.� � 3�/.� C 3�/.� C �/.� � �/ log jzjd� ^ d N�

j� � .�C �2/j j� � .� � �2/j j� C .�C �2/j j� C .� � �2/j j� � i
p
3�j j� C i

p
3�j

limits to Z
j� j< 1

2

log jzj
d� ^ d N�

j�j2

as � ! 0C along the real axis. Given � > 0, and taking 0 < � < �=3, it is obvious that the
integrand in (6.13) converges uniformly on � < j�j < 1=2. We claim that the remaining partR
j� j<� of the integral, independently of � 2 .0; �

3
/, is bounded by 1000��. This will prove the

desired convergence.
To verify the claim, we first remark that log jzj is zero for all � 2 P1.R/; in fact, we

shall just use that jlog jzjj < j�j. Next, note that on the complement in D�.0/ of the four disks
D�=2.�/, D�=2.��/, D�=2.i

p
3�/, D�=2.�i

p
3�/,

j� C 3�j j� C �j

j� C �C �2j j� C � � �2j
D

j�C 2�j j�j

j�C �2j j� � �2j
D

j1C 2�
�
j

j1C �2

�
j j1 � �2

�
j

(where � ´ � C �) is bounded by 6, since
ˇ̌
2�
�

ˇ̌
� 4,

ˇ̌
�2

�

ˇ̌
� 2� and we are assuming � is

small. The same is true for
j� � 3�j j� � �j

j� � �C �2j j� � � � �2j
I

and similarly,
j�j2

j� � i
p
3�j j� C i

p
3�j

is bounded by 9. So the integral over D�.0/n¹4 disksº is bounded byZ
j� j<�

9 � 62 �
jd� ^ d N�j

j�j
D 324 � 2�

Z �

0

rdr

r
< 650��:

Now consider (say) the right half of D�=2.��/: here the absolute value of the integrand, apart
from the 1

j���2j
, is

j� � 4�j j� � 2�j

j� � .2�C �2/j j� � .2� � �2/j
�
j�j

j�C �2j
�

j�C 2�j j� � �j

j� � i
p
3�j j�C i

p
3�j
� 6 � 1 �

10

3
� 20:

We have then

20

Z
D�=2.0/\<.�/>0

jd� ^ d N�j

j� � �2j
� 20

Z
D�.0/

jd� ^ d N�j

j�j
D 40�� <

40

3
��;

together with similar estimates on three other half-disks. The estimates for D�=2.˙i
p
3�/ are

each 250
3
��. Adding everything from inside and outside the four disks, we are safely under

1000��.

Brought to you by | University of Colorado - Boulder
Authenticated

Download Date | 1/3/17 10:06 PM



76 Chen, Doran, Kerr and Lewis, Normal functions

We briefly address the situation at the other four points where poles in (6.8) collide. The
most striking case is that of ˛ ! 2. Substituting ˛ D 2 in

R
P1 log jzj<.{�!K/ yields the

convergent integral

�24

Z
P1

log
ˇ̌
Ci
�i

ˇ̌
r sin.�/

j2 C 1j j2 � 2j j22 � 1j
dx ^ dy:

Writing � D ˛ � 2, 2 D � � 1, to show this is lim˛!2  .˛/ one must check (in analogy to
the above argument for (6.13)) that

(6.14)
Z
j� j< 1

2

j� C 3i
p
�j2j� � 3i

p
�j2 log j�jd� ^ d N�

j�j j� C 3�j j� � 3�j j� � 3
p
�j j� C 3

p
�j

limits to Z
j� j< 1

2

log j�j
d� ^ d N�

j�j

as � ! 0. But this fails, due to the rapid convergence to (� D) 0 of two of the poles; in fact,
(6.14) diverges logarithmically.

For ˛ ! �1, the limiting of the factor j˛ C 1j ! 0 in (6.8) is no match for the con-
vergence of seven poles each to ( D) i and �i , again resulting in a logarithmic divergency
for  .˛/. On the other hand, analyses similar to (but simpler than) that for ˛ ! 1 show
lim˛!0  .˛/ and lim˛!1  .˛/ to be convergent.

7. The transcendental regulator for a Picard-rank 20 K3

Here we specialize to the case (cf. Section 6.5)

˛ D
1

2
D ˇ; a D 1; b D 0;

in which case E˛; Eˇ Š C=Zh1; ii are CM and p D 3; q D �2 (cf. [7]). The singular fibres
are at � D ˙1

2
(type I2) and ˙1 (type I1) in X ´ X1;0, and at � D 2; 4 (type I4) and 1; 5

(type I2) in K1=2;1=2. Recalling that our original cycle on K˛;ˇ was supported over � D 1,
which in this specialization has remained an I2 fiber (hence preserving the cycle), its transform
Z´ Z1;0 is supported over � D 1 (an I1 fiber) in X.

To take a closer look at the fibration structure of X, we use its affine equation

2y2 D w
�
w2 C 2¹4�3 � 3�ºw C 1

�„ ƒ‚ …
DWQ� .w/

to sketch the families of branch points of the elliptic fibers shown in Figure 4. Here r˙.�/ are
the roots of Q� .w/, which are both negative real for � 2 Œ1;1/, with r� D r�1C . For purposes
of constructing transcendental cycles, one should imagine all the branch points coalescing at
� D1 since that fiber, an I�12, has trivial H1.

In particular, considering the fiber over � D 1, the membrane � we use for the tran-
scendental regulator computation must bound on the indicated cycle à� D TZ (see Figure 5),
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8

w=r ( )
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−
θ
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θ

θ=1 θ  nearby P

r ( )

r ( )

0

−1
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0
P1 1

w w

Γ

γ
+

_ θ

Figure 5

which is a double cover of the path Œ�1; 0� � P1w . The transcendental 2-cycle  is the family
of double covers of Œr�; rC� as � goes from 1 to1.

By basic residue theory the holomorphic .2; 0/-form on X is given by

!0 D
dw ^ d�

y

in the affine coordinates. IfZ


!0 D 2
p
2

Z 1
�D1

�Z rC.�/

r�.�/

dwp
wQ� .w/

�
d� .> 0/

is one transcendental period, then using the automorphism

j W X! X; .w; y; �/ 7! .�w;�iy;��/;

we have Z
j./

!0 D

Z


j �!0 D i

Z


!0:

Normalizing !0 to ! ´ !0=.
R
 i!0/, we find that ˆ2;1 is described by

CH2.X; 1/! C=ZŒi �; Z 7!

Z
�

!;

which for our particular cycle is

(7.1) � ´

Z
�

! D 2

Z 1
�D1

Z 0

wDrC.�/

! D

R1
1

R 0
rC.�/

dwp
�wQ� .w/

d�R1
1

R rC.�/
r�.�/

dwp
wQ� .w/

d�
2 RC:

We have proved the following result.
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Theorem 7.1. Let Z 2 CH2.X1;0; 1/ be the image of a generator of CH2D.X1;0; 1/,
for D one of the two I1 fibers in the alternate fibration. Then the transcendental regulator
ˆ2;1.Z/Q 2 C=QŒi � is non-zero if and only if � … Q.

The situation is highly reminiscent of a computation by Harris [19] of the Abel–Jacobi
map for the Ceresa cycle of the Fermat quartic curve. In that case, a computer computation
suggested that the comparable invariant �0 2 R=Q was non-trivial. This would have implied
that the cycle was non-torsion modulo rational equivalence, a fact later proved by Bloch [3]
using his `-adic AJ map. Since the Fermat Jacobian is defined over NQ, the Bloch–Beilinson
conjecture predicts injectivity of the usual AJ map, and hence the irrationality of �0. One
might, in conclusion, speculate that a similar story unfolds here.
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