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JONATHAN ROSENBERG2

1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
AB T6G 2G1, Canada. e-mail: charles.doran@ualberta.ca; mendezdi@ualberta.ca
2Department of Mathematics, University of Maryland, College Park, MD 20742-4015 USA.
e-mail: jmr@math.umd.edu

Received: 17 July 2013 / Revised: 19 June 2014 / Accepted: 6 July 2014
Published online: 7 August 2014 – © Springer Science+Business Media Dordrecht 2014

Abstract. D-brane charges in orientifold string theories are classified by the KR-theory of
Atiyah. However, this is assuming that all O-planes have the same sign. When there are
O-planes of different signs, physics demands a “KR-theory with a sign choice” which up
until now has not been studied by mathematicians (with the unique exception of Moutuou,
who did not have a specific application in mind). We give a definition of this theory and
compute it for orientifold theories compactified on S1 and T 2. We also explain how and
why additional “twisting” is implemented. We show that our results satisfy all possible
T-duality relationships for orientifold string theories on elliptic curves, which will be stud-
ied further in subsequent work.
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1. Introduction

The purpose of this paper is to describe the versions of K-theory needed to describe
T -duality for orientifolds, and to compute and analyze them in a few simple but
important cases. By orientifolds we mean spacetimes of the form R

k × X , where
X is a smooth 10-k dimensional (oriented) manifold equipped with an involution,
ι, which defines the orientifold structure.1 Orientifold string theories are defined
by sigma-models with target space an orientifold (X, ι), where the fundamental
strings are equivariant maps ϕ : � → X , so that ι ◦ ϕ = ϕ ◦ �. Here � is an ori-
ented 2-manifold, possibly with boundary (the case of open strings), called the

JR partially supported by NSF Grant DMS-1206159.

CD and SMD partially supported by the NSERC of Canada, the Pacific Institute for the Math-
ematical Sciences, and the McCalla Professorship at the University of Alberta.

1Note that in some of the literature, the word “orientifold” is used to denote the quotient space
X/ι, but it is really essential to keep track of the pair (X, ι) and not just the quotient.
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string worldsheet, and �, called the worldsheet parity operator, is an orientation-
reversing involution on �. We require �/�, though not necessarily � itself, to
be connected. (Thus an allowable possibility is � = �0 � �0, where �0 is a con-
nected oriented surface, �0 is the same surface with orientation reversed, and �

interchanges the two.) See for example [13]; there some extra twisting data, which
we are ignoring for the moment, is also taken into account, and the notation is
slightly different.

As described in [29,37], D-branes in string theories are classified by K-theory,
where the relevant type of K-theory depends on the string theory being considered.
Since the physics of T -dual theories is indistinguishable, the groups classifying sta-
ble D-branes in two T -dual theories must be isomorphic. This led Bouwknegt,
Evslin, and Mathai, and later Bunke and Schick, to describe the T -duality between
the type IIB theory on a spacetime X that is a circle bundle over base Z , with
H -flux H , and the type IIA theory on a dual circle bundle ˜X over Z , with dual
H -flux ˜H , as an isomorphism of twisted K-theories:

K ∗(X, H)∼= K ∗+1(˜X , ˜H). (1)

In the above equation

c1(X)= π̃∗( ˜H) and c1(˜X)=π∗(H), (2)

where c1(X)∈ H2(X;Z) is the first Chern class and π∗ : Hk(X)→ Hk−1(Z) is the
Gysin push-forward map which in terms of de Rham cohomology is defined by
integration along the fiber [9,12]. This was later generalized to the case where X
is a T n-bundle in [11,28].

For orientifolds, D-brane charges are classified by KR-theory [21,22], [37, Sec-
tion 5.2], which we will review in Section 2. One benefit of using KR-theory is that
it can be viewed as a sort of universal K-theory. It is “universal” in the sense that
the K-theories KU for the type II theories, KO for the type I theory, and KSC for
the type ˜I theory can all be built out of KR. This shows that by keeping track of
the appropriate involution ι, one does not need to make a choice of which type
of K-theory to use, and it is already accounted for just by using KR-theory. How-
ever, KR-theory has some immediate limitations that prevent us from generalizing
a topological description of T -duality like equation (1) to orientifolds.

The first problem is that it is not immediately clear how to twist KR-theory,
or even what is meant by H -flux. Traditionally, H ∈ H3(X;Z), so there is no rea-
son to expect H to be equivariant. Another related issue is that orientifold theories
involve extra information, which is not just topological, relevant to the stable O-
plane charges. This issue is already apparent when studying circle orientifolds, even
though the dimension of a circle is too low to have to worry about more general
twistings.

In Section 3 we will review T -duality between all possible circle orientifolds and
the classification of stable D-branes in the different theories. The T -dual of the
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type I theory on a circle (which is a type IIB orientifold on the circle with trivial
involution) is a type IIA orientifold on a circle with involution given by reflection
(referred to as the type IA or type I′ theory). The T -dual to the type IIB theory on
the circle with the antipodal map (sometimes referred to as the type ˜I theory) is
also a type IIA orientifold on the circle with involution given by reflection (often
called the type ˜IA theory). The compactification manifolds for both the type IA
and ˜IA theories are topologically equivalent, with the difference being the charges
of the O-planes at the two fixed points. There are physical descriptions of the clas-
sification of D-branes in the two theories [7,33]; however, we are not aware of any
mathematical description for the classification of D-branes in the type ˜IA theory
via KR-theory. In fact, a topological invariant such as KR-theory cannot pick up
the difference between the type IA and ˜IA compactifications since the distinction
is non-topological. In Section 4 we propose a variant of KR-theory, which we call
KR-theory with a sign choice, that can distinguish between the two cases, giving a
mathematical description of the brane charges in the type ˜IA theory. We then give
all possible sign choices for KR-theories for orientifolds of 2-tori.

A word about our sign convention: we say that an O-plane has positive sign,
or is an O+-plane, if the Chan–Paton bundle on it has orthogonal type, and has
negative sign, or is an O−-plane, if the Chan–Paton bundle on it has symplectic
type. The sign decorations that we attach to KR-theory follow the same conven-
tion. Since a tensor product of an orthogonal bundle with a symplectic bundle is
symplectic, while the tensor product of two symplectic bundles is orthogonal, signs
multiply as one would expect. This convention is the same as the one made by
Witten in [38], but is the reverse of the convention made by Gao and Hori in [19].
Both sign conventions are in general use, but we feel that the multiplication rule
indicates that this one is preferable, even though it means (as Witten points out)
that the tadpoles are of opposite sign.

When we move up in dimension to 2-tori, the sign choice is no longer enough
to account for all possible orientifold theories. In particular, KR-theory with a sign
choice cannot describe the type I theory without vector structure [38]. For this we
need to include more general twists of KR-theory, which will be discussed in Sec-
tion 5. Here we use physics to motivate which KR-theories should be isomorphic,
and check the results via topology. The twist applied to KR-theory is related to the
geometry of its T -dual theory and is described in [15]. The purpose of the current
paper is to describe the relevant twisted KR-theories needed to give the geometric
interpretation in [15].

One of our motivations for a detailed analysis of T -duality via orientifold plane
charges in KR-theory was the special case of c=3 Gepner models as studied in [6].
The authors of that paper used simple current techniques in CFT to construct the
charges and tensions of Calabi–Yau orientifold planes, though a K-theoretic inter-
pretation was missing. Although the interpretation of brane charges in KR-theory
is sensitive to regions of stability, this K-theoretic interpretation does not depend
on the specific structure of c=3 Gepner models, nor even on a rational conformal
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field theoretic description. These results should be contrasted with the recent work
[17] where a twisted equivariant K-theory description of the D-brane charge con-
tent for WZW models is provided (see also [10] for examples which make explicit
the isomorphism with topological K-theory in the case of some Gepner models).
Work in progress seeks to establish an isomorphism between a suitable (real) vari-
ant of twisted equivariant K-theory, sufficient to capture orientifold charge con-
tent, and our KR-theory with sign choices for Gepner models. As a side-effect,
such an isomorphism will then permit computation of KR-theory for complicated
Calabi–Yau manifolds through a simpler computation at the Gepner point.

After the first version of this paper was completed, we became aware of the
work of Moutuou [30–32] on groupoid twisted K-theory, which includes our KR-
theory with a sign choice as a special case. Indeed, Moutuou’s classification of pos-
sible twists of KR coincides with ours, though his point of view and motivation
were quite different.

We would like to thank Max Karoubi for many useful discussions regarding the
contents of Section 4, and in particular for suggesting the formulation of Theo-
rem 4, as well as a method of proof for that theorem. We also thank the referee
for several useful suggestions.

2. Review of Classical KR-Theory

Let X be a locally compact space (in most physical situations it will be a smooth
manifold) with involution ι. A Real vector bundle on X (in the sense of Atiyah
[3]) is a complex vector bundle p : E → X together with a conjugate-linear vector
bundle isomorphism ϕ : E → E such that ϕ2 =1 and ϕ is compatible with ι, in the
sense that p ◦ϕ = ι◦ p. KR(X) is the group of pairs of Real vector bundles (E, F)

on X (with compact support) modulo the equivalence relation

(E, F)∼ (E ⊕ H, F ⊕ H), (3)

for any Real vector bundle H . Note that KR(X) depends on the involution ι even
though it is not explicitly stated. The compact support condition means that we
can choose E and F to be trivialized off a sufficiently large ι-invariant compact
set, with ϕ off this compact set being standard complex conjugation on a trivial
bundle.

To define the higher KR-groups, KR− j (X), we must first introduce some nota-
tion. Let R

p,q = R
p + iRq , where the involution is given by complex conjugation,

and S p,q be the p +q −1 sphere in R
p,q . Caution: In this notation, the roles of p

and q are the reverse of those in the notation used by Atiyah in [3] but the same
as the notation in [7,22,27,33]. Then we can define

KRp,q(X)=KR(X ×R
p,q).
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This obeys the periodicity condition

KRp,q(X)∼=KRp+1,q+1(X),

so KRp,q only depends on the difference p −q and we can define

KRq−p(X)=KRp,q(X).

KR− j (X) is periodic with period 8.
When ι is the trivial involution, the Reality condition is equivalent to E being

the complexification of a real bundle. Thus KR gives a classification of real vector
bundles and we find

KR− j (X)∼=KO− j (X), (4)

when ι is trivial [3, p. 371]. Complex K-theory can also be obtained from KR-
theory using

KR− j (X × S0,1)=KR− j (X � X)∼= K − j (X), (5)

where the involution exchanges the 2 copies of X [3, Proposition 3.3]. And as
shown by Atiyah [3, Proposition 3.5], KR− j (X × S0,2)∼=KSC− j (X), the self-conju-
gate K-theory of Anderson [2] and Green [20], which is periodic with period 4.

In fact, when the involution ι has no fixed points, there is a spectral sequence
((11) below), whose E2-term is 4-periodic, converging to KR− j (X). This motivated
Karoubi and Weibel [25, Proposition 1.8] to assert that KR− j (X) is always 4-
periodic when the involution is free, but in general this is not the case (unless one
inverts the prime 2). The groups KR− j (S0,4) provide a counterexample.

When X is compact and X ι is non-empty, the inclusion of an ι-fixed basepoint
into X is equivariantly split, so the reduced KR-groups, ˜KR

− j
(X), are defined

such that

KR− j (X)∼= ˜KR
− j

(X)⊕KR− j (pt).

We will write simply KR− j or KO− j for KR− j (pt). When Y ⊆ X is closed and
ι-invariant, we can define the relative KR-theory as

KR− j (X,Y )∼= ˜KR
− j

(X/Y ).

As we will discuss in the following section, this is the relevant group for classi-
fying D-brane charges.

3. Orientifolds on a Circle and T -Duality

In this section we will consider orientifold string theories with target space (S1, ι),
where we view S1 as the unit circle in R

2 and where the involution ι comes from
a linear involution on R

2. Since linear involutions are classified by the dimension
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of the (−1)-eigenspace, there are (up to isomorphism) exactly three possibilities
for (S1, ι): the trivial involution corresponding to S2,0, reflection corresponding to
S1,1, and the antipodal map corresponding to S0,2. S2,0 and S0,2 only support the
type IIB theory since the involution is orientation preserving, while S1,1 only sup-
ports the type IIA theory since the involution is orientation reversing.

The type IIB theory on S2,0 is the type I theory compactified on a circle. It is
known to be T -dual to the type IIA theory on S1,1, sometimes referred to as the
type IA or I′ theory [7,22,33]. The type IIB theory on S0,2 is often called the type
˜I theory and is T -dual to the type ˜IA theory [38, Section 6.2], [19, Section 7.1].

In this section we will review these T -duality relations and their K-theoretic
descriptions. The lack of a mathematical description for the K-theory description
of the type ˜IA theory will motivate the definition for a variant of KR-theory given
in Section 4. Before describing the various T -dualities we will review how D-branes
are classified by K-theory.

3.1. CLASSIFICATION OF D-BRANES BY KR-THEORY

D-branes on orientifolds (X, ι), where X is a smooth manifold and ι is an involu-
tion on X , are classified by pairs of vector bundles on X (the Chan–Paton bun-
dles), each with conjugate-linear involutions compatible with ι, modulo creation
and annihilation of charge zero D-brane systems (as in Equation (3)). So D-branes
in orientifolds are classified by KR-theory [37, Section 5.2].

More generally, when we compactify string theory on an m-dimensional space
M , so that the spacetime manifold is R

10−m,0 × M , we are interested in the charges
of D-branes in the non-compact dimensions. So we want to consider D-branes of
codimension 9 − m − p in R

9−m,0. These can arise from both Dp-branes located
at a particular point in M or higher dimensional D-branes that wrap non-trivial
cycles in M . Furthermore, we only want to consider branes with finite energy, so
we want to classify bundle pairs that are asymptotically equivalent to the vacuum
in the transverse space R

9−m−p,0. Mathematically this means we want to add a
copy of M at infinity, i.e., take (the one-point compactification of R

9−m−p,0)× M ,
and consider bundles on S10−m−p,0 × M that are trivialized on the copy of M
at infinity. Such bundles are classified by KR−i (S10−m−p,0 × M, M); the index i
depends on the string theory and involution being considered. For purposes of cal-
culation it is useful to relate this to the KR-theory of M .

PROPOSITION 1.

KR−i (S10−m−p,0 × M, M)∼=KRp+m−9−i (M).

Proof. Note that by excision,

KR−i (S10−m−p,0 × M, M)∼=KR−i ((S10−m−p,0
� {pt})× M)
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∼=KR−i (R9−m−p,0 × M)

∼=KRp+m−9−i (M).

Thus Dp-branes are classified by KRp+m−9−i (M). It is important to keep track
of the index. This point is often overlooked when studying D-branes in the (non-
orientifold) type II theories, which are classified by KU-theory, since KU-theory
has period 2 and only the parity of the index matters.

In what follows we will also have to study the charges of the O-planes, the com-
ponents of the fixed set of the involution on spacetime.2 The restriction of a Chan–
Paton bundle to an O-plane must have either a real (positive) or symplectic (nega-
tive) structure. The classification of D-branes via KR-theory is only valid when all
O-planes have positive charge, and breaks down when different O-planes have dif-
ferent charges. It is this breakdown that leads us to define KR-theory with a sign
choice in Section 4.

3.2. THE TYPE I THEORY AND ITS T -DUAL

The type I theory compactified on a circle is formally identical to the type IIB ori-
entifold theory compactified on S2,0. Consider the bosonic fields in the type IIB
theory compactified on S2,0,

X = X L + X R .

The worldsheet parity operator reverses the orientation of the string, and so
exchanges left-movers and right-movers. This leaves the bosonic fields invariant
under � and therefore compatible with the trivial involution.

T -duality leaves the left-moving fields invariant, while reversing the sign of the
right-moving fields, so the T -dual coordinates are

X̃ = X L − X R .

Under the action of �, the T -dual coordinates transform as

X̃ �→−X̃ .

This shows that the T -dual to the type I theory compactified on a circle must be
the type IIA theory (since T -duality exchanges types IIA and IIB) mod the action
of � combined with the spacetime involution that reflects the compact dimen-
sion. This is the type IIA theory compactified on S1,1. In the literature it is often
referred to as the type IA (or I′) theory. One could also show these two theories

2This terminology is unfortunate but standard; O-planes in general orientifold theories do not
have to be planes. They can have more complicated topology.
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Table I. D-brane charges in the type I theory compactified on a circle and the type IA
theory

Dp-brane D8 D7 D6 D5 D4 D3 D2 D1 D0 D(−1) Type I
on S1

Type IIA
on S1,1

KOp−8
Z Z2 Z2 0 Z 0 0 0 Z Z2 (p +1)-

brane
wrapping
S2,0

Unwrapped
p-brane

KOp−9
Z2 Z2 0 Z 0 0 0 Z Z2 Z2 Unwrapped

p-brane
(p +1)-

brane
wrapping
S1,1

are T -dual to one another by showing there is no momentum, but winding in the
S2,0 direction, while S1,1 has momentum, but no winding.

The type I theory on S1 has a space filling O9+-plane wrapping the compact
dimension. The T -dual type IA theory has 2O8+-planes located at the 2 fixed
points of S1,1. Recall that we use the plus sign to denote that the O-planes have
negative D-brane charge and require the addition of D-branes to obtain a zero
charge system.

Dp-brane charges in the type I theory compactified on a circle are classified by

KR(S9−p,0 × S2,0, S2,0) ∼= KOp−8(S1)

∼= KOp−8 ⊕KOp−9. (6)

The second factor in the last line of Equation (6) corresponds to Dp-brane
charge coming from unwrapped branes and the first factor corresponds to the
charge contribution from branes wrapping S1. The complete brane content is given
in Table I.

Since the type IA theory is obtained from the type I theory compactified on a
circle by a T -duality, the relevant KR-theory is shifted in index by 1. Therefore,
Dp-brane charges in the type IA theory are classified by

KR−1(S9−p,0 × S1,1, S1,1) ∼= KRp−9(S1,1)

∼= KOp−9 ⊕KOp−8, (7)

where the second factor on the right-hand side corresponds to Dp-brane charge
coming from unwrapped branes and the first factor corresponds to the charge con-
tribution from wrapped branes. The complete brane content is given in Table I.
The fact that T -duality exchanges wrapped and unwrapped branes is described by
the exchanged roles for KOp−8 and KOp−9 in the two theories.

The non-BPS torsion-charged branes are not stable at all points of the moduli
space. D0-brane charge in the type I theory receives an integral contribution from
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a wrapped BPS D1-brane and a Z2 contribution from an unwrapped non-BPS D0-
brane. K-theory accurately predicts the entire brane charge spectrum everywhere,
in and out of the region of stability for the non-BPS branes, but the sources of
the charges may vary at different points of the moduli space. For more details,
see [7].

3.3. THE TYPE ˜I AND ˜IA THEORIES

The type ˜I theory is the type IIB orientifold (R9 × S1, ι) where ι is the spacetime
involution that rotates S1 by π radians. In our notation, this is the type IIB the-
ory on R

9,0 × S0,2. The T -dual of the type ˜I theory is the type ˜IA theory [7]. As
we saw in the last section, the type IA theory contains 2O8+-planes. The type ˜IA
theory is obtained from the type IA theory by replacing one of the O8+-planes
with an O8−-plane. Here an O−-plane is an O-plane with symplectic Chan–Paton
bundle and positive D-brane charge. (Note that if there were O8−-planes at both
fixed points, then a charge 0 system would require the addition of anti-branes
and would not be supersymmetric.) We will refer to the compactification circle as
S1,1
(+,−). It is topologically equivalent to a compactification on S1,1, in that there are

2 fixed points. However, the net O-plane charge is zero.
Dp-brane charges in the type ˜I theory are classified by

KR(S9−p,0 × S0,2, S0,2)∼=KSCp−8. (8)

KSC does not split into pieces from wrapped and unwrapped branes as in the pre-
vious case. The authors of [7] were still able to determine which charges come from
wrapped and unwrapped branes using what we know about T -duality, the type IA
theory and O8±-planes.

Since the type ˜IA theory is T -dual to the type ˜I theory, Dp-brane charges in
the type ˜IA theory must also be classified by KSCp−8. It is important to note that
there is no mathematical description for this that we are aware of. There is only the
physical reasoning, which requires the assumption of T -duality. Since the underly-
ing topological space for the type ˜IA theory is S1,1, we should be able to classify
D-brane charges by some twisted KR-theory of S1,1. This idea motivates the def-
inition given in the following section.

4. KR-Theory with a Sign Choice

The compactification manifolds for the type IA and ˜IA theories are topologically
equivalent, even taking the involution ι into account. Therefore, KR-theory cannot
differentiate between them. These two physical theories are differentiated by the
signs of the O-planes located at their fixed sets, so we must enhance KR-theory
with this information.

Along with the space X and the action of a group G (in our case Z2), we must
also include a sign choice, α, on the components of the fixed set. Physically this
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sign choice determines the type of O-plane at the different components of the fixed
set. In other words, it is a choice of orthogonal or symplectic Chan–Paton bundles
on the different components. Recall our convention that a + choice corresponds
to an orthogonal Chan–Paton bundle, and a − choice to a symplectic one. Note
that the fixed sets for the type IA and ˜IA theories both have 2 components, each
a point. The type IA theory is the sign choice α= (+,+), while the type ˜IA theory
is the sign choice α = (+,−). We define an extension of KR-theory that contains
this information and that fits into an exact sequence as in Theorem 2 below.

Intuitively, KRα theory is defined in terms of a generalization of Real vector
bundles, namely pairs (E,�), where E is a complex vector bundle over a real space
(X, ι), and � : E → E is a conjugate-linear vector bundle automorphism, equivari-
ant with respect to ι, and with �2 given by multiplication by +1 on components
of the fixed set with a + sign, −1 on components of the fixed set with a − sign.
Of course, if all components of the fixed set have a + sign and �2 ≡1, then this is
just Atiyah’s definition of a Real vector bundle. If all components of the fixed set
have a − sign and �2 ≡−1, then this is the corresponding notion in the symplec-
tic case (used to define the theory often called KH—this is the name introduced
in [21], but the theory already appeared much earlier in [16]). But for sign choices
with both signs present, it is not clear how changing �2 changes the notion of
Realα vector bundle, or how to get from this rough definition to a theory satisfying
Bott periodicity. So for all these reasons (as in [39] and the literature on twisted
K-theory, for example), a rigorous definition of KRα requires non-commutative
geometry.

Therefore what we really do is to define KRα(X) to be the topological K-theory
of a certain non-commutative Banach algebra Aα(X). In what follows, K and
KR denote the algebras of compact operators on an infinite-dimensional separa-
ble complex Hilbert space and an infinite-dimensional separable real Hilbert space,
respectively. Before we get to the rigorous definition of KRα(X), we first show that
the requisite Banach algebras exist, and study their topological K-theory.

THEOREM 1. Let (X, ι) be a Real locally compact space with an assignment of
signs α to the components of the fixed set. Then an algebra Aα(X) exists satisfying
the following properties:

(1) Aα(X) is a real continuous-trace C∗-algebra whose complexification Aα(X)⊗R

C has spectrum X and trivial Dixmier–Douady invariant, and for which the
induced action σ of Gal (C/R) on X is the given involution on X .

(2) The quotient of Aα(X) associated to any component Y + of X G with positive
sign choice is Morita equivalent (over Y +) to CR

0 (Y +).
(3) The quotient of Aα(X) associated to any component Y − of X G with negative

sign choice is Morita equivalent (over Y −) to CH

0 (Y −), where H denotes the
quaternions.

Furthermore, there is a canonical choice Aα(X) of such an algebra Aα(X).
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Proof. Let Y + be the union of the components of the fixed set with + sign
choice, Y − be the union of the components of the fixed set with − sign choice,
and Z = X � (Y + � Y −), which is the open subset of X on which the involution ι

acts freely. Let A(Z) denote the commutative real C∗-algebra A(Z)={ f ∈ C0(Z) |
f (ι(x))= f (x)}. (Recall that the K-theory of A(Z) is identical to KR∗(Z).). First
we will show that there is a spectrum-fixing isomorphism of real C∗-algebras

ϕ : A(Z)⊗R KR

∼=−→A(Z)⊗R H⊗R KR.

(The induced isomorphism on complexifications is equivariant for the involution
σ .) In fact, there is a canonical choice for ϕ (up to homotopy). Then we can define
Aα(X) by “clutching.”

The algebra A(Z)⊗R KR is, as explained in [35, Section 3], the algebra of sec-
tions (vanishing at infinity on Z ) of a bundle over Z = Z/ι of real C∗-algebras
with fibers K and structure group PU ′, the projective infinite-dimensional uni-
tary/antiunitary group. This group is a semidirect product of PU by Z2 (acting
by complex conjugation), and the bundle is induced from the Z2-bundle Z → Z
defined by the free involution ι. Now C⊗R H∼= M2(C), so A(Z)⊗R H⊗R KR is also
the algebra of sections of a bundle over Z with fibers M2(C)⊗K∼=K and the same
structure group, and since the bundle came from the original PU ′-bundle (via ten-
soring with H) and induces the same covering map Z → Z , the bundles are isomor-
phic (as PU ′-bundles). This guarantees existence of the desired isomorphism ϕ. In
fact, if we fix an isomorphism C⊗R H⊗K→K (which is unique up to homotopy),
we get a canonical choice of ϕ, also unique up to homotopy.

Now, let X+ = Z ∪ Y +, X− = Z ∪ Y −, which are both open subsets of X . A(Z)

is an ideal in each of the commutative real C∗-algebras A(X±) = { f ∈ C0(X±) |
f (ι(x))= f (x)}. We can construct Aα(X) as the algebra of sections of a bundle of
algebras obtained by clutching the stabilized bundles for A(X+) and for A(X−)⊗
H together over Z via (the bundle isomorphism associated to) ϕ, i.e., we construct
Aα(X) by gluing A(X+)⊗R KR (which represents KR∗(X+)) to A(X−)⊗R H⊗R KR

(which represents KR∗
α(X−)∼= K Sp∗(X−)) over Z using ϕ. It remains to show that

we can choose ϕ so that the Dixmier–Douady invariant of Aα(X)⊗R C vanishes.
This follows from the Mayer–Vietoris sequence for the diagram

X+

���
��

��
��

�

Z

����������

���
��

��
��

� X

X−

����������

since the Dixmier–Douady invariant is trivial over X+ and X− (by construction)
and thus the Dixmier–Douady invariant in H3(X) comes from the Phillips–Raeburn
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invariant of ϕ in H2(Z) via the Mayer–Vietoris boundary map. This invariant will
be trivial for the canonical choice. (See the discussion in Remark 1 below for more
details.)

Remark 1. One has to be cautious; even though Theorem 1 guarantees existence
of Aα(X), it does not guarantee uniqueness, since the isomorphism ϕ is only deter-
mined up to an automorphism of the PU ′-bundle over Z . Such an automorphism,
which (if Z is connected) we can assume is in the connected component of the
identity in the automorphism group, is simply a section of the bundle of topolog-
ical groups BPU = (Z ×Z PU) → Z , where the covering group Z2 acts on U and
thus on PU by complex conjugation. The automorphism will not affect the K -
groups if it is inner, i.e., comes from a section of BU = (Z ×Z U) → Z . From the
exact sequence in sheaf cohomology for the exact sequence of sheaves of groups

1→BT →BU →BPU →1,

where BT = (Z ×Z T) → Z and we identify bundles of topological groups with
their sheaves of sections, and from the fact that the sheaf BU is fine since U is
contractible, we see that the obstruction to an automorphism being inner lies in
H1(Z ,BT)= H2(Z ,T

�
), where T

�
is the sheaf of local sections of BT. The obstruc-

tion group is via the exact sequence of sheaves

0→Z
�

→R
�

→T
�

→1

identifiable with H2(Z ,Z
�
), where Z

�
is the locally constant sheaf with stalks Z

and twisting given by the covering map Z → Z . The obstruction is what we can
call the twisted Phillips–Raeburn invariant (cf. [35, Section 1]). It vanishes when
H2(Z ,Z

�
) = 0, and in particular when dim Z = 1, so in this case Aα(X) is unique

up to spectrum-fixing Morita equivalence.

While we will always use the particular algebra Aα(X) constructed in the proof
of Theorem 1, any other algebra satisfying the properties in the Theorem gives the
same K -groups up to extensions.

THEOREM 2. For any Aα(X) with the properties of Theorem 1, the topological
K -groups fit into the long exact sequence

· · ·→KR−i (Z)→Ki (Aα(X))→KO−i (Y +)⊕ K Sp−i (Y −)→KR−i+1(Z)→·· · , (9)

and the groups K∗(Aα(X)) are uniquely determined at least up to extensions.
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Proof. Let Aα(Z) be the ideal of Aα(X) associated to Z , and let Aα(Y ±) be the
quotient associated to Y ±. The long exact sequence

· · ·→ Ki (Aα(Z))→ Ki (Aα(X))→ Ki (Aα(X � Z))→ Ki−1(Aα(Z))→·· · . (10)

follows from the long exact K-theory sequence of the extension of real C∗-algebras
associated to the open inclusion Z ⊆ X (see for example [35, equation (∗), p. 376]).
Since the involution ι on Z is free, Ki (Aα(Z))∼=KR−i (Z). Also

Ki (Aα(X � Z)) ∼= Ki (Aα(Y + �Y −))

∼= Ki (Aα(Y +))⊕ Ki (Aα((Y −)).

But

Ki (Rα(Y +))∼=KO−i (Y +),

since Y + has trivial involution.
For a space M where all the components of MG have − sign choice, the only

difference is that the quotient of Aα(M) associated to any component of MG is
Morita equivalent (over R) to CH

0 (MG) (instead of CR

0 (MG)). This defines a sym-
plectic structure (instead of a real structure). In this case, KR-theory with a sign
choice reduces to what is sometimes referred to as K Sp- or KH-theory, which is
just ordinary KO-theory with a shift in index by 4. Therefore,

Ki (Aα(Y −))∼=KO−i−4(Y −)∼= K Sp−i (Y −).

Putting this all together gives the long exact sequence (9).
Since the connecting maps

KO−i (Y +)→KR−i+1(Z) and K Sp−i (Y −)→KR−i+1(Z)

in (9) are determined by the KR-theories of X+ and X−, respectively, we conclude
that regardless of what choice one makes of Aα(X) satisfying the conditions of
Theorem 1, the groups K∗(Aα(X)) are uniquely determined at least up to exten-
sions.

DEFINITION 1. Let X be a Real locally compact space with an assignment of
signs α to the components of the fixed set. Let Aα(X) be the canonical real
continuous-trace algebra constructed in Theorem 1. We define KR∗

α(X) to be the
topological K-theory of Aα(X) (in the sense of [35, Section 3]). Note that these
groups fit into the exact sequence given in Theorem 2.

COROLLARY 1. KR− j
α has periodicity with period 8.

Proof. This is immediate from Bott periodicity for topological K-theory of real
Banach algebras.
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K∗KO∗ KO∗ K∗KO∗ KSp∗

Figure 1. Coefficient systems for the type IA and ˜IA theories.

It is now easy to see that KR-theory with a sign choice can be computed using
a generalization of the equivariant Atiyah–Hirzebruch spectral sequence of [25,
(A.2)]

E p,q
2 = H p

G(X;KR
���

q)⇒KRp+q(X), (11)

where KR
���

∗ is the Bredon coefficient system for G associated to KR.

As described in [25], KR
���

∗(G) = K ∗ and KR
���

∗(pt) = KO∗. We are now allowing
for different components of the fixed set to have symplectic or orthogonal bundles,
corresponding to the coefficient system being KO or K Sp.

THEOREM 3. There is a spectral sequence

E p,q
2 = H p

G(X;KRα
����

q)⇒KRp+q
α (X). (12)

where KRα
����

∗(G)∼= K ∗ and

KRα
����

−i (pt j )=
{

KO−i , if α j =+,

K Sp−i , if α j =−.

Proof. The proof is quite similar to the case handled in [25]. We filter K ∗
α(X)

using the equivariant skeletal filtration, but with fixed cells separated into two
types. Then this is just the spectral sequence associated to this filtration. The pic-
ture of the coefficient system is as in Figure 1 (right side).

If we remove the 2 fixed points from S1,1 we are left with 2 copies of R that
are exchanged by the involution. This gives KR∗

α(S1,1
� fixed points) ∼= K ∗−1 by

(5). The type IA theory has O8+-planes (hence orthogonal bundles) at both fixed
points, so has KO∗ at both fixed points (see Figure 1) and matches with the spec-
tral sequence as described in [25]. While motivated by physics, we are just deco-
rating G–CW -complexes with some extra information on the equivariant cells of
the form (G/G)×en that we have called “sign.” We show in [15] that the sign can
be given a geometric interpretation in the T -dual theory, thus giving a completely
mathematical description of T -duality.

Note that flipping the sign of every component of the fixed set exchanges KO
and K Sp and so just results in a shift of the index by 4. For example, type IIA
theory on S1,1 with 2 O8−-planes does not make physical sense since it is not
supersymmetric, and it is mathematically uninteresting since it is just the usual the-
ory with an index shift.
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We can now turn our attention to the only case of KR-theory of a circle with
a non-trivial sign choice, corresponding to the type ˜IA theory.

4.1. THE TYPE ˜IA THEORY

As noted in Section 3, the compactification manifold for the ˜IA theory is S1,1, but
with an O8−-plane at one fixed point and an O8+-plane at the other. Therefore,
Dp-branes are classified by KRp−9

(+,−)(S1,1). The index is determined as a shift by
one from the T -dual theory KRp−8(S0,2).

Recall that

S1,1
� S1,0 ∼=R

1,0 × S0,1,

with an involution that exchanges the 2 copies of R. Therefore

KR−i
α (S1,1

� S1,0)∼=KR−i (R1,0 × S0,1)

∼= K −i (R)

∼= K −i−1, (13)

for all α. For α = (+,−),

KR−i
α (S1,0)∼=KO−i ⊕ K Sp−i . (14)

Plugging these into Equation (9) we get the long exact sequence

· · · �� K −i−1 �� KR−i
(+,−)(S1,1) �� KO−i ⊕ K Sp−i δ �� K −i �� · · · .

(15)

The map δ is complexification on the first summand and doubling on the second
summand, since symplectic bundles contain 2 complex bundles. Furthermore, the
long exact sequence splits into 2 parts

0 �� KR0 (mod 4)
(+,−) (S1,1) �� Z⊕Z

δ ��
Z

�� KR−3 (mod 4)
(+,−) (S1,1) �� 0.

(16)

0 �� KR−2 (mod 4)
(+,−)

(S1,1) �� Z2
γ ��

Z
σ �� KR−1 (mod 4)

(+,−)
(S1,1) �� Z2 �� 0.

(17)

The map δ is (m,n) �→m +2n, which is surjective. This means KR0 (mod 4)
(+,−) (S1,1)∼=

Z and KR−3 (mod 4)
(+,−) (S1,1)∼=0. γ must be 0, showing KR−2 (mod 4)

(+,−) (S1,1)∼=Z2. This
gives us an extension problem

0 ��
Z

σ �� KR−1 (mod 4)
(+,−) (S1,1) �� Z2 �� 0. (18)
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However, since removing the fixed point with the − sign from S1,1
(+,−) leaves R

0,1,
we also have an exact sequence

0= K Sp−2 →KR−1(R0,1)→KR−1
(+,−)(S1,1)→ K Sp−1 =0,

and since KR−1(R0,1)∼=KO0 =Z, we see that KR−1
(+,−)(S1,1)∼=Z. The correspond-

ing argument where we remove the point with the + sign instead shows that
KR−5

(+,−)(S1,1)∼=Z. Putting this all together we find

KR−i
(+,−)(S1,1)∼=KSC−i+1, (19)

which has periodicity with period 4.
Now we can see T -duality between the type Ĩ and ˜IA theories as an isomor-

phism

KR−i (S0,2)∼=KR−i−1
(+,−)(S1,1). (20)

The fact that we need to include a charge in the T -dual of the IIB theory on
S0,2 is contained in the geometry of S0,2 in a way that is explored in [15]. Now
let us turn to the different possibilities of sign choices for 2-torus orientifolds.

4.2. TORUS ORIENTIFOLDS WITH A SIGN CHOICE

For a 2-torus with an involution3 the possible fixed point sets are empty, 1 copy of
S1,2 disjoint copies of S1,4 isolated points, or the entire copy of T 2. Obviously,
when the fixed set is empty there are no possible sign choices. Also, when the fixed
set is a single copy of S1 or the entire 2-torus, then the fixed set has only a single
component. Therefore, there is only one possible sign choice giving either ordinary
KR-theory (+ sign choice) or an index shift by 4 of ordinary KR-theory (− sign
choice). The only cases that do not immediately reduce to ordinary KR-theory are
when the fixed point set is either 2 disjoint copies of S1 or 4 isolated points.

Let us first consider the orientifold of the 2-torus with 4 fixed points, cor-
responding to when the involution is reflection. Topologically our orientifold is
S1,1 × S1,1. There are 3 supersymmetric sign choices for the 4 fixed points: α =
(+,+,+,+), (+,+,−,−), or (+,+,+,−). (The non-supersymmetric cases
(−,−,−,−) and (−,−,−,+) can be obtained from (+,+,+,+) and (+,+,+,−)

by an index shift.)
The case of (+,+,+,−) is considerably more subtle to compute than the other

two, though as shown by Witten [38], the case of four O-planes, three with a +
charge and one with a − charge, does indeed occur in physics.

To determine KRα in each case, we first need the following result.

3Since this is what’s needed for physics, we are assuming the torus can be identified with a
complex smooth curve of genus 1, and the involution is either holomorphic or anti-holomorphic.
This is explained further in [15].



ORIENTIFOLDS AND TWISTED KR-THEORY 1349

1
2

1
2

Figure 2. Fundamental domain of a 2-torus with the 4 fixed points shown.

PROPOSITION 2. Let X be T 2 (realized as R
2/Z

2) with involution given by multi-
plication by −1. Let Y be the set of 4 points fixed by the involution. Then

KR−i
α (X � Y )∼=KSC−i−1 ⊕ K −i−1 ⊕ K −i−1, (21)

for all α.

Proof. A picture of the fundamental domain of the T 2 is shown in Figure 2.
When we remove the four fixed points and the dashed lines along the bound-
ary of the fundamental domain, what remains retracts onto the square with ver-
tices at (± 1

4 ,± 1
4 ) shown in color. One can proceed to compute KR∗

α using this
picture, but it will be faster to use the spectral sequence of Theorem 3. Since ι

acts freely on X �Y , the spectral sequence reduces to the one studied by Karoubi
and Weibel [25, Example A.3]. Let W = (X �Y )/ι, which is diffeomorphic to S2

�

{4 points}. The map (X �Y )→ W is a 2-to-1 covering map. The spectral sequence
has E p,q

2 = 0 for q odd, and reduces to H p
c (W,Z(i)) ⇒ KRp+2i

α (X � Y ), where
Z(i)=Z (the constant sheaf) for i even and Z(i) is the non-trivial local coefficient
system determined by the covering map (X �Y )→ W for i odd. By Poincaré dual-
ity, H p

c (W,Z)∼= H2−p(W,Z), which is Z for p = 2, Z
3 for p = 1, 0 for p = 0. The

groups H p
c (W,Z(1)) are slightly harder to compute, but can be obtained, for exam-

ple, from the exact sequence

· · ·→ H p
c (R× S1,Z(1))→ H p

c (W,Z(1))→ H p
c (R�R,Z(1))→·· · ,

coming from the fact that deleting two line segments from W , each one running
between two of the branch points of the branched covering T 2 → S2, leaves an
open subset diffeomorphic to R × S1. Here H p

c (R � R,Z(1)) ∼= H p
c (R � R,Z) ∼= Z

2

for p = 1, and 0 for other values of p, since each component of R � R is simply
connected. The result is that H p

c (W,Z(1)) is isomorphic to Z
2 for p = 1, Z2 for

p = 2, and 0 for other values of p. The spectral sequence is shown in Figure 3.
Note that there is no room for any non-trivial differentials or for any non-trivial
extensions, and the Proposition follows.
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q\p 0 1 2

0 0 3

−1 0 0 0

−2 0 2
2

−3 0 0 0

−4 0 3

Figure 3. E2 of the spectral sequence for computing KR∗
α(X �Y ). The sequence repeats with

vertical period 4.

For the set of fixed points, Y , the three options are

KR−i
α (Y )=

⎧

⎨

⎩

4KO−i , α = (+,+,+,+)

2KO−i ⊕2K Sp−i , α = (+,+,−,−)

3KO−i ⊕ K Sp−i , α = (+,+,+,−).

(22)

The case where α = (+,+,+,+) (in the notation of [33], this is T 1,2) just gives
ordinary KR-theory, for which we get the calculation

KR−i (X) ∼= KR−i (S1,1)⊕KR−i+1(S1,1)

∼= KO−i ⊕ K O−i+1 ⊕KO−i+1 ⊕KO−i+2. (23)

The relevant long exact sequence for α = (+,+,+,−) is (via Proposition 2)

· · ·→KSC−i−1 ⊕2K −i−1 →KR−i
(+,+,+,−)(S1,1 × S1,1)

→3KO−i ⊕ K Sp−i →·· · . (24)

This gives an extension problem in determining each of the KR-groups. There-
fore, we need to look at some additional long exact sequences to determine
KRi

α(S1,1 × S1,1).
Let Y+ = S1,1

(+,+) ∨ S1,1
(+,+) be the wedge of 2 circles going through the three fixed

points with sign choice +. In terms of Figure 2, this is the image of the dotted
lines. Then we get a long exact sequence

· · · �� KR−i (X � Y+) �� KR−i
α (X) �� KR−i

α (Y+) �� · · · . (25)

Note that X � Y+ ∼=R
0,2
− , where the fixed point of R

0,2 is given the sign choice −.
Therefore

KR−i
α (X � Y+)∼=KR−i− (R0,2)

∼= K Sp−i+2.
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To determine KR−i
(+,+,+)(Y+), first note that this reduces to ordinary KR-theory

since the sign choices are all positive. Now consider the split long exact sequence

· · · �� KR−i (Y+ � {pt}) �� KR−i (Y+) �� KR−i (pt) ��
�� · · · , (26)

where the basepoint is the joining point of the two circles (a fixed point with sign
+). Therefore, Y+ � {pt} is 2 copies of R

0,1 and

KR−i (Y+)∼=KO−i+1 ⊕KO−i+1 ⊕KO−i .

Plugging KR−i
α (Y+) into the exact sequence

· · ·→KR−i
α (X � Y+)∼= K Sp−i+2 →KR−i

α (X)→KR−i
α (Y+)→·· · ,

we find KR−i
(+,+,+,−)(S1,1 × S1,1) is Z if i = 4 or 6,Z

2 for i = 5, and Z
2
2 for i = 3.

There are extension problems for the other 4 indices mod 8.
To solve the remaining extension problems, we can repeat the same process, but

use the space Y− which is the one point union of 2 circles joined at the fixed point
with sign − and going through 2 of the fixed points with sign choice +. This space
is the image of the coordinate axes in Figure 2. Note that X �Y− ∼=R

0,2 (with a +
sign at the fixed point). If we remove one circle, which we can identify with S1,1

(+,−),
from Y−, then what remains is R

0,1 (with a + sign), so we get an exact sequence

· · ·→KR−i (R0,1)→KR−i
α (Y−)→KR−i

(+,−)(S1,1)→·· · ,

or in other words,

· · ·→KO−i+1 →KR−i
α (Y−)→KSC−i+1 →KO−i+2 →·· · . (27)

In fact (27) splits, i.e., KR−i
α (Y−) ∼= KO−i+1 ⊕ KSC−i+1, since the inclusion

S1,1
(+,−) ↪→Y− is split by the (sign-preserving) “fold map” sending both circles in Y−

onto S1,1
(+,−). Putting our result for Y− into the exact sequence

· · ·→KR−i (R0,2)∼=KO−i+2 →KR−i
α (X)→KR−i

α (Y−)→KO−i+3 →·· ·
gives that KR−i

(+,+,+,−)(S1,1 × S1,1) is Z for i = 0,Z
2 for i = 1, Z ⊕ (Z2)

2 for i = 2
(for this case we must combine the information we get from (24), (26), and (27)),
and 0 for i = 7. The results of the calculation are summarized in the last column
of Table II in Section 5.1 below.

We could also use the spectral sequence in Theorem 3 for S1,1 × S1,1 with α =
(+,+,+,−). To determine the E2 term, we need to look at the groups
H p

G(X;KRα
����

q). These are most easily computed using the exact sequence

· · ·→ H p
G,c(X � X ι;KRα

����

q)→ H p
G(X;KRα

����

q)→ H p
G(X ι;KRα

����

q)→·· · . (28)

Here H p
G(X ι;KRα

����

q) is nonzero only for p = 0, where it is 3KOq ⊕ K Spq , and

H p
G,c(X � X ι;KRα

����

q) was computed in the proof of Proposition 2. In (28) there
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q\p 0 1 2

0 0

−1 ( 2)
3 0 0

−2 ( 2)
3 2

2

−3 0 0 0

−4 ( 2)
2

−5 2 0 0

−6 2
2

2

−7 0 0 0

Figure 4. E2 of the spectral sequence for computing KR∗
(+,+,+,−)

(S1,1 × S1,1). The sequence
repeats with vertical period 8.

is one potentially nonzero connecting map, Z
4 ∼= 3KOq ⊕ K Spq → Z

3 when q ≡
0 (mod 4). This map can be computed by comparison with the corresponding
sequences for the cases of S1,1

+,+ and S1,1
+,−, where the KRα groups were computed

from Equation (15) and the surrounding discussion. One finds that the connect-
ing map has kernel Z in all cases, is surjective for q ≡0 (mod 8), and has a coker-
nel of Z

2
2 when q ≡4 (mod 8). Thus the groups H p

G(X ι;KRα
����

q) are as in Figure 4.

This calculation is consistent with our computation of KR∗
(+,+,+,−)(S1,1 × S1,1),

assuming that there are d2 differentials that kill off the Z2’s in positions (2,−2)

and (2,−6).
The case α= (+,+,−,−) can be obtained by the product of the type ˜IA theory

with itself or the type IA theory. The equivariant decomposition

S1,1
(+,−) × S1,1 = (S1,1

(+,−) ×{pt})� (S1,1
(+,−) ×R

0,1)

gives the calculation

KRi
(+,+,−,−)(S1,1 × S1,1)∼=KSCi+2 ⊕KSCi+1. (29)

The same case can also be obtained by looking at

S1,1
(+,−) × S1,1

(+,−) = (S1,1
(+,−) ×{pt})� (S1,1

(+,−) ×R
0,1
− ).

But crossing with R
0,1
− has the same effect as crossing with R

4,1 or with R
3,0,

and since KSC∗ is 4-periodic, we get the same result as in (29).
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Now let us consider orientifolds of the 2-torus where the fixed set is 2 disjoint
copies of S1. Topologically, this is S1,1 × S2,0. There are 2 possible supersymmet-
ric sign choices, (+,+) and (+,−). As usual, the non-supersymmetric case (−,−)

can be obtained from (+,+) by an index shift. When both fixed circles have sign
choice +,KRα reduces to ordinary KR-theory,

KR−i (S1,1 × S2,0)∼=KR−i−1(S1,1)⊕KR−i (S1,1)

∼=KO−i−1 ⊕KO−i ⊕KO−i ⊕KO−i+1. (30)

The case α=(+,−) is just the product of the type ˜IA theory, S1,1
(+,−), with a fixed

circle, S2,0, so we find

KR−i
(+,−)(S1,1 × S2,0)∼=KR−i−1

(+,−)(S1,1)⊕KR−i
(+,−)(S1,1)

∼=KSC−i ⊕KSC−i+1. (31)

To conclude this section, we explain how to compute KR-theory for a 2-torus
orientifold where the involution ι is orientation reversing and has a fixed set that is
topologically S1. Unlike the cases above, this orientifold does not split as a product
of two circle orientifolds, so a somewhat more complicated calculation is required.

THEOREM 4. Let (X, ι) be a Real space where X =T 2 and ι is smooth, orientation
reversing, and has a fixed set that is topologically S1. The quotient space M = X/ι

is topologically a closed Möbius strip. (Such a space arises from taking X to be the
complex points of a smooth projective real curve of genus 1 when the real points have
exactly one connected component, and taking ι to be the action of Gal(C/R).) Then
KR j (X, ι)∼= (KO j )2 ⊕KU j−1.

Proof. Step 1. Since X has a non-empty fixed set, KR− j (T 2, ι)∼= ˜KR
− j

(T 2, ι)⊕
KO− j , and we only need to compute ˜KR

− j
(T 2, ι). We begin by deducing two use-

ful exact sequences. The first comes from observing that X � X ι ∼= S0,2 ×R
0,1 (as a

Real space). Thus KR− j (X � X ι) ∼= KR− j+1(S0,2) ∼= KSC− j+1. Since ˜KR
− j

(X ι) ∼=
KR− j (R1,0)∼=KO− j−1, we get the long exact sequence

· · ·→KO− j−2 δ−→KSC− j+1 → ˜KR
− j

(T 2, ι)→KO− j−1 δ−→KSC− j+2 →·· · , (32)

where the connecting map δ will be determined later. However, note for now that δ

vanishes after inverting 2, since KO− j−1[ 1
2 ] is nonzero only for j ≡3 (mod 4) and

KSC− j+2 ∼= Z2 for these values of j . Thus the torsion-free part of ˜KR
− j

(X, ι) is
the same as for KSC− j+1 ⊕KO− j−1 and is thus Z for j odd, Z for j ≡0 (mod 4),
and 0 for j ≡2 (mod 4).

To get the other exact sequence, choose an interval I in M = X/ι transverse to
the central circle and meeting the boundary in two points. The inverse image of
this interval in X is a copy of S1,1, the unit circle in the complex plane with com-
plex conjugation as the involution. Furthermore the complement of this copy of
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S1,1 is isomorphic (as a Real space) to (0,1)× S1,1. Since S1,1 with one fixed point
removed is isomorphic (as a Real space) to R

0,1, ˜KR
j
(S1,1)∼=KR j (R0,1)∼=KO j+1

via [3, Theorem 2.3] and KR j ((0,1) × S1,1) ∼= KO j−1 ⊕ KO j . So we get an exact
sequence

· · ·→KO j ρ−→KO j−1 ⊕KO j → ˜KR
j
(X)→KO j+1 ρ−→KO j ⊕KO j+1 →·· · . (33)

Step 2. Observe next that the connecting maps δ and ρ have to be compatible with
cup products by the ground ring

KO∗ ∼=Z[b±, ξ, η]/(2η, η3, ξη, ξ2 −4b).

Here the torsion-free generators are b in degree −8 and ξ in degree −4, and the
torsion generator η is in degree −1. To prove this claim, simply replace T 2 by T 2 ×
R

p,q . Thus the connecting map δ :KO j−1 →KSC j+2 has to be of the form x �→ x ·
y, x ∈KO∗ and y some class in KSC3, and the connecting map ρ :KO j ρ−→KO j−1 ⊕
KO j has to be of the form x �→ (ax,bx), where a ∈KO−1 and b ∈KO0.

Step 3. The ground ring for KSC theory is

KSC∗ ∼=Z[β±, η′]/(2η′, η′2),

where the periodicity element β is in degree −4 and the torsion generator η′ is in
degree −1. There is a canonical ring homomorphism ε : KO∗ → KSC∗ (the map
on KR induced by S1,1 →pt). Then ε(η)=η′, ε(b)=β2, and ε(ξ)=2β. These are
standard facts which can be found in [8, Section 1], for example.
Step 4. We claim that δ is given by x �→ ε(x) · β−1η′ and that ρ is given by x �→
(x ·η,0). We get this by playing off the sequences (32) and (33) against each other.
Start with δ(x) = ε(x) · y, y ∈ KSC3. If y were 0, we would have a short exact
sequence

0→KSC j+1 → ˜KR
j
(T 2, ι)→KO j−1 →0,

and this would imply for example that ˜KR
−6

(T 2, ι)∼= KSC−5 ∼=Z2, which contra-
dicts what we obtain from the other exact sequence (33) for j =−6. Thus y =β−1η′
(the generator of KSC3) and the claim follows.

Recall that ρ is of the form x �→ (ax,bx) with a ∈ KO−1 and b ∈ KO0 ∼= Z. The
number b must be 0; otherwise the torsion-free part of ˜KR

j
(T 2, ι) would contra-

dict what we got in Step 1 from (32). And a ∈ KO−1 cannot vanish, because if it
did, we would have a short exact sequence

0→KO−2 ⊕KO−1 → ˜KR
−1

(T 2, ι)→KO0 →0,

giving ˜KR
−1

(T 2, ι)∼=Z
2
2 ⊕Z, while (32) gives that ˜KR

−1
(T 2, ι) is either Z or Z⊕

Z2. So this completes the calculation of the boundary maps δ and ρ.

Step 5. To conclude, we use a well-known fact in homotopy theory [1, p. 206],
which is that if KU and KO are the complex and real topological K-theory spec-
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tra, then there is a fiber/cofiber sequence of spectra

�KO
η−→KO

c−→KU.

This corresponds to a famous long exact sequence [23, Theorem III.5.18] or [8,
Definition 1.13(2)]:

· · ·→KO−n(X)
η−→KO−n−1(X)

c−→KU−n−1(X)
rβ−1

U−−→KO−n+1(X)→·· · .

Here c is complexification, r is realification, and βU is the complex Bott element.
Because of our calculation of the boundary map ρ,KO j splits off as a direct

summand in ˜KR
− j

(T 2, ι), and the complement can be identified with the cofiber
of η with a degree shift. So this completes the proof.

We conclude by noting that [25, Theorem 4.8] says that if X is a smooth projec-
tive variety defined over R (which in our case will be a curve of genus 1), identi-
fied with the Real space of its complex points with involution given by the action
of Gal(C/R), then the natural map K j (X;Z2)→KR− j (X;Z2) sending algebraic to
topological K-theory is an isomorphism for j sufficiently large (in our case j ≥ 1
suffices). Here algebraic K-theory or KR-theory with Z2 coefficients is related to
the integral theory by a universal coefficient sequence

0→KR− j (X)/2→KR− j (X;Z2)→ 2KR− j+1(X)→0, (34)

where 2KR− j+1(X;Z2) denotes the 2-torsion in KR− j+1(X), and similarly for K j .
The torsion subgroup of K j (X) was computed in [34, Main Theorem 0.1] and
agrees with our results under this isomorphism.4

5. More General Twists and Why They are Needed for Physics

5.1. TWISTED KO-THEORY

While twisted complex K-theory is by now well-known in both the mathematics
literature (e.g., [4,5,14,24,35]) and the physics literature (e.g., [9,39]), its cousin,
twisted real K-theory, is defined similarly but is less familiar. One way to define
it is by using the K-theory of real continuous-trace algebras of real type (see [35,
Section 3]). In the separable case, after stabilization, such an algebra is the algebra
of sections vanishing at infinity of a bundle whose fibers are the compact opera-
tors KR on an infinite-dimensional separable real Hilbert space HR. Since O(HR)

is contractible but the automorphism group of KR is the projective orthogonal
group P O(HR)= O(HR)/Z2, which is a K (Z2,1) space, the relevant algebra bun-
dles are classified by homotopy classes of maps from the space X to B P O(HR),

4There is a small typo in the statement of [34, Main Theorem 0.1]. K2(X)tors should contain
ν +1 copies of Z2 (here ν is the species), not ν copies as written.
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which is a K (Z2,2) space. Thus they are classified by a single characteristic class
w̃2 ∈ H2(X,Z2), which one can identify with the characteristic class for Witten’s
type I string theory without vector structure in [38]. In other words, for each w̃2 ∈
H2(X,Z2), one gets an 8-periodic family of K -groups KO∗(X, w̃2), reducing to
KO∗(X) when w̃2 = 0. This is analogous to twisting by H -flux for complex K-
theory. Recall that the automorphism group of K (the compact operators on a
complex infinite-dimensional separable Hilbert space H) is the projective unitary
group PU (H)=U (H)/S1. In this case the relevant algebra bundles are classified by
homotopy classes of maps from X to B PU (H), which is a K (Z,3) space. There-
fore they are classified by the H -flux H ∈ H3(X;Z).

Just as in the complex case, the twisted real K-theory groups can be computed
using an Atiyah–Hirzebruch spectral sequence (AHSS)

H p
c (X,KOq)⇒KOp+q(X, w̃2),

where H∗
c is cohomology with compact supports and w̃2 appears in the differen-

tials. We will primarily be interested in the case X = T 2, in which case the “com-
pact supports” modifier can be dropped and there is only room for one differen-
tial,

d2 : H0(T 2,KOq)=KOq →KOq−1 ∼= H2(T 2,KOq−1).

This differential is cup product with w̃2, viewed as an element of H2(T 2,KO−1)∼=
Z2. So if w̃2 is the non-trivial element of H2(T 2,Z2), the E2 term of the spectral
sequence with the nonzero d2 differentials indicated is shown in Figure 5, and the
E3 = E∞ term is shown in Figure 6.

The groups KO∗(T 2, w̃2) are thus determined up to extensions by summing
along the diagonals (where p +q takes a constant value). We see that KO0(T 2, w̃2)

is an extension of Z by Z
2
2, necessarily split, KO−2(T 2, w̃2) is an extension of Z2 by

Z, and the remaining groups KO j (T 2, w̃2) are Z
2
2 for j =−1,Z

2 for j =−3,Z for
j =−4,0 for j =−5,Z for j =−6,Z

2 for j =−7. The only case where we are left
with an extension problem is j =−2. It turns out that KO−2(T 2, w̃2)∼=Z, which we
can see as follows. A map of degree one T 2 → S2 collapsing the 1-skeleton S1 ∨ S1

to a point induces a map of spectral sequences which is an isomorphism on the
columns with p = 0 and p = 2, hence shows that KO−2(T 2, w̃2) ∼= KO−2(S2, w̃2)

(with a non-trivial twist in H2(S2,Z2)∼=Z2), so we only need to compute this lat-
ter group and show that it is torsion-free. This will be done in Section 5.2 below.

There are many ways of seeing that this sort of w̃2 twisting of KO is needed
for D-brane classification in the “no vector structure” theory of [38]. But the key
feature is that Chan–Paton bundles are given not by O(n) bundles but by P O(n)

bundles [38, Section 2.1], [19, Section 7.2], which is precisely how our twisting was
defined.

The physics literature suggests that there should be a T-duality between the
“type I with no vector structure” theory on T 2 and the type IIA orientifold on
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q\p 0 1 2

0 2

−1 2
2
2 2

−2 2
2
2 2

−3 0 0 0

−4 2

−5 0 0 0

−6 0 0 0

−7 0 0 0

Figure 5. E2 of the spectral sequence for computing KO∗(T 2, w̃2). The sequence repeats with
vertical period 8.

q\p 0 1 2

0 2

−1 0 2
2 0

−2 2
2
2 0

−3 0 0 0

−4 2

−5 0 0 0

−6 0 0 0

−7 0 0 0

Figure 6. E∞ of the spectral sequence for computing KO∗(T 2, w̃2). The sequence repeats with
vertical period 8.

an elliptic curve with anti-holomorphic involution of species 1 (i.e., a fixed set
which is topologically just a single circle) [26]. The D-brane charges in this the-
ory are described by the groups KR j (T 2, ι), where ι is an involution on T 2 with
fixed set S1. These groups were computed above in Theorem 4. Table II shows
KO j (T 2, w̃2) for w̃2 �= 0, KR j (T 2, ι) for the species 1 anti-holomorphic involution
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Table II. KO j (T 2, w̃2), KR j (T 2, ι), and KR j
(+,+,+,−)

(S1,1 × S1,1)

j mod 8 KO j (T 2, w̃2) KR j (T 2, ι) KR j
(+,+,+,−)

(S1,1 × S1,1)

0 Z⊕Z
2
2 Z

2
Z

−1 Z
2
2 Z⊕Z

2
2 Z

2

−2 Z Z
2
2 Z⊕Z

2
2

−3 Z
2

Z Z
2
2

−4 Z Z
2

Z

−5 0 Z Z
2

−6 Z 0 Z

−7 Z
2

Z 0

ι, and KR j
(+,+,+,−)(S1,1 × S1,1) from Section 4. The second column agrees precisely

with the first column shifted down by 1, and the third column agrees with the sec-
ond column shifted down by 1, as is predicted by T-duality. Note that the data of
the B-field for the type IIB theory on S1,1 × S1,1 with α = (+,+,+,−) is encoded
in the non-triviality of the d2 differential for the spectral sequence in Figure 4. In
[15] we will describe how the B-field is described by a sign choice under T -duality.

5.2. TWISTED KO-THEORY WITH AN H1 TWIST

Twisting of KO∗(X) by H1(X,Z2) × H2(X,Z2) was already defined by Donovan
and Karoubi in [14]. (The group of twists H O(X) is actually a non-split abelian
extension of H2(X,Z2) by H1(X,Z2).) For X compact and A a bundle over X
whose fibers are Z2-graded simple R-algebras, with w(A) = α ∈ H O(X), KOα(X)

is the Grothendieck group of graded real vector bundles X which are finitely gen-
erated projective modules for A. Here w(A)= (

w1(A),w2(A)
)

, where vanishing of
w2(A)∈ H2(X,Z2) is the condition for A to be the endomorphism bundle of a Z2-
graded vector bundle, and w1(A)=w1(V ) if A is the Clifford algebra bundle of a
real vector bundle V for a negative definite metric [14, Lemma 7]. When w1 = 0,
we get back the twisted KO-groups of Section 5.1. The basic composition rule in
H O(X) is that

w1(A⊗̂B)=w1(A)+w1(B), w2(A⊗̂B)=w2(A)+w2(B)+w1(A) ·w1(B).

For general X, H O(X) can have elements of order 4, but this will not happen
if (as for S1 or T 2) every element of H1(X,Z2) has square 0. Thus (assuming this
condition) every element of H O(X) is its own inverse, and by the Thom isomor-
phism theorem of [14, Section 6], if V is a real vector bundle over X ,

KO j (V )∼=KO j−dim V (X,w1(V ),w2(V )). (35)
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Table III. KO j (S1,w1) for the non-trivial twist

j 0 −1 −2 −3 −4 −5 −6 −7

KO j (S1,w1) Z2 Z4 Z2 Z2 0 0 0 Z2

q\p 0 1

0

−1 2 2

−2 2 2

−3 0 0

−4

−5 0 0

−6 0 0

−7 0 0

Figure 7. E1 of the spectral sequence for computing KO∗(S1,w1). The sequence repeats with
vertical period 8. Arrows represent multiplication by 2, so in E2 = E∞, each Z in the p = 1
column is replaced by a Z2, and each Z in the p =0 column dies.

As an example of (35), we can compute KO j (S1,w1) for the non-trivial element
w1 ∈ H1(S1,Z2)∼=Z2. Indeed, we have

KO j (S1,w1)∼=KO j+1(V )∼= ˜KO
j+1

(RP
2),

where V is the non-trivial real line bundle over S1, that is, the Möbius strip.
And the KO-groups of RP

2 were computed in [18, Theorem 1]. The result is
given in Table III. Here the surprise is the existence of 4-torsion in ˜KO

0
(RP

2) ∼=
KO−1(S1,w1).

The groups in Table III can once again be explained by a twisted Atiyah–
Hirzebruch spectral sequence with starting point H p(S1,KOq), but this time the
only differential is d1, which is multiplication by 2 in the places indicated by the
arrows in Figure 7.

The calculation of KO∗(S1,w1) also enables us to compute KO∗(T 2,w1) for any
choice of a twisting w1 ∈ H1(T 2,Z2). The reason is that for any such w1 �= 0, we
can choose a topological splitting T 2 = S1 × S1 with respect to which w1 lives only
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on the first factor, so that (T 2,w1)∼= (S1,w1)× (S1,0). It follows that KO j (T 2,w1)

splits as KO j (S1,w1)⊕KO j−1(S1,w1).
The calculation of KO∗(S1,w1) also enables us to compute KOα(T 2) in the

sense of Donovan–Karoubi for a twist α with both w1(α) and w2(α) nonzero.
Indeed, let V again be the nontrivial real line bundle over S1, that is, the Möbius
strip. Then V × V (the Cartesian product) is a rank-two real vector bundle over
S1 × S1 = T 2. If a and b are the elements of H1(T 2,Z2) dual to the two circles
in the decomposition T 2 = S1 × S1, then V × V can be identified with the Whitney
sum La ⊕ Lb, since the fiber of V × V over (x, y)∈ S1 × S1 is La(x, y)× Lb(x, y)=
La(x, y) ⊕ Lb(x, y). Note that w1(La ⊕ Lb) = a + b and w2(La ⊕ Lb) = ab, a gen-
erator of H2(T 2,Z2). So KO j (T 2,a + b,ab)= KO j+2(V × V ). The same holds for
KO j (T 2,w1,w2) for any nonzero w1, w2 since there is a self-homeomorphism of
T 2 sending w1 to a +b. Finally we can compute KO j (T 2,w1,w2)∼=KO j+2(V × V )

using the fact that V has a closed subspace homeomorphic to R, with (V � R)∼=
R

2, so that we get from the pair (V × V, V ×R) an exact sequence

· · ·→KO j (V )→KO j (V )→KO j (T 2,w1,w2)→KO j+1(V )→·· · .

In particular, KO j (T 2,w1,w2) is a 2-primary torsion group for all j .
Finally, we mention still another application of the Thom isomorphism (35),

namely the completion of the calculation of KO∗(T 2, w̃2) when the twist is nonzero.
Observe that the nonzero element w̃2 ∈ H2(T 2,Z2) is pulled back from the genera-
tor of H2(S2,Z2) under a map T 2 → S2 of degree one, so to compute KO∗(T 2, w̃2),
we can begin by computing KO∗(S2, w̃2). The generator of H2(S2,Z2) is w̃2 for
the underlying real 2-plane bundle of the Hopf (complex) line bundle over S2 ∼=
CP

1, for which the total space is CP
2
� {pt}. So by (35), KO− j (S2, w̃2)∼= ˜KO

− j+2

(CP
2), which is computed in [18, Theorem 2]. (The degree 0 part was computed

earlier in [36, Section 3.6].) Rather surprisingly, ˜KO
∗
(CP

2) is entirely torsion-free,
with copies of Z in all even degrees and nothing in odd degrees. Thus KO−2(S2, w̃2)∼=KO−2(T 2, w̃2)∼= ˜KO

0
(CP

2)∼=Z, not Z⊕Z2.
We should mention that even though we did not need it for studying D-brane

charges in orientifold theories on 2-tori, in higher dimensional situations one might
be forced to consider all the various kinds of twists of KR (sign choice, H1, and
H2) simultaneously. The general framework for such twists is included in the work
of Moutuou [30,32].

6. Conclusion

KR-theory with a sign choice (Definition 1) allows us to give a mathematical
description of D-brane charges for all orientifolds including ones with both O+-
and O−-planes. The additional data of a sign choice is required to distinguish
between topologically equivalent spaces with different O-plane content. As we saw,
KR-theory with a sign choice gives a purely mathematical description of the D-
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branes in the type ˜IA theory. This calculation provides further evidence for T -
duality rather than requiring its assumption to determine the brane charges.

In addition to providing new tests of T -duality, KR-theory with a sign choice
predicts the D-brane content in theories that could not be computed previously
(which in turn can aid in the discovery of unknown dualities). We are not aware of
the D-brane content for the type I theory without vector structure or either of its
T -dual theories appearing anywhere in the literature. This extends the usefulness of
K-theory as a first check for D-brane content to orientifold theories. As noted pre-
viously, the K-theoretic description cannot determine the sources for the D-brane
charge, only that there is a stable charge. Determining the stable charges using KR-
theory with a sign choice can greatly constrain what sources need to be tested for
stability at different points in the moduli space using other methods (such as con-
sidering the boundary state description). Since boundary state descriptions can be
quite difficult for orientifolds, any constraints are very useful, and as we show in
[15], most of the sources can often be determined from the KR-theory using what
we know about O±-planes.

As noted in the introduction, one of our original motivations for a detailed
analysis of T -duality via orientifold plane charges in KR-theory was the special
case of c=3 Gepner models as studied in [6]. The authors of that paper used sim-
ple current techniques in CFT to construct the charges and tensions of Calabi–
Yau orientifold planes. Using twisted KR-theory with a sign choice to classify the
brane charges does not depend on the specific structure of c = 3 Gepner mod-
els, nor even on a rational conformal field theoretic description. In [17] a twisted
equivariant K-theory description of the D-brane charge content for WZW models
is provided. Current work in progress attempts to generalize this work by estab-
lishing an isomorphism between a suitable (real) variant of twisted equivariant K-
theory, sufficient to capture orientifold charge content, and our KR-theory with
sign choices for Gepner models. Such an isomorphism would allow the computa-
tion of twisted KR-theory with a sign choice for complicated Calabi–Yau mani-
folds through a simpler computation at the Gepner point.

KR-theory with a sign choice provides a universal K-theory for classifying D-
brane charges. In addition to being able to describe new orientifold cases it reduces
to all other known classifications on smooth manifolds when using the correct
involution. This unifies the K-theoretic classification of D-brane charges by not
requiring one to change K-theories for different string theories. While its definition
was motivated by a problem in physics, the last point exemplifies why KR-theory
with a sign choice is also interesting mathematically.

KR-theory with a sign choice provides a framework for studying the underly-
ing structure of K-theory. It was very surprising to see that KSC-theory (the KR-
theory of S0,2) can be described as a twisting of the KR-theory of S1,1. While we
have explicitly shown that twisted KR-theory with a sign choice satisfies all possi-
ble T -duality relationships for spaces where the compact dimensions are a circle or
a 2-torus, in this paper we did not look at why there are isomorphisms between the
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twisted KR-theories of T -dual theories. The purpose of this paper was simply to
set up the necessary topology to correctly classify brane charges. In [15] we explore
why T -duality gives isomorphisms of twisted KR-theory with a sign choice. The
extra data that we needed to include is contained in the geometry of T -dual the-
ories.

We have already seen how considering the geometry is important. The complex
structure constrains what involutions are possible on a 2-torus. Since the physi-
cal theory depends on the involution, the geometry of the torus constrains the
allowable string theories. Another well known example that played a role in our
analysis is the B-field, which is determined by the Kähler modulus. We were also
compelled to explore more exotic twists in order to account for the T -duality of
the type I theory without vector structure. Without the physical motivation we
might not have considered looking at such additional mathematical structures. We
have shown how such twistings must behave via an Atiyah–Hirzebruch spectral
sequence. In [15] we give a more geometric reason for why such twistings must be
included.

By exploring the underlying topology and geometry we were able to gain phys-
ical information and new evidence for hypothesized dualities. Additionally, this
work shows how we can go in the opposite direction and use the additional struc-
ture of physics to gain insight into the underlying geometry and topology. This
gives us a greater understanding of the interplay between the three structures:
topology, geometry, and physics.
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