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One may construct a large class of Calabi–Yau varieties by tak-
ing anticanonical hypersurfaces in toric varieties obtained from re-
flexive polytopes. If the intersection of a reflexive polytope with a
hyperplane through the origin yields a lower-dimensional reflexive
polytope, then the corresponding Calabi–Yau varieties are fibered
by lower-dimensional Calabi–Yau varieties. A top generalizes the
idea of splitting a reflexive polytope into two pieces. In contrast to
the classification of reflexive polytopes, there are infinite families
of equivalence classes of tops. Tops may be used to describe either
fibrations or degenerations of Calabi–Yau varieties. We give a simple
combinatorial condition on tops that produces semistable degenera-
tions of K3 surfaces and, when appropriate smoothness conditions are
met, semistable degenerations of Calabi–Yau threefolds. Our method
is constructive: given a fixed reflexive polytope that will lie on the
boundary of the top, we describe an algorithm for constructing tops
that yields semistable degenerations of the corresponding hypersur-
faces. The properties of each degeneration may be computed directly
from the combinatorial structure of the top.

1. INTRODUCTION

1.1. The Combinatorics of Tops

Let N ∼= Zk be a lattice, with dual lattice M . We write points
in N as (n1, . . . , nk), and points in M as (m1, . . . , mk). We
write points in the associated real vector spaces NR and MR

as x = (x1, . . . , xk) and y = (y1, . . . , yk), respectively.
We will need to use the data of a triangulation of a lattice

polytope.

Definition 1.1. LetA be a finite set of points in a d-dimensional
real vector space. A triangulation of A is a collection T of
d-dimensional simplices such that the vertices of the simplices
are points in A, the union of the simplices is the convex hull
of A, and each pair of simplices in the collection intersects in
a common (possibly empty) face. We refer to the faces of the
simplices in T as faces of the triangulation T . If � is a lattice
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polytope, then we refer to a triangulation of the set of lattice
points in � as a triangulation of the lattice polytope �.

We may use the duality between N and M to construct new
polytopes.

Definition 1.2. Let � be a lattice polytope in NR that contains
0. The polar polytope �◦ is the polytope in MR given by

{
(y1, . . . , yk) : (n1, . . . , nk) · (y1, . . . , yk) ≥ −1

for all (n1, . . . , nk) ∈ �
}
.

Definition 1.3. We say that a lattice polytope � is reflexive if
its polar polytope �◦ is also a lattice polytope.

One may construct a large class of Calabi–Yau varieties by
taking anticanonical hypersurfaces in toric varieties obtained
from reflexive polytopes. The polar duality relationship be-
tween pairs of reflexive polytopes induces the mirror relation-
ship on the corresponding Calabi–Yau varieties. To understand
the Calabi–Yau varieties arising in this fashion, one must clas-
sify the corresponding reflexive polytopes. There is one one-
dimensional reflexive polytope, and there are 16 isomorphism
classes of two-dimensional reflexive polytopes. The physicists
Kreuzer and Skarke showed that there are 4319 classes of
three-dimensional reflexive polytopes and 473 800 776 classes
of four-dimensional reflexive polytopes.

In dimensions 5 and above, the classification of reflexive
polytopes is an open problem. However, an algorithm for con-
structing and classifying a restricted class of reflexive poly-
topes called smooth Fano polytopes was given in [Øbro 07].
We say that a reflexive polytope is a smooth Fano polytope if
the vertices of every facet of the polytope form a Z-basis for
N . Note that every facet of a smooth Fano polytope has exactly
k vertices.

If the intersection of a reflexive polytope with a hyper-
plane through the origin yields a lower-dimensional reflex-
ive polytope, then the corresponding Calabi–Yau varieties are
fibered by lower-dimensional Calabi–Yau varieties. This rela-
tionship has been studied extensively in the physics literature,
and more recently in [Grassi and Perduca 12]. The concept of
a reflexive polytope sliced by a hyperplane was generalized in
[Candelas and Font 98] to the idea of a top.

Definition 1.4. A k-dimensional top is a lattice polytope in
N that has one facet that contains the origin and consists of a
(k − 1)-dimensional reflexive polytope, and whose other facets
are given by equations of the form

(x1, . . . , xk) · (n1, . . . , nk) = −1.

FIGURE 1. A two-dimensional top.

Here (n1, . . . , nk) is a point in the lattice N . We refer to the
facet containing the origin as the reflexive boundary.

By applying an appropriate change of coordinates, we may
assume that the reflexive boundary corresponds to the points
of the top satisfying

(n1, . . . , nk) · (0, . . . , 0, 1) = 0.

In this case, the reflexive boundary is simply the intersection
of � with the hyperplane xk = 0. We choose the convention
that all tops are contained in the half-space xk ≥ 0. A two-
dimensional top is shown in Figure 1.

FIGURE 2. Polar dual of the top in Figure 1.
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The polar dual �◦ of � is an unbounded lattice polyhe-
dron; in our choice of coordinates, we may assume that �◦

extends infinitely in the yk-direction. A dual top is illustrated
in Figure 2. The projection map (y1, . . . , yk) �→ (y1, . . . , yk−1)
maps �◦ onto a (k − 1)-dimensional reflexive polytope, which
we call the dual reflexive boundary. As the name implies, the
dual reflexive boundary of a dual top is the polar dual of the
reflexive boundary of the corresponding top.

Definition 1.5. Let � be a top. The summit of � is the inter-
section of � with the half-space xk ≥ 1.

By definition, all of the lattice points of a top lie on either
the reflexive boundary or the summit.

Three-dimensional tops were classified in [Bouchard and
Skarke 03]. The authors observed that tops may arise in infi-
nite families, with arbitrarily large numbers of lattice points.
This situation contrasts with the classification of reflexive poly-
topes: up to changes of coordinates preserving the lattice struc-
ture, there is only a finite number of reflexive polytopes in a
given dimension. It follows that there exist tops in every di-
mension that cannot be completed to reflexive polytopes. We
illustrate in Figure 3 a two-dimensional top that cannot be com-
bined with another top to form a convex reflexive polygon.

1.2. Tops and Toric Hypersurfaces

Taking the fan � over the faces of a top defines a toric vari-
ety V�; the projection map (x1, . . . , xk) �→ xk induces a mor-
phism from V� to C . Anticanonical hypersurfaces in V� are
open (k − 1)-dimensional Calabi–Yau varieties; the morphism
V� → C induces a map from each of these varieties to C .
Generically, the fiber of this projection map will be a compact
(k − 2)-dimensional Calabi–Yau variety described by the re-
flexive boundary of the top. We may resolve singularities in
the generic fiber by choosing a refinement R of � that restricts

to a maximal projective simplicial fan on the reflexive bound-
ary; such a fan will include a one-dimensional cone for every
nonzero lattice point of the reflexive boundary polytope. If
k − 2 ≤ 3 (so our top is at most five-dimensional), such a fan
will yield smooth generic fibers. We may resolve singularities
in our open Calabi–Yau varieties by choosing a maximal pro-
jective simplicial refinement � of �; if k − 1 ≤ 3 (so our top is
at most four-dimensional), the open Calabi–Yau varieties will
be generically smooth, though the ambient toric variety may
have orbifold singularities. Of course, we can resolve singular-
ities in any dimension if we can find a smooth refinement of �.

Alternatively, instead of thinking of smooth anticanoni-
cal hypersurfaces as open (k − 1)-dimensional Calabi–Yau
varieties, we may view them as describing degenerations of
(k − 2)-dimensional Calabi–Yau varieties. In this view, work-
ing with the refined fan R ensures that the hypersurface de-
scribes a degeneration of smooth (k − 2)-dimensional Calabi–
Yau varieties, while taking � to be a refinement of R resolves
the singularities of the degeneration. We say that a degeneration
X → U is semistable if X is nonsingular and the fiber π−1(0)
is reduced, with nonsingular components crossing normally.

We can easily write down the map to C in homogeneous
coordinates. Suppose v1, . . . , vq generate the one-dimensional
cones in our fan. (If we are working with the fan �, these gener-
ators will be just the vertices of our top; if we are working with
�, these will correspond to all of the nonorigin lattice points
of our top.) We have corresponding homogeneous coordinates
(z1, . . . , zq ). Let hi be the kth coordinate of vi . Then the map is
given by (z1, . . . , zq ) �→ ∏q

i=1 zhi
i . In particular, the preimage

of 0 ∈ C is given just by hyperplanes of the form zi = 0, where
the corresponding generator lies in the summit of the top.

Three-dimensional tops are studied in [Bouchard and
Skarke 03] in the context of elliptic fibrations, in which the
authors describe a relationship between points in the summit
of a top and twisted Kac–Moody algebras. In many cases, one

FIGURE 3. A top that does not complete to a reflexive polytope.
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can read the Dynkin diagram of ADE type that describes the
elliptic fibration directly from the summit’s points and edges.
More recently, [Candelas et al. 12] used four-dimensional tops
obtained from slicing reflexive polytopes to describe patterns
in the possible Hodge numbers of Calabi–Yau threefolds, and
[Cicoli et al. 12] analyzed K3-fibered Calabi–Yau threefolds
obtained from slicing four-dimensional reflexive polytopes.
[Grassi and Perduca 12] analyzed a class of reflexive polytopes
for which both the polytope and its polar dual can be decom-
posed as a pair of tops. This construction produces elliptically
fibered K3 surfaces that admit semistable degenerations to a
pair of rational elliptic surfaces and can be used to study F-
theory/heterotic duality.

In the current work, we focus on the correspondence be-
tween tops and degenerations. We give a simple combinatorial
condition on tops that produces semistable degenerations of
K3 surfaces and (when appropriate smoothness conditions are
met) semistable degenerations of Calabi–Yau threefolds. Our
method is constructive: given a fixed reflexive boundary poly-
tope, we apply an algorithm for constructing tops that yields
semistable degenerations of the corresponding hypersurfaces.
The properties of each degeneration may be computed directly
from the combinatorial structure of the top.

By a theorem of [Kempf et al. 73], every degeneration may
be decomposed as a semistable degeneration followed by a
base change. Thus, the semistable case is the natural start-
ing point for any study of degenerations. On the other hand,
tops provide a concrete, constructive setting for studying more
exotic degenerations. In Proposition 3.5, for example, we de-
scribe an “exceptional” top in every dimension that generalizes
the E6 surface singularity.

2. SHORT TOPS

Definition 2.1. A short top is a top whose lattice points in the
summit are contained in the hyperplane xk = 1.

Using polar duality, we see that a top � is a short top if
and only if �◦ contains the point (0, . . . , 0,−1). The summit
of a short top � is a facet of the top if and only if the point
(0, . . . , 0,−1) is a vertex of �◦.

Theorem 2.2. Let � be a short top, and let k ≤ 5. Let R be a
maximal simplicial refinement of the fan over the faces of �. If
the nondegenerate anticanonical hypersurface X R in the toric
variety VR is smooth, then X R describes a semistable degen-
eration of smooth (k − 2)-dimensional Calabi–Yau varieties.

Proof. The fan conditions ensure that the fiber above a general
point z ∈ C is a smooth (k − 2)-dimensional Calabi–Yau va-

riety. We need to check that the fiber corresponding to 0 ∈ C
is a reduced divisor and has normal crossings. Let S be the
set of generators of one-dimensional cones of R that lie in the
summit of �. Because � is a short top, the map VR → C can
be written in homogeneous coordinates as

(z1, . . . , zq ) �→
∏
vi ∈S

zi .

Let Di be the toric divisor of VR given by zi = 0. Then the
divisor of VR corresponding to 0 ∈ C is simply D = ∑

vi ∈S Di .
This divisor is clearly reduced. It has normal crossings because
it is a sum of toric divisors and R is simplicial; since X R is
nondegenerate, its intersection with D will also be reduced
and have normal crossings.

Corollary 2.3. Every three-dimensional short top describes
a family of semistable degenerations of elliptic curves. Every
four-dimensional short top describes a family of semistable
degenerations of K3 surfaces.

Corollary 2.4. If k = 5 and R is a smooth fan, then X R de-
scribes a semistable degeneration of Calabi–Yau threefolds.

Remark 2.5. The author of [Hu 06] gives a construction for
semistable degenerations that uses a polytopal decomposi-
tion of a simple k-dimensional polytope in MR (dual to a
simplicial polytope in NR ) to describe a semistable degen-
eration of (k − 1)-dimensional anticanonical hypersurfaces.
This construction is applied in [Grassi and Perduca 12] to el-
liptically fibered K3 surfaces: in that setting, decomposing
a three-dimensional reflexive polytope in MR into two tops
glued along a common reflexive boundary yields a semistable
degeneration of K3 surfaces to a singular fiber with two com-
ponents. In contrast, our construction uses a k-dimensional top
to describe a semistable degeneration of (k − 2)-dimensional
varieties. The higher codimension allows us to work with a
larger class of polytopes: in particular, we are able to construct
semistable degenerations when the smooth fiber is defined by
a reflexive boundary polytope that is not simplicial. As we
discuss below, our construction also allows us to extract in-
formation about the singular fiber of a degeneration directly
from a polytope, rather than from a polytopal decomposition,
which allows for a straightforward analysis of degenerations
in which the singular fiber has many components.

3. CONSTRUCTING TOPS

We wish to construct tops with a given reflexive boundary
polytope �. We analyze the equivalent problem of classifying
the duals of tops with dual reflexive boundary �◦. We know
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that vertices of the dual top must project to lattice points in
the dual of the reflexive boundary. We have already chosen
coordinates for the reflexive boundary polytope. We may use
GL(k, Z) to fix the final coordinates of k − 1 lattice points of
the dual top; we will also determine the final coordinate of
a kth lattice point based on an analysis of the combinatorial
structure of our dual top.

We wish to choose final coordinates for the remaining lattice
points that will yield a dual top. We need to test two properties:
our choices must yield a convex polyhedron, and each facet of
the polyhedron must be polar dual to a lattice point in N .

By [Mehlhorn et al. 99, Theorem 6], in order to guarantee
convexity, it suffices to check a property called local convexity.

Definition 3.1. We say that a k-dimensional triangulated poly-
tope � is locally convex if for every (k − 2)-dimensional face
f of the triangulation that lies on the boundary of �, the
simplex defined by the two facets containing f is contained
in �.

Every lattice-point triangulation of the finite facets of a dual
top will yield a lattice-point triangulation of the dual reflexive
boundary �◦ on vertical projection. The regular triangulations
of a polytope are precisely those triangulations that can be
obtained by projecting the convex hull of a polytope. Thus,
we may organize our search for dual tops by fixing a regular
lattice-point triangulation of �◦ and identifying ways to lift
this regular triangulation to a dual top.

One natural way to triangulate a (k − 1)-dimensional reflex-
ive polytope is to choose a (k − 2)-dimensional triangulation
of each facet and then include the origin as the final vertex
of each (k − 1)-dimensional simplex. Because the origin is a
vertex of this triangulation, if we lift this triangulation to a lat-
tice triangulation of a dual top, the origin must lift to a lattice
point of the dual top. Because we have chosen the convention
that tops lie in the half-space xk ≥ 0, this lattice point must be
(0, . . . , 0,−1).

On the other hand, every dual of a k-dimensional short
top may be obtained from a triangulation of the bound-
ary of a (k − 1)-dimensional reflexive polytope. This fact
depends on the following lemma, which is proved in
[Bouchard and Skarke 03] for the case k = 3.

Lemma 3.2. [Bouchard and Skarke 03] If �◦ is the dual of
a short top �, then every bounded facet of �◦ contains
(0, . . . , 0,−1).

Proof. Because � is a short top, every vertex of � must have
either xk = 0 or xk = 1. The vertices of � are in one-to-one
correspondence with the facets of �◦. Vertices at xk = 0 define

Algorithm 1 An algorithm for constructing short tops.
Input: A (k − 1)-dimensional dual boundary reflexive poly-

tope �◦ and a regular triangulation T of the boundary of
�◦. Let v1, . . . , vq be the lattice points of �◦ that appear
as vertices in the triangulation T . We order the lattice
points so that vq−k, . . . , vq−1 are vertices of a facet of
T , and vq = (0, . . . , 0).

Output: A finite list of divisibility conditions and a finite
system of linear inequalities on q − k − 1 integer pa-
rameters. Together, these describe the coordinates of all
dual tops corresponding to �◦ and T , up to overall iso-
morphism.

1. Let av j be the minimum yk-value of the dual top that
projects to v j .

2. Set a(0,...,0) = −1.

3. Set avq−k = −1, . . . , avq−1 = −1.

4. Now av1 , . . . , avq−k−1 are the minimum yk-values cor-
responding to each of the remaining q − k − 1 lattice
points of �◦. We will identify values of a1, . . . , aq−k−1

that will result in a dual top.

5. For each facet f of the regular triangulation T , let
B be the (k − 1) × (k − 1) matrix whose rows con-
sist of the vertices v j1 , . . . , v jk−1 of f . Let D be the
Smith normal form of B, where D has diagonal en-
tries d1, . . . , dk−1, and write B = U DV , where U and
V are in GLk−1(Z). Let a be the integer column vector
(av j1

+ 1, . . . , av jk−1
+ 1)T . Return the k − 1 divisibility

conditions di | (U−1a)i .

6. For each (k − 2)-dimensional face e of the regular trian-
gulation T , return a linear inequality in k + 1 of the av j

that guarantees that the dual top is locally convex at a
face corresponding to e. The av j used in this inequality
correspond to the k + 1 lattice points that are vertices
of a facet of T containing e.

vertical unbounded facets of �◦. Vertices at xk = 1 define
facets of �◦ containing (0, . . . , 0,−1).

Because every bounded facet of a dual short top con-
tains (0, . . . , 0,−1), we may always find a triangulation of
the bounded facets of a dual short top that projects to a tri-
angulation of the dual reflexive boundary polytope in which
every simplex has the origin as a vertex. We may use this ob-
servation to create an algorithm for constructing short tops.
This is our Algorithm 1.
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Algorithm 1 lifts the simplices described by combining a
facet of the regular triangulation T with the origin to facets of
a triangulation of the boundary of a dual top. The divisibility
conditions are designed to ensure that the facets of the dual
top correspond to points with integer coordinates under polar
duality; the system of linear inequalities will ensure that the
constructed dual top is convex.

Lemma 3.3. Let f be a facet of a regular triangulation of the
boundary of a (k − 1)-dimensional reflexive polytope �◦, let

v j1 = (y11, . . . , y1(k−1)), . . . ,

v jk−1 = (y(k−1)1, . . . , y(k−1)(k−1))

be the vertices of f , and let B = U DV and a be as defined
in Algorithm 1. The (k − 1)-dimensional simplex in MR deter-
mined by the set

S = {(y11, . . . , y1(k−1), a1), . . . ,

(y(k−1)1, . . . , y(k−1)(k−1), ak−1), (0, . . . , 0,−1)}
corresponds to a lattice point in N under polar duality if and
only if di | (U−1a)i .

Proof. We wish to find the equation of the hyperplane de-
termined by S. We may do so by finding x ∈ NR such that
x · (v j − (0, . . . , 0,−1)) = 0. This is equivalent to finding the
null space of the augmented matrix

A =

⎡
⎢⎢⎣

a1 + 1

B
...

ak−1 + 1

⎤
⎥⎥⎦ .

Applying Gauss–Jordan elimination, we find that the null space
is generated by the vector

x =

⎡
⎢⎢⎢⎢⎢⎣

B−1

⎛
⎜⎜⎝

a1 + 1
...

ak−1 + 1

⎞
⎟⎟⎠

1

⎤
⎥⎥⎥⎥⎥⎦

.

The equation of our hyperplane is given by x · y = x ·
(0, . . . , 0,−1), or equivalently, x · y = −1. Thus, x is pre-
cisely the point in NR dual to our hyperplane, and we see that
x will lie in N if and only if

B−1

⎛
⎜⎜⎝

a1 + 1
...

ak−1 + 1

⎞
⎟⎟⎠

has integer entries. But this will hold if and only if di | (U−1a)i ,
because U and V are in GLk−1(Z).

We now describe the process of checking local convexity.
Let e be a (k − 2)-dimensional face of the triangulation T , and
let v1, . . . , vk−2 be the vertices of e. The face e is contained
in precisely two facets f1 and f2 of T ; let vk−1 and vk be the
remaining vertices of these facets. Checking local convexity
at the lift of e involves checking whether the simplex defined
by the lifts of f1 and f2 is contained in our candidate dual
top. We may test containment by testing the orientation of the
simplex. In turn, we compute the orientation of this simplex
by checking the sign of the determinant

∣∣∣∣∣∣∣∣

v11 · · · v1(k−1) av1 1
...

...
...

...
...

vk1 · · · vk(k−1) avk 1

∣∣∣∣∣∣∣∣
.

By expanding along the kth column, we see that this determi-
nant corresponds to a linear condition in the integer parameters
av j .

Theorem 3.4. For a fixed reflexive boundary polytope �◦ and
regular triangulation T of the boundary of �◦, there exist
infinitely many choices of the parameters av1 , . . . , avq−k−1 that
satisfy the divisibility conditions and system of linear inequal-
ities produced by Algorithm 1.

Proof. Because we have a finite number of divisibility condi-
tions, there is an infinite number of choices for each integer
av j satisfying all of the divisibility conditions. In particular,
note that av j = −1 will always satisfy all of the divisibility
conditions. Now suppose we set av j = −1 for all j > 1. In
this setting, the only nontrivial convexity conditions are given
by the sign of a determinant of the form

∣∣∣∣∣∣∣∣∣∣

v11 · · · v1(k−1) av1 1

w21 · · · w2(k−1) −1 1
...

...
...

...
...

wk1 · · · wk(k−1) −1 1

∣∣∣∣∣∣∣∣∣∣
.

These determinants will change sign when av1 = −1; because
we have chosen the convention that our dual tops extend in the
positive xk-direction, we may reduce to the single inequality
av1 ≥ −1.

To classify all polar duals of short tops arising from a fixed
dual reflexive boundary, we must enumerate all regular tri-
angulations of the boundary and then eliminate the duplicate
dual tops that arise from more than one triangulation. For
example, every regular triangulation of the boundary will pro-
duce the dual top that has all vertices at yk = −1. In gen-
eral, enumerating the regular triangulations of the boundary
of a reflexive polytope is highly computationally complex.
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However, for many well-known families of reflexive polytopes,
describing regular triangulations is much simpler. As an ex-
ample, we classify all k-dimensional tops with the standard
(k − 1)-dimensional simplex as dual reflexive boundary.

Proposition 3.5. (The standard simplex.) Let �◦

be the (k − 1)-dimensional simplex with vertices at
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1), and (−1, . . . ,−1), and let �

be the polar dual of �◦. Then every top with base � is equiv-
alent to one of the following:

1. A member of the one-parameter family of short tops with
summit vertices given by

(0, . . . , 0, 1), (a + 1, 0, . . . , 0, 1), (0, a + 1, . . . , 0, 1),

. . . , (0, 0, . . . , a + 1, 1),

where a ≥ −1 is an integer.

2. The top with a single summit vertex given by
(−1,−1, . . . ,−1, k).

Proof. There is only one lattice-point triangulation of the
boundary of �◦. Applying Algorithm 1, we obtain the family
of short tops listed above.

On the other hand, there is only one lattice-point triangula-
tion of �◦ that does not use the origin, namely the triangulation
consisting of a single simplex. There are k vertices of �◦, and
we have k degrees of freedom, so every dual top that does not
have the point below the origin as a lattice point must be equiv-
alent to every other dual top with the same property. We choose
the dual top with the following vertices as our canonical form:

(1, . . . , 0, 0), (0, 1, . . . , 0, 0), . . . , (0, 0, . . . , 1, 0),

(−1,−1, . . . ,−1,−1).

This dual top has a single bounded facet, which corresponds
under polar duality to the vertex (−1,−1, . . . ,−1, k) of the
top.

Remark 3.6. In three dimensions, the second case in
Proposition 3.5 corresponds to an E6 singularity; see
[Bouchard and Skarke 03].

Because every facet of a k-dimensional smooth Fano poly-
tope contains precisely k lattice points, the boundary of every
smooth Fano polytope admits a unique lattice triangulation.
We implemented a procedure in Sage to compute all isomor-
phism classes of short tops with dual reflexive base �◦ a
3-dimensional smooth Fano polytope. For a smooth Fano poly-
tope with m vertices, we obtain an infinite family of short tops
with m − 3 parameters. (Note that the fact that smooth Fano
polytopes are smooth ensures that the divisibility conditions
on our parameters will be trivial.)

FIGURE 4. The Fano polytope �◦.

Example 3.7. Let �◦ be the smooth Fano polytope with ver-
tices at (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), and (0,−1,−1).
We illustrate �◦ and its polar dual � in Figures 4 and 5.

The dual top �◦ has two free integer parameters, a1 and a2.
To make �◦ convex, we require a1 ≥ −1 and a2 ≥ −1. We
illustrate the summits of the resulting tops for the parameter
choices a1 = 0, a2 = 4 and a1 = 4, a2 = 0 in Figures 6 and 7.

FIGURE 5. Polar dual polytope �.
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FIGURE 6. Summit of the short top for a1 = 0 and a2 = 4.

FIGURE 7. Summit of the short top for a1 = 4 and a2 = 0.

4. SEMISTABLE DEGENERATIONS OF K3
SURFACES

Let � be a maximal simplicial fan that refines R. Then the
map X� → X R resolves the singularities of the degeneration.
Because � is maximal, every lattice point in the summit of �

determines a toric divisor in the preimage of 0 ∈ C . Divisors
corresponding to lattice points strictly in the interior of facets
of � will not intersect X� .

We say that a toric divisor splits if its intersection with
X� has more than one component. Whether a toric divisor
splits is determined by the structure of � and �◦: the divisor
corresponding to a lattice point splits if that lattice point lies
in the relative interior of a (k − 2)-face θ of � and the dual
face θ◦ also contains lattice points in its interior. Note that θ◦

will be a one-face of �◦, also known as an edge. When �

is a short top, the dual to any face θ intersecting the summit
of � will contain the point (0, . . . , 0,−1). In order to have
splitting, (0, . . . , 0,−1) must lie in the interior of an edge of
�◦. Because lattice points of the dual top project vertically to
lattice points of the dual reflexive boundary, such an edge will
have precisely three lattice points. It follows from standard
results on Calabi–Yau hypersurfaces in toric varieties (see, for
example, [Cox and Katz 99]) that when a toric divisor in a
short top splits, it will yield precisely two components.

Now let � be a four-dimensional short top. The nonde-
generate anticanonical hypersurfaces X R describe semistable
degenerations of K3 surfaces by Theorem 2.2. We can classify
four-dimensional short tops based on the position of the point
w = (0, . . . , 0,−1) in the dual top. We have the following
cases:

1. The point w lies in the interior of a facet of �◦.

2. The point w lies in the interior of a two-face of �◦.

3. (a) The point w lies in the interior of an edge of �◦.

(b) The point w is a vertex of �◦.

Under polar duality, these cases correspond to the following
descriptions of the summit of the top:

1. The summit of � consists of a single lattice point.

2. The summit is an edge of �.

3. (a) The summit is a two-face of �.

(b) The summit is a facet of �, and therefore a three-
dimensional lattice polytope.

We wish to understand the relationship between the com-
binatorial structure of the summit of the short top and the
semistable degeneration of K3 surfaces described by the short
top. Semistable degenerations of K3 surfaces have been clas-
sified:

Theorem 4.1. [Kulikov 77, Persson 77, Friedman and
Morrison 83] Let π : X → D be a semistable degeneration
of K3 surfaces with trivial canonical bundle ωX

∼= OX . Let
X0 = π−1(0), and assume that all components of X0 are
Kähler. Then precisely one of the following holds:

1. X0 is a smooth K3 surface.
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2. X0 is a chain of elliptic ruled components with rational
surfaces at each end.

3. X0 consists of rational surfaces meeting along rational
curves. The dual graph of X0 has the sphere as topological
support.

Semistable degenerations of K3 surfaces determined by
tops satisfy the hypotheses of Theorem 4.1. Combining the
combinatorial data encoded by a short top with the results of
Theorem 4.1 yields the following classification:

Proposition 4.2. Let � be a four-dimensional short top, and
let T be a triangulation of the boundary of � induced by a
maximal simplicial fan �. Then � determines a semistable
degeneration of K3 surfaces that falls into one of the following
cases:

1. If the summit of � consists of a single lattice point, then X0

is a smooth K3 surface.

2. If the summit is an edge of �, then X0 is a chain of elliptic
ruled components with rational surfaces at each end. Each
component corresponds to a lattice point in the summit; in
particular, the two vertices of the summit correspond to the
two rational surfaces at the ends of the chain.

3. (a) If the summit is a two-face F of �, then X0 consists
of rational surfaces meeting along rational curves. The
lattice points on the relative boundary of F correspond
to a single component of X0. Each lattice point in the
relative interior of F corresponds to two components
of X0. The dual graph � of X0 has the sphere as topo-
logical support. There is one edge � for each edge in T
connecting points on the relative boundary of F, and
there are two edges in � for each edge in the triangu-
lation of F induced by T that has an endpoint in the
relative interior of F.

(b) If the summit is a three-dimensional lattice polytope
P, then X0 consists of rational surfaces meeting along
rational curves. The vertices of the dual graph � of X0

are in one-to-one correspondence with the lattice points
of the boundary of P, and the edges of � are given by
the triangulation of the boundary of P induced by T .

Proof. If the summit of � consists of a single lattice point,
then X0 has a single component, and we are in Case 1 of
Theorem 4.1.

If the summit is an edge of �, then each lattice point in
the summit corresponds to a single component of X0, because
the toric divisors described by the lattice points do not split.
Divisors have nontrivial intersection if and only if the cor-
responding lattice points are connected by an edge in T . It

follows that X0 is a chain of surfaces, so we are in Case 2 of
Theorem 4.1.

If the summit is a two-face F of �, then the point
w = (0, . . . , 0,−1) lies in the interior of an edge of �◦.
In this case, toric divisors corresponding to lattice points
in the relative interior of F will split into two components,
thereby yielding two components of X0. The toric divisors
corresponding to lattice points on the relative boundary of F
will not split. An edge in T that connects two lattice points on
the relative boundary of F yields an edge in the dual graph
� of X0, because the corresponding pairs of divisors have
nontrivial intersection. We may analyze intersections for split
divisors following the argument in [Rohsiepe 04]. We find that
an edge in T between a lattice point on the boundary of F and
an interior lattice point of F will yield two edges in �, one for
each component of X0 obtained from the interior lattice point.
An edge in T connecting two interior lattice points of F will
also yield two edges in �, one connecting the first component
obtained from each lattice point and one connecting the sec-
ond component obtained from each lattice point. Because X0

consists of neither a single component nor a chain of surfaces,
we are in Case 3 of Theorem 4.1.

If the summit is a three-dimensional lattice polytope P ,
then splitting cannot occur. Every lattice point on the relative
boundary of P will yield a component of X0; the lattice points
in the relative interior of P correspond to toric divisors that do
not intersect X0. The edges of � are given by the triangulation
of the boundary of P induced by T . Because X0 consists of
neither a single component nor a chain of surfaces, we are in
Case 3 of Theorem 4.1.

Given a fixed three-dimensional reflexive boundary poly-
tope �, we can always construct a short top falling into
Case 1 of Proposition 4.2 by adding a single summit point at
(0, 0, 0, 1), and we can always construct short tops falling into
Case 3(b) by choosing a triangulation of the facets of the dual
reflexive boundary polytope �◦ and applying Algorithm 1.
Whether Cases 2 and 3(a) arise depends on the combinatorial
structure of �◦.

Lemma 4.3. A three-dimensional reflexive polytope � can be
the boundary of a short top � falling into Case 2 of Propo-
sition 4.2 if and only if the polar dual �◦ is isomorphic to
a pair of three-dimensional tops glued along a common two-
dimensional reflexive boundary polytope.

Proof. The short top � falls into Case 2 of Proposition 4.2
if the point w = (0, . . . , 0,−1) lies in the interior of a two-
face F of �◦. The vertical projection of F onto �◦ is the
intersection of a hyperplane H containing the origin with �◦.
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The lattice polygon H ∩ �◦ is a two-dimensional reflexive
polygon that divides �◦ into two pieces A and B, each iso-
morphic to a top. Conversely, given such a subdivision of �◦,
we can construct a dual short top �◦ corresponding to Case 2
by choosing a lattice-point triangulation of �◦ consistent with
the subdivision, assigning a minimum xk-value of −1 to all
of the lattice points in A, and choosing xk-values for points
in B but not A that are at least 0 and are consistent with
convexity.

Ten of the 4319 classes of three-dimensional reflexive poly-
topes do not satisfy the condition given in Lemma 4.3. In the
database given in Sage, the dual polytopes �◦ have indices
0 (the standard simplex), 2, 5, 7, 16, 26, 31, 37, 40, and 53.
These polytopes cannot be used to construct degenerations of
K3 surfaces for which X0 is a chain of elliptic ruled compo-
nents.

Lemma 4.4. A three-dimensional reflexive polytope � can be
the boundary of a short top � falling into Case 3(a) of Propo-
sition 4.2 if and only if the polar dual �◦ admits a polytopal
decomposition such that the vertices of each polytope in the
decomposition are lattice points and each three-dimensional
polytope δ in the decomposition contains a fixed edge e with
the origin in its interior.

Proof. The short top � falls into Case 3(a) of Proposition 4.2
if the point w = (0, . . . , 0,−1) lies in the interior of an edge E
of �◦. Every bounded facet of �◦ contains E by Lemma 3.2.
The vertical projection of the bounded facets yields the desired
polytopal decomposition. Conversely, given such a decomposi-
tion of �◦, we can construct a dual short top �◦ corresponding
to Case 3(a) by assigning a minimum xk-value of −1 to the
lattice points in e and choosing xk-values for the other lattice
points that lift the polytopal decomposition to facets and are
consistent with convexity.

Enumerating the polytopal decompositions of a given lattice
polytope is a computationally complex task. We may describe
necessary and sufficient conditions for Case 3(a) that are less
computationally intensive to check by focusing on triangula-
tions rather than arbitrary polytopal decompositions.

Lemma 4.5. If a three-dimensional reflexive polytope � can
be the boundary of a short top � falling into Case 3(a) of
Proposition 4.2, then the origin lies in the interior of a line
segment e between two lattice points of �◦. If �◦ admits a
lattice-point triangulation such that every three-dimensional
simplex in the triangulation contains a line segment e be-
tween two lattice points on the boundary of �◦ with the origin
as an interior point, then we can construct a short top �

falling into Case 3(a) of Proposition 4.2 with � as reflexive
boundary.

Proof. A short top � falls into Case 3(a) of Proposition 4.2
if the point w = (0, . . . , 0,−1) lies in the interior of an edge
of �◦. The vertical projection of this edge onto �◦ is a line
segment between two lattice points on the boundary of �◦.
On the other hand, given a lattice-point triangulation such that
every three-dimensional simplex in the triangulation contains
a line segment e between two lattice points on the boundary
of �◦ with the origin as an interior point, we can construct
a dual short top �◦ such that the finite facets of the dual top
are in one-to-one correspondence with the three-dimensional
simplices in our triangulation by applying Algorithm 1. Such
a dual top will correspond to Case 3(a).

Thirteen of the 4319 classes of three-dimensional reflexive
polytopes do not satisfy the necessary condition of Lemma 4.5.
In the database given in Sage, the dual polytopes �◦ for which
the origin does not lie in the interior of a line segment between
two lattice points have indices 0, 1, 3, 6, 13, 22, 33, 54, 68, 87,
90, 98, and 118.

As an example of the application of Proposition 4.2, we
classify all short tops for which the dual reflexive boundary
�◦ is the octahedron with vertices (±1, 0, 0), (0,±1, 0), and
(0, 0,±1).

Example 4.6. Let � be the cube with vertices of the form
(±1,±1,±1). Then every short top with reflexive boundary
� is isomorphic to a short top � that falls into one of the
following cases:

1. The summit of � consists of the point (0, 0, 0, 1).

2. The summit is an edge with vertices (0, 0, 0, 1) and
(0, 0, c + 1, 1), where c is an integer and c > −1.

3. (a) The summit is a quadrilateral with vertices
(0, 0, 0, 1), (0, b + 1, 0, 1), (0, 0, c + 1, 1), and
(0, b + 1, c + 1, 1), where the integer parameters
b and c satisfy b > −1, c > −1.

(b) The summit is a three-dimensional rectangu-
lar parallelepiped with vertices (0, 0, 0, 1), (a +
1, 0, 0, 1), (0, b + 1, 0, 1), (0, 0, c + 1, 1), (a +
1, b + 1, 0, 1), (a + 1, 0, c + 1, 1), (0, b + 1, c +
1, 1), and (a + 1, b + 1, c + 1, 1), where the inte-
ger parameters b and c satisfy a > −1, b > −1,
and c > −1.

Proof. If the dual top �◦ has a single finite facet at x4 = −1,
we obtain a summit of � with the single point (0, 0, 0, 1).
Because �◦ is a smooth Fano polytope, there is a unique lattice-
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point triangulation of the facets of �◦, so we may obtain all
smooth tops falling into Case 3(b) of Proposition 4.2 (up to
isomorphism) by applying Algorithm 1.

We may divide �◦ into two pieces isomorphic to tops by
splitting it into the points satisfying x3 ≥ 0 and the points
satisfying x3 ≤ 0. Up to isomorphism, this is the unique such
division. We apply Lemma 4.3 to obtain a family of smooth
tops satisfying Case 2 of Proposition 4.2.

There is a lattice-point triangulation of �◦ that consists of
four simplices with the edge between (1, 0, 0) and (−1, 0, 0)
as common intersection. Up to isomorphism, this is the unique
lattice-point triangulation of �◦ for which the origin is interior
to an edge of every simplex. We apply Lemma 4.5 to obtain a
family of smooth tops satisfying Case 3(a) of Proposition 4.2.

5. SEMISTABLE DEGENERATIONS OF
CALABI–YAU THREEFOLDS

When a five-dimensional short top defines a semistable de-
generation of Calabi–Yau threefolds, we may use the summit
of the short top to give a combinatorial description of the
degeneration, in analogy to Proposition 4.2.

Proposition 5.1. Let � be a five-dimensional short top, and
let T be a triangulation of the boundary of � induced by
a maximal simplicial fan �. Suppose X� is smooth. Then �

determines a semistable degeneration of Calabi–Yau threefolds
that falls into one of the following cases:

1. If the summit of � consists of a single lattice point, then X0

is a smooth Calabi–Yau threefold.

2. If the summit is an edge of � containing 
 lattice points,
then X0 is a chain of 
 components.

3. If the summit is a two-face F of �, then the dual graph �

of X0 has a disk as topological support. The vertices of the
dual graph � of X0 are in one-to-one correspondence with
the lattice points of F, and the edges of � are given by the
triangulation of the boundary of F induced by T .

4. (a) If the summit is a three-face G of �, then the lattice
points on the relative boundary of G correspond to
a single component of X0. Each lattice point in the
relative interior of G corresponds to two components
of X0. There is one edge in the dual graph � of X0

for each edge in T connecting points on the relative
boundary of F, and there are two edges in � for each
edge in the triangulation of F induced by T that has
an endpoint in the relative interior of F.

(b) If the summit is a four-dimensional lattice polytope
P, then the dual graph � of X0 has the three-sphere as
topological support. The vertices of � are in one-to-one

correspondence with the lattice points of the boundary
of P, and the edges of � are given by the triangulation
of the boundary of P induced by T .

We do not have a complete classification of semistable
degenerations of Calabi–Yau threefolds analogous to Theo-
rem 4.1. However, we may obtain a rough classification by an-
alyzing the monodromy of the degeneration. Let π : X → D
be a degeneration, and let Xt be a fixed smooth fiber. The
restriction of π to D − {0} induces an action of the funda-
mental group π1(D − {0}) ∼= Z on the cohomology groups
H m(Xt ). The Picard–Lefschetz transformation is the map
T : H m(Xt ) → H m(Xt ) induced by the canonical generator
of π1(D − {0}).

Theorem 5.2. (Monodromy theorem.) [Landman 73] If π :
X → D is a semistable degeneration, then T is unipotent, with
index of unipotency at most m. Thus, (T − I )m+1 = 0, where
I is the identity.

We may define a nilpotent operator N by the finite sum

N = log T = (T − I ) − 1

2
(T − I )2 + 1

3
(T − I )2 − · · · .

The index of unipotency of T is the same as the index of
nilpotency of N . One may use N to define an exact sequence
known as the Clemens–Schmid exact sequence; an expository
treatment may be found in [Morrison 84].

Lemma 5.3. [Morrison 84] Let π : X → D be a semistable
degeneration, and let � be the dual graph of the singular
fiber. Then N m+1 : H m(Xt ) → H m(Xt ) is always 0, and N m :
H m(Xt ) → H m(Xt ) is 0 if and only if H m(|�|) = 0.

By combining Lemma 5.3 with the classification in Propo-
sition 5.1, we may characterize semistable degenerations ob-
tained from short tops that yield the maximum index of nilpo-
tency:

Corollary 5.4. Let � be a five-dimensional short top that
determines a semistable degeneration of Calabi–Yau three-
folds. Then N 3 : H∗(Xt ) → H∗(Xt ) is nontrivial if and only
if the summit of � is a three-face or a four-dimensional lattice
polytope.

One is naturally led to ask whether the types of degen-
erations described in Proposition 5.1 are the only possible
semistable degenerations of Calabi–Yau threefolds:
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Question 5.5. If π : X → D is a semistable degeneration of
Calabi–Yau threefolds, is X0 always a smooth Calabi–Yau
threefold or a chain of 
 components or else described by
a dual graph that has a disk or the three-sphere as topological
support?
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