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Abstract: Every finite-dimensional unitary representation of the N -extended world line
supersymmetry without central charges may be obtained by a sequence of differential
transformations from a direct sum of minimal Adinkras, simple supermultiplets that are
identifiable with representations of the Clifford algebra. The data specifying this procedure
is a sequence of subspaces of the direct sum of Adinkras, which then opens an avenue for
the classification of the continuum of the so-constructed off-shell supermultiplets.
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1. Introduction

The study of off-shell supermultiplets in one dimension, i.e., finite-dimensional unitary off-shell
representations of N -extended world line supersymmetry, as originally started in [1–6], has been
reinvigorated in the past decade or so [7–31]. In particular, an unprecedented abundance of
new supermultiplets has been discovered [22,25], largely due to a graphical description of such
supermultiplets using so-called Adinkras [9,12]. Yet, in addition to all of these new supermultiplets,
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several off-shell supermultiplets have been analyzed recently [27–29], which cannot be depicted by
Adinkras, but represent various generalizations thereof; in fact, there are infinitely many such, more
general supermultiplets [27].

Herein, we prove that all off-shell world line supermultiplets subject to physics-standard conditions
can be analyzed in terms of Adinkras, as well as synthesized from them in a finite number of operations
called lowering; see Theorem 3.1 in Section 3.

We then illustrate this procedure on two examples from the recent literature: (1) the N = 3 gauged
world line off-shell supermultiplet of [27,31], and (2) the world line (1D) shadow [28] of the 4D N = 1

complex linear superfield [32]. Finally, we discuss a simple N = 5 continuous family of world line
off-shell supermultiplets to see how, in principle, a general classification program of world line (1D)
off-shell supermultiplets could proceed.

2. Supermultiplets

We consider linear off-shell representations of the N -extended supersymmetry algebra in one
dimension without central charge:

{QI , QJ} = 2i δIJ ∂τ and [∂τ , QI ] = 0 for I, J = 1, · · ·, N (1)

To be specific, linear representations of this algebra are spanned by a finite number of bosonic (φa)
and fermionic (ψα) component fields (functions of time τ ), upon which the operators, QI and ∂τ , act
linearly and so that the Relations (1) are always satisfied. If the Relations (1) are satisfied identically on
a supermultiplet without requiring any of the component fields to satisfy any time-differential equation,
the representation is said to be off-shell.

Any particular choice of component fields (φa|ψα) used to represent a supermultiplet should be
considered a basis of the supermultiplet and is subject to redefinitions. Local linear changes of
variables Φa = Φa(φ, ∂τφ, · · ·) and Ψα = Ψα(ψ, ∂τψ, · · ·) produce equivalent representations of the
same supermultiplet. Since the operators, QI , are themselves fermionic, their application on any one
component field must produce a linear combination of the fields of the opposite statistics and their
τ -derivatives. It follows that a supermultiplet,M, is a closedQ-orbit, in that the result of the application
of any sequence of QI-operators on any component field ofMmust result in a linear combination of the
component fields inM and their τ -derivatives.

We next define a few additional useful properties of off-shell supermultiplets, assuming only
supersymmetry algebra Equation (1). In particular, we make no assumption about any Lagrangian or
intended dynamics for the supermultiplets.

2.1. Engineerable Supermultiplets

As done in Equation (1), we adopt the “natural” system of units, fixing c and ~ as two basic units,
which we then never write explicitly [33,34]. The physical units of each quantity then reduce to a power
of a single unit, which we choose to be mass. For a quantity, X , with units (mass)[X], the exponent,
[X], is called the engineering dimension of the quantity, X . For an operator, O , we say that [O] = y if
[O(X)] = y + [X], for all X upon which the operator, O , is defined to act.
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In particular, since time has engineering dimension [τ ] =−1, [∂τ ] = 1. If the QI in Equation (1)
are to have unambiguous engineering dimensions [35], the supersymmetry algebra Equation (1) implies
that [QI ] = 1

2
for all I = 1, · · ·, N . In the Q-transformation rules, the action of each QI is specified

on each component field. If [F ] = f for a component field F , [QI(F )] = f+1
2
, and QI(F ) is a linear

combination of component fields of engineering dimension f+1
2
, as well as τ -derivatives of component

fields of engineering dimension f−1
2
. Formalizing this, we have:

Definition 2.1 A supermultiplet is engineerable if it is possible to consistently assign engineering
dimensions to all the component fields, such that [QI(F )] = f+1

2
for every component field, F , with

[F ] = f .

All supermultiplets commonly used in the literature are engineerable. Nevertheless, this is a logical
assumption that deserves to be spelled out, since it will be used in the mathematical proof of our
main theorem. In turn, non-engineerable supermultiplets are logically possible if there is a fixed mass
parameter. For instance, in Planck units (including Newton’s gravitational constant, GN , as an unwritten
unit), non-engineerable supermultiplets are possible, since the action of QI on certain component fields
may involve (unwritten) powers of the Planck mass. As an aside, a non-engineerable “Escheric”
supermultiplet was discussed in [9].

Proposition 2.1 If an engineerable supermultiplet, M contains a boson, φ, and a fermion, ψ, for
which [ψ] − [φ] 6= 1

2
(mod Z), M must decompose as a direct sum of at least two supermultiplets,

M⊇M1 ⊕M2, such that φ ∈M1 and ψ ∈M2.

Proof: Let [φ] = m be the engineering dimension of φ ∈ M. Then, QI(φ) has engineering dimension
m+1

2
and is a linear combination of some of the fermions and their τ -derivatives. Since [∂τ ] = 1, each

fermion occurring in QI(φ) has the engineering dimension m+1
2

(mod Z). In turn, applying QJ on
each of these fermions must produce a linear combination of bosons and their τ -derivatives, where each
of these resulting bosons has the engineering dimension, m (mod Z). Iterating this argument eventually
maps out a sub-supermultiplet, M1 ⊂ M, wherein all bosons and fermions have the engineering
dimensions, m (mod Z) and m+1

2
(mod Z), respectively. By construction, [fermion] − [boson] = 1

2

(mod Z) throughoutM1.
Since [ψ] − [φ] 6= 1

2
(mod Z), ψ 6∈ M1 and ψ must belong to a separate sub-supermultiplet ofM.

Repeating the above construction starting with ψ maps out this otherM2 ⊂M. �X

In most physics applications, the relation [36] [ψα] − [φa] + 1
2

= 0 (mod Z) is enforced by
dynamical considerations even for (component) fields that are completely unrelated, by supersymmetry
or otherwise. However, no bosonic-fermionic pair of fields satisfying [ψ]− [φ] 6= 1

2
(mod Z) can belong

to an indecomposable supermultiplet.

Nomenclature: A representation (and so, also, a supermultiplet) is said to be indecomposable if it
cannot be decomposed into a direct sum of two or more sub-representations. A representation is
called irreducible if it contains no proper sub-representation. The latter condition is stronger, in that
indecomposable representations need not be irreducible, whereas all irreducible representations are
necessarily indecomposable.
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For example, the well-known real vector superfield V = V† furnishes a representation of simple
supersymmetry in four-dimensional spacetime. Given a chiral superfield, Λ, and its conjugate,
Λ†, one can gauge away the “lower half” sub-representation, reducing V to the gauge quotient
{V ' V+=m(Λ)}, known as the “vector superfield in the Wess–Zumino gauge” and represented by
the “upper half” component fields [32,37,38]. This reduces the vector supermultiplet to the half-as-large
gauge quotient, although V does not decompose into a direct sum of two complementary superfields:
only the “lower half” of V is a proper sub-superfield, identified with =m(Λ) in the Wess–Zumino gauge.
Thus, V is reducible, but indecomposable.

2.2. Adinkraic Supermultiplets

All off-shell world line supermultiplets discussed in [9] and then formalized rigorously in [12,13]
admit a basis of component fields, such that the application of any one supercharge, QI , on any one
component field always produces precisely one other of the component fields or its τ -derivative. Such
supermultiplets were called adinkraic and can be depicted by Adinkras, specific graphs that faithfully
encode the precise supersymmetry transformations within each such supermultiplet. By extension, a
supermultiplet for which an adinkraic basis of component fields can be obtained by means of local
component field redefinitions is called adinkrizable.

As [12] proves, in adinkraic supermultiplets, it is always possible to rescale the (real) component
fields, so that (with no summations):

QI(φa) = ±(∂ ea,ατ ψα), QI(ψα) = ±i(∂1−ea,ατ φa), ea,α := 1
2
+[φa]−[ψα] (2)

This system of Q-transformations, complete with the specific sign-choices, is completely encoded by
the graphical elements of an Adinkra [12], which made the classification results of [20,21,25] possible,
as well as the translation into the familiar superfield framework [22].

There of course exist non-adinkraic off-shell supermultiplets, which do not admit a basis of
component fields, wherein simple pattern Equation (2) holds. Nevertheless, recent study shows that
all off-shell supermultiplets from the familiar literature on simple supersymmetry in four-dimensional
spacetime [23,26,28,30] are either themselves adinkraic or can be described in terms of Adinkras.
This is also true of at least several off-shell supermultiplets of N = 2-extended supersymmetry in
four-dimensional spacetime [39] and also of the constructions of off-shell world line supermultiplets, as
given in [27,29], the latter one of which provides an infinite sequence of new, ever larger supermultiplets.

In all these examples of non-Adinkraic off-shell supermultiplets, the application of the supercharges,
QI , on individual component fields does not always result in monomials Equation (2), but requires a
binomial or larger linear combination of component fields and their τ -derivatives. Furthermore, all these
non-adinkraic supermultiplets may be related to adinkraic ones by means of non-local field redefinitions.
Our subsequent results will not only prove that this is in fact true of all off-shell world line
supermultiplets, but will also provide a constructive algorithm to this end.
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2.3. Valise Supermultiplets

If the component fields in an engineerable supermultiplet have only two distinct engineering
dimensions (differing by 1

2
), one for bosons and another for fermions, we call this a valise supermultiplet.

In [20], Adinkras with this property were called isoscalar and isospinor, for when bosons or fermions
have a lower engineering dimension, respectively; the boson/fermion-indiscriminate moniker “valise”
was adopted in [21], so this is a generalization of that terminology. This was also called the “Clifford
algebraic supermultiplet” in [6] and plays a prominent role in the “root superfield” formalism [6,9,10],
which is then also generalized by the subsequent results.

We are now in position to state and prove the following important result.

Theorem 2.1 (valises) Every valise supermultiplet is adinkraic and decomposes as a direct sum of
minimal valise supermultiplets, each identifiable with a minimal valise Adinkra.

Proof: Without loss of generality, suppose the bosonic component fields in the valise supermultiplet
have the lower engineering dimension. Then, if φ is any boson, QI(φ) is a linear combination of the
fermions, while if ψ is any fermion, QI(ψ) = ∂t(`), where ` is a linear combination of the bosons.

If we choose a basis ϕ1, . . . , ϕd for the bosons and χ1, . . . , χd for the fermions, theseQ-transformation
rules can be written as:

QI(ϕa) =
∑
α

[LI ]a
α χα, and QI(χα) = i

∑
a

[RI ]α
a .
ϕa (3)

where [LI ] and [RI ] are matrices. Following the analysis in [25], we define the fermion counting operator
(−1)F , so that:

(−1)Fφa = φa and (−1)Fψα = −ψα (4)

and define the 2d× 2d matrices:

(−1)F = Γ0 :=

[
1l 0

0 −1l

]
and ΓI :=

[
0 LI

RI 0

]
for I = 1, · · · , N (5)

These matrices, {Γ0,Γ1, . . . ,ΓN}, satisfy the relations for a Clifford algebra, Cl(0, N+1), and so in
this way, form a real matrix representation, M , of Cl(0, N+1). The relations (3) identify this matrix
representation of Cl(0, N+1) with the supermultiplet (ϕ1, · · ·, ϕd|χ1, · · ·, χd).

It is a standard result [40] that all real representations of Cl(0, N+1) decompose into a direct sum
of irreducible representations: for N = 0 (mod 4), there exist two equal-sized, but distinct isomorphism
classes of irreducible representations [41]; otherwise, there exists only one.

It was shown in [21,25] that the irreducible representation(s) of Cl(0, N+1) are adinkrizable. That
is, each of them corresponds 1–1 to a valise supermultiplet akin to Equation (3), but where the linear
combinations in the result of applying the QI-operators to reduce to monomials [42]. This valise
supermultiplet then may be depicted by an Adinkra, by assigning a node to each component field and an
I-colored edge for every instance of a relation QI(ϕa) = ±iχα, drawing the edge solid for the positive
sign and dashed for the negative sign. Furthermore, these irreducible representations of Cl(0, N+1) are
clearly minimal and so must correspond to minimal valise Adinkras and supermultiplets for any givenN .
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Now, we return to our real representation, M . It is a standard result [25] that, as a representation of
Cl(0, N+1), M decomposes into a direct sum of irreducible representations. For each direct summand,
choose the basis given so that its corresponding valise supermultiplet is described using an Adinkra, as
per [20,25]. The result is a basis for M in which valise supermultiplet Equation (3) is adinkraic and, in
fact, decomposes as the corresponding direct sum of minimal Adinkras (for the given N ). �X

Without loss of generality, we identify an Adinkra with the supermultiplet it depicts.
It also follows that there exist two distinct isomorphism classes of minimal valise supermultiplets for

N = 0 (mod 4), one being referred to as the twisted version of the other [43,44]. In turn, there is only
one isomorphism class for N 6= 0 (mod 4). References [20,25] prove that:

min
(

dim(Adinkra)
)

= (2N−κ(N)−1|2N−κ(N)−1) (6)

where:

κ(N) =



0 for N = 0, 1, 2, 3

1 for N = 4, 5

2 for N = 6

3 for N = 7

4 + κ(N−8) for N > 8

(7)

That is, minimal supermultiplets then have 2N−κ(N)−1 real bosonic component fields and as many
fermionic ones.

2.4. Raising and Lowering

References [2,3] and then [6,9,10] started exploring the systematic use of an operation variously called
“automorphic duality”, “1D duality” and “auxiliary/physical duality”, of which a refinement (to
individual component fields) was named “node raising and lowering”, owing to its manifest depiction in
terms of Adinkras [12]. These operations easily generalize to all engineerable supermultiplets:

Definition 2.2 (raising/lowering) Let M be an engineerable off-shell supermultiplet and
` =

∑
A cAFA a real linear combination of component fields of M, all with the same

engineering dimension.

a. If QI(`) involves no derivative of any component field of M for any I , replacing any one of
FA ∈ M with L =

.
` and assigning QI(L) = ∂t(QI(`)) produces a new engineerable off-shell

supermultiplet,M]
`. This is called “raising `”, and [L] = [`]+1.

b. IfQI(`) = ∂τ (fI) is a total τ -derivative for each I , replacing any one of FA ∈M with L =
∫

dτ `

and assigning QI(`) = fI produces a new engineerable off-shell supermultiplet, M[
`. This is

called “lowering `”, and [L] = [`]−1.

Note: For the subsequent theorem, we will only need the special case of the raising operation when `
is in fact a single component field. There is no reason, however, not to provide the general definition.

IfM can be depicted by an Adinkra and ` is a single component field (represented by a node), the
operations of raising/lowering ` then reduce to “node raising/lowering” [12], i.e., “auxiliary/physical
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duality” of [6]. When performed simultaneously on each one of the
(
N
k

)
component fields equal to

QI1· · ·QIk(φ) for a fixed φ and k, and replacing each of these component fields separately with another
one of one unit higher or lower engineering dimension, these operations reproduce the “automorphic
duality” of [2,3,6,9]. A matrix realization of the node-raising operation was also introduced in [4] and
was subsequently called the “dressing transformation” [11].

In the general cases covered by the above definitions, the linear combinations of fields being raised
or lowered can extend over any subset of component fields of the same engineering dimension in the
original off-shell supermultiplet,M. The coefficients in the linear combination are here assumed to be
real [45], but are otherwise arbitrary and can be varied continuously.

3. The Main Theorem

The foregoing discussion was framed to state:

Theorem 3.1 (adinkraic analysis/synthesis) Every engineerable off-shell world line supermultiplet,
M, with finitely many component fields is equivalent by local field redefinitions to a supermultiplet
obtained from a direct sum of minimal valise Adinkras, by iteratively lowering linear combinations
of nodes.

Proof: Proposition 2.1 decomposesM into parts in each of which [fermion] − [boson] = 1
2

(mod Z);
we work with each of these parts, in turn. For simplicity, each such part on which we focus iteratively
will continue to be denoted byM.

Consider the 2D component fields, M, and their engineering dimensions. Let m be the minimum
and M the maximum of these engineering dimensions in M. If M = m+1

2
, M is already a valise

supermultiplet (M =Mv), skip to Part 2; if M > m+1
2
, proceed.

Part 1: Choose any one component field, f1, with engineering dimension m (while m < M−1
2
), and

raise it. This results in a new engineerable supermultiplet,M]
1. The new raised field now has engineering

dimension m + 1, and if M − m ≥ 1, then M]
1 will still have maximum engineering dimension M .

Repeating this process reduces the number of component fields with engineering dimension m, until
there are none. Then, we have a new supermultiplet with the minimum engineering dimension m + 1

2
.

Keep repeating this process, until the minimum engineering dimension increases to M − 1
2
.

This transforms the original supermultiplet,M, into an associated valise supermultiplet,Mv, with a
finite sequence of component fields (φ1, · · ·φd|ψ1, · · ·ψd), where [φa] = m = M−1

2
and [ψα] = M , or

the other way around.

Part 2: By Theorem 2.1, the valise supermultiplet,Mv, admits a basis (ϕ1, · · ·ϕd|χ1, · · ·, χd), where
each of the component fields (ϕa|χα) is a linear combination of the component fields (φa|ψα), which
decomposes Mv ' M̃v = ⊕i M̃v

i as a direct sum of minimal valise supermultiplets. Each minimal
valise supermultiplet, M̃v

i , may be identified with a minimal valise Adinkra and each of the basis
elements (ϕa|χα) with a node.

Part 3: Inverting the linear combinations from Part 2, the fields, φa, ψα ∈ Mv, can now be written as
linear combinations of the nodes, ϕa, χα ∈ ⊕i M̃v

i . Reversing the procedure of Part 1, we iteratively
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lower φ1 (as a linear combination of the nodes ϕa), then φ2, and so on, until each of these the nodes is
lowered to its original engineering dimension.

The result is the original supermultiplet,M, reconstructed as a systematically iterated lowering of the
direct sum of minimal valise Adinkras, ⊕i M̃v

i . �X

Note: It may well happen that the supermultiplet can decompose into a direct sum of minimal
supermultiplets before Part 1 of the procedure in the proof is completed; see Section 4.1.

This general result, true for all N -extended supersymmetry algebras without central extension (1),
covers theN = 4 partial results obtained to date for a handful of supermultiplets obtained by dimensional
reduction from simple supersymmetry in four-dimensional spacetime; see Table 1 of [26] and
Tables 10–12 of [30].

4. Non-Adinkraic Supermultiplets

While the most familiar and oft-used supermultiplets of simple supersymmetry in four-dimensional
spacetime turn out to be adinkraic and are easily depicted using Adinkras [23,26], there do exist examples
where this is not true. We now turn to such non-adinkraic examples, to demonstrate the effectiveness of
Theorem 3.1. The Adinkras or Adinkra-like graphs depicting the supersymmetry transformations will
illustrate the procedure.

4.1. A Gauge-Quotient Example

Reference [27] constructs an off-shell gauge-quotient supermultiplet of N = 3 world line
supersymmetry, YI/(iDIX), and shows it to be non-Adinkraic, in that a minimum of six transformation
rules involve binomial combinations of fields; see (8), reproduced here in the simpler notation of [31]:

Q1 Q2 Q3

φ1 ψ1 ψ2 ψ3

φ2 ψ3 −ψ4 −ψ1

φ3 ψ4−ψ7 ψ3−ψ5 −ψ2+ψ6

φ4 ψ5 −ψ7 −ψ8

φ5 −ψ6 ψ8 −ψ7

F1

.
ψ2 −

.
ψ1

.
ψ4

F2

.
ψ8

.
ψ6

.
ψ5

F3

.
ψ7

.
ψ5 −

.
ψ6

Q1 Q2 Q3

ψ1 i
.
φ1 −iF1 −i

.
φ2

ψ2 iF1 i
.
φ1 −i

.
φ3−iF3

ψ3 i
.
φ2 i

.
φ3+iF3 i

.
φ1

ψ4 i
.
φ3+iF3 −i

.
φ2 iF1

ψ5 i
.
φ4 iF3 iF2

ψ6 −i
.
φ5 iF2 −iF3

ψ7 iF3 −i
.
φ4 −i

.
φ5

ψ8 iF2 i
.
φ5 −i

.
φ4

(8)

Nevertheless, the transformation rules (8) can be represented graphically, but doing so requires that
several edges (depicted by tapering lines) to indicate a “one way” QI-transformation; see Figure 1.
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Figure 1. A graphical depiction of the gauge-quotient supermultiplet of [27].

φ1 φ2 φ3 φ4 φ5

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

F1 F3 F2

These correspond to the entries in the table (8) that are set in a lighter ink. For example, Q1(φ3)

includes both ψ4 and ψ7, but only the transformation of Q1(ψ4) contains
.
φ3; the transformation, Q1(ψ7),

does not. The two-way Q1-transformation φ3 ⇐⇒ ψ4 is then depicted by a standard edge [46],
while the one-way Q1-transformation φ3 → −ψ7 is depicted by a tapering edge, which is also dashed,
indicating the negative sign.

Following the constructive proof of Theorem 3.1, in this supermultiplet, we: (1) raise the node
corresponding to φ3 7→

.
φ3 (this loses the constant term in φ3), and (2) perform the linear combination

change of variables
.
φ3 7→ Z :=

.
φ3+F3, the net effect of which is the field substitution.

φ3 7→ Z :=
.
φ3+F3 (9)

This produces an associated supermultiplet:

Q1 Q2 Q3

φ1 ψ1 ψ2 ψ3

φ2 ψ3 −ψ4 −ψ1

φ4 ψ5 −ψ7 −ψ8

φ5 −ψ6 ψ8 −ψ7

F1

.
ψ2 −

.
ψ1

.
ψ4

F2

.
ψ8

.
ψ6

.
ψ5

F3

.
ψ7

.
ψ5 −

.
ψ6

Z
.
ψ4

.
ψ3 −

.
ψ2

Q1 Q2 Q3

ψ1 i
.
φ1 −iF1 −i

.
φ2

ψ2 iF1 i
.
φ1 −iZ

ψ3 i
.
φ2 iZ i

.
φ1

ψ4 iZ −i
.
φ2 iF1

ψ5 i
.
φ4 iF3 iF2

ψ6 −i
.
φ5 iF2 −iF3

ψ7 iF3 −i
.
φ4 −i

.
φ5

ψ8 iF2 i
.
φ5 −i

.
φ4

(10)

which is clearly adinkraic: each instance of the QI-transformation of any one field is a monomial in
terms of the component fields and their derivatives; this is depicted in Figure 2.
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Figure 2. A graphical depiction of the adinkrized supermultiplet of [27]. The two numbered
arrows indicate the (1) raising φ3 and (2) combining

.
φ3+F3 into Z; it is the latter, now local

field redefinition that disconnects the two Adinkras.

1.

2.

φ1 φ2 φ3 φ4 φ5

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

F1 F3 F2Z

Note that the single component field redefinition (9) procedure transformed:

1. the (5|8|3)-component supermultiplet (8) into a (4|8|4)-component one (10),

2. which decomposes even before completing the procedure in the proof of Theorem 3.1.

By Equation (6), the minimal representation of the N = 3-extended world line supersymmetry has
four bosons and four fermions, and the two Adinkras in Figure 2 are indeed minimal.

Reversing this transformation, we can start with the adinkraic supermultiplet (10) and lower the
linear combination:(

` := Z − F3

)
7→

.
φ3 i.e., φ3 :=

∫
dτ
(
Z(τ)− F3(τ)

)
+ const. (11)

to achieve the gauge-quotient supermultiplet of [27,31]. Notice that the integration constant recovers the
constant term in φ3, which was lost in raising φ3 (9). Thus, the non-adinkraic supermultiplet (8) may
indeed be understood as being a non-local component field transformation (11) of the direct sum of two
minimal Adinkras in Figure 2.

The reader might wonder whether perhaps the non-local transformation (11) in fact somehow
establishes an effective equivalence of Equations (8) and (10). To show that this is not so, [31] constructs
a 13-parameter family of Lagrangians (even while restricting to just bilinear terms!), where for generic
choices [47] of the 13 parameters, the following holds:

The generic (even if just bilinear) Lagrangians [31] for the supermultiplet (8) depend on
the component field, φ3, in ways that the transformation (11) cannot be used to eliminate
φ3 → Z without rendering the generic Lagrangian non-local.

These ultimately dynamical considerations prove that the supermultiplet (8) must be considered
physically inequivalent from Equation (10). In turn, Theorem 3.1 provides a direct, but non-local
relationship suitable for classification purposes; see below.
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4.2. The Complex Linear Supermultiplet

Reference [28] analyzes a well-documented representation of simple supersymmetry in
four-dimensional spacetime, the complex linear supermultiplet [32], dimensionally reduced to the
n= 4-extended supersymmetry of the one-dimensional world line. This supermultiplet is defined by way
of the complex superfield satisfying the quadratic superdifferential constraint, D̄α̇D̄α̇Σ = 0, and [28]
then traces through the ensuing conditions and identifications imposed on the real and imaginary parts
of the complex component fields, settling finally on a basis that maximally simplifies the result. Table 1
presents the supersymmetry transformations in a slightly adapted version of this optimal basis, which is
also faithfully depicted by the graph in Figure 3.

Figure 3. A graph depicting the world line “shadow” of the complex linear supermultiplet,
adapted from [28].

β1 β2 β3 β4

X12 X24 X14 Z1 Z2 Z3 Z4 Y14 Y24 Y12

ζ1 ζ2 ζ3 ζ4 ρ1 ρ2 ρ3 ρ4

K L

Notably, a quarter of the QI-transformations of individual component fields are binomials rather than
monomials, and each of these binomials is depicted by two edges, one standard, the other (depicting a
“one-way” action) tapered. Already, the number (twenty-four) of binomials in Table 1 should indicate
that the procedure of the proof of Theorem 3.1 will be considerably more involved than in the previous
example. However, the statement of Theorem 3.1 also indicates a powerful tool in deciphering the
optimal strategy and, even, the eventual outcome.

Namely, Theorem 3.1 provides that, upon an adequate number of component field raising operations,
the supermultiplet decomposes into a direct sum of minimal valise Adinkras. In turn, [20,25]
proved that in these minimal Adinkras, certain precisely specified higher order QI-operators act as
quasi-projection operators. For the case at hand, in N = 4 supersymmetry, these quasi-projection
operators are:

Π± :=
[
Q4Q3Q2Q1 ± ∂ 2

τ

]
(12)

Closely related to the Π±, [22] proves that the triple of operators:

Σ±IJ :=
[
QIQJ ± 1

2
εIJ

KLQKQL

] 1–1←→ Π± (13)

carries the same information about the structure (named “chromotopology” [20]) of the
QI-transformations. In particular, the two possible relative signs in Operators (12) and (13) are indeed
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indicative of the two equivalence classes of minimal Adinkras for N = 4. In turn, these are very familiar
from the physics literature as being exemplified by the “chiral” and “twisted-chiral” superfields [43,44],
and we retain those names for the two classes.

Table 1. The supersymmetry transformation rules in the complex linear supermultiplet
dimensionally reduced to the one-dimensional world line, adapted from [28].

Q1 Q2 Q3 Q4

K ζ1 ζ2 ζ3 ζ4

L −ρ4 ρ3 −ρ2 ρ1

X12

.
ζ2 −

.
ζ1

.
ζ4−β3 −

.
ζ3−β4

X14

.
ζ4

.
ζ3+β3 −

.
ζ2−β1 −

.
ζ1

X24 −
.
ζ3−β4

.
ζ4

.
ζ1−β2 −

.
ζ2

Y12
.
ρ3

.
ρ4

.
ρ1−β2

.
ρ2+β1

Y14
.
ρ1 − .

ρ2−β1 − .
ρ3−β4

.
ρ4

Y24
.
ρ2+β1

.
ρ1 − .

ρ4+β3 − .
ρ3

Z1 β1 β2 β3 β4

Z2 β2 −β1 −β4 β3

Z3 β3 β4 −β1 −β2
Z4 β4 −β3 β2 −β1

ζ1 i
.
K −iX12 i(X24+Z4) −iX14

ζ2 iX12 i
.
K −i(X14−Z3) −iX24

ζ3 −i(X24+Z4) i(X14−Z3) i
.
K −i(X12+Z1)

ζ4 iX14 iX24 i(X12+Z1) i
.
K

ρ1 iY14 iY24 i(Y12+Z4) i
.
L

ρ2 i(Y24−Z1) −i(Y14−Z2) −i
.
L i(Y12+Z4)

ρ3 iY12 i
.
L −i(Y14−Z2) −iY24

ρ4 −i
.
L iY12 −i(Y24−Z1) iY14

β1 i
.
Z1 −i

.
Z2 −i

.
Z3 −i

.
Z4

β2 i
.
Z2 i

.
Z1 i

.
Z4 −i

.
Z3

β3 i
.
Z3 −i

.
Z4 i

.
Z1 i

.
Z2

β4 i
.
Z4 i

.
Z3 −i

.
Z2 i

.
Z1

Now, the basis used for Table 1 is definitely not the one in which the decomposition is made
manifest, even after we raise the component fields: K,L into

.
K,

.
L, and then, ζi, ρi into

.
ζ i,

.
ρi. However,

Operators (12) and (13) simplify the task of finding this basis as follows.

1. Apply the quadratic Operator (13) on any component field. For example:

[Q1Q2 ±Q3Q4]K = i
.
K ± i

.
K, while [Q1Q2 ±Q3Q4]Z1 = i

.
Z2 ∓ i

.
Z2 (14)

For these to vanish, we must chose the lower sign for K, but the upper sign for Z1, indicating
that these two component fields will (upon some field redefinitions, perhaps) belong to distinct
minimal Adinkras.
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2. Apply the quartic operators (12) to any component field. For instance [48],

[Q4Q3Q2Q1 ± ∂ 2
τ ]K =

{
2
0

} ..
K−

.
Z2 [Q4Q3Q2Q1 ± ∂ 2

τ ]L =
.
Z3 +

{
2
0

} ..
L (15a)

[Q4Q3Q2Q1 ± ∂ 2
τ ]X12 =

.
Z1 +

{
2
0

} ..
X12 [Q4Q3Q2Q1 ± ∂ 2

τ ]X14 =
{
2
0

} ..
X14−

.
Z3 (15b)

[Q4Q3Q2Q1 ∓ ∂ 2
τ ]ζ1 =

.
β2 −

{
2
0

} ..
ζ1 [Q4Q3Q2Q1 ∓ ∂ 2

τ ]ζ2 = −
.
β2 −

{
2
0

} ..
ζ2 (15c)

but [Q4Q3Q2Q1 ± ∂ 2
τ ]Zi ∝ (

..
Zi ∓

..
Zi), [Q4Q3Q2Q1 ∓ ∂ 2

τ ]βi =∝ (
..
βi ∓

..
βi) (15d)

The fact that the quasi-projections (15d) on (Zi|βi) act as ∂τ -multiples of the identity for the lower
choice of the sign indicate that these fields already form a separate (4|4)-component minimal valise
Adinkra. This is visible from the graph in Figure 3, upon noticing that no edges emanate from this
(top-most) portion, as was already noted in [28].

Next, given now that (Zi|βi) form a separate sub-supermultiplet, the relations, such as
Equation (15a)–(15c), indicate that: (1) the right-hand side field combinations should be used
in component field redefinitions, and (2) we must use the upper sign-choices, not to duplicate the
fields (Zi|βi).

Following the procedure in the proof of Theorem 3.1, we first notice that the bosonic component
fields, K,L, satisfy the conditions for the “raising” part of Definition 2.2, and we raise them. In the
resulting supermultiplet, now, the fermionic components, ζ1, · · ·, ζ4, ρ1, · · ·ρ4, all satisfy the conditions
of the “raising” part of Definition 2.2, and we raise them, too. This results in a valise supermultiplet
with 12 bosons, all with the same engineering dimension, and 12 fermions, all with the engineering
dimension 1

2
higher than the bosons. According to Theorem 2.1, this decomposes into a direct sum of

minimal valise Adinkras. We exhibit this decomposition by employing the component field redefinitions
given by the computations of the type of (15):

Z1 := (X34−X12), Z2 := (Y 14−Y23), Z3 := (X14−X23), Z4 := (Y 34−Y12) (16a)

X1 := (2
.
K−Y14+Y23), X2 := (X12+X34), X3 := −(2X24+Y34−Y12), X4 := (X23+X14) (16b)

Y1 := (2
.
L+X14−X23), Y2 := (Y 12+Y34), Y3 := −(2Y 24−X34+X12), Y4 := (Y 23+Y14) (16c)

ξ1 := 2
.
ζ1−β2, ξ2 := 2

.
ζ2+β1, ξ3 := 2

.
ζ3+β4, ξ4 := 2

.
ζ4−β3 (16d)

η1 := −2 .
ρ4+β3, η2 := 2

.
ρ3+β4, η3 := −2 .

ρ2−β1, η4 := 2
.
ρ1−β2 (16e)

where we have underlined the component fields that are being eliminated by each definition.
The QI-transformations in this (16)-transform of the complex linear supermultiplet decouple and may
be depicted by the three minimal N = 4 Adinkras given in Figure 4. The middle one is “twisted” as
compared to the flanking ones: in it, all edges of the fourth color have their solidness/dashed-ness
flipped, which corresponds to swappingQ4 → −Q4. Correspondingly, the middle Adinkra in Figure 4 is
annihilated by Operators (12) and (13), with one choice of the relative sign, while the flanking Adinkras
are annihilated by these operators with the opposite choice of the relative sign. This agrees with the
computations of [26].
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Q1 Q2 Q3 Q4

X1 ξ1 ξ2 ξ3 ξ4

X2 ξ2 −ξ1 ξ4 −ξ3
X3 ξ3 −ξ4 −ξ1 ξ2

X4 ξ4 ξ3 −ξ2 −ξ1
Y1 η1 η2 η3 η4

Y2 η2 −η1 η4 −η3
Y3 η3 −η4 −η1 η2

Y4 η4 η3 −η2 −η1
Z1 β1 β2 β3 β4

Z2 β2 −β1 −β4 β3

Z3 β3 β4 −β1 −β2
Z4 β4 −β3 β2 −β1

Q1 Q2 Q3 Q4

ξ1 i
.
X1 −i

.
X2 −i

.
X3 −i

.
X4

ξ2 i
.
X2 i

.
X1 −i

.
X4 i

.
X3

ξ3 i
.
X3 i

.
X4 i

.
X1 −i

.
X2

ξ4 i
.
X4 −i

.
X3 i

.
X2 i

.
X1

η1 i
.
Y 1 −i

.
Y 2 −i

.
Y 3 −i

.
Y 4

η2 i
.
Y 2 i

.
Y 1 −i

.
Y 4 i

.
Y 3

η3 i
.
Y 3 i

.
Y 4 i

.
Y 1 −i

.
Y 2

η4 i
.
Y 4 −i

.
Y 3 i

.
Y 2 i

.
Y 1

β1 i
.
Z1 −i

.
Z2 −i

.
Z3 −i

.
Z4

β2 i
.
Z2 i

.
Z1 i

.
Z4 −i

.
Z3

β3 i
.
Z3 −i

.
Z4 i

.
Z1 i

.
Z2

β4 i
.
Z4 i

.
Z3 −i

.
Z2 i

.
Z1

(17)

Finally, the original, world line “shadow” of the complex linear supermultiplet (Table 1 and Figure 3)
is then reconstructed by applying the (non-local) inverse of the component field redefinitions (16) on the
direct sum Adinkra (17), depicted in Figure 4. Note that the component field redefinitions (16) lose the
constant terms in the original component fields K,L, ζi, ρi and that the inverse of (16) then re-supplies
these constant terms by way of integration constants. For example,

K(τ) = 1
2

∫
dτ
[
X1(τ) + Z2(τ)

]
+K0, ζ2(τ) = 1

2

∫
dτ
[
ξ2(τ)− β1(τ)

]
+ ζ2,0 (18)

and so on.

Figure 4. The three separate minimal Adinkras into which the world line “shadow” of
the complex linear supermultiplet may be transformed by means of iterative raising and
linear combinations.

X1 X2 X3 X4

ξ1 ξ2 ξ3 ξ4

Z1 Z2 Z3 −Z4

β1 β2 β3 −β4

Y1 Y2 Y3 Y4

η1 η2 η3 η4

5. A Continuum of Supermultiplets and Their Classification

The fact that the procedure of the proof of Theorem 2.1 employs linear combinations of component
fields where the coefficients are not restricted to be integers is rather suggestive. Indeed, we now
demonstrate how a continuum ofN = 5 supermultiplets may be obtained from a certainN = 5 Adinkra,
by lowering a non-trivial linear combination of nodes.
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We begin with the N = 5 Adinkraic supermultiplet with the following field content:

(A |ψI |BIJ , VI |χIJ , ω) I, J = 1, · · · 5 (19)

where the indices are SO(5) indices from the supersymmetry, BIJ = −BJI and χIJ = −χJI . The
supersymmetry transformations within this supermultiplet are given as follows:

QIA = ψI (20a)

QJψI = i BIJ + i δIJ
.
A (20b)

QKBIJ = 1
2
εIJK

LMχLM + 2δK[J

.
ψI] (20c)

QKχIJ = 2i δK[J

.
V I] + i

2
εIJK

LM
.
BLM (20d)

QJVI = δIJω + χIJ (20e)

QIω = i
.
V I (20f)

where bracketed indices are antisymmetrized with weight 1
2
: δK[J

.
ψI] := 1

2
(δKJ

.
ψI−δKI

.
ψJ). As written

here, it may not be immediately obvious that the result of the application of any one supercharge on
any one component field in fact is a monomial. We thus include a sampling of these supersymmetry
transformation rules below to illustrate this fact, i.e., that this supermultiplet is Adinkraic:

Q1 Q2 Q3 Q4 Q5

A ψ1 ψ2 ψ3 ψ4 ψ5

B12 −
.
ψ2

.
ψ1 χ45 −χ35 χ34

B13 −
.
ψ3 −χ45

.
ψ1 χ25 −χ24

...

V1 ω χ12 χ13 χ14 χ15

V2 −χ12 ω χ23 χ24 χ25

...

Q1 Q2 Q3 Q4 Q5

ψ1 i
.
A iB12 iB13 iB14 iB15

ψ2 −iB12 i
.
A iB23 iB24 iB25

...

χ12 −i
.
V 2 i

.
V 1 i

.
B45 −i

.
B35 i

.
B34

χ13 −i
.
V 3 −i

.
B45 i

.
V 1 i

.
B25 −i

.
B24

...

ω i
.
V 1 i

.
V 2 i

.
V 3 i

.
V 4 i

.
V 5

(21)

The interested reader may complete the table using the above formulae for the transformation rules.
Instead of drawing the Adinkra in full detail [12], it is more illustrative this time to see a somewhat more
collapsed diagram:

e1
A
�
��

u5
ψI

�
��

e10
BIJ

�
��

u10

χIJ
@
@@ e5
VI

�
��

u1
ω

(22)

where we have partially collapsed nodes as in [9] for convenience, but not all the way, to exhibit
the different types of component fields more clearly. Note that this can be obtained from the
unconstrained real N = 5 superfield by lowering the top fermion, ω, and then lowering all components
of the five-vector, VI .
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We can now lower a linear combination of the χIJ and ω by defining for example:

.
λ := cos(θ)ω + sin(θ)χ12 (23)

and replace ω with λ. That is, we consider the (1|6|15|9)-dimensional supermultiplet with the component
field content:

Mθ := (A |ψI , λ |BIJ , VI |χIJ) (24)

wherein the supersymmetry transformation rules are as in Equation (20), except that:

1. All appearances of ω in Equation (20), which occur only inQI(VJ) for I = J , are now replaced by:

ω 7→ sec(θ)
.
λ− tan(θ)χ12 (25)

2. The row for QI(ω) in Equation (20) is now replaced by a row for QI(λ), which results in:

Q1(λ) = i cos(θ)V1− i sin(θ)V2

Q2(λ) = i cos(θ)V2 + i sin(θ)V1

Q3(λ) = i cos(θ)V3 + i sin(θ)B45

Q4(λ) = i cos(θ)V4− i sin(θ)B35

Q5(λ) = i cos(θ)V5 + i sin(θ)B34

(26)

Thus, some of the supersymmetry transformation rules now involve linear combinations of fields. We
may think of the sin θ-terms in Equations (23) and (26) as generating a deformation of the adinkraic
supermultiplet (21), being “tuned” by the continuous angle, θ.

To prove that there exists no local change of basis that can remove the occurrence of linear
combinations from the results of applying the QI on the component fields, we proceed, by contradiction,
assuming that there exists a basis in which the supermultiplet,Mθ, is adinkraic and systematically search
for such a basis.

Start with A, and note that there is no other component field or τ -derivative thereof with the
engineering dimension [A], simply because A has the lowest engineering dimension within the
supermultipletMθ. The only possible field redefinition of A is then a real re-scaling, A 7→ cAA, with
some non-zero cA ∈ R. Within an Adinkraic basis forMθ, it would have to be that QI(A) are all basis
elements, as well, so that the ψI are all (up to a multiplicative constant) also basis elements. Proceeding
in this way, the BIJ , χIJ and VI are likewise all basis elements, each one up to a multiplicative constant.
However, now, the QI(VJ) involve a linear combination of

.
λ and χ12:

QI(VJ) = δIJ
(

sec(θ)
.
λ− tan(θ)χ12

)
(27)

failing the defining property of adinkraic supermultiplets unless θ is an integral multiple of π
2
. To solve

this, we would have to implement the inverse of the component field redefinition (25),

λ =

∫
dτ
(

cos(θ)ω + sin(θ)χ12

)
+ λ0 (28)

which is non-local and, so, not allowed in general.
We thus conclude that the supermultiplet, Mθ, is truly non-adinkrizable when θ is not an integeral

multiple of π.
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Furthermore, this argument also shows that these supermultiplets are also inequivalent for different
values of θ. This provides an example of a continuum of distinct supermultiplets.

In principle, there may well exist usable Lagrangians for the supermultiplet, Mθ, wherein the
component field, λ, only occurs with a τ -derivative acting on it, so that the non-locality of the
transformation (28) does not show up in the dynamics of these models. However, recent explicit
computations for similar supermultiplets show that this is not the case in most general (still unitary)
Lagrangians [49] and that observable couplings to external (probing) fields exist that would detect such
non-locality [31]; the variety of employed value(s) of θ is thus observable.

Reconsider now the examples of (20)–(22). Instead of (23), we could lower any other, more general
linear combination: ∑

IJ

cIJχIJ + c0ω (29)

Each particular of these continuously many choices would result in a distinct supermultiplet, thus
defining an 11-parameter continuous family of (1|6|15|9)-dimensional supermultiplets generalizing (24).
Modulo the overall scaling, these parameters form the projective space, RP10.

Certain of these resulting supermultiplets may be shown to be equivalent to each other by local
component field redefinitions alone. Further equivalence relations may be provided by allowing the
supersymmetry charges, QI , to rotate using their SO(5) R-symmetry. Tempting as this latter option
may be, note that one can easily construct models employing two or more distinct so-constructed
supermultiplets, each with a different linear combination of χIJ and ω. Using R-symmetries,
then, cannot, in general, reduce the number of effective linear combination coefficients in all of
the so-constructed supermultiplets to the same smaller number of effective coefficients in each
supermultiplet simultaneously. Nor can one hope to be able to transform two distinct so-constructed
supermultiplets simultaneously into any one particular version, even by using R-symmetries together
with local component field redefinitions.

Ultimately, the determination of whether or not R-symmetries provide admissible equivalence
relations is then a fundamentally dynamical question, depending on the choice of a Lagrangian to
govern the dynamics. Similarly, as discussed in Section 4.1, whether or not even some non-local field
redefinitions provide admissible equivalence relations depends on limitations (such as gauge symmetries)
that one may impose on the choice of the Lagrangian.

In principle, the parameters in Equation (29) provide a “rough parameter space”, wherein one is
yet to identify the various points that correspond to equivalent supermultiplets. The transformations
relating such points are expected to form a group usually called the “mapping class group”. The above
considerations, however, indicate that a proper definition of such a mapping class group, which would
reduce a rough parameter space of such linear combinations into a proper moduli space, is rather a
delicate problem and well beyond the scope of this article. Suffice it to say that finding this “moduli
space” of supermultiplets would be to consider the projective space of lines in the space spanned by χIJ
and ω, and then, quotienting by the action of SO(5) should R-symmetries be physically/dynamically
permissible.
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Of course, it is also possible to lower several linearly independent combinations of the form
of (29), rather than just one. Furthermore and depending on the result at this stage as pertaining to
Definition 2.2b, one may next entertain the lowering of one or more nontrivial linear combinations:∑

IJ

dIJBIJ +
∑
I

dIVI (30)

and so on.
Quite generally, then, to classify off-shell world line supermultiplets, one could start with direct sums

of Adinkras, then progressively lower linear combinations of nodes in all possible ways and any number
of times, subject to the conditions of Definition 2.2b. This leads to considering projective spaces if we
lower a single linear combination, or Grassmannian manifolds if we lower many. If we continue to lower
linear combinations of component fields in this manner, there may emerge complicated interrelations
between these lowered subspaces, resulting in certain specific types of flag-varieties.

While the general classification of these constructions remains difficult, it is a straightforward project
to generate all possible lowering from any one particular direct sum of Adinkras.

6. Conclusions

This paper illustrates a method for writing any off-shell engineerable supermultiplet in one dimension
as a finite number of lowering from an Adinkra. We have illustrated this method with two examples from
recent literature, as well as an example specially constructed for this purpose.

Off-shell supermultiplets of N = 1 and N = 2 supersymmetry are, in fact, adinkrizable without
the need for lowering. This can be proven using the following method: since we know that such
supermultiplets can be obtained by lowering an Adinkra, examine Adinkras where a lowering of a linear
combination of nodes is possible, then show that there exists a change of basis that results in the linear
combination being a single node.

The situation with N = 3 supermultiplets is somewhat special in a different way: most of the
N = 3 supermultiplets, in fact, admit a fourth supersymmetry and, sometimes, even in several
distinct ways [31]. In fact, this is always possible, except for the situation where an irreducible
N = 3 supermultiplet takes up four different engineering dimensions, in which case, this is the real
unconstrained superfield with N = 3, and such a supermultiplet is not only adinkrizable, but, in fact, is
equal to the “top Adinkra” in the language of [9].

With N = 4 and higher, however, lowering linear combinations may be necessary. This leads to
an approach to classifying off-shell engineerable supermultiplets: start with a direct sum of minimal
Adinkras; then, map out all the ways of lowering linear combinations of nodes. Equivalently, we can say
that we are iteratively lowering linear subspaces spanned by these linear combinations. A classification
of off-shell supermultiplets then must include a classification of possible choices of subspaces that can
be iteratively lowered; we defer the exploration of this avenue to a subsequent effort.
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