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Algebraic K-theory of toric hypersurfaces

Charles F. Doran and Matt Kerr

We construct classes in the motivic cohomology of certain 1-para-
meter families of Calabi–Yau hypersurfaces in toric Fano n-folds,
with applications to local mirror symmetry (growth of genus 0
instanton numbers) and inhomogeneous Picard–Fuchs equations.
In the case where the family is classically modular the classes are
related to Beilinson’s Eisenstein symbol; the Abel–Jacobi map (or
rational regulator) is computed in this paper for both kinds of
cycles. For the “modular toric” families where the cycles essentially
coincide, we obtain a motivic (and computationally effective) expla-
nation of a phenomenon observed by Villegas, Stienstra, and Bertin.
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0. Introduction

Writing in 1997 on vanishing of constant terms in powers of Laurent poly-
nomials1

φ ∈ C[Tn] = C[x1, x
−1
1 , . . . , xn, x

−1
n ],

Duistermaat and van der Kallen [36] proved the following

Completion Theorem. Given φ ∈ C[Tn] such that the interior of its
Newton polytope contains the origin, there exists a good compactification
X ⊃ Tn, i.e., the complement X\Tn is a normal crossings divisor (NCD)
in X , together with

(a) a holomorphic map X → P
1 extending φ, and

(b) a holomorphic form Ω ∈ Ωn(X\φ−1(∞)
︸ ︷︷ ︸

=: X−

) extending
∧n d log x.

For a simple example, take n = 2 and

φ =
2
∏

i=1

(

xi −
μ2 + 1
μ

+
1
xi

)

, μ ∈ C
∗.

1Here T = Gm.
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Figure 1: An elliptic pencil.

In the “initial compactification” P
1 × P

1(⊃ C
∗ × C

∗), the level sets 1− tφ =
0 (see figure 1, where β := μ2+1

μ ) complete to a pencil of elliptic curves, with
generic member smooth. For φ to extend to a well-defined function we must
blow P

1 × P
1 up at the eight points (marked in the figure) in the base locus;

this yields E
1/φ

� P
1
t as in the Completion Theorem.

What that result does not address at all is the periods of Ω. Since the
Haar form 1

(2πi)n

∧n d log x := dx1
2πix1

∧ · · · ∧ dxn

2πixn
has only rational periods,

one might ask under what circumstances this remains true for Ω.

Question 1 (Nori). Write Hg(—) := HomMHS(Q(0),—); we have
∧n

d log x ∈ Hg(Hn(Tn,Q(n))). Is Ω ∈ Hg(Hn(X−,Q(n)))?

In the above example, the easiest way to compute periods of Ω against
topological two-cycles on E− is to do a bit of homological algebra. Writing
E0 := φ−1(∞), E[0]

0 = ˜E0 = �4
P

1, E[1]
0 = sing(E0), we instead can pair two-

cocycles in the double-complex of currents

D•−4

E
[1]
0

Gysin

·(2πi)
� F 1D•−2

E
[0]
0

Gysin

·(2πi)
� F 2D•E

(deg. 0)

against two-cycles in

Ctop
• (E[1]

0 ; Q) �intersect
Ctop
• (E[0]

0 ; Q)# �intersect
Ctop
• (E ; Q)#

(where “#” means chains and their boundaries properly intersect relevant
substrata). If L1 = {(x, y) = (μ, 0)} and L2 = {(x, y) = ( 1

μ , 0)} are the
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sections of E and Γ = {path from (μ, 0) to ( 1
μ , 0) on ˜E0}, then we can pair

〈(

{1,−1, 1,−1},
{

dx

x
,−dy

y
,−dx

x
,
dy

y

}

,Ω
)

,

({0, 0, 0, 0}, {Γ, 0, 0, 0}, L1 − L2)
〉

=
∫

L1−L2

Ω + 2πi
∫

Γ

dx

x
= −4πi logμ.

So the answer is yes precisely when E has no nontorsion section, or equiva-
lently when

μ is a root of unity.

This points the way toward some sort of arithmetic restriction on φ. (Indeed,
the condition on μ, not that on the sections, is the one which generalizes.)

Now assume K ⊂ Q̄ is a number field, and take φ ∈ K[Tn]. If the cel-
ebrated Hodge and Bloch–Beilinson conjectures are assumed to hold, an
equivalent problem is

Question 2. Does the “toric symbol” {x1, . . . , xn} ∈ Hn
M(Tn,Q(n)), or

some other symbol with fundamental class [
∧n d log x] ∈ Hn(Tn,Q(n)),

extend to Ξ ∈ Hn
M(X−,Q(n))?

So, in light of the isomorphisms

Hn
M(Tn,Q(n)) ∼= Kalg

n (Tn)(n)
Q

∼= CHn(Tn, n)(Q),

the question about periods of the “extended Haar form” is replaced by a
question about algebraic K-theory. If one does not assume the conjectures
then of course this is a stronger criterion than that in Nori’s question; but in
fact there are very concrete sufficient conditions for an affirmative answer.

To state these conditions we first fix the specific compactifications we
will use (for n ≤ 4). The Newton polytope Δ := Newton(φ) is the convex
hull in R

n of the exponent vectors of all nonzero monomials appearing in φ.
Assume this (hence φ) is reflexive, i.e., its polar polytope Δ◦ ⊂ R

n has only
integral vertices; and demand that 1− tφ(x) be Δ-regular for general t. This
last is a mild genericity condition (cf. [3] or Section 2.5 below). (We actually
make a weaker, but more technical, assumption in Theorem 3.1 for n ≤ 3.)
Associated to the fan on Δ◦ is a (compact) toric Fano n-fold PΔ ⊃ Tn where
the components of the “divisor at ∞” D = PΔ\Tn correspond to the facets
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of Δ. This is usually too singular, and we replace it by PΔ̃,2 the toric variety
associated to the fan on a maximal projective triangulation of Δ◦. (In the
example, P

1 × P
1 = PΔ = PΔ̃.) Taking Zariski closure of the level sets

1− tφ(x) = 0

then leads to a one-parameter family of X̃ of anticanonical hypersurfaces
X̃t ⊂ PΔ̃, i.e., Calabi–Yau (n− 1)-folds. (Again, as in the example, X̃ is
nothing but PΔ̃ blown up along [successive proper transforms of] the com-
ponents of the base locus. Our actual definition of X̃ in Sections 3 and 4 is
slightly different from that used here; note that X̃ replaces X in Questions 1
and 2.) If we define π̃ := 1

φ : X̃ → P
1
t , two more properties all these families

have in common is:

• the local system Rn−1π̃∗Q has maximal unipotent monodromy about
t = 0 (for n = 4 an extra assumption is needed for this; cf. Remark 4.1)

• the relative dualizing sheaf ωX̃/P
1 := KX̃ ⊗ π̃−1θ1

P1 has

degωX̃/P
1 = 1 (cf. Section 10.3).

We write L ⊂ P
1 for the discriminant locus of π̃, and D̃ := D̃ ∩ X̃t for the

base locus of the family.
Also writing in 1997, Rodriguez-Villegas [69] introduced the arithmetic

condition on φ for n = 2, that forces the toric symbol ξ := {x1, x2} in Ques-
tion 2 to extend. Namely, by decorating the integral points in Δ with the
corresponding coefficients (in some field K ⊂ C) of monomials in φ, the coef-
ficients along each edge of Δ yield a one-variable polynomial. If these “edge
polynomials” are cyclotomic, then all Tame symbols of ξ are torsion and
Villegas says φ is tempered. In Section 3 of this paper, Villegas’s definition is
extended to n ≤ 4 in order to prove Theorem 3.1, which is a stronger version
of the following

Theorem 0.1. Let φ ∈ K[Tn] (n ≤ 4, K a number field) be reflexive, tem-
pered, and regular. (For n = 4 assume also that K is totally real and that
the components of the one-skeleton of D̃ are rational /K.) Then Question 2
(and therefore Question 1) has a positive answer.

For example, for n = 3, given a reflexive Δ ⊂ R
3 with only triangular

facets, φ :={characteristic Laurent polynomial of the vertex set of Δ} will

2
D̃ will denote the new divisor at infinity (not a desingularization).



404 Charles F. Doran and Matt Kerr

satisfy the Theorem. Conversely, we show (cf. Proposition 4.2) that the toric
symbol cannot extend if the coefficients of φ do not belong to a number field
(up to a common constant factor).

The upshot is that we get in each case a family Ξt := Ξ|X̃t
∈ CHn(X̃t, n)

of Milnor K2 (resp. K3, K4) classes on elliptic curves (resp. K3 surfaces, CY
three-folds). In Section 4 we show that these classes are always nontorsion
by evaluating their image under the Abel–Jacobi map (or “rational regula-
tor map”)

AJn,n : Hn
M(X̃t,Q(n))

�

CHn(X̃t, n)

→ Hn
D(X̃t,Q(n))

�

Hn−1(X̃t,C/Q(n))

against a family of topological cycles ϕ̃t vanishing at t = 0. This yields the
formula (Theorem 4.5)
(0.1)

Ψ(t) := 〈ϕ̃t, AJ(Ξt)〉 ≡ (2πi)n−1

⎧

⎨

⎩

log(t) +
∑

m≥1

[φm]0
m

tm

⎫

⎬

⎭

mod Q(n)

(where [·]0 takes the constant term). The treatment of Theorem 0.1 and for-
mula (0.1) (and other material) becomes rather technical in places, partly
from the desire to prove results in sufficient generality to accommodate spe-
cific key examples. We have included in Sections 1 and 2 a guide to the
regulator formulas and aspects of toric geometry that we use.

A fundamental goal of writing this paper has been to broaden the rel-
evancy of (generalized) algebraic cycles and (generalized) normal functions
beyond their traditional context of Hodge theory and motives. In particular,
we want to persuade the reader that higher cycles are not just to be sought
out in the context of the Beilinson conjectures, but instead also are behind
things like solutions of inhomogeneous Picard–Fuchs (IPF) equations — even
ones arising in string theory. Already in the context of open mirror symme-
try in [61], the domainwall tension for D-branes wrapped on the quintic
mirror has been interpreted as the Poincaré normal function associated to
a family of algebraic one-cycles. This yields not only the solution of an IPF
equation, but also data on “counting holomorphic disks” on the real quintic
⊂ P

4. The higher cycles we consider in this paper are instead related to the
local mirror symmetry setting, and their associated “regulator periods” Ψ(t)
furnish the mirror map in that context. Hence for n = 2, assuming a conjec-
tural “central charge formula” of Hosono [45], we obtain information on the
asymptotics of instanton numbers {nd} for KPΔ◦ . This story is worked out
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in Section 5, with explicit computations connecting the exponential growth
rate of the {nd} to limits of AJ mappings in Section 6.

The “higher normal functions” V (t) obtained from our generalized
cycles, on the other hand, provide solutions to certain IPF equations (cf.
Section 4.3). While we do not know if these play any distinguished role in
local mirror symmetry, they do play a central part in the Apéry–Beukers
irrationality proofs of ζ(2) and ζ(3), and provide a missing link for complet-
ing the “algebro-geometrization” of these proofs begun by Beukers, Peters,
and Stienstra [15,16,67,68]. We will try to convey this link below, but for a
complete discussion/proof the reader is referred to [48].

Another number-theoretic phenomenon on which our construction sheds
light is the “modularity” of the logarithmic Mahler measure

(0.2) m(t−1 − φ) :=
1

(2πi)n

∫

|x1|=···=|xn|=1
log |t−1 − φ|

n
∧

d log x.

Specifically, several authors [9, 59, 69, 77] have noted computationally that
(for n = 2, 3) pullbacks of (0.2) by the inverse of the mirror map frequently
yield Eisenstein–Kronecker–Lerch series. In Corollary 4.4, Ψ(t) is related to
(0.2), and in Section 10 we use AJ computations (done in Sections 7–9)
for Beilinson’s Eisenstein symbol to prove a general result on pullbacks of
Ψ by automorphic functions (Theorem 10.1). This completely explains the
observations on Mahler measures.

One more noteworthy application of Theorem 0.1 is to the splitting of
the MHS on the cohomology Hn−1(X̃0) of the “large complex structure”
singular fiber. In fact, whenever Question 1 has a positive answer, taking
Poincaré residue of Ω ∈ HomMHS(Q(0), Hn(X̃−,Q(n))) yields

Res(Ω) ∈ HomMHS(Q(0), Hn−1(X̃0,Q))

hence (dually) a morphism

(0.3) Hn−1(X̃0,Q(j)) → Q(j)

of MHS for any j. Now the cycle Ξ produced by the Theorem obviously does
not extend through X̃0. Given a second cycle Z ∈ CHj(X̃ \ ∪i Xti , 2j − n)
(all ti ∈ L\{0}) which does extend, together with a family ω ∈Γ(P1, π̃∗ωX̃/P

1)
of holomorphic forms, one has the associated (multivalued) normal function

ν(t) = 〈AJ(Z|X̃t
), ω(t)〉
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over P
1\L. If 2j = n one must also assume that [ι∗X0

Z] = 0 ∈ H2j(X̃0). If
we normalize ω so that ̂ω(0) := im{ω(0)} ∈ Hn−1(X̃0,C) is just [Res(Ω)],
e.g., one could just take ω = ∇δt

[AJX̃t
(Ξt)], then the splitting (0.3) gives

“meaning” to

(0.4) lim
t→0

ν(t) ∈ C/Q(j),

that is, nontriviality of (0.4) implies nontriviality of AJ(Z|X̃t
) as a section

of the sheaf of generalized Jacobians J j, 2j−n(X̃t). This “splitting principle”
will be elaborated upon in a future work.

In the remainder of this Introduction, we want to convey some of the
main ideas behind these applications (including the ones not done in this
paper) through three key examples

φ =
(x− 1)2(y − 1)2

xy
, n = 2,(0.5)

φ =
(x− 1)(y − 1)(z − 1)[(x− 1)(y − 1)− xyz]

xyz
, n = 3,(0.6)

φ =
x5 + y5 + z5 + w5 + 1

xyzw
, n = 4,(0.7)

all of which satisfy the strengthened version (Theorem 3.1) of Theorem 0.1.
Begin by considering the sequence

−4,−4,−12,−48,−240,−1356,−8428,−56000,−392040,−2859120, . . .

of genus zero local instanton numbers {nd}d≥1 for KP1×P1 [21]. The related
Gromov–Witten invariants {Nd} count (roughly speaking) the contribution
to the “number of rational curves of degree d” on a CY three-fold made
by an embedded P

1 × P
1 (when there is one). They have, according to [59],

exponential growth rate

(0.8) lim
d→∞

∣

∣

∣

∣

nd+1

nd

∣

∣

∣

∣
= lim

d→∞

∣

∣

∣

∣

Nd+1

Nd

∣

∣

∣

∣
= e

8
π
G,

where G := 1− 1
32 + 1

52 − 1
72 + · · · is Catalan’s constant. The exponent of

(0.8) also appears as a special value of a hypergeometric integral in a formula

8
π
G = log(16)−

∑

n≥1

(
2n
n

)2

16nn
= − lim

ε→0

{
∫ 1

16

ε
2F1

(

1
2
,
1
2
; 1; 4t

)

dt

t
− log(ε)

}

(0.9)
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essentially due to Ramanujan. The surprising fact is that a family of higher
cycles, in Kalg

2 of a family of elliptic curves, is behind (0.8) and (0.9). In
order to illustrate how this works, we shall first offer a brief review of the
relevant AJ maps.

To begin with, recall Griffiths’s AJ map [42] for one-cycles homologous
to zero on a smooth projective three-fold X/C. Writing

Z =
∑

qiCi ∈ Z2
hom(X), � := P

1\{1},

we want to know whether Z is rationally equivalent to zero:

Z
rat≡ 0 ⇐⇒ ∃W ∈ Z2(X ×�) (properly intersecting X × {0,∞})

with W · (X × {0})−W · (X × {∞}) = Z.

Here qi ∈ Q, and except where otherwise indicated all cycle groups and inter-
mediate Jacobians in this paper are taken ⊗Q. Also note that Zp(X) denotes
complex codimension p algebraic cycles, while Zptop(X) (resp. Cptop(X))
means real codimension p (piecewise) smooth topological cycles (resp.
chains). The map3

Z2
hom(X)

˜AJ� J2(X) :=
H3(X,C)

F 2H3(X,C) +H3(X,Q(2))
∼= {F 2H3(X,C)}∨

im{H3(X,Q(2))}

∼=
{

test forms
︷ ︸︸ ︷

Γ
d-closed(F

2A3
X) /d[Γ(F 2A2

X)]}∨
{
∫

Ztop
3 (X;Q(2))(·)

}

induced by

Z �−→ (2πi)2
∫

∂−1Z
(·),

where ∂−1Z ∈ Ctop
3 (X; Q) is any (piecewise smooth) three-chain bounding

on Z, descends modulo
rat≡ to yield

AJ : CH2
hom(X) → J2(X).

This is the type of AJ-map which yields the normal functions considered
in [61], and detects classes in K0(X)(2) ∼= CH2(X).

3Ak
X = ⊕p+q=kA

p,q
X denotes C∞ k-forms on X.
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Now suppose we have an elliptic curve

E ⊂ PΔ = toric Fano surface,

and would like to detect classes in

K2(E) ∼=
“de-loop”

K0(E × Č
︸︷︷︸

nodal
affine
curve

× Č) ∼= CH2(E ×�2, E × ∂�2

︸ ︷︷ ︸

)

X

,

where the right-hand term is a relative Chow group and

∂�2 := ({0,∞}×�) ∪ (�× {0,∞}) ⊂ �2.

The “relative cycles” Z =
∑

qiCi ∈ Z2(X) are just those whose component
curves Ci properly intersect4 E × ∂�2 and satisfy Z · (E × ∂�2) = 0, and
relative rational equivalences are defined similarly, i.e., W ∈ Z2(E ×�3)
must intersect E × ∂�3 properly and have W · (E × ∂�2 ×�) = 0. Writing

I
2 := ({1} × C

∗) ∪ (C∗ × {1}) ⊂ (C∗)2,
X∨ := (E × (C∗)2, E × I

2)

for the “Lefschetz dual” variety, the test forms live on X∨; and

J2(X) :=
H3(X,C)

F 2H3(X,C) +H3(X,Q(2))
∼= {F 2H3(X∨,C)}∨

im{H3(X∨,Q(2))}
∼= {H1(E,C)⊗ d log z1 ∧ d log z2}∨

im{H1(E,Q)⊗ S1 × S1}
∼= Hom

(

H1(E,Q), C/Q(2)
)

.

To produce a map

AJ : CH2(X) → J2(X),

one first notes that H i(�, ∂�) =

{

Q(0), i = 1
0 otherwise

which implies that

Hg2(H4(X)) ∼= Hg2(H2(E)⊗Q(0)⊗2) = {0} .

4All coskeleta of i.e., components of E × ∂�2, and intersections of these compo-
nents.
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Figure 2: Newton polytope for (0.5).

Figure 3: Singular fibers for (0.11).

Thus CH2(X) = CH2
hom(X). Hence for any Z ∈ Z2(X), we essentially5 have

Z = ∂Γ in Ctop
• (E × (C∗)2, E × I

2).

We can then consider on test forms in Γ
d-closed(A1

E)

(0.10) AJX(Z) :=
∫

Γ
(·) ∧ dz1

z1
∧ dz2
z2

∈ J2(X),

which we now turn to computing in one example.
The Laurent polynomial (0.5) has Newton polytope as shown in figure 2,

which corresponds to PΔ = P
1 × P

1. A projective description of the fibers of
X π� P

1
t is then

(0.11) Et := {XYZW = t(X−W)2(Y −W)2} ⊂ P
1
X:W × P

1
Y:Z,

and after a minimal desingularization at t = ∞, π has singular fibers as in
figure 3. Now consider the pair of meromorphic functions

x :=
X

W
, y :=

Y

Z
∈ C(Et)∗

5For a more precise statement see [50, Section 5.8] and references cited therein.
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Figure 4: Marked 4-torsion in (0.11).

arising from the toric coordinates; their divisors

(x) = 2[b]− 2[d], (y) = 2[a]− 2[c]

are supported on marked four-torsion points (see figure 4), and in fact X is
nothing but the modular family over X1(4).6 Most importantly, we have the
following pair of (chains of) implications

x = 0 or ∞ =⇒ X or W = 0
use
=⇒

(0.11)
Y = Z =⇒ y = 1,

y = 0 or ∞ =⇒ · · · =⇒ x = 1.

Recalling that 1 /∈ �, if we consider the “graph” (in the sense of calculus,
not combinatorics!) of the symbol {x, y}

Zt := {(e, x(e), y(e)) | e ∈ Et} ∈ Z2(E ×�z1 ×�z2),

then Zt · (E × ∂�2) = 0

=⇒ Zt ∈ CH2(X),

i.e., Zt is a relative cycle. Interestingly, this example appears in [22] as the
degeneration of a Ceresa cycle on the Jacobian of a nonhyperelliptic genus
3 curve, as that curve acquires two successive nodes.

To construct an explicit three-chain Γt bounding on Zt, we use a proce-
dure similar to that in [13] which was generalized in [47, 50]. First look at
the picture of Zt ⊂ Et ×�×� in figure 5. For a first approximation of Γ,
“squash” Zt to {1} in the z1-coordinate and write down the membrane

(0.12)
{

(e,
−−−→
1.x(e), y(e)) | e ∈ E

}

which it traces out. Here we recall that for purposes of bounding Zt, Et × I
2

is a sort of “topological trashcan”. The path
−−−→
1.x(e) ⊂ P

1\Tz1 can be chosen

6We use the notation Y 1(4) for this in Sections 7–10.
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Figure 5: Higher Chow cycle on (0.11).

continuously in e ∈ E\Tx, where Tx := {e ∈ Et |x(e) ∈ R
≤0 ∪ {∞}} is the

cut in the branch of log(x). Along Tx we have a problem, namely that
(0.12) has {(e, S1

x, y(e)) | e ∈ Tx} as an additional (and unwanted) boundary
component. So we squash this component to {1} in the z2-coordinate and
continue on, obtaining at last

Γt =
{

(e,
−−−→
1.x(e), y(e))

}

e∈Et

+
{

(e, S1
z ,
−−−→
1.y(e))

}

e∈Tx

+ {(e, S1
z1 , S

1
z2)}e∈∂−1(Tx∩Ty).

Thus (0.10) becomes
∫

Γt

ωE ∧ d log z1 ∧ d log z2

=
∫

E
ωE ∧ log x d log y − 2πi

∫

Tx

ωE log y − 4π2

∫

∂−1(Tx∩Ty)
ωE

=

(

log x d log y − 2πi log yδTx
︸ ︷︷ ︸

=: R{x, y} ∈ D1(Et)
− 4π2δ∂−1(TX∩Ty)

)

(ωE),

where D1 denotes one-currents; in fact, there is nothing preventing us from
taking [Poincaré duals of] topological one-cycles γ as our test forms, and so

CH2(Et, 2) := CH2(Xt)
AJ(rel)� Hom(H1(Et,Q), C/Q(2))
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is induced (on our cycle) by

(0.13) Zt �−→
{

γ �→
∫

γ
R{x, y}

}

.

Explicit computation on a particular choice of γt (using not much more than
residue theory; see Section 4.1) yields (0.1), which in this case is

(0.14) Ψ(t) =
∫

γt

R{x, y}
Q(2)
≡ 2πi

⎧

⎨

⎩

log t+
∑

m≥1

(
2m
m

)2

m
tm

⎫

⎬

⎭

.

Nontriviality of the family of cycles then follows from nonconstancy of the
“regulator period” Ψ. Both (0.8) and (0.9) are obtained by computing its
value Ψ( 1

16) at the “conifold point,” by pulling back the current R{x, y}
along a desingularization of the nodal rational curve E 1

16
. (See the “D5”

computation in Section 6.3.) In particular, the relation to the asymptotics
of the {Nd} (cf. (0.8)) comes from the conjectural mirror theorem7

1
(2πi)2

−
∑

d≥1

d3NdQ
d =

Y(t)
(

2F1(1
2 ,

1
2 ; 1; 4t)

)3

in which

the r.h.s. blows up at
1
16

, and(0.15)

the mirror map Q(t) = exp
{

Ψ(t)
2πi

}

.(0.16)

Equation (0.16) is based on an analysis (Section 5.1) of periods on the (open
CY three-fold) mirror manifold of KP1×P1 , which generalizes nicely to higher
dimensions (for periods on certain open CY four- and five-folds).

As suggested above, the family of cycles {Zt ∈ CH2(Xt, 2)} can be
canonically constructed on the universal family E1(4) → Y1(4) = Γ1(4)�H

of elliptic curves with a marked four-torsion point. (Similar constructions
are possible in any level ≥ 3 and even in higher dimension, by working on
Kuga varieties, or fiber products of such universal families; this construc-
tion is recalled in Section 7.) Using fiberwise double Fourier series for cur-
rents on E1(4), we obtain a very different expression for the regulator period

7The Nd here is actually N〈KP1×P1〉
2d in Section 5.3.
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〈ϕ̃, AJ(Z)〉 as a function of τ ∈ H,

Ψ̃(τ)
Q(2)
≡ 2πi

⎧

⎨

⎩

2πi
4
τ − 4

∑

μ≥1

qμ0
μ

⎛

⎝

∑

r|μ
r2χ−4(r)

⎞

⎠

⎫

⎬

⎭

,

where q0 = e
2πi
4
τ . (See Theorem 9.1 and formulas (9.11), (9.16) for the gen-

eral result.) This must coincide with (0.14) in the sense that

Ψ̃(τ(t))
Q(2)
≡ Ψ(t),

where τ(t) = 4
2πi log t+ tC[[t]] is the period map. The rich interactions

between the genus 0 case of the modular/Kuga construction and the toric
construction, including a complete classification of the elliptic curve families
where the constructions coincide, are explained in Section 10.

Before turning to our next example Laurent polynomial (0.6), we give a
brief outline of how the AJ-formulas (0.10), (0.13) for CH2(E, 2) generalize
to the setting

AJp,nX : CHp(X,n) → H2p−n
H (X,Q(p))

︸ ︷︷ ︸

.

absolute Hodge cohomology

(This will be expanded upon in Section 1; references are [50, Section 5]
and [49, Section 8].) Here X is smooth (quasi-projective) and the higher
Chow groups satisfy

H2p−n
M (X,Q(p))

︸ ︷︷ ︸

motivic cohomology

∼= CHp(X,n)
�

CHp(X ×�n, X × ∂�n)

∼= GrpγKn(X)Q,

where ∂�n := {z ∈ �n | some zi = 0 or ∞} ⊂ �n. When X is singular these
isomorphisms fail, but one still has

AJp,nX : H2p−n
M (X,Q(p)) → H2p−n

H (X,Q(p))

which is treated using hyper-resolutions in [49, Section 8].
Recall that the higher Chow groups were defined [14] as the homology

of the complex

Zp(X, •) :=

{

“admissible” cycles in X ×�•: components
properly intersect all coskeleta of X × ∂�•

}

{“degenerate” cycles}
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with differential ∂B taking the alternating sum of the restrictions to “facets”
of X × ∂�•. The KLM formula for AJp,n on X smooth projective (and some
quasi-projective cases) is given simply as a map of complexes

ZpR(X,−•) → C2p+•
D (X,Q(p))(0.17)

:= C2p+•
top (X; Q(p))⊕ F pD2p+•(X)⊕D2p+•−1(X),

where ZpR(X,−•) ⊂ Zp(X,−•) is a quasi-isomorphic subcomplex. The
proper intersection condition is extended to include certain real semi-
algebraic subsets of X ×�• in order to make the formulas (0.18–20) well-
defined (e.g., the intersections of Tzi

’s). The (cone) differential on the r.h.
complex in (0.17) sends (a, b, c) �→ (−∂a,−d[b], d[c]− b+ δa). (0.17) is
defined on an irreducible R-admissible cycle Z ⊂ X ×�n by

(0.18) Z �−→ (2πi)p−n ((2πi)nTZ ,ΩZ , RZ) .

Here TZ is a C∞ chain, while ΩZ and RZ are currents. Writing

�n
(z1,...,zn)

{

desingularization
of |Z|

}

π���

πX

��
X ,

Tn :=
n
⋂

i=1

Tzi
:=

n
⋂

i=1

{

zi ∈ (R≤0 ∪ {∞})
}

∈ Cntop(�n)

Ωn :=
n
∧

d log zi :=
dz1
z1

∧ · · · ∧ dzn
zn

∈ FnDn(�n)

Rn := R{z1, . . . , zn} :=
n
∑

i=1

(±2πi)i−1 log(zi)
dzi+1

zi+1
∧ · · ·

∧ dzn
zn

· δTz1∩···∩Tzi−1
∈ Dn−1(�n),

(0.19)

the KLM (normal) currents are defined by

(0.20) TZ := πX {Z · (X × Tn)} ,
{

ΩZ

RZ

}

:= πX∗π�∗
{

Ωn

Rn

}

.
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Suppose we are given a higher Chow cycle, i.e., a ∂B-closed precycle (= admis-
sible cycle) Z ∈ ZpR(X,n). Then

d[RZ ] = ΩZ − (2πi)nδTZ
,

or just−(2πi)nδTZ
if dimX < p or p < n. So for a symbol {f} = {f1, . . . , fn} ∈

Zn(U, n) (where fi ∈ O∗(U) and U is smooth quasi-projective of dim < n),
R{f} = R{f1, . . . , fn} (as in (0.19)) satisfies

(0.21) d[R{f}] = −(2πi)nδTf1∩···∩Tfn
=: −(2πi)nδTf

.

In Theorem 0.1, Ξt ∈ Zn(X̃t, n) is ∂B-closed and dim(X̃t) = n− 1; hence

R′Ξt
:= RΞt

+ (2πi)nδ∂−1TZ
∈ Dn−1(X̃t)

is d-closed and defines a lift of AJ(Ξt) ∈ Hn−1(X̃t,C/Q(n)) to Hn−1(X̃t,C).
This lift is multivalued if t is allowed to vary. We are interested in the higher
normal function

(0.22) V (t) :=
〈

[R′Ξt
], [ωt]

〉

associated to Ξ and a section ω ∈ Γ(P1, ωX̃/P
1) of the dualizing sheaf. If Dω

PF

is the Picard–Fuchs operator associated to ω (which kills its periods over
topological cycles), then nonvanishing of

Dω
PFV (t) =: gΞ,ω(t) ∈ C(P1)

implies generic nontriviality of AJ(Ξt). This gives a connection to IPF equa-
tions, explained in Section 4.3. One way to evaluate (0.22) is to observe that
the restriction of Ξt to X̃∗t := X̃t ∩Tn is

rat≡ (by a ∂B-coboundary) to the
toric symbol {x1, . . . , xn}|X̃∗

t
, and so

[R′Ξt
|X̃∗

t
] ≡ [R{x1|X̃∗

t
, . . . , xn|X̃∗

t
}+ (2πi)nδΓt

] ∈ Hn−1(X̃∗t ,C)

for some Γt ∈ Ctop
n−1(X̃t, D̃; Q). When we can arrange for Γt to vanish (which

is true in the calculation below), a careful analytic argument with KLM
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currents demonstrates that

(0.23) V (t) =
∫

X̃t

R{x1|X̃t
, . . . , xn|X̃t

} ∧ ωt.

What originally got us thinking about higher normal functions was the fol-
lowing integral from a paper [15] of Beukers:

(0.24)

R(λ) =
∫ 1

0

∫ 1

0

∫ 1

0

dX dY dZ

1− (1−XY )Z − λXY Z(1−X)(1− Y )(1− Z)
,

with R(0) = 2ζ(3). This is the unique linear combination of the generating
series of the two sequences {am}, {bm} used by Apéry to prove irrationality
of ζ(3), with larger radius of convergence than those series. (This leads to
Beukers’s simpler, geometrically motivated proof.) Substituting X = x

x−1 ,
Y = y

y−1 , Z = z
z−1 , (0.24) becomes

∫ ∫ ∫

T :=Tx∩Ty∩Tz

d log x ∧ d log y ∧ d log z

λ− (x−1)(y−1)(z−1)(1−x−y+xy−xyz)
xyz

(0.25)

=
∫

T

∧3 d log xi
λ− φ(x)

=:
∫

T
(2πi)3ω̂λ,

where φ is as in (0.6) and (writing t = λ−1) ω̂λ ∈ Ω3(PΔ̃)
〈

log X̃t

〉

(Δ is
shown in figure 6). Differentiating ω̂λ as a current on PΔ̃,

(0.26) d[ω̂λ] = 2πi(ιX̃t
)∗ResX̃t

(ω̂λ) =: (ιX̃t
)∗ωλ

Figure 6: Newton polytope for (0.6).
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defines our section {ωλ ∈ Γ(KX̃t
)}t∈P1 of the dualizing sheaf. Using (0.26)

and the generalization

d[R{x}] =
∑

{terms supported on D̃}+
3
∧

d log x− (2πi)3δT

of (0.21) to PΔ̃, (0.25) becomes
∫

PΔ̃

(2πi)3δT ∧ ω̂λ = −
∫

PΔ̃

d[R{x}] ∧ ω̂λ

====
∫

by

parts

∫

PΔ̃

R{x} ∧ ιX̃t∗ωλ =
∫

X̃t

R{x}|X̃t
∧ ωλ,

which is (0.23).8 In fact, R(λ)’s interpretation as a higher normal function
associated to a family of K3(K3)-classes extending through singular fibers,
other than λ = ∞/t = 0, leads (almost) automatically to the “larger radius
of convergence” mentioned above, as well as to its satisfaction of an IPF
equation (which then produces a recursion on the {bm}).

One knows from [67] that the family of K3 surfaces X̃ associated to (0.6)
is the canonical family of Kummer surfaces over Γ0(6)+6

�H∗. From the toric
(Section 4.2) and modular (Section 9.3) computations of the “fundamental
regulator period” one gets two rather different expressions

Ψ(t) = (2πi)2

⎧

⎨

⎩

log t+
∑

m≥1

tm

m

m
∑

k=0

(

m

k

)2(m+ k

k

)2
⎫

⎬

⎭

Ψ̃(τ) = −12(2πi)3τ +
(2πi)2

20
{

7ψ4(q)− 2ψ4(q2) + 3ψ4(q3)− 42ψ4(q6)
}

(where q := e2πiτ and ψ4(q) =
∑

M≥1
qM

M {
∑

r|M r3}) which must coincide

modulo Q(3) under the “period map” τ(t) =
∫

ϕ1
ωt

∫

ϕ0
ωt

(see Section 10.3).

In general when a toric-hypersurface pencil arising from Theorem 0.1 is
modular (in a sense to be made precise in Section 10.3), the limit MHS at
t = 0 is trivialized by taking q := exp(2πi

N τ(t)) (for some N ∈ Z) as the local
parameter (or more generally t0 with limt→0

q(t)
t0(t)

a root of unity). An exam-
ple of a nonmodular case — with nontrivial LMHS (see Section 10.6) — is

8Of course, much of the above needs more thorough justification, as R{x} is not
technically a current on PΔ̃, and this will be done in [48].
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the mirror quintic family obtained from φ = x+ y + z + w + 1
xyzw . It fol-

lows that the Fermat quintic family X̃ obtained from (0.7) (of which the
mirror quintic is essentially a quotient) also has extensions in H3

lim(X̃0) not
trivializable by change of parameter. What is still true is that we have the
splitting (0.3) of MHS

H3(X̃0) � Q(0)

induced by 〈 · , ̂ω(0)〉, and inducing

J2(X̃0)
θ�� C/Q(2).

This follows from the existence of Ξ in the theorem, and is false if we change
the coefficients in (0.7) (e.g., writing instead φ = x5+2y5+7z5+w5+1

xyzw ) without
regard for the “generalized temperedness” criterion.

Sticking with the Fermat family, here is why this is important. Let D∗ :=
D\{0} ⊂ P

1 be a punctured disk about t = 0, and suppose we are given a
“local” family of cycles {Zt ∈ Z2

hom(X̃t)}t∈D∗ satisfying Z∗ := ∪t∈D∗Zt
hom≡ 0

on π̃−1(D∗) ⊂ X̃ . Then by Green et al. [40, Section III.B] limt→0AJX̃t
(Zt) ∈

J2(X̃0) is well-defined as an invariant of the family of rational equivalence
classes, and by applying θ so is θ(limt→0AJX̃t

(Zt)) = limt→0 ν(t) =: ν(0)
(cf. (0.4)). In [40, Section IV.C] such a family is constructed, with

�(ν(0)) = D2(
√
−3),

and so the general Zt /
rat≡ 0. Here, D2 denotes the Bloch–Wigner function.

To conclude, we comment on a few intriguing issues arising in the present
work, which might form the basis for later projects. We would like to have a
better understanding of the geometry of families of K3 surfaces supporting
K3-classes which are not Eisenstein symbols. There are scores of Laurent
polynomials φ ∈ Q[T3] satisfying Theorem 3.1, corresponding to (at least)
about a quarter of the 4319 reflexive polytopes in R

3; see Section 3.3. We
are only able to show that the generic Picard number rk(Pic(Xη)) = 19 for
a handful of these. While there are techniques for obtaining lower bounds
on this number, we are aware of no methods for (nontrivially) bounding it
above. Do any of the families have generic Picard rank < 19? Are any of
them not elliptic fibrations? In fact, on those that admit a torically defined
elliptic fiber structure, we are able to construct (and partially evaluate the
regulator on) families of K1-classes.

For CY three-folds, it turns out that none of the K4-classes constructed
by Theorem 3.1 are Eisenstein symbols, because none of the allowed CY
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families are classically modular (Proposition 10.3). This would likely be
remedied by generalizing the construction to admit singularities on the
generic fiber as we have done for K3’s; this hard work has yet to be done.

The conjectural mirror theorem of Section 5.4 relates Hodge theory
of the (open CY three-fold) B-model family Yt := {1− tφ(x) + u2 + v2 =
0} ⊂ (C∗)2 × C

2 to enumerative geometry of the (A-model) total space of
the canonical bundle KPΔ◦ . But the mirror map and the VHS H3(Yt) are
determined from the data of the underlying elliptic curve family X∗t =
{1− tφ(x) = 0} ⊂ (C∗)2 and the toric symbol {x1, x2} ∈ K2(X∗t ) (whose
AJ class in Ext1

MHS
(Q(0), H1(X∗t ,Q(2))) projects to H3(Yt), cf. Proposi-

tion 5.1ff). The mirror X◦ of {Xt} is the (elliptic curve) zero locus of a
section of K∨PΔ◦ . Is it possible to recast the Gromov–Witten invariants of
KPΔ◦ directly in terms of X◦, and thus rewrite the mirror theorem in terms
of Xt ←→ X◦? A starting point might be to think of Heven(KPΔ◦ ) as an
extension of Heven(X◦) by Q(0) and reduce the quantum product to one on
Heven(X◦).

Collino [22] has studied the behavior of the Ceresa cycle associated to a
nonhyperelliptic genus 3 curve as this curve acquires two successive nodes.
Working modulo two-isogenies, with each degeneration a Gm splits off from
the (Jacobian) abelian variety on which the cycle sits. Under this process

CH2

(

abelian
three-fold

)

� CH2

(

abelian
surface

, 1
)

� CH2

(

elliptic
curve

, 2
)

, the

Ceresa cycle limits to the Eisenstein symbol over Y1(4), which should be
thought of as the intersection of two boundary components in moduli space.
Obviously this admits generalization, essentially by considering moduli of
genus 3 Jacobians with level N structure. It is of great interest, there-
fore, to attempt a modular computation of the normal function for such
“modular Ceresa cycles,” which should limit to an integral of an Eisenstein
series. Certain singularities of this normal function in the sense of Grif-
fiths and Green [39] (equivalently, the residues of the corresponding Hodge
class [39]), must then be given by the rational residues (in the sense of
Section 7.1.5 below) of “Q-Eisenstein series” EQ

3 (N). It is a fundamental
property of Eisenstein series that they are determined by their residues.

In fact, there is a beautiful analogy between the picture in Section 4
of [39] and the Eisenstein situation reviewed in Sections 7–8.1. Given a pro-
jective variety X2p, a (p, p)-class ζ, and a sufficiently ample line bundle
L → X, the infinitesimal invariant of ζ (pulled back to the incidence variety
X ⊂ X × PH0(OX(L))) maps to certain “residues” over higher-codimension
substrata of X∨ ⊂ PH0(OX(L)). An explicit form of Deligne’s “Hodge =⇒
Absolute Hodge” conjecture, is that this map should be injective on Hodge
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classes9 — that is, that the rational (p, p) classes are “generalized
Q-Eisenstein series.” That all such should be motivated by a “generalized
Eisenstein symbol” is, of course, the Hodge Conjecture. In the context of
Kuga varieties over modular curves (and higher cycles), we have spelled out
how Beilinson’s work established the relevant (Beilinson-)Hodge Conjecture
in Sections 7–8.1 below.

1. Review of the KLM formula

In this expository section, we review a construction of the motivic cohomol-
ogy groups Hq

M(X,Q(p)) for varieties with “reasonable” singularities, first
putting some meat on the bones of the description of higher Chow cycles
and formulas for AJ maps from the Introduction. Our choice of material is
geared toward what is needed for the reader to follow specific computations
in later sections.

1.1. Higher cycle groups and their properties

Let �n := (P1\{1})n with coordinates (z1, . . . , zn). For a multi-index J ⊂
{1, . . . , n} and function f : J → {0,∞}, define subsets ∂Jf �n :=

⋂

j∈J{zj =
f(j)}, and put ∂�n :=

⋃

j(∂
j
0�n ∪ ∂j∞�n). One has obvious inclusion and

projection maps

ıj,ε : �n−1 ↪→ �n (z1, . . . , zn−1) �→ (z1, . . . , zj−1, ε, zj , . . . , zn−1)

(ε = 0 or ∞) and

πj : �n � �n−1 (z1, . . . , zn) �→ (z1, . . . , ẑj , . . . , zn).

Let X be an algebraic variety defined over an infinite field k, and Zp(X ×
�n) the abelian group of codimension-p algebraic cycles defined over k.
(It is generated by closed irreducible subvarieties of codimension p.) The
admissible subvarieties Z ⊂ X ×�n of codimension p, are those for which
Z ∩ (X × ∂Jf �n) has codimension p in X × ∂Jf �n (∀ J, f) – i.e. “Z meets

9The point is that the map preserves Q-structure and the target Q-structure is
“algebraic” (in the sense of being Galois-invariant).
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X × ∂Jf �n properly” — and they generate the subgroup

cp(X,n) ⊂ Zp(X ×�n)

of admissible cycles. Its quotient by the degenerate cycles

dp(X,n) :=
∑

j

π∗j c
p(X,n− 1) ⊂ cp(X,n)

defines the higher Chow precycles

Zp(X,n) :=
cp(X,n)
dp(X,n)

.

The pullback/intersection maps

ı∗j,ε : cp(X,n) → cp(X,n− 1)

are well-defined on admissible cycles. Writing ∂jε for the map induced on
Zp(X,n)’s, we may define the Bloch differential

∂B : Zp(X,n) → Zp(X,n− 1) ,

Z �→
∑

j

(−1)j(∂j0 − ∂j∞)Z ,

which satisfies ∂B ◦ ∂B = 0. A higher Chow cycle is a precycle Z ∈ ker(∂B),
and the higher Chow groups are

CHp(X,n) := H−n {Zp(X,−•), ∂B} =
ker{∂B : Zp(X,n) → Zp(X,n− 1)}
im{∂B : Zp(X,n+ 1) → Zp(X,n)} ,

the class of Z in CHp(X,n) is written 〈Z〉. There are good reasons for writing
this as a cohomology (rather than homology) group; the drawback, of course,
is the awkward negative indices. The Bloch–Grothendieck–Riemann–Roch
theorem then says that for X smooth

(1.1) Kalg
n (X)Q

∼= ⊕
p
CHp(X,n)Q,

where the subscript Q means ⊗Q. More precisely, CHp(X,n)Q is the pth
Adams graded piece GrpγK

alg
n (X)Q of K-theory.
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A number of higher Chow groups are familiar: from the geometric side,
usual algebraic cycles are

CHp(X) ∼= CHp(X, 0),

and for X smooth,
CH1(X, 1) ∼= Γ(X,O∗X).

More generally, since rational equivalences on usual algebraic cycles are given
by ∂BZp(X, 1), the groups CHp(X, 1) can be thought of as empty rational
equivalences.

From the arithmetic side, if we let X be a point Spec(k), then writ-
ing CHp(Spec(k), n) =: CHp(k, n), the Beilinson–Soulé vanishing conjec-
ture (known for n ≤ 3) says that CHp(k, n) = {0} for p < n+1

2 . For n =
2m− 1 odd, if we assume this then one of the extreme terms in (1.1) is
CHm(k, 2m− 1)Q, which is conjecturally the Bloch group Bm(k)Q related
to the mth polylogarithm. If k is a number field, then it is known that

Kalg
n (k)Q

∼=
{

0, n = 2m,
CHm(k, 2m− 1)Q, n = 2m− 1

and that (writing [k : Q] = r1 + 2r2)

CHm(k, 2m− 1)Q
∼=

⎧

⎪
⎨

⎪
⎩

k∗, m = 1,
Q
r2 , m ≥ 2 even,

Q
r1+r2 , m ≥ 3 odd.

For example, CH2(k, 3) = {0} for k totally real (r2 = 0), a fact which we
shall use repeatedly. On the other hand, an example of a higher Chow cycle
with nontrivial class, for k = Q(ζ3), is

Z :=
{(

1− ζ3
t
, 1− t, t

)∣

∣

∣

∣
t ∈ P

1

}

∩�3(1.2)

+
1
3

{(

1− ζ3,
(t− ζ3)3

(t− 1)3
, t

)∣

∣

∣

∣
t ∈ P

1

}

∩�3

∈ ker(∂B) ⊂ Z2(Q(ζ3), 3).

For more general fields, the other extreme term in (1.1) is the Milnor K-
group

(1.3) CHn(k, n) ∼= KM
n (k)
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(isomorphism due independently to Totaro [79], Nesterenko and Suslin).
This is the nth graded piece of the quotient of the exterior algebra

∧•
Z k
∗ by

the ideal generated by terms α ∧ (1− α) (for α ∈ k\{0, 1}). Alternatively,
KM
n (k) is the free abelian group generated by the symbols {α1, . . . , αn},

modulo the relations subgroup generated by all elements of the form:

{α1, . . . , αj , . . . , αn} − {α1, . . . , β, . . . , αn} − {α1, . . . , γ, . . . , αn},

where αj = βγ,

{α1, . . . , αi, . . . , αj , . . . , αn}+ {α1, . . . , αj , . . . , αi, . . . , αn},

and

{α1, . . . , αn} where αi + αj = 1.

Obviously these imply further relations, for example {α1, . . . , β
m, . . . , αn} =

m{α1, . . . , β, . . . , αn} and {α1, . . . , 1, . . . , αn} = 0; and if one is working ⊗Q,
also {α1, . . . , αn} = 0 when αj = −αi, and {α1, . . . , ζ, . . . , αn} = 0 if ζ is a
root of 1.

The isomorphism (1.3) is induced simply by sending a symbol {α1, . . . ,
αn} to the point (α1, . . . , αn) ∈ �n\∂�n viewed as an admissible zero-cycle
(unless some αi = 1, in which case the symbol is sent to 0). When k =
K(X ) for X smooth over K, one thinks of Spec(k) as the generic point
ηX . If dimK X = d, then the zero-cycle (over k) corresponding to a symbol
{f1, . . . , fn} ∈ KM

n (K(X )) should be thought of as the restriction to ηX of
the d-cycle defined (over K) by the graph of the n meromorphic functions
{fj ∈ K(X )∗}. More precisely, if we let U = X\{∪nj=1|(fj)|}, then this graph

{(x ; f1(x), . . . , fn(x)) |x ∈ U} ⊂ U ×�n

is a ∂B-closed admissible precycle; we write {f} = {f1, . . . , fn} ∈ Zn(U , n)
(still called a “symbol”) and 〈{f}〉 ∈ CHn(U , n). It restricts to the “syn-
onymous” Milnor K-theory element in CHn(ηX , n) ∼= KM

n (K(X )). In the
constructions we study below, 〈{f}〉 will frequently extend to a class in
CHn(X , n), even as the closure of {f} in X ×�n fails to be admissible.
The mechanisms for dealing with this are the Bloch moving lemma, residue
maps and the localization sequence, which we now explain from a general
perspective.
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Let F : Y → X be a proper morphism of varieties over k, of relative
dimension r; push-forward of cycles induces a homomorphism

CHp(Y, n) F∗−→ CHp−r(X,n).

On the other hand, if F is any morphism of smooth varieties, then there is
a pullback homomorphism

CHp(X,n) F ∗
−→ CHp(Y, n),

though it is not in general well-defined on cycles Z ∈ Zp(X,n) (e.g., Z may
not intersect im(F ) properly). We will say how to deal with this in Sec-
tion 1.3.

Here we only need the case of F = j : Y ↪→ X an open embedding, where
(for restriction of cycles Z �→ j∗Z) no issues arise. Write D = X\Y for the
complement, which we assume is of pure codimension 1 in X. (While X is
smooth, D can be singular.)

The Bloch moving lemma [11] says that

Zp(X, •)
Zp−1(D, •)

j∗−→ Zp(Y, •)

is a quasi-isomorphism. Intuitively, this means that we can modify (or
“move”) a ∂B-closed precycle on Y by adding a ∂B-exact cycle, so that it
extends to an admissible precycle on X. Since ∂B of this extended precycle
is supported on D, we get a residue map

Res : CHp(Y, n) → CHp−1(D,n− 1).

This fits in the long-exact localization sequence

→ CHp(X,n)
j∗→ CHp(Y, n) Res→ CHp−1(D,n− 1) ı∗→ CHp(X,n− 1)

j∗→,

which says that for extending a higher cycle-class 〈Z〉 from Y to X, we must
only check vanishing of Res(〈Z〉). Nothing like this happens for ordinary
algebraic cycles, which always extend.

The difficulty with this is that D may be singular, in which case it
is not necessarily practical to directly check vanishing of something in its
higher Chow groups. It is better to break it into smooth substrata and check
vanishing of classes on these, an idea which leads to the local-global spectral
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sequence. Writing d = dim(X), let

∅ ⊆ Dd ⊆ Dd−1 ⊆ · · · ⊆ D2 ⊆ D1 = D

be a filtration of D by subvarieties Dj of pure dimension d− j, with each
Dj,∗ := Dj\Dj+1 smooth. Putting

E(p)a,b1 :=

⎧

⎪
⎨

⎪
⎩

CHp−a(Da,∗,−a− b), a ≥ 1,
CHp(Y,−b), a = 0,
0 a < 0.

d1 = Res : E(p)a,b1 → E(p)a+1,b
1

leads to a fourth-quadrant spectral sequence converging to CHp(X,−a− b).
In particular,

im {CHp(X,n) → CHp(Y, n)}
∼= E(p)0,−n∞ = {(∩j≥1 ker(dj)) ⊂ CHp(Y, n)} ,

where the target of each dj is a subquotient of CHp−j(Dj,∗, n− 1). How to
compute the dj for j ≥ 2 is described in [47]; also see [49, Section 3.4].

1.2. Abel–Jacobi maps for higher cycles

For most of this paper we shall work rationally, that is, all cycle groups are
implicitly ⊗Q (and we omit the subscript Q); one exception is Section 5
where the AJ computation on CH2(X∗a , 2) is done integrally. Henceforth
we adopt this convention, and assume that the field of definition k for X
is a subfield of C. In this subsection we also take X to be smooth, and let
Xan

C denote the complex analytic space associated to X ⊗k C. Note that
Q(p) = (2π

√
−1)pQ has, by convention, Hodge type (−p,−p).

The coarsest invariant attached to a higher Chow cycle is its fundamen-
tal class

clp,nX : CHp(X,n) → Hgp,n(Xan
C ) := HomMHS(Q(0), H2p−n(Xan

C ,Q(p)))
∼= F pH2p−n(Xan

C ,C) ∩H2p−n(Xan
C ,Q).
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(We will take the (·)anC to be “understood” when required from here on.)
This is followed by a secondary invariant, the Abel–Jacobi map

AJp,nX :ker(clp,n)
︸ ︷︷ ︸

−→
=:CHp(X,n)hom

Jp,n(X) := Ext1MHS(Q(0), H2p−n−1(X,Q(p)))

∼= W2pH
2p−n−1(X,C)

F pW2pH2p−n−1(X,C) +W2pH2p−n−1(X,Q)
.

One has the short-exact sequence

0 → Jp,n(X) → H2p−n
H (Xan

C ,Q(p)) → Hgp,n(X) → 0,

so that absolute Hodge cohomology (resp. Deligne cohomology if X is pro-
jective) and the cycle-class map

cH(resp. cD) : CHp(X,n) → H2p−n
H (X,Q(p))

collects both pieces of information together. This is how the results of [49,50]
are formulated.

The situation can simplify vastly: Hgp,n(X) vanishes if n > p, or p >
d(= dimX), or X is projective and n ≥ 1; in those cases CHp(X,n) =
CHp(X,n)hom. When n ≥ p or p ≥ d, F pH2p−n−1(X,C) = {0} and
W2pH

2p−n−1(X) = H2p−n−1(X), so that

Jp,n(X) ∼= H2p−n−1(X,C/Q(p))
∼= Hom(H2p−n−1(X,Q),C/Q(p)).

If X is a point, then Jp,n(X) = 0 unless n = 2p− 1, in which case it is
C/Q(p).

These invariants are functorial with respect to pullback, pushforward,
and residue maps. Here is a special case which gets substantial use in Sec-
tions 4 and 5: let Y ⊂ X be a Zariski open subset with complementD = ∪Di,
where the Di are irreducible hypersurfaces and D∗i := Di\{∪j =i(Dj ∩Di)}
are smooth. Given Ξ ∈ CHn+1(Y, n+ 1) where d = n, let ξi ∈ CHn(D∗i , n)
be the residues of Ξ on the D∗i . Consider topological cycles γi ∈ Ztop

n−1(D
∗
i ) of

real dimension n− 1 and let Γ ∈ Ctop
n+1 (X\{∪i<jDi ∩Dj}) be such that Γ ∩

D∗i = γi for each i; and put γ = ∂Γ ∈ Ztop
n (Y ). Then noting that Jn,n(Y ) ∼=
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Hom(Hn−1(X,Q),C/Q(n)) etc., we have that (mod Q(n+ 1))

(1.4) AJn+1,n+1
Y (Ξ)(γ) = 2π

√
−1

∑

i

AJn,nD∗
i
(ξi)(γi).

One writes γ = Tube({γi}), {ξi} = Res(Ξ), and says that Res and Tube are
adjoint.

The {AJp,n} are frequently called regulator maps due to their close rela-
tionship with the Beilinson regulator. Assume X is projective and defined
over a number field F ; then by composing structure morphisms X →
Spec(F ) → Spec(Q) we may actually view X as a variety over Q(=: k).
Only then, Xan

C looks like the disjoint union of all Galois conjugates of the
original X/k. Applying cp,nD = AJp,n for this X to those cycle classes which
lift to an integral model X → Spec(OF ), and composing with the projection
to real Deligne cohomology yields10

rp,nBe : CHp(X, n) →
(

H2p−n
D (Xan

C ,R(p))
)DR

.

Now suppose n ≥ 2 (or n = 1, but with additional fiddling). The right-
hand side has a natural rational substructure which allows one to measure
the covolume of the image up to a multiplicative rational constant, and
the Beilinson conjectures assert that this is ∼

Q∗
L(H2p−n−1(X), p). (When

X = Spec(F ) this is essentially Borel’s theorem.) This relation to the coho-
mological L-function is the source of the arithmetic interest of the AJ maps.

Continuing to assumeX smooth projective, but defined over any subfield
of C, we define a map of complexes of the form (0.17) inducing AJp,nX . In
order that the currents which we shall associate to precycles be well-defined,
we must further restrict what it means for these precycles to be admissible.
First, for any meromorphic function f ∈ C(X ) on a smooth quasi-projective
variety, let Tf be the real-codimension-1 chain f−1(R−) oriented so that
∂Tf = (f). For j /∈ I ⊂ {1, . . . , n}, f : I → {0,∞}, write ∂I,jf,R�n = ∂If �n ∩
{

∩�/∈I,�≤jTz�

}

(and ∂If �n for j = 0). Then the subcomplex of R-admissible
cycles

ZpR(X,−•) ⊂ Zp(X,−•)

10“DR” is an involution on real Deligne cohomology; cf. [46] or [71] for more
details on this paragraph.
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is defined by demanding that cycles meet properly (as real analytic varieties)
all X × ∂I,jf,R�n. In [49, Section 8.2], it is shown that this inclusion is a quasi-
isomorphism, so that the ZpR(X,−•) still compute CHp(X,n); and that the
restricted cycles satisfy a Bloch moving lemma.

We now describe the terms of the Deligne cohomology complex C2p+•
D (X,

Q(p)) from (0.17), which computesH2p+∗
D (X,Q(p)). Again for smooth quasi-

projective (d-dimensional) X , a-currents Da(X ) are simply functionals on
compactly supported C∞ forms of degree 2d− a, with F bDa(X ) killing
Γc(F d−b+1Ω2d−a

X∞ ). Elementary examples include

• the current of integration against a real-codimension-a C∞-Borel-
Moore11 chain Γ on X , denoted δΓ;

• differential a-forms with log poles along subvarieties of X (and any
behavior “at infinity”);

• the 0-current log f (for f ∈ C(X )∗), which denotes the branch with
imaginary part in (−π, π) and a discontinuity along Tf .

Exterior derivative is defined as the adjoint of that for C∞ forms, so that e.g.,

d[log f ] =
df

f
− 2π

√
−1δTf

,

and the resulting complex of currents computes de Rham cohomology of
X . Now let T ∈ C2p−n

top (X; Q(p)) be a chain, and Ω ∈ F pD2p−n(X) and R ∈
D2p−n−1(X) currents, so that (T,Ω, R) ∈ C2p−n

D (X,Q(p)); then the (cone)
differential is defined by

D(T,Ω, R) := (−∂T,−d[Ω], d[R]− Ω + δT ).

The KLM formula, which has been given as a map of complexes in
the Introduction, simply says that for Z ∈ ZpR(X,n) ∂B-closed, AJp,nX (Z) is
represented by

(1.5)
(

(2π
√
−1)pTZ , (2π

√
−1)p−nΩZ , (2π

√
−1)p−nRZ

)

11This means (roughly) that Γ can extend to the “boundary” of X , i.e., should
be considered as a relative chain on (X̄ , X̄ \X ). More precisely, one works with so
called “integral currents,” but this level of precision will not concern us below.
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in H2p−n
D (X,Q(p)). The meaning of (for example) RZ := (πX)∗(π�)∗Rn ∈

D2p−n−1(X) in (0.20), is that for a C∞ form ω ∈ Γ(Ω2d−2p+n+1
X∞ ) on X,

∫

X
RZ ∧ ω =

∫

Z
π∗�Rn ∧ π∗Xω

for Z irreducible; and then R∑

miZi
:=

∑

miRZi
. The classes of TZ and ΩZ

represent clp,n(Z); assuming this is 0 (automatic if n > 0), there exist Γ ∈
C2p−n−1

top (X; Q) and Ω̃ ∈ F pD2p−n−1(X) with ∂Γ = TZ , d[Ω̃] = ΩZ . Adding

D
(

(2π
√
−1)pΓ, (2π

√
−1)p−nΩ̃, 0

)

to (1.5) gives (0, 0, (2π
√
−1)p−nR′Z)

where the closed (2p− n− 1)-current

R′Z := RZ − Ω̃ + (2π
√
−1)nδΓ

now represents a lift of AJp,n(Z) to H2p−n−1(X,C). For n = 0, this recovers
the Griffiths AJ map.

If n ≥ p or p ≥ d, F pD2p−n(X) = {0} and

R′Z = RZ + (2π
√
−1)nδΓ.

In this range, we are merely after a C/Q(p)-valued functional on topological
(2p− n− 1)-cycles, and this is just given by

Zp(X,n) AJp,n

−→ Hom(H2p−n−1(X,Q), C/Q(p))

Z �−→
{

[γ] �→ (2π
√
−1)p−n

∫

γ
RZ

}

since
∫

γ(2π
√
−1)pδΓ ∈ Q(p). In fact, this formula works for quasi -projective

X (cf. [50, Section 5.9]).
To ease their use for the reader, we survey some properties and examples

of the R-currents. We have

R1 = log z(1),

R2 = log z1d log z2 − (2π
√
−1) log z2δTz1

,

R3 = log z1d log z2 ∧ d log z3 + (2π
√
−1) log z2d log z3δTz1

+ (2π
√
−1)2 log z3δTz1∩Tz2

,

and in general Rn = Rn−1 ∧ d log zn + (2π
√
−1)n−1 log znδTn−1 . That the

KLM formula gives a morphism of complexes is one consequence of the
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residue formula

d[Rn]− Ωn + (2π
√
−1)δTn

= 2π
√
−1

n
∑

i=1

(−1)iR(z1, . . . , ẑi, . . . , zn)δ(zi).

Here is another: if in (1.4), we take Ξ = {f1, . . . , fn+1} (fi ∈ C(X)∗,X quasi-
projective) and Di = |(fi)| (that the |(fi)| do not share components is a big
assumption), then the formula is

∫

γ
R(f1, . . . , fn+1)
︸ ︷︷ ︸

RΞ

≡
Q(n+1)

2π
√
−1

n+1
∑

i=1

(−1)i
∫

γi

R(f1, . . . , ̂fi, . . . , fn+1)
︸ ︷︷ ︸

Rξi

.

Finally, we look at the AJ map over a point,

Zm(k, 2m− 1) −→ C/Q(m)

sending

Z �−→ RZ

(2π
√
−1)m−1

,

whereRZ =
∫

Z R2m−1. Ifm = 1 this just sends α ∈ k∗ to logα, a map related
(essentially via the rBe discussion above) to the Dirichlet regulator. The
remaining maps are tied to the Borel regulator; we shall compute AJ2,3 on
(1.2) to demonstrate the process. Only the first term (1− ζ3

t , 1− t, t)
t∈P1

=:
Z0 will contribute, and

∫

Z0
R3 is computed by pulling back to P

1. So

AJ(Z)

=
1

2π
√
−1

∫

P1

R

(

1− ζ3
t
, 1− t, t

)

=
1

2π
√
−1

∫

P1

⎧

⎨

⎩

log
(

1− ζ3
t

)

d log(1− t) ∧ d log t
︸ ︷︷ ︸

0

+ 2π
√
−1 log(1− t)d log(t)δT

1− ζ3
t

+ (2π
√
−1)2(log t)δT1−t ∩ T1− ζ3

t
︸ ︷︷ ︸

∅

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= −
∫

T
1− ζ3

t

log(1− t)d log t = −
∫ ζ3

0
log(1− t)

dt

t
= Li2(ζ3).
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In fact, denoting by Z̄ the complex conjugate cycle, we obtain

AJ(Z − Z̄) = Li2(ζ3)− Li2(ζ̄3) =
√
−3L(χ−3, 2).

1.3. Higher cycles on singular varieties

Let X be smooth projective over k ⊂ C, and V
ı
⊂ X a nonsingular closed

subvariety. Define Zp(X,n)V ⊂ Zp(X,n) to consist of those admissible pre-
cycles which meet all V × ∂If �n properly. Cycle-theoretic intersection Z �→
Z · (V ×�n) then defines a morphism of complexes

ı∗ : Zp(X,−•)V → Zp(V,−•).

Levine’s moving lemma says that Zp(X,−•)V ↪→ Zp(X,−•) is a quasi-
isomorphism, so that ı∗ induces pullback maps

CHp(X,n) → CHp(V, n).

Replacing V by a finite collection S = {Sα} of (possibly singular) closed
subvarieties, we define Zp(X,−•)S by imposing the proper intersection con-
dition with respect to each Si × ∂If �n. This still yields a (quasi-isomorphic)
subcomplex computing CHp(X,n). (There is a version of this whole story
for ZpR’s too, cf. [49].)

If V is singular, then the best possible pullback maps are not to higher
Chow groups, since these play the role of motivic “Borel–Moore homology”
in general and pullback is most natural for cohomology groups. To construct
the motivic cohomology groups H2p−n

M (V,Q(p)) (∼= CHp(V, n) for smooth),
one first replaces V by a diagram of smooth quasi-projective varieties called
a hyper-resolution. Taking Zp(·,−•) of this diagram, the associated simple
complex then computes HM. In what follows we explain how to do this
in the cases required below, in ad hoc fashion. The general procedure is
described for example in [53].

First, suppose V = ∪Ni=1Vi is a “smooth normal crossing divisor”, in
particular that all VI = ∩i∈IVi are smooth of dimension d− |I|. Denote by
V I the collection of all VJ with J � I, and put

(1.6) Za,bV (p) := ⊕
|I|=a+1

Zp(VI ,−b)V I



432 Charles F. Doran and Matt Kerr

with differentials ∂B : Za,b → Za,b+1 and
∑

|I|=a+1

∑

i/∈I
(−1)〈i〉I (ıVI∪{i}⊂VI

)∗ = I : Za,b → Za+1,b,

where 〈i〉I := the position of i in {1, . . . , N}\I. Then (1.6) is a double
complex; and its associated simple complex Z•V (p) := ⊕a+b=•Za,bV (p) (differ-
ential D = ∂B + (−1)bI) has H−n(Z•V (p)) ∼= H2p−n

M (V,Q(p)). The pullback
map from CHp(X,n) to this is given by sending Z ∈ Zp(X,n){VI}I⊂{1,...,N}

to the element of Z−nV (p) consisting of {Z · (Vi ×�n)}Ni=1 ∈ Z
0,−n
V (p) and 0

in each Za,−a−nV (p) (a ≥ 1). We shall need the AJ map for HM of a NCD
in Section 6 and it is introduced there.

Second, suppose V is irreducible but singular, with subvariety S (
ι
↪→ V )

the support of its singularities. Let β : Ṽ → V be a resolution of singular-
ities, and assume that both E := β−1(S) (

ι̃
↪→ Ṽ ) and S are smooth NCDs.

Motivated by the commutative square

E
ι̃→ Ṽ

β|E ↓ ↓ β
S

ι→ V

we consider the simple (cone) complex associated to the double complex

Zp(Ṽ ,−•){EI} ⊕ Z•S(p) −→
ι̃∗−(β|E)∗

Z•E(p).

(Here the (β|E)∗ has to be done componentwise.) So a class in H2p−n
M (V,

Q(p)) is represented by a “triple” (Z,Z,Ξ) ∈ Zp(Ṽ , n){EI} ⊕ Z−nS (p)⊕
Z−n−1
E (p) with ∂BZ = 0, DZ = 0, and DΞ = ι̃∗Z − (β|E)∗Z. Moreover, we

obtain a long-exact sequence

→ H2p−n−1
M (E,Q(p)) → H2p−n

M (V,Q(p))
β∗⊕ι∗−→ CHp(Ṽ , n)⊕H2p−n

M (S,Q(p))
ι̃∗−(β|E)∗−→ H2p−n

M (E,Q(p)) → .

This is used in the constructions of Section 3.

2. Preliminaries on toric varieties

A complex toric n-fold X is a normal, irreducible algebraic variety con-
taining the algebraic torus G

n
m(C) ∼= (C∗)n as a Zariski-open subset and
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extending its obvious action on itself. the key references for this and the
next subsection are [5,23, Sections 3–4, 38, 66], and especially [3]. We start
by summarizing the two standard constructions of toric varieties, from fans
and from polytopes, focusing on the local affine coordinate systems in which
we shall compute.

2.1. Cones and flags: the affine case

The core definition, from this point of view, is the affine toric variety UC

associated to a (rational convex polyhedral) cone

c := R≥0 〈v1, . . . , v�〉 ⊂ R
n,

with integral generators vi ∈ Z
n. Under the standard inner product 〈·, ·〉, the

dual cone
c◦ := {w ∈ R

n | 〈w, v〉 ≥ 0 ∀v ∈ c}
gives rise to an abelian subgroup

Sc := c◦ ∩ Z
n,

which has a finite generating set {w1, . . . ,wk} by Gordan’s lemma. The
subalgebra of Laurent polynomials

Ac := C[xw1 , . . . , xwk ] ⊂ C[x1, x
−1
1 , . . . , xn, x

−1
n ]

then produces

Uc := SpecAc ⊃ SpecC[x±1
1 , . . . , x±1

n ] = (Gm)n

as a scheme. If we consider the map C[w1, . . . ,wk] → C[x±1
1 , . . . , x±1

n ] given
by wi �→ xwi with kernel Ic, then Ac

∼= C[w1,...,wk]
Ic

and as a variety,

Uc
∼= V (Ic) :=

{

W ∈ C
k | f(W ) = 0 ∀f ∈ Ic

}

⊆ C
k.

Thinking of the xi as toric coordinates on (C∗)n, the Wi(= xwi in Ac) gen-
erate precisely those monomials12 in them which extend to regular functions
on Uc. That is, Ac is the coordinate ring C[Uc].

12A monomial (resp. Laurent monomial) in k variables Wi is a product
∏

W ξi

i ,
ξi ∈ Z≥0 (resp. Z).
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Now for the basic combinatorial considerations. First, by the dimension
of a cone c we just mean that of Rc := R 〈v1, . . . , v�〉. Natural subcones are
the faces, i.e., intersections c ∩ {L = 0} for L ∈ (Rn)∨ satisfying L ≥ 0 on c,
those of codimension (resp. dimension) one being called facets (resp. edges).
One says that c is simplicial ( ⇐⇒ Uc orbifold) if the {vi}�i=1 are a basis of
Rc and smooth ( ⇐⇒ Uc smooth) if moreover Z

n ∩ Rc = Z 〈v1, . . . , v�〉 . In
the latter situation we have simply Uc

∼= C
k × (C∗)n−k.

Of particular importance is the setting where c is simplicial of dimen-
sion n, in which case c◦ is as well. Let ε1, . . . , εn denote the edges of c◦,
and w1, . . . ,wn the unique integral generators of each εi ∩ Z

n. In general,
w1 or w2 will not suffice to generate R≥0 〈ε1, ε2〉 ∩ Z

n; let w̃1, . . . , w̃k2
be the

required additional generators. Likewise, w1,w2,w3 and w̃1, . . . , w̃k2
will not

generate R≥0 〈ε1, ε2, ε3〉 ∩ Z
n; and we must introduce w̃k2+1, . . . , w̃k3

. Con-
tinuing in this fashion up to w̃kn

, our affine coordinates on Uc are then the
{xwj}nj=1 and {xw̃j}kn

j=1. Instead of Wi we shall write

(2.1)
zi = xwi ,

uj = xw̃j

and

(u1, . . . , uk2) =: u2, (uk2+1, . . . , uk3) =: u3, . . . , (ukn−1+1, . . . , ukn
) =: un,

organized so that powers of the ukm
are expressible in z1, . . . , zm but not

z1, . . . , zm−1. If c is smooth then (we can take) kn = 0, so that there are no
uj ’s.

If c′ is nonsimplicial (of dimension n) the procedure still works, with
the difference that one gets more than n {z′i}, hence relations amongst their
powers as well. A wedge in c′ is a simplicial n-dimensional subcone

c = R≥0 〈v1, . . . , vn〉 ⊆ c′

such that R 〈v1, . . . , vk〉 ∩ c′ is a face of c′ for each k = 1, . . . , n. In this
case there are orderings of the edges of (c′)◦ ⊆ c◦ so that R≥0 〈ε′1, . . . , ε′k〉 ⊆
R≥0 〈ε1, . . . , εk〉 (k = 1, . . . , n); hence z′k and the u′k can be written as mono-
mials in the z1, . . . , z� and u1, . . . , u� exactly when � ≥ k (or � = n, if k ≥ n).
One consequence of this, to be used in Section 2.5, is that on Uc zk = 0
(which implies uk = 0) we have z′k = 0 (or z′n = z′n+1 = · · · = 0, if k = n). It
also gives us a rational morphism Uc → Uc′ compatible with the inclusion of
the torus.
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2.2. Fans and polytopes: complete varieties

This is, of course, a special case of the general covariance of the assignment
c �→ Uc under inclusions of cones. When the inclusion is that of a face, the
induced rational map is actually an embedding, which leads to the stan-
dard gluing construction. If cones c1 and c2 share c1 ∩ c2 as a face, then the
embedding Uc1∩c2 ↪→ Uc1  Uc2 is closed, hence the quotient (by the induced
equivalence relation) Hausdorff. Iterating this process, we get a toric n-fold
XΣ associated to any fan Σ in R

n: that is, a finite collection (closed under
taking faces) of strongly convex cones (c ∩ (−c) = {0}) whose intersections
are faces of each. If the support |Σ| := ∪c∈Σc is all of R

n, then we say Σ is
complete. In any case the {Uc}c∈Σ give a Zariski-open cover of XΣ.

The i-dimensional cones c ∈ Σ are in one-to-one correspondence with
the codimension-i torus orbits in XΣ (as Uc contains a unique (n− i)-
dimensional orbit). We get a morphism XΣ′

μ→ XΣ whenever each cone of
Σ′ is contained in a cone of Σ; if moreover |Σ′| = |Σ| then we say Σ′ refines
Σ, and μ is surjective. In this case it may be described as a sequence of
blow-ups at (closures of) torus orbits corresponding to the cones of Σ which
get broken up in Σ′.

Now the toric variety of a complete fan is complete but not necessarily
projective. To remedy this, consider an n-dimensional polytope Δ ⊂ R

n with
integer vertices and 0 in its interior. Denote by

Δ◦ := {v ∈ R
n | 〈v,w〉 ≥ −1}

its dual (convex) polytope, which may not have integer vertices. The faces of
Δ are the intersections Δ ∩ {L = 0} for affine functions L (on R

n) satisfying
L|Δ ≥ 0. The dimension of a face σ of Δ is dim(Rσ), for Rσ the smallest
affine subspace of R

n containing σ; write Δ(i) for the set of codimension-i
faces. Combinatorial duality produces a one-to-one correspondence (σ ←→
σ◦) between Δ(i) and Δ◦(n− i+ 1), e.g., vertices Δ(n) and facets Δ◦(1).
Let Σ(Δ◦) be the complete fan consisting of cones on all the faces of Δ◦;
then the toric n-fold

PΔ := XΣ(Δ◦)

is projective. One can see this scheme-theoretically, by checking that

PΔ := Proj
(

C

[{

x�0x
m |m ∈ �Δ ∩ Z

n, � ∈ Z≥0

}])

←↩ Proj
(

C
[

x0, x
±1
1 , . . . , x±1

n

])

= (Gm)n.
(2.2)
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Remark 2.1. In fact, Σ(Δ◦) is just the normal fan of Δ, making this
substitution in the definition of PΔ extends (2.2) to the case when 0 /∈ int(Δ).

A more concrete perspective will, however, be valuable: this involves
the construction of an ample invertible sheaf. First, note that the toric
coordinates x1, . . . , xn give rational functions on PΔ. For each σ ∈ Δ(i)
(0 < i ≤ n), pick an “origin” oσ ∈ Rσ ∩ Z

n, and take a basis wσ1 , . . . , w
σ
n−i

for (Rσ ∩ Z
n)− oσ. We may complete this to a basis wσ1 , . . . , w

σ
n for Z

n, in
such a way that

R≥0

〈

wσ1 ,−wσ1 , . . . , wσn−i,−wσn−i;wσn−i+1, . . . , w
σ
n

〉

⊃ Δ− oσ.

This yields an invertible change of toric coordinates, to xσj := xw
σ
j (j =

1, . . . , n), and then

D
∗
σ :=

{

xσ1 , . . . , x
σ
n−i ∈ C

∗} ∩
{

xσn−i+1 = · · · = xσn = 0
}

⊆ PΔ

is precisely the torus orbit (∼= (C∗)n−i) corresponding to σ◦. Writing Dσ :=
D∗σ for the Zariski closure,

D := ∪
σ∈Δ(1)

Dσ =
n
 
i=1

(

 
σ∈Δ(i)

D
∗
σ

)

is the complement of (C∗)n in PΔ. The face structure of Δ exactly describes
(combinatorially speaking) the intersection behavior of D. Furthermore, if
one considers σ as a polytope in Rσ relative to the integer Z

n ∩ Rσ, then
(by Remark 2.1) Pσ is defined; and in fact Dσ

∼= Pσ.
Also denoting by D the divisor

∑

σ∈Δ(1)[Dσ], a standard result is that
OΔ(1) := O(D) is ample. Its sections are given by Laurent polynomials with
exponent vectors supported on Δ:

H0(PΔ,OΔ(1)) ∼= {f ∈ C(PΔ)∗ | (f) + D ≥ 0} ∪ {0}

=

⎧

⎨

⎩

∑

m∈Δ∩Zn

αmx
m |αm ∈ C

⎫

⎬

⎭

.(2.3)

It is sections of O(�D) (for � sufficiently large) that yield the projective
embedding.

An integral convex polytope Δ is called reflexive if Δ◦ has integer
vertices too. (In view of (Δ◦)◦ = Δ, the dual of a reflexive polytope is also
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reflexive.) An equivalent condition — that 0 be the unique integer interior
point of Δ — leads easily to

(

dx1

x1
∧ · · · ∧ dxn

xn

)

= −D (on PΔ),

so that D is an anticanonical divisor. Consequently the anticanonical sheaf
−KPΔ is OΔ(1) and is therefore simple, making PΔ Fano. Henceforth we
assume Δ is reflexive; up to unimodular transformation of Z

n, it is known
that there are 16 (resp. 4319, 473800776) possibilities when n = 2 (resp. 3, 4).

2.3. Toric smoothing constructions

Partial desingularizations of PΔ can be produced by subdividing faces of
Δ◦ and replacing Σ(Δ◦) by the refinement obtained from te fan on the
subdivision. In particular, a maximal triangulation of ∂Δ◦ is finite collection
θ = {θα} if simplices, closed under taking faces, such that:

• ∪αθα = ∂Δ◦,

• the union of vertices of the {θα} is ∂Δ◦ ∩ Z
n,

• θα ∩ θβ (if nonempty) is a common face of θα and θβ (∀ α, β).

Associated to each such θ is a refinement Σ(θ) of Σ(Δ◦) consisting of the
cones c̃α := R≥0 〈θα〉 . A projective support for θ is a continuous function
h : R

n → R which is convex (h(x+ y) ≤ h(x) + h(y) ∀x, y) and restricts to
distinct Q-linear functions on distinct n-dimensional cones c̃α. When θ has
a projective support, it is called a maximal projective triangulation (these
always exist), and a theorem of Batyrev [3] asserts that XΣ(θ) is projective,
with (at worst) singularities in codimension ≥ 4 (of Q-factorial terminal
type). Moreover, the morphismXΣ(θ)

μ→ PΔ is crepant, i.e., μ∗KPΔ = KXΣ(θ) ;
Batyrev [3] calls μ a maximal projective crepant partial (MPCP) desingu-
larization of PΔ.

There is a convenient way to visualize this process in terms of real (non-
integral) polytopes, which is not in the literature and will be immensely
helpful in the sections ahead. For ε > 0, define a function on the vertices
of θ

Hε : Z
n ∩ ∂Δ◦ −→ R

n

by

v �−→ (1− h(v)ε)v.
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Lemma 2.1. For ε > 0 sufficiently small, the set of vertices of conv
(im(Hε)) is exactly im(Hε).

Proof (Sketch). Suppose otherwise; then (taking ε0 > 0 sufficiently small)
there are distinct vi ∈ Z

n ∩ ∂Δ◦ (i = 1, . . . , δ) and continuous ti : [0, ε0) →
[0, 1] (i = 1, . . . , δ) satisfying 0 ≤

∑δ
i=1 ti(ε) ≤ 1, such that

(2.4) Hε(v0) =
δ
∑

i=1

ti(ε)Hε(vi).

Let σ◦ denote the smallest form of Δ◦ containing v0. Evaluating at t = 0
gives v0 =

∑δ
i=1 ti(0)vi, and so the vi belong to σ◦ and

∑δ
i=1 ti(0) = 1; by

convexity, h(v0) ≤
∑δ

i=1 ti(0)h(vi).
If the {vi}δi=0 are all in one simplex θα, then they are linearly independent

and (by linearity of h|cα
) so are the {Hε(vi)}δi=0, contradicting (2.4).

So the {vi}δi=0 are not all in one simplex, and then convexity of h becomes
strict: h(v0) <

∑δ
i=1 ti(0)h(vi), implying that for ε > 0

1− h(v0)ε >
δ
∑

i=0

ti(0)(1− h(vi)ε).

By continuity

1− h(v0)ε >
δ
∑

i=0

ti(ε)(1− h(vi)ε)

for ε ∈ (0, ε0), so that (2.4) becomes

v0 =
δ
∑

i=1

(

ti(ε)
1− h(vi)ε
1− h(v0)ε

)

vi =:
δ
∑

i=1

τi(ε)vi

with
∑δ

i=1 τi(ε) < 1. Since all vi ∈ σ◦ (i = 0, . . . , δ), this is impossible. �

Thinking of ε ∈ R>0 as fixed, we define polytopes in R
n by

tr(Δ◦) := conv(im(Hε))

Δ̃ := tr(Δ◦)◦.
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Note that h ≥ 0, tr(Δ◦) ⊆ Δ◦, and Δ̃ ⊃ Δ; here are some pictures:

As ε tends to 0, Δ̃ (resp. tr(Δ◦)) tends to Δ (resp. Δ◦). Given a face of Δ̃
(resp. tr(Δ◦)), we can consider the smallest face of Δ (resp. Δ◦) it limits
into (resp. onto). (For tr(Δ◦) only, one can also use the map to Δ◦ produced
by radial projection.) This defines maps (for each k)

∪
j≤k

tr(Δ◦)(j) −→ ∪
j≤k

Δ◦(j)

∪
i≥k

Δ̃(i) −→ ∪
i≥k

Δ(i),

and the “preimage faces” of a face of Δ◦ (resp. Δ) are said to lie over it. For
faces σ̃◦ of tr(Δ◦) lying over a face σ◦ of Δ◦, the projected image gives a
simplex θ(σ̃◦) ⊆ σ◦ from the triangulation. To faces σ̃ of Δ̃ we shall associate
an affine subspace containing σ̃ and then letting ε tend to 0. If σ̃ lies over
σ, then Rσ ⊂ Rσ̃.

Now the point of all this is that by Lemma 2.1,
∑

(tr(Δ◦)) =
∑

(θ) and
so putting

PΔ̃ := XΣ(θ)

recovers all the one-to-one correspondences previously encountered (for PΔ).
Let σ̃ ∈ Δ̃(n− i); then starting from Rσ̃, the same procedure as above yields
coordinates {xσ̃j }nj=1 and D

∗
σ̃ ⊂ PΔ̃, the i-dimensional orbit associated to
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σ̃◦ ∈ tr(Δ◦)(i+ 1). Moreover, Δ̃ describes the “divisor at ∞”

D̃ := PΔ̃\(C
∗)n = ∪

σ̃∈Δ̃(1)
Dσ̃ =

n
�
j=1

(

�
σ̃∈Δ̃(j)

D
∗
σ̃

)

in PΔ̃. For example, since each facet of tr(Δ◦) is a simplex, each j-face
contains j + 1 vertices, and so each i-face of Δ̃ abuts i+ 1 facets, making D̃

a NCD on the smooth part of PΔ̃. Since μ is crepant,

(2.5) H0
(

PΔ̃,−KPΔ̃

) ∼=

⎧

⎨

⎩

∑

m∈Δ∩Zn

αmx
m

∣

∣

∣

∣

∣

∣

αm ∈ C

⎫

⎬

⎭

and D̃ =
∑

σ̃∈Δ̃(1)[Dσ̃] is additionally an anticanonical divisor, though PΔ̃
may not be Fano.

2.4. Local coordinates

Summarizing the story so far, affine charts for PΔ̃ are obtained from mono-
mial generators for the integral points of the cones dual to the cones on
tr(Δ◦). The cones on Δ◦ likewise provide affine charts for PΔ; and in both
cases the relations between the monomials produce local equations for the
toric variety. The two sets of affine charts are related by blow-up along coor-
dinate subspaces, and locally μ is just the proper transform. On the level
of torus orbits we can easily describe μ as follows: If σ̃ ∈ Δ̃(i− k) lies over
σ ∈ Δ(i) then μ(D∗σ̃) = D

∗
σ, and the toric coordinates on D

∗
σ̃
∼= D

∗
σ × (C∗)k

can be written as {xσ̃1 , . . . , xσ̃n+k−i} = {xσ1 , . . . , xσn−i; yσ̃1 , . . . , yσ̃k} where the
yσ̃j are blow-up coordinates.

We elaborate on the affine charts for PΔ̃. These are in one-to-one corre-
spondence with the facets tr(Δ◦)(1), or (dually) with the vertices Δ̃(n). we
need the following general statement:

Lemma 2.2. Let σ̃◦ ∈ tr(Δ◦)(i+ 1), with dual face σ̃ ∈ Δ̃(n− i); let p ∈
σ̃\∂σ̃ be any interior point. The dual of the (n− i)-cone R≥0 〈σ̃◦〉 = R≥0

〈θ(σ̃◦)〉 is then the n-cone R≥0

〈

Δ̃− p
〉

.

Now, given a vertex ṽ ∈ Δ̃(n), let κ(ṽ) denote the dual of c(ṽ◦) :=
R≥0 〈ṽ◦〉, and Uṽ := Uc(ṽ◦) ⊂ PΔ̃. According to the Lemma, κ(ṽ) is the cone
through ṽ or Δ̃, with ṽ translated to 0. So the coordinate rings Aṽ :=
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C[xκ(ṽ)∩Zn

] of the affine neighborhoods Uṽ can be read off directly from
the geometry of Δ̃.

Dropping tildes, the same story goes through for Δ. Let v ∈ Δ(n) with
dual facet v◦ ∈ Δ(1). In any triangulation of v◦, there exists a simplex θ and
sequences of faces (with subscript denoting 1 + dimension) f1 � f2 � · · · �

fn−1 of θ and ξ1 � ξ2 � · · · � ξn−1 of v◦ such that fi ⊆ ξ (∀i), e.g.,

Since θ = ṽ◦ for some ṽ ∈ Δ̃(n) lying over v, this shows we can choose ṽ so
that c(ṽ◦) is a wedge in c(v◦). The map Uṽ → Uv induced by μ can then be
described exactly as at the end of Section 2.1.

We conclude with a brief description of singularities of PΔ̃. Consider a
simplex θ ⊂ R

n−1: if its vertices lie in Z
n−1, then vol(θ) = q

(n−1)! for some
q ∈ Z>0. If θ ∩ Z

n−1 is nothing but these vertices, θ is elementary ; if q = 1,
θ is regular. For n ≤ 3, elementary implies regular; for n = 4 the simplices
with vertices 0, (1, 0, 0), (0, 1, 0), (1, p, q), where 0 < p < q and (p, q) = 1, are
elementary but irregular. Now let ṽ ∈ Δ̃(n) lie over v ∈ Δ(n). By maximality
of θ, the (n− 1)-simplex θ(ṽ◦) ⊂ v◦ ⊂ Rv◦ (∼= R

n−1) is elementary, relative
to the integer lattice Rv◦ ∩ Z

n (∼= Z
n−1). Our observations in Section 2.1

essentially amount to the statement that the point Dṽ (in PΔ̃) is smooth if
and only if the integral generators of edges of κ(ṽ) generate κ(ṽ) ∩ Z

n. One
easily shows that this is equivalent to regularity of θ(ṽ◦), which shows PΔ̃
is smooth for n ≤ 3 and has isolated (Q-factorial terminal) singularities for
n = 4 (cf. [3, 2.2.8]).

2.5. Anticanonical hypersurfaces

Let Δ ⊂ R
n be a reflexive polytope with (2 ≤)n ≤ 4, and

F =
∑

m∈Δ∩Zn

αmx
m ∈ C[x±1

1 , . . . , x±1
n ]

a nonzero Laurent polynomial with support (i.e., monomial exponent set)
MF := {m ∈ Z

n |αm != 0} contained in Δ. Let XF ⊂ PΔ be the zero-locus
of the section of −KPΔ given by F (cf. (2.3)). If F is constant, XF = D;
if conv(MF ) = Δ then it is the Zariski closure of X∗F := {x |F (x) = 0} ⊂
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(C∗)n. We do not treat, and will not need, the “in between” cases where XF

contains some but not all components of D. Recall that while PΔ may have
singularities (in codimension ≥ 2), the torus orbits D

∗
σ are smooth. We say

that F is Δ-regular ( [3, 3.1.1]) when the intersections

D∗F,σ := XF ∩ D
∗
σ ⊂ D

∗
σ

(taken over all faces of Δ) as well as X∗F ⊂ (C∗)n, are reduced (irreducible
components have multiplicity 1) and smooth of codimension one. Put DF :=
∪σ∈Δ(1)DF,σ = XF \X∗F , where DF,σ := D∗F,σ.

Fixing a maximal projective triangulation of Δ◦, F also yields (cf. (2.5))
an element of H0(PΔ̃,−KPΔ̃

) whose vanishing locus X̃F is D̃ for F constant
and the closure of X̃∗F (:= X∗F ) in PΔ̃ if conv(MF ) = Δ. If F is Δ-regular, X̃F

is (a) the preimage of XF under μ : PΔ̃ → PΔ and (b) smooth, hence (using
the adjunction formula to obtain KX̃F

∼= OX̃F
) (c) a Calabi–Yau (n− 1)-

fold.
To get a handle on the D(∗)

F,σ and D
(∗)
F,σ̃ := X̃F ∩ D

(∗)
σ̃ , we need the face

polynomials of F attached to each σ ∈ Δ(i). In the notation of Section 2.2,
these are obtained by rewriting x−oσF (x) in the {xσj }nj=1 and setting
xσn−i+1 = · · · = xσn = 0 to get a Laurent polynomial (=: Fσ) in xσ1 , . . . , x

σ
n−i.

The support MFσ
of Fσ lies in σ − oσ, and its vanishing locus is D∗F,σ

(under the isomorphism (C∗)n−i ∼= D
∗
σ). So for example, necessary criteria

for Δ-regularity of F are that its vertex polynomials be nonzero constants
and its edge (one-variable) polynomials have no multiple roots. This con-
dition on vertices (i.e., that v ∈ Δ(n) =⇒ αv != 0) implies, in turn, that
Δ = conv(MF ).

If σ̃ ∈ Δ̃(i− k) lies over σ ∈ Δ(i) then (in the notation of Section 2.4)
setting Fσ̃(xσ1 , . . . , x

σ
n−i; y

σ̃
1 , . . . , y

σ̃
k ) := Fσ(xσ1 , . . . , x

σ
n−i), Fσ̃ = 0 cuts D∗F,σ̃ ∼=

D∗F,σ × (C∗)k out of D
∗
σ̃ := D

∗
σ × (C∗)k. So Δ-regularity of F guarantees that

D∗F,σ̃ is empty if σ̃ lies over a vertex (or is one) and is otherwise smooth and
reduced. From this and from the fact that (off singularities X̃F avoids) D̃ is
a NCD, one may deduce that D̃F := X̃F ∩ D̃ = X̃F \X̃∗F is one too.

We can describe the local affine equation of XF in any neighborhood
Uv ⊂ PΔ (for v ∈ Δ(n)) as follows. Set c′ := c(v◦) and κ(v) := (c′)◦ as in
Section 2.4, so that

Φv := x−vF (x)

has support in κ(v). Writing {w′i, w̃j} for generators of κ(v) ∩ Z
n (à la

Section 2.1, with w′i ←→ edges of κ(v)), the monomial terms of Φv can
be expressed in terms of Z≥0-powers of the {z′k = xw

′
k ; u′� := xw̃

′
�}. Since
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conv(MF ) = Δ and the edges of κ(v) lead to other vertices of Δ− v, Φv has
a nonzero constant term c0 and nonzero terms of the form ci(z′i)

ki (ki ∈ Z>0)
for each i. Clearly its vanishing locus is exactly Uv ∩XF .

Referring to Section 2.4, we can choose ṽ ∈ Δ̃(n) lying over v so that
c := c(ṽ◦) is a wedge in c′. Φv pulls back to a regular function on Uṽ (⊂ PΔ̃)
cutting out X̃F ∩ Uṽ. Let fi ∈ tr(Δ◦)(n− i+ 1) denote the distinguished
flag of faces of ṽ◦ (θ(fi) = fi = θ(ṽ◦), i = 1, . . . , n− 1; and fn := ṽ◦), and
σ̃i ∈ Δ̃(i) their duals (incl. σ̃n = ṽ). The algorithm from Section 2.1 pro-
duces13 {zj , uj}nj=1 satisfying Dσ̃i

∩ Uv = {zn−i+1 = · · · = zn = 0}, and we
can decompose

c−1
0 Φv = 1 + Φv,1(z1) + Φv,2(z1, z2;u2) + · · ·+ Φv,n(z1, . . . , zn;u2, . . . , un)

(2.6)

so that Φv,i consists of those monomial terms in z1, . . . , zi and u2, . . . , ui
vanishing when zi = 0. Since (z′i)

ki is such a monomial, none of the Φv,i are
identically zero. (In fact, Φv|Dσ̃i

= 1 + Φv1
+ · · ·+ Φv,n−i is essentially the

edge polynomial associated to the face of Δ that σ̃i lies over.)
Finally, it will be important in Sections 4.1 and 4.2 that the monomial

term cx−v (in Φv) which comes from the interior point of Δ, lies in Φv,n.
This is simply because −v lies in the interior of κ(v). Moreover, since the
anticanonical hypersurface in PΔ̃ associated to the Laurent polynomial 1 is
D̃, the variety cut out by x−v is D̃ ∩ Uṽ. This is the (reduced) union of the
Dσ̃ ∩ Uṽ, over facets σ̃ ∈ Δ(1) containing ṽ. While these are the hypersur-
faces where the zi vanish, this vanishing map not be to first order; and thus
as a monomial in the {zi, ui}, x−v may involve some u’s. On the other hand,
if θ(ṽ◦) is a regular simplex (always true for n = 2 or 3), Uṽ is smooth and
isomorphic to C

n with coordinates {zi}, and we have

x−v = z1 · · · · · zn.

This is used in several places below.

3. Constructing motivic cohomology classes on families
of CY-varieties

The goal of this section is a combinatorial machine for producing one-
parameter families of Calabi–Yau (n− 1)-folds14 X̃t that carry nontrivial

13There are only {uj} for n = 4.
14The small tilde does not denote a desingularization; X̃t can be singular.
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elements Ξt ∈ Hn
M(X̃t,Q(n)) ∀t ∈ P

1\{0}, for n = 2, 3, 4. For n = 2, our con-
struction is a slight extension of work [69] of Villegas. The X̃t are considered
as fibers of a total space X̃−, which can itself be singular and on which we
will actually construct a global class Ξ pulling back to the Ξt.

We remind the reader that for X̃t smooth, working ⊗Q (as is our con-
vention in this paper)

Hn
M(X̃t,Q(n))

∼=→ CHn(X̃t, n)
∼=← GrnγKn(X̃t).

Our construction still yields something in Hn
M for singular members of the

family, though in that case CHn(X̃t, n) ∼= GrnγGn(X̃t) and both isomor-
phisms above fail. However, by taking hyper-resolutions as in Section 1.3,
Hn
M can still be represented by higher Chow precycles, which allows for

explicit computation [49] of the Abel–Jacobi map

AJn,n : Hn
M(X̃t,Q(n)) → Hn−1(X̃t,C/Q(n))

in terms of currents and C∞ chains. We will partially compute AJ in Sec-
tion 4, and deal with the degenerate fibers (in some cases) in Section 6.

3.1. Toric data

Our X̃t’s will be hypersurfaces in partial desingularizations PΔ̃ of toric Fano
n-folds. To start the construction, let

∑

m∈Zn

αmx
m = φ ∈ K[x±1

1 , . . . , x±1
n ]

be a Laurent polynomial with coefficients in a number field K ⊂ C, and set

Δ := conv(Mφ).

Definition 3.1. (i) φ is reflexive if Δ is a reflexive polytope.
(ii) φ is regular if λ− φ is Δ-regular for general λ ∈ C.

We henceforth assume φ reflexive, and consider the one-parameter family
of anticanonical hypersurfaces

P
1 × PΔ ⊃ X π� P

1
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given by taking the Zariski closure of

{1− tφ = 0} ⊂ C× (C∗)n.

Alternately, writing λ := t−1 we can think of X as the closure of λ− φ = 0.
The reader may wonder why we restrict so early on to a variable internal
coefficient (i.e. λ) and algebraic values of the other (external) coefficients.
That we lose no generality in doing so will be established later, in Proposi-
tion 4.2.

Denote the fibres of our family by Xλ = Xt := π−1(t). Its base locus is
the intersection of Xλ with

X0 = D ⊂ PΔ

for any λ ∈ C. Since the face polynomials of λ− φ (cf. Section 2.5) are just
multiples of the φσ, this is

(3.1) D := Xλ ∩ D = ∪
σ∈Δ(i)

Dσ =
n−1
�
i=1

(

�
sigma∈Δ(i)

D∗σ

)

where D(∗)
σ := D

(∗)
φ,σ. Since conv(Mφ) = Δ, these are always of codimension

1 in D
(∗)
σ . Regularity of φ is therefore equivalent to the D∗σ being nonsingular

and reduced for all σ ∈ Δ(i), i = 1, . . . , n− 1.
Choose a (maximal, projective) triangulation of the dual Δ◦, and let

PΔ̃

μ→ PΔ be the corresponding MPCP-desingularization. By taking the clo-
sure of 1− tφ = 0 in P

1 × PΔ̃, we get the family X̃ π̃→ P
1 with fibers X̃t(=

X̃λ) and base locus D̃ := X̃λ ∩ D̃ = ∪σ̃∈Δ̃(1)Dσ̃. If ṽ ∈ Δ̃(n) is dual to a reg-
ular simplex θ(ṽ◦), the local equation of X̃λ in Uṽ is of the form P (z1, . . . ,
zn)− λz1 · · · zn = 0 (with P a polynomial determined from φ and ṽ as in
Section 2.5). Assuming φ regular (which we shall not always do), X̃ is the
μ-preimage of X , D̃ is a NCD, and the X̃t are smooth CY (n− 1)-folds for
t ∈ P

1 outside a finite set L (the discriminant locus).
We recall some notation from Section 1: given nonvanishing holomor-

phic functions f1, . . . , f� ∈ Γ(Y,O∗Y ) on a quasi-projective variety Y , the
symbol {f1, . . . , f�} ∈ Z�(Y, �) denotes the higher Chow cycle given by their
graph in Y × (P1\{1})�. Its class 〈{f1, . . . , f�}〉 ∈ CH�(Y, �) maps to an ele-
ment in Milnor K-theory KM

� (C(Y )) ∼= CH�(ηY , �) which is also denoted
{f1, . . . , f�}.
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Definition 3.2. φ is tempered if the toric-coordinate symbols {xσ1 , . . . ,
xσn−i} give trivial15 classes in CHn−i(D∗σ, n− i) for all i ≥ 1 and σ ∈ Δ(i).

Remark 3.1. (a) Here we are thinking of the D∗σ as being cut out by the
face polynomials φσ(xσ1 , . . . , x

σ
n−i). For faces σ̃ ∈ Δ̃(i− k) over σ, since

φσ̃(xσ1 , . . . , x
σ
n−i; y

σ̃
1 , . . . , y

σ̃
k ) = φσ(xσ1 , . . . , x

σ
n−i),

the natural symbols {xσ1 , . . . xσn−i; yσ̃1 , . . . , yσ̃k} ∈ CHn−i+k(D∗σ̃, n− i+ k) are
also trivial if φ is tempered.

(b) Though we have been working over C, the above constructions and
definitions descend to K. Provided one is willing to work over a suitable
algebraic extension of K (or Q̄), we can discuss irreducible components
of the D∗σ. For n− i = 1, the D∗σ components are points and must have
root-of-unity coordinates xσ1 if φ is tempered. (Hence we recover Villegas’s
prescription for n = 2, that the φσ be cyclotomic ∀ σ ∈ Δ(1).) For n− i = 2,
the tempered condition is equivalent to {xσ1 , xσ2} giving torsion classes inKM

2

of the Q̄-function fields of the irreducible component curves C of D∗σ, since
ker{CH2(C, 2) → CH2(ηC , 2)} = ⊕p∈C(Q̄)CH

1(p, 2) = 0.

Now assume that φ is regular and n ≤ 4. For σ̃i ∈ Δ̃(i) we may define
iterated residue maps

CHn(PΔ̃\D̃, n) → CHn−1(D∗σ̃1
, n− 1) → · · · → CHn−i(D∗σ̃i

, n− i),

given a choice of flag (σ̃i �) σ̃i−1 � · · · � σ̃1, σ̃j ∈ Δ̃(j). The composition
is independent of the choice, and is denoted Resiσ̃i

; a similar construction
yields Resiσ̃ : CHn(X̃t\D̃, n) → CHn−i(D∗σ̃, n− i) for t /∈ L. If we remove
tildes, the Resiσ still make sense; note in particular that all singularities (on
PΔ, Xt, Dσ, Dσ for any σ) are in codimension ≥ 2. For example, if σ′ �
σ (σ′ ∈ Δ(i+ 1), σ ∈ Δ(i)) with toric coordinates xσ1 = xσ

′
1 , . . ., xσn−i−1 =

xσ
′
n−i−1, x

σ
n−i on D

∗
σ′ , one has a smooth affine neighborhood D

∗
σ′ × A

1
xσ

n−i
⊂

Dσ. This allows for easy computation of the iterated residues.
Let ξ := 〈{x1, . . . , xn}〉 ∈ CHn

(

(C∗)n = PΔ̃\D̃ = PΔ\D, n
)

denote
the class of the coordinate symbol. For t /∈ L this restricts to ξt ∈ CHn(X∗t =
X̃∗t , n), either by pulling back the {xi} directly or by invoking contravariant
functoriality of higher Chow groups (⊗Q) for arbitrary morphisms between
smooth varieties [54].

15We are working ⊗Q; so this means what would usually be meant by “torsion.”
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Lemma 3.1. The diagram

CHn(PΔ̃\D̃, n)
Resi

σ̃ ��

I∗t
��

CHn−i(D∗σ̃, n− i)

I∗σ̃
��

CHn(X̃∗t , n)
Resi

σ̃ �� CHn−i(D∗σ̃, n− i)

commutes for any σ̃ ∈ Δ(i), as does a similar diagram with all tildes
removed.

Proof. With or without tildes, this is based on iterated application (� =
0, 1, . . . , i− 1) of a quasi-isomorphism which may be proved using the mov-
ing lemmas of [11, 54]. Writing

D
[i] := ∪

σ∈Δ(i)
Dσ, D

[0] := PΔ, D
[i] := Xt ∩ D

[i],

this is

Zn−�(D[�]\D[�+2], •)
D[�]\D[�+2]

ι∗

(

Zn−�−1(D[�+1]\D[�+2], •)
D[�+1]\D[�+2]

)

�� Zn−�
(

D
[�]\D[�+1], •

)

D[�]\D[�+1]

.

A ∂B-closed element on the r.h.s. can therefore be moved into good position,
extended to D

[�]\D[�+2], and differentiated (to yield a cycle supported on
D

[�+1]\D[�+2]), compatibly with pullbacks to Xt. �
The point is to use the lemma to compute the Resiσ̃ orσ (bottom row)

on ξt. For one thing, it is clear that the result is constant in t and descends
to CHn−i ((D∗σ̃ orσ)K , n− i). The next result follows easily from the lemma
combined with the foregoing discussion.

Proposition 3.1. For t /∈ L, σ ∈ Δ(i), and σ̃ ∈ Δ̃(i− k) lying over σ in
the above sense,

Resiσξ(t) = (I∗σ)
〈

±{xσ1 , . . . , xσn−i}
〉

,

Resi−kσ̃ ξ(t) = (I∗σ̃)
〈

±{xσ1 , . . . , xσn−i, yσ̃1 , . . . , yσ̃k}
〉

,

where the parenthetical expressions are optional.

It follows that if all Resiσξt are trivial (hence, if φ is tempered), then so
are all Resiσ̃ξt — in particular, all Res1σ̃’s.
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Remark 3.2. (i) The regularity assumption on φ is not strictly necessary
for these results. For n = 2, we need only ask that the general X̃t (equiva-
lently, Xt) be nonsingular; whereas for n = 3 A-D-E (rational) singularities
are allowed (on X̃t) provided they occur in D̃[2] := ∪σ̃∈Δ̃(2)Dσ̃. Note however
that in Proposition 3.1 the formulas for Resiσ or σ̃ξt (not ξ) are multiplied by
the multiplicity of (components of) Dσ or σ̃ in case these are nonreduced.

(ii) The Resiσ, Resi−kσ̃ are trivially 0 on CHn(X̃∗t , n) (hence on ξt) for
i = n (in particular, for σ̃ lying over a point), since Dσ, Dσ̃ = ∅ in that case.

3.2. Completing the coordinate symbol

Turning our attention to the family, we define (λ = t−1)

X̃ := {(λ, x) |x ∈ X̃λ} ⊆ P
1
λ × PΔ̃.

Recalling that X̃0 = X̃∞ = D̃, set

X̃− := X̃ \({∞} × X̃∞) ⊂ A
1
λ × PΔ̃,

and noting that X̃− ∩ A
1 × D̃ ∼= A

1 × D̃,

X̃ ∗− := X̃−\A1 × D̃ = {(λ, x) |x ∈ (X̃λ)∗} ⊂ A
1 × (C∗)n.

Definition 3.3. We say ξ (∈ Hn
M((C∗)n,Q(n))) completes to a family of

motivic cohomology classes, if ∃ Ξ ∈ Hn
M(X̃−,Q(n)) such that the pullbacks

of ξ,Ξ to Hn
M((X̃λ)∗,Q(n)) agree ∀ λ ∈ A

1. That is, in the diagram

(3.2) Ξ ∈�

��

Hn
M(X̃−,Q(n))

(ιλ)∗

��

Hn
M((C∗)n,Q(n))

(Iλ)∗

��

" ξ�

��
Ξλ ∈ Hn

M(X̃λ,Q(n))
rλ

�� Hn
M((X̃λ)∗,Q(n)) " ξλ

we must have for each λ, rλ(Ξλ) = ξλ. (Here X̃−, X̃λ, and even (X̃λ)∗ may
all be singular.)

To state general conditions under which we can produce such a Ξ, we
introduce some more notation (mainly for subsets of D̃). When φ is not
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regular, it has a nonempty irregularity locus

I := union over all σ̃ of singularities or nonreduced components of D∗σ̃

(which is just where φσ̃ vanishes together with all its partials). Writing I
n :=

∪i{xi = 1} ⊂ PΔ̃ (where {xi}ni=1 ⊂ K(PΔ̃)∗ extend the (C∗)n-coordinates), set

J := union of all Dσ̃, σ̃ ∈ Δ̃(1), which are not contained in I
n ∩ D̃.

For n = 3 specifically, where we will allow A1-singularities (ordinary double
points) on the general X̃λ (but only at D̃[2]), write A (⊆ I) for the collection
of these,

{α1, . . . , αk} := A ∩ J , and

{D1, . . . ,D�} := irreducible curves in D̃
avoiding the set (A\A ∩ J ) ∪ (I\A).

There is a linear map of vector spaces

E : Q 〈D1, . . . ,D�〉 → Q 〈α1, . . . , αk〉

obtained by sending generators [Di] �→
∑

αj∈Di
[αj ].

Theorem 3.1. Let φ be reflexive and tempered, n ≤ 4. Also assume in case

n = 2: the general Xλ is nonsingular.

n = 3: (a) the general X̃λ is nonsingular apart from A1-singularities at
points A ⊆ I

3 ∩ D̃
[2];

(b) I ⊆ I
3(∩D̃), I ∩ J ⊆ A; and

(c) either
(i) E is surjective, or
(ii) K is totally real and the irreducible component curves of D̃

are nonsingular and defined over K.

n = 4: (a) φ is regular,
(b) K is totally real, and
(c) each irreducible component of each Dσ, σ ∈ Δ(2) resp. Δ(3),

admits a dominant morphism defined over K from A
1 resp. A

0.
Then ξ completes to a family of motivic cohomology classes (see Defini-

tion 3.3).
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Remark 3.3. (i) For ease of application we have stated the additional
requirements for n = 2, 4 in terms of Xλ, D; whereas for n = 3 they are
phrased in terms of X̃λ, D̃. (We are not saying all singularities must be A1’s
on Xλ; just that A1’s are all that remains after passing to X̃λ.)

(ii) The additional requirements for n = 3 may be significantly relaxed
if all we want to do is complete ξ to a class in Hn

M(X̃λ,Q(n)) for some fixed
λ. Obviously, taking λ to be very general and spreading out would then
also yield a class in Hn

M(X̃− ×ρ,A1 U,Q(n)) for some étale neighborhood
U

ρ→ A
1 — i.e. not on the family X̃− but on a finite pullback. Here are two

possibilities:
(1) Drop “general” in (a), drop requirement (b), assume (c)(i) (but only

make {Di} avoid A\A ∩ J in the definition of E). If X̃λ is smooth, (c)(i) is
empty.

(2) Allow A–D–E singularities (call the set of these A′): more precisely,
X̃λ nonsingular except at A′ ⊆ I

3 ∩ D
[2]; and each irreducible component of

J contains at most one point of A′. (We should also note that X̃λ is still
a [singular] K3 surface in this case, and its minimal desingularization is a
smooth K3.)

(iii) With the caveat that the following simplification comes at the
expense of important examples, all three additional requirements (for n = 3)
may be done away with if we assume φ regular: in fact, (a), (b), and (c)(i)
collapse.

(iv) We make no claim that this result is exhaustive for n = 3 or 4.
Indeed, if (for n = 3) the general X̃λ is nonsingular and I ⊂ (∪D∗σ̃) ∩ I

3

consists of K-rational points (K totally real), then (although we may not
have I ∩ J = ∅) the conclusion still holds.

Proof. Noting that X̃ ∗− ∼= (C∗)n and that the resulting map

Hn
M(X̃−,Q(n))

r� Hn
M((C∗)n,Q(n))

completes Equation (3.2) to a commutative diagram, it suffices to construct
Ξ ∈ r−1(ξ).

Before doing so, we briefly sketch how the map (ιδ) toHn
M(X̃δ,Q(n)) can

be computed explicitly in terms of higher Chow cycles, when δ ∈ L ( =⇒ X̃δ

is singular with desingularization ˜X̃δ). For simplicity, assume sing(X̃δ) =: S,
˜X̃δ ×X̃δ S =: S ′, and X̃− are smooth: then H−n of

Ẑn(X̃δ,−•) := Cone
{

Zn(˜X̃δ,−•)S′ ⊕ Zn(S,−•) diff. of

pullbacks
� Zn(S ′,−•)

}

[−1]
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computes Hn
M(X̃δ,Q(n)). (In general, Zn of S,S ′ must each be replaced

by a Cone complex, also denoted Ẑn.) Assuming Ξ has been produced, and
representing it by a cycle in Zn(X̃−, n)S∪X̃δ , a representative of (ιδ)∗Ξ is

obtained by pulling back to ˜X̃δ and S (which gives a triple of the form
(∗, ∗, 0)).

Now, we will first explain the construction of Ξ in case the total space
X̃− (and fixed general X̃λ) is nonsingular, as is the case when φ is regular.
(However, we don’t assume that D̃ is a NCD or even that its components
are smooth.) In the (commutative) diagram

ξ ∈�

��

CHn((X̃ ∗
−)K , n)

Res1σ̃��

(ιλ)∗

��

CHn−1((D∗
σ̃ × A

1)K , n − 1)

��

CHn−1((D∗
σ̃)K , n − 1)

∼=��
��

������
����

����
����

�

ξλ ∈ CHn((X̃λ)∗C, n)
Res1σ̃ �� CHn−1((D∗

σ̃)C, n − 1),

our hypothesis that φ is tempered (together with Proposition 3.1) implies
Res1σ̃ξ

λ = 0, hence that Res1σ̃ξ = 0 ∀ σ̃ ∈ Δ̃(1). The local-global spectral
sequence

Ei,−j1 (n) :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

CHn(X̃ ∗−, j) [∼= H2n−j
M ((C∗)n,Q(n))] , i = 0,

⊕σ̃∈Δ̃(i)CH
n−i(D∗σ̃ × A

1, j − i) , i > 0,

0 , i < 0

with d1 : E0,−n
1 (n) → E1,−n

1 (n) given by ⊕σ̃∈Δ̃(1)Res1σ̃, has

E0,−n
∞ (n) ∼= im

{

CHn(X̃−, n) → CHn(X̃ ∗−, n)
}

∼=
⋂

ker
{

di : E0,−n
i (n) → Ei,−n−i+1

i (n)
}

∼=

⎧

⎨

⎩

ker(d1) , forn = 2, 3,

ker(d1) ∩ ker(d2) , forn = 4
.

The intersection has meaning since E0,−n
i+1 = ker(di) ⊂ E0,−n

i . (Warning: the
di are not the above Resi for i > 1; see [47] for a description.) So for n = 2, 3
we automatically get the desired class Ξ ∈ CHn(X̃−, n) ∼= Hn

M(X̃−,Q(n)).
For n = 4, the stated conditions imply that the {D∗σ̃}σ̃∈Δ̃(2) are Zariski-

open subsets U ⊆ A
1
K (obtained by omitting points with coordinates ∈ K).

Since CH1(pt., 3) is zero, CH2(U, 3) ∼= CH2(A1
K , 3) ∼= CH2(Spec(K), 3) ∼=
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K ind
3 (K) = 0 for K totally real (# field); since E2,−5

2 (4) is a subquotient of
⊕σ̃∈Δ̃(2)CH

2((D∗σ̃ × A
1)K , 3) we are done.

So we have reduced to examining additional complications arising from
the case of X̃− singular insofar as this is allowed by the conditions of
the theorem. If n = 2, the singularities occur in D̃ × L and are always
rational (surface) singularities of type A1, A2, or A3 (see [2] for defini-
tion). The last observation is verified using the table of 16 two-dimensional
reflexive polytopes in [18]. Briefly, a singularity Q ∈ sing(X̃−) occurs due
to a multiple root rQ of φσ(xσ1 ) for some σ ∈ Δ(1). In a neighborhood of
{(xσ1 − rQ, x2, λ− δ) = (0, 0, 0)} = Q the equation of X̃− is of the form

0 = (xσ1 − rQ)kΨ1(xσ1 − rQ) + (xσ2 )�(>0)Ψ2(xσ1 − rQ, x2) − (λ− δ)
× (xσ1 − rQ)xσ2 − (λ− δ)xσ2 ,

where Ψ1, Ψ2 are holomorphic (!= 0 at Q) and 2 ≤ k ≤ 4. (Note (λ− δ)xσ2
is quadratic and nonzero, and is not canceled out.) At any rate, the canon-
ical desingularization [2] produces ˜X̃−

b� X̃− with b−1(Q) = a chain

RQ of (1, 2, or 3) rational curves for each Q ∈ sing(X̃−). Writing ˜X̃−
∗

:=

b−1(X̃ ∗−) ∼= (C∗)2, there are some extra Res1’s of ξ ∈ CH2(˜X̃−
∗
, 2) to deal

with, in CH1(UQ, 1) for UQ ⊆ RQ Zariski open. But this is clearly just
(for Q = {(rQ, δ)} ∈ Dσ̃ × L as above) {rQ}, which is necessarily a root of
unity (due to the tempered requirement), hence trivial. So ξ comes from
Ξ ∈ CH2(˜X̃−, 2). In view of the long-exact sequence [with  =  Q∈sing(X̃−)]

→ H2
M(X̃−,Q(2)) → CH2(˜X̃−, 2)⊕ CH2( Q, 2) → H2

M( RQ, 2) →

and the identification of CH2(Q, 2) and H2
M(RQ,Q(2)) (working over K̄ =

Q̄) with KM
2 (Q̄) = 0, Ξ descends to H2

M(X̃−,Q(2)).
If n = 3, then we admit fiberwise A1-singularities α; since these live in

D̃[2], their location in PΔ̃ is fixed as λ varies. So for each α ∈ A, {α} × A
1 ⊆

sing(X̃−). Since these are ordinary double points, a minimal resolution for
the generic fiber is effected merely by blowing up PΔ̃ at each α. (The proper
transform X̂− ⊂ BlA(X̃−) of X̃− is still possibly singular over a discriminant
set =: L ⊂ A

1.) We write X̂−
B� X̃− for the resulting morphism, which has

its own “exceptional divisors” B−1(α× A
1) and proper transforms D̂ (×A

1)
of D̃ (×A

1).
Let P

2
α denote the exceptional divisor in BlA(PΔ̃) over α ∈ Dσ̃, σ̃ ∈

Δ̃(2); and let X,Y, Z be homogeneous coordinates with X = 0, Y = 0 the
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equations of P
2
α ∩ D̂σ̃1 , P

2
α ∩ D̂σ̃2 (where σ̃1, σ̃2 are the facets of Δ̃ meeting

σ̃). The equation for B−1(α× A
1) ⊆ P

2
α × A

1
(λ) must be of the form

(3.3) f(X,Y, Z) + λXY = 0

with f /≡ 0 of homogeneous degree 2.
Let {pi}4

i=1 denote the (not necessarily distinct) points of intersection of
f = 0 and XY = 0. Stereographic projection, say, through p1 to the Z = 0
line “uniformizes” the conic (uniformly in λ), so that B−1(α× A

1) ∼= P
1 ×

A
1 =: P

1
α × A

1. (If (c)(ii) holds, then this can be done over K.) Clearly the
{pi} are the points where D̂σ̃1 , D̂σ̃2 meet the conic (3.3). Since they and their
images qi ∈ P

1
α under projection are constant in λ, we see that

B−1(α× A
1) ∩ (D̂σ̃j

× A
1) =

⎧

⎨

⎩

q1 ∪ q2 if j = 1

q3 ∪ q4 if j = 2

⎫

⎬

⎭

× A
1 ⊆ P

1
α × A

1,

for j = 1, 2.
Suppose a component DI of (say) Dσ̃1 passing through α belongs to I.

Since I ⊆ I
3 ∩ D̃, some xi ≡ 1, and another xj ≡ 0 or ∞ on DI . Hence DI

is a double line (double in the sense of the multiplicity of X̃λ ·Dσ̃1 there);
this means that p1 = p2 and no other components of Dσ̃1 pass through α.
It follows that any component of J passing through α belongs to Dσ̃2 and
has tangent line (at α) distinct from TαDI (i.e., {p1, p2} and {p3, p4} are
disjoint). Since I ∩ J ⊆ A, this argument makes it clear that the proper
B-transforms of I (×A

1) and J (×A
1) do not meet.

Now Ŝ := sing(X̂−) ⊆ Î × L, hence does not intersect Ĵ × A
1 (the

proper transform of J × A
1). Let ˜X̂−

β� X̂− be a desingularization (which
is an ∼= off sing(X̂−)), and writeQα := β−1(P1

α × A
1
(λ)), ∪α∈AQα =: Q. Obvi-

ously β−1(Ĵ × A
1) ∼= Ĵ × A

1, so we may write Q− := Q\(Ĵ × A
1) ∩Q; the

Qα are rational surfaces, and the Q−α have rational curves missing. Finally,
put S := sing(X̃−) = B(Ŝ) ∪ (A× A

1) and b := B ◦ β : ˜X̂− → X̃−, and note
that b−1(S) = β−1(Ŝ) ∪Q. As above, we want to use the l.e.s.

→ H3
M(X̃−,Q(3)) → CH3(˜X̂−, 3)⊕H3

M(S,Q(3))
i∗−b∗� H3

M(b−1(S),Q(3)) →

to obtain a class Ξ in the first term from a pair (Ξ0, 0) in the middle, with
i∗Ξ0 = 0.
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To construct Ξ0, begin with the coordinate symbol ξ ∈ Z3((˜X̂−\b−1(D̃))
∼= (C∗)3, 3), which (as I ⊆ I

3) obviously extends to ξ ∈ Z3
∂B−cl

(˜X̂−\Ĵ × A
1, 3)

β−1(Ŝ∪Q−)
. (It actually pulls back to 0 on β−1(Ŝ) and Q−.)

Clearly the Res1’s are all 0. Combining this with the moving lemmas of
Levine and Bloch, there exist Γ ∈ Z3(˜X̂−\Ĵ × A

1, 4)
β−1(Ŝ)∪Q− and Ξ0 ∈ Z∂B−cl

(˜X̂−, 3)
β−1(Ŝ)∪Q [=b−1(S)]

such that ξ + ∂BΓ is the restriction of Ξ0. The pull-
back of Ξ0 to b−1(S) gives a cocycle in the complex computing HM,
Ẑ3(b−1(S),−•) :=

Cone
{

Ẑ3(β−1(Ŝ),−•)
β−1(Ŝ)∩Q ⊕ Z3(Q,−•)

β−1(Ŝ)∩Q → Ẑ3(β−1(Ŝ)

∩Q,−•)
}

[−1].

This can be “moved” by a coboundary (in the cone complex) to essentially
an element of Z3

∂B−cl(Q, 3)
β−1(Ŝ)∩Q supported on Q∩ Ĵ × A

1. Moreover, the

components of Qα ∩ Ĵ × A
1 (α ∈ A) are pairwise disjoint A

1’s which are
rat≡

(as divisors) onQα by functions f̂α ∈ Q̄(Qα) restricting to 1 onQα ∩ β−1(Ŝ).
(Pull back to Qα f ∈ Q̄(P1

α)∗ which has (f) = q3 − q4 and f(q1 = q2) = 1,
in the only nontrivial situation.) Since CH2(A1, 3) ∼= CH2(pt., 3) one can
move the elements of Z3(Qα, 3) so as to make them constant along each
of the supporting A

1’s, and then “collect” all these constant cycles along
only one such A

1, by using [∂B-coboundaries of] cycles (of the form A⊗
f̂α ∈ Z3(Qα, 4)) restricting to 0 at Qα ∩ β−1(Ŝ). The constant A

1-supported
cycles are then killed by adding constant cycles on the b−1(Dj × A

1) ∼= Dj ×
A

1 to Ξ0, via Z2(Dj × A
1, 3) ↪→ Z3(˜X̂−, 3). That we have “enough” Dj ’s

to kill all constant cycles on the Qα’s is guaranteed (if (c)(i) holds) by
surjectivity of E . Alternatively, if (c)(ii) holds then all of the above is valid
over K (as opposed to K̄), and K totally real =⇒ the CH2(A1

K , 3)-classes
embedded in the Qα’s self-annihilate. �

3.3. Examples of φ satisfying the Theorem

Here are specific ways to realize the conditions of the Theorem (in particular,
the tempered condition); φ is defined over a number field K as usual.

Corollary 3.1. Let φ be reflexive with cyclotomic edge polynomials and
root-of-unity vertex coefficients. Furthermore for
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n = 2: Assume the general Xt is nonsingular.

n = 3: Assume the facets of Δ have no interior points, and that φ is regular.

n = 4: Assume the facets of Δ are elementary three-simplices (all points
of Δ other than {0} are vertices), with coefficients ±1 only (except at {0}).16

Then ξ completes.

Example 3.1. Take φ to be an arbitrary constant plus the characteristic
(Laurent) polynomial of the vertex set of any reflexive polytope Δ satisfying
the relevant assumption in boldface. This will be regular in case n = 2, 4,
and also for n = 3 provided none of the facets are of the form (c) (see proof
below) with a

2m , b
2m both odd for the same m ∈ Z

≥0. Out of the 899 reflexive
three-polytopes with interior-point-free facets, this leaves us with 239 [65].

Remark 3.4. For n = 3, we can also allow triangular facets σ with interior
points, provided the only monomials appearing (with nonzero coefficients)
in φσ correspond to the vertices of σ. This gets us up to 1071 resp. 358 three-
polytopes, depending on whether the special type (c) facets are admitted
[65].

Proof of Corollary. For n = 2 it suffices to show φ tempered, and this is
obvious.

For n = 3, one can easily classify (up to shift and unimodular transfor-
mation) facets σ with no interior points. Viewed in a two-plane Rσ, they
are all convex hulls of three or four points: (a) {(0, 0), (2, 0), (0, 2)}, (b)
{(0, 0), (0, 1), (a, 0)}, or (c) {(0, 0), (0, 1), (a, 0), (b, 1)} (with a, b ∈ N). In
each case φσ(xσ1 , x

σ
2 ) = 0 can only yield (D∗σ =) a Zariski open subset of a

rational curve. (Since φ is regular,Dσ is also nonsingular.) For σ′ ∈ Δ(2), φσ′

cyclotomic implies that {xσ′
1 } gives 0 in CH1(D∗σ′ , 1). Hence (for σ ∈ Δ(1))

{xσ1 , xσ2} ∈
{

ker(Tame) ⊆ CH2(D∗σ, 2)
}

= im
{

CH2(Dσ, 2) → CH2(D∗σ, 2)
}

.
But CH2(P1

K , 2) ∼= KM
2 (K) = 0 (in fact, KM

2 (Q̄) = 0), and so φ is tempered.
The remaining conditions follow from regularity by Remark 3.3(iii).

For n = 4, the tempered condition is again clear for edges σ′′ ∈ Δ(3),
so fix σ′ ⊂ σ, σ ∈ Δ(1) and σ′ ∈ Δ(2); σ is a triangle and σ′ a tetrahedron.
Any two edges of σ′ (viewed as integral vectors) generate Rσ′ ∩ Z

4, and so
one may choose the monomials xσ

′
1 , x

σ′
2 so that φσ′ = 1 + xσ

′
1 + xσ

′
2 (ignoring

the ±1 issue). This makes plain the A
1
Q-uniformizability of Dσ′ (condition

16There are 151 such reflexive four-polytopes, with a maximum of 12 vertices. [65]
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(c) of Theorem 3.1), since φσ′ = 0 is the equation of D∗σ (in local toric
coordinates); it is also clear that {xσ′

1 , x
σ′
2 } ∈ CH2(D∗σ′ , 2) vanishes. Next,

one can choose monomials xσ1 (:= xσ
′

1 ), xσ2 (:= xσ
′

2 ), xσ3 generating Rσ ∩ Z
4

such that φσ = 1 + xσ1 + xσ2 + (xσ1 )a(xσ2 )b(xσ3 )c (a, b ∈ Z
≥0, c ∈ N). We must

show that {xσ1 , xσ2 , xσ3} vanishes in CH3(D∗σ, 3), where D∗σ ∼= {(xσ1 , xσ2 , xσ3 ) ∈
(C∗)3 |φσ(xσ) = 0}. This requires a short calculation for which we rewrite
xσi =: yi and write elements of CH3(D∗σ, 3) as symbols — as if they were in
KM

3 (Q̄(Dσ)). However, we have explicitly checked that the following rela-
tions actually hold over D∗σ (for the relevant graph cycles) and not just
ηD∗

σ
:

{y1, y2, y3} =
1
c

{

y1, y2, y
a
1y

b
2y
c
3

}

=
1
c

{

−y1

y2
,−y2,−ya1yb2yc3

}

=
1
c

{

−y1

y2
,−

(

1 +
y1

y2

)

y2,−ya1yb2yc3
}

=
1
c

{

−y1

y2
,−(y1 + y2),−ya1yb2yc3

}

.

Using 1 + y1 + y2 + ya1y
b
2y
c
3 = 0 yields

1
c

{

−y1

y2
, −(y1 + y2), 1 + (y1 + y2)

}

,

which is zero (again over all of D∗σ). Hence φ is tempered. Regularity of φ
(i.e., Δ-regularity of φ− λ for general λ) along the faces is obvious from the
explicit equations for φσ, φσ′ , φσ′′ (and irregularities in the torus (C∗)4 for
generic λ are impossible by a simple calculus argument). �

Example 3.2. For n = 4, there are examples (where ξ completes) that
do not fall under the aegis of Theorem 3.1 — e.g., φ = x−1

1 x−1
2 x−1

3 x−1
4 (1 +

∑4
i=1 x

5
i ), which gives the Fermat quintic family in P

4. One must verify
directly that 〈{x}〉 ∈ CH4(X̃ ∗−, 4) lies in ker(d1) ∩ ker(d2), in the local-global
spectral sequence described in the Theorem’s proof. This means checking
that the residues of (a representative of) 〈{x}〉 in ⊕σ̃∈Δ̃(1)Z

3(D∗σ̃ × A
1, 3)

are killed by relations (in Z3(D∗σ̃ × A
1, 4)), then that differences of residues

of these relations in ⊕σ̃∈Δ̃(2)Z
2(D∗σ̃ × A

1, 3) are trivialized as well. This is
left to the reader.

Remark 3.5. For n = 2, one can sometimes avoid going modulo torsion
and complete ξ to a class Ξ̃ ∈ H2

M(˜X̃−,Z(2)) (∼= CH2(˜X̃−, 2) but without
our implicit ⊗Q convention). Namely, for each edge σ, let xσ(1) = xaσ

1 xbσ

2

(where (aσ, bσ) = 1) generate Rσ ∩ Z
2. Then it suffices to require (besides

smoothness of the general Xλ) the edge polynomial φσ to have only (−1)
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as root if aσ and bσ are both odd, and only (+1) as root otherwise. This
follows simply from (integral) computation of the Tame symbol of {x1, x2}.

We conclude this section with a discussion of what can be done for an
arbitrary reflexive three-polytope Δ if we are only after getting a Ξλ for
general λ (as in Remark 3.3(ii)). An arbitrary facet σ ∈ Δ(1) inherits the
integral structure Z

3 ∩ Rσ (and is obviously not in general itself reflexive).

Fact 3.1. [65] Up to shift and unimodular transformation, there are 344
possibilities for σ, and they all satisfy �(σ) > 2�∗(σ).

Fix an isomorphism Z
2
∼=→ Z

3 ∩ Rσ, and denote the corresponding toric
coordinates on D

∗
σ̃ by xσ1 , x

σ
2 . Writing �′(σ) := �(σ)− �∗(σ)− 1, let Mσ =

M∗σ ∪ (Mσ \M∗σ) = {m∗i }
�∗(σ)
i=1 ∪ {m′j}

�′(σ)
j=0 be the decomposition of σ ∩ Z

2

into interior and edge points. The ample linear system |ODσ̃
(1)| ∼= P

�(σ)−1 is
parametrized by Laurent polynomials

φσ;[α:β](x
σ) :=

�∗(σ)
∑

i=1

αi · (xσ)m
∗
i +

�′(σ)
∑

j=0

βj · (xσ)m
′
j = Aα(xσ) +Bβ(xσ),

and consists (generically) of genus-�∗(σ) curves. Let V irrσ ⊂ P
�(σ)−1 be the

locus of (φσ cutting out) �∗(σ)-nodal irreducible rational curves Cφσ
in this

system. It seems entirely reasonable to hope that

(3.4) V irrσ is nonempty for all σ ∈ Δ(1)

is satisfied for all reflexive Δ ⊂ R
3; this may be decidable by applying the

tropical methods of [57]. In fact one has

Fact 3.2. [57,80] If V irrσ != ∅, its Zariski closure V irrσ (the so-called Severi
variety) is a codimension-�∗(σ) irreducible subvariety of P

�(σ)−1.

Here, then, is our “most general” example for n = 3:

Proposition 3.2. For a reflexive three-polytope Δ satisfying (3.4), there
exists a tempered Laurent polynomial φ (with Newton polytope Δ) defining
a family of (generically smooth) K3 surfaces {X̃t} such that (for general t)
the toric symbol completes to a CH3(X̃t, 3)-class Ξt.

Proof. Let U ⊂ P
�(σ)−1 be the complement of the P

�∗(σ)−1 defined by β = 0.
Since dim(V irrσ ) = �(σ)− �∗(σ)− 1 > �∗(σ)− 1 by Facts 3.1 and 3.2,
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V irrσ ∩ U != ∅. Consider the projection U ρ→ P
�
′
(σ) induced by [α : β] �→ [β];

we contend that its restriction to V irrσ ∩ U is generically an immersion.
Indeed, otherwise a generic Cφσ

∈ V irr
σ deforms while keeping its inter-

section with the boundary Dσ̃ \ (C∗)2 =: D fixed. The normal bundle of the
composition f : P

1 ∼= ˜Cφσ
� Cφσ

↪→ Dσ̃ is Nf := f∗(θ1
Dσ̃

)/θ1
P1
∼= OP1(−2 +

f∗(D)). A deformation of this form would yield a nonzero section of
Nf (−f∗(D)) ∼= OP1(−2), which is impossible.

Since dim(V irr
σ ) = �

′
(σ) we conclude that ρ(V irr

σ ∩ U) ⊂ P
�
′
(σ) is open,

and therefore contains a Zariski-dense subset corresponding to cyclotomic
edge polynomials (with distinct roots on each edge). So we get countably
many φσ;[α:β] defining irreducible nodal rational curves Cφσ

with regular,
cyclotomic edge polynomials; and α, β can be taken to lie in Q̄.

Globalizing this to the three-polytope, there is a choice of φ(x1, x2, x3),
all of whose facet polynomials φσ are of this form. Clearly, φ is tempered if
the classes {xσ1 , xσ2} ∈ K2(Q̄(˜Cφσ

)) ∼= K2(Q̄(P1)) vanish. But since the edges
of φσ are cyclotomic, {xσ1 , xσ2} ∈ ker(Tame) = K2(Q̄) = {0}. �

4. The fundamental regulator period

The one-parameter families {X̃t} of CY toric hypersurfaces produced by
Theorem 3.1 have in a neighborhood of t = 0 a canonical family of cycles ϕ̃t
vanishing (in Hn−1(X̃0)) at t = 0. What we aim to do in this section, is to
pair ϕ̃t against the regulator image

AJ(Ξt) ∈ Hn−1(X̃t,C/Q(n)) ∼= HomQ

(

Hn−1(X̃t,Q),C/Q(n)
)

over a punctured disk D̄∗|t0|(0) extending to the singular fiber (at t0 ∈ L)
nearest the one at t = 0. The resulting (multivalued) function is called the
“fundamental regulator period;” the “fundamental period” is just the period
of a canonical holomorphic form ω̃t ∈ Ωn−1(X̃t) over ϕ̃t. The regulator com-
putation has some surprisingly beautiful and easy corollaries related to dif-
ferential equations, number theory, and local mirror symmetry.

For the next two subsections, it will suffice to assume

(a) φ is reflexive with root-of-unity vertex coefficients (denoted ζ);

(b) the generic X̃t has at worst Gorenstein orbifold singularities — in this
case L ⊂ P

1 records only the “more” singular fibers where the local
system Rn−1π̃∗Q has monodromy — and these lie in D̃; and
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(c) ξ completes to Ξt ∈ Hn
M(X̃t,Q(n)) as in Definition 3.3.

So in principle n could be > 4. The importance of (a) is that it amounts
to a choice of the parameter t normalizing (in fact, for n = 2 trivializ-
ing) the rational limit mixed Hodge structure at 0.

Remark 4.1. By Lian et al. [55], one knows that Rn−1π̃∗Q of the family
{X̃t} has maximal unipotent monodromy about t = 0, provided [for n = 4]
PΔ̃ is smooth. Alternately, there is the following simpler argument using the
Clemens–Schmid sequence: SSR replaces X̃0 by a NCD ′X̃0, and

Hn−1(′X̃0)(−n+ 1) → Hn−1(′X̃0) → Hn−1
lim (X̃t)

N� Hn−1
lim (X̃t)

is exact (with Q-coefficients), where N = log(T ) and weights of Hn−1(′X̃0)
[resp. Hn−1(′X̃0)(−n+ 1)] lie in [0, n− 1] [resp. [n− 1, 2n− 2]]. So maximal
unipotent monodromy of T ⇐⇒ Nn−1 != 0 ⇐⇒ HomMHS(Q(0), ker(N)) !=
{0} ⇐⇒ HomMHS(Q(0), Hn−1(′X̃0)) != {0} ⇐⇒ H0(′X̃ [n−2]

0 ) → H0(′X̃ [n−1]
0 )

is not surjective (where ′X̃ [i]
0 := desingularization of ith coskeleton of ′X̃0).

The last criterion follows from the fact that the dual graph of ′X̃0 is
∂{tr(Δ◦)}, which is topologically a triangulation of Sn−1.

4.1. The vanishing cycle and fundamental period

Pick a vertex v ∈ Δ(n) and ṽ ∈ Δ̃(n) lying over it as in the end of Section 2.5.
The local affine equation for X̃λ in Uṽ is obtained by dividing out the ζxv

term from λ− φ(x) and writing the result in the {zi, ui}ni=1. Organizing
terms as in (2.6), we have 0 = Φv(z, u) =

1 + φ1(z1) + φ2(z1, z2;u2) + · · ·+ {φn(z1, . . . , zn;u)− λzμ1uμ2},

and
Φv,σ̃i

(z1, . . . , zn−i;u) := Φv|Dσ̃i
= 1 +

∑

k≤n−i
φk

for i = 1, . . . , n. Here the Dσ̃i
are (as in Section 2.5) where zn−i+1 = · · · =

zn = 0, with Dσ̃1 given by zn = 0 in particular.
Define on PΔ, Ωt ∈ Γ(Ω̂n

PΔ
(logXt)) by

Ωt :=
d log x1 ∧ · · · ∧ d log xn

1− tφ(x)
= λ

∧n d log x
λ− φ(x)

,

and let
ωt := ResXt

(ΩXt
) ∈ Ω̂n−1(Xt) ;
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these have μ∗-pullbacks Ω̃t, ω̃t(∈ Ωn−1(X̃t)). Let ε > 0 and define the real
n-torus

T̂
n
v,ε := {|z1| = · · · = |zn| = ε} ∩ PΔ̃ ∈ Ztop

n (PΔ̃\X̃t ∪ D̃).

For fixed ε > 0 it is clear (using Φv above) that for |λ| > some fractional
power of 1

ε , i.e., for |t| < δ(ε) sufficiently small, T̂
n
v,ε avoids X̃t. One has the

“membrane”

Γv,ε := {|z1| = · · · = |zn−1| = ε, |zn| ≤ ε} ∈ Ctop
n+1(PΔ̃\D̃

−)

where D̃
− :=

⋃

σ̃ =σ̃1
Dσ̃; this bounds on the real n-torus:

∂Γv,ε = (−1)n−1
T̂
n
v,ε.

We specify our family of vanishing cycles by demanding that for |t| < δ(ε)

−ϕ̃t
hom≡ X̃t ∩ Γv,ε ∈ Ztop

n−1(X̃t).

Now the exponent vectors mi relating {zi} ←→ {xj} (zi = xmi) form
a rationally invertible matrix. Hence, T̂

n
v,ε = {|xi| = εqi (∀i)} ⊂ (C∗)n ⊂ PΔ̃

for some rational numbers qi. Note that (only for n = 4) the {zi} need not
parametrize T̂

n
v,ε on their own, while the {xi} do. (The |z1| = · · · = |zn| = ε

definition conceals the role played by the {ui}.) For the fundamental period
we have therefore

A(t) :=
∫

ϕ̃t

ω̃t =
∫

ϕ̃t

ResX̃t
(Ω̃t) =

1
2πi

∫

Tube(ϕ̃t)=T̂n
v,ε

Ω̃t(4.1)

=
1

2πi

∫

∩n
i=1{|xi|=εqi}

( ∞
∑

m=0

tmφ(x)m
)

n
∧

d log x

= (2πi)n−1
∞
∑

m=0

tm

(2πi)n

∮

φ(x)m
n
∧

d log x

= (2πi)n−1
∞
∑

m=0

[φ(x)m]0tm,

where [·]0 takes the constant term of a Laurent polynomial. While we proved
this for |t| < δ(ε) (which implies |tφ(x)| < 1 on T̂

n
v,ε), the period and the

power series extend to D∗|t0|(0) and agree there since both functions are
analytic.
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4.2. The period of the Milnor regulator current

Given a symbol 〈{f1, . . . , fn}〉 ∈ CHn(Y, n) as in Section 3.1 (but with Y
smooth quasi-projective of dim < n), recall from Section 1.2 thatAJ

〈

{f}
〉

∈
Hn−1(Y,C/Q(n)) is represented by the regulator current

Rn{f} = log f1d log f2 ∧ · · · ∧ d log fn − (2πi)δTf1
(4.2)

∧Rn−1{f2, . . . , fn} ∈ Dn−1(Y ),

where

Tf := f−1{R≤0 ∪ {∞}, oriented from ∞ to 0}

is the “cut” in arg(f) ∈ (−π, π). (R1{f} is just the 0-current log f .) Note
that in (4.2) we have omitted the Q(n)-valued δ-current; modulo this, Rn is
d-closed.

Remark 4.2. (i) Though we will not check this explicitly, the real-
admissibility requirements described in Section 1.2 are satisfied in the cal-
culations below.

(ii) If the integral cohomology of Y is torsion-free, as in the case of an
open elliptic curve, we can replace Q(n) by Z(n).

The vanishing cycle ϕ̃t extends to a multivalued section of R
n−1π̃∗Z over

P
1\L, and

(4.3) Ψ(t) := AJ(Ξt)(ϕ̃t)

yields a multivalued holomorphic function. (See the discussion preceding
Corollary 4.3; it remains multivalued after going modulo Q(n), due to mon-
odromy of ϕ̃t.) We want to compute Ψ(t) for t ∈ Uε := {|t| < δ(ε) and arg(t)
∈ (−π

4 ,
π
4 )}. Consider the diagrams

ξt := 〈{x1, . . . , xn}〉 Ξt
���

CHn(X̃t\D̃, n)

AJ
��

Hn
M(X̃t,Q(n))rt

��

AJ
��

Hn−1(X̃t\D̃,C/Q(n)) Hn−1(X̃t,C/Q(n)),
j∗

��
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ξ̂t := 〈{λ − φ(x), x1, . . . , xn}〉 � ��
(

ξt, Res1σ̃ ξ̂t

)

CHn+1(PΔ̃\D̃ ∪ X̃t, n + 1)
Res ��

AJ

��

CHn(X̃t\D̃, n) ⊕ CHn(D∗
σ̃1\D∗

σ̃1 , n)

AJ

��
Hn(PΔ̃\D̃ ∪ X̃t, C/Q(n + 1))

Res �� Hn−1(X̃t\D̃, C/Q(n)) ⊕ Hn−1(D∗
σ̃1\D∗

σ̃1 , C/Q(n)),

[T̂n
v,ε]

(

[Γv,ε ∩ X̃t], [Γv,ε ∩ Dσ̃1 ]
)

��� � �� [ϕ̃t]

Hn(PΔ̃\D̃ ∩ X̃t, Q) Hn−1(X̃t\D̃, Q) ⊕ Hn−1(D
∗
σ̃1\D∗

σ̃1 , Q)
Tube�� (j∗,0) �� Hn−1(X̃t, Q).

These suggest that

Ψ(t) = AJ(ξt)(Γv,ε ∩ X̃t)

= − 1
2πi

AJ(ξ̂t)(T̂nv,ε) + (−1)nAJ(Res1σ̃1
ξ̂t)(Γv,ε ∩ Dσ̃1),

the first term of which we can compute directly using the regulator formula
(4.2); we will show the second zero by an induction argument.

Working on PΔ̃\X̃t ∪ D̃, we have

1
2πi

AJ(ξ̂t)(T̂nv,ε)(4.4)

=
1

2πi

∫

T̂n
v,ε

R{λ− φ(x), x1, . . . , xn}

=
1

2πi

∮

∩n
i=1{|xi|=εqi}

log(λ− φ)
n
∧

d log x ,

since t ∈ Uε and x ∈ T̂
n
v,ε =⇒ |φ(x)| ≤ 1

δ(ε) < |λ| and arg(λ) ∈ (−π
4 ,

π
4 ) =⇒

x /∈ Tλ−φ(x). Using λ− φ = t−1(1− tφ) and |tφ| < 1, we see the latter

= −(2πi)n−1

⎧

⎨

⎩

log t +
∑

m≥1

[φ(x)m]0tm

m

⎫

⎬

⎭

.

On the other hand, we can manipulate the regulator current in (4.4)
by only {coboundary on PΔ̃\X̃t ∪ D̃}+{Q(n)-currents} to obtain a rational
multiple of R{Φv, z1, . . . , zn}. This is done by using multilinearity and anti-
commutativity relations for symbols valid in CHn(PΔ̃\X̃t ∪ D̃) and the map
of complexes in [50]. The relations are used first to multiply λ− φ by x−v
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(which just gives Φv(z;u), and then to turn {x1, . . . , xn} into q · {z1, . . . , zn}.
(Here, q ∈ Q

∗ is the inverse of the determinant of the matrix of exponent
vectors mentioned above.) Hence (4.4) =

q

2πi

∫

T̂n
v,ε

R{Φv, z1, . . . , zn},

and enlarging the domain to PΔ̃\D̃− and using (−1)n−1
T̂
n
v,ε = ∂Γv,ε gives

−q
2πi

∫

Γv,ε

d[R{Φv; z}]

= q

(
∫

Γv,ε∩X̃t

R{z1, . . . , zn} ±
∫

Γv,ε∩Dσ̃1

R{Φv,σ̃1 , z1, . . . , zn−1}}
)

= −
∫

ϕ̃t

R{x1, . . . , xn} ± q

∫

∂Γ
(1)
v,ε

R{Φv,σ̃1 , z1, . . . , zn−1},

where the switch from R{z} back to R{x} (in the first term) is valid on X̃∗t
and

Γ(i)
v,ε := {|z1| = · · · = |zn−i−1| = ε, |zn−i| ≤ ε, |zn−i+1| = · · · = |zn| = 0}

∈ Ctop
n−i+1(Dσ̃i

).

Of course
∫

ϕ̃t
R{x} ≡ Ψ(t) mod Q(n).

Now we may argue inductively: working on Dσ̃i
, if o ∈ N is the order of

vanishing of zn−i along Dσ̃i+1 ,
∫

∂Γ
(i)
v,ε

R{Φv,σ̃i
, z1, . . . , zn−i} = ±

∫

Γ
(i)
v,ε

d[R]

2πi

(

±o

∫

Γ
(i)
v,ε∩Dσ̃i+1

R{Φv,σ̃i+1 , z1, . . . , zn−i−1} ±
∫

Γ
(i)
v,ε∩Dσ̃i

R{z1, . . . , zn−i}
)

.

Since Dσ̃i
is defined by vanishing of Φv,σ̃i

= 1 + φ1 + · · ·+ φn−i, which is ≈1
on Γ(i)

v,ε, Γ(i)
v,ε ∩Dσ̃i

= ∅ and this becomes

±2πi
∫

∂Γ
(i+1)
v,ε

R{Φv,σ̃i+1 , z1, . . . , zn−i−1}

for i < n− 1. When i = n− 1, Γ(n−1)
v,ε ∩ Dσ̃n(=v) is just the origin, Φv,σ̃n

is 1,
and

∫

Γ
(n−1)
v,ε

R{Φv, σ̃n} = log 1 = 0.
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We have proved

Theorem 4.1. Assuming hypotheses (a)–(c) at the beginning of the section,
the fundamental regulator period for Ξt is

(4.5) Ψ(t) ≡ (2πi)n−1{log t+
∑

m≥1

[φm]0
m

tm} mod Q(n),

for all t ∈ Uε.

Remark 4.3. (a) For X̃t smooth, AJ(Ξt) is represented (by Kerr et al.
[50]) by the class of a closed (n− 1)-current R′Ξt

:= RΞt
+ (2πi)nδ∂−1TΞt

(modulo cycles modifying the membrane ∂−1TΞt
) in Hn−1(X̃t,C)/im{Hn−1

(X̃t,Q(n))}, and Ψ(t) ≡
∫

ϕ̃t
[R′Ξt

]. For brevity, we denote R′Ξt
=: R′t. We

think of [R′t] as a multivalued section ofHn−1
X̃/P1

:= Rn−1π̃∗C⊗OP1 over P
1\L.

(b) Theorem 4.1 is valid mod Z(2) if n = 2, Remark 3.5 applies, and
vertex coefficients of φ are all 1.

(c) The apparent similarity (of the
∑

m≥1 in the theorem) to the formal
group law in [17] is somewhat deceptive, as their �(t) would correspond to
∑

m≥0
[φm]0
m+1 t

m+1 in the present notation.

Now assume henceforth that the general X̃t is nonsingular (or is a sur-
face with A1 singularities). The Gauss–Manin connection ∇ kills periods
hence Hn−1(X̃t,Q(n))-ambiguities in [R′t], and ∇[R′t] ∈ Γ(P1,Ω1

P1 〈logL〉 ⊗
Fn−1Hn−1

X̃/P1
) (see [47]). Writing δt := t∂t := t ddt , this implies that

∇δt
[R′t] = f(t)[ω̃t]

for f ∈ K̄(P1)∗. To find f , we take periods of both sides:

1
(2πi)n−1

t
d

dt

∫

ϕ̃t

[R′t] =
f(t)

(2πi)n−1

∫

ϕ̃t

ω̃t

and for t ∈ Uε this becomes

t
d

dt

⎧

⎨

⎩

log t +
∑

m≥1

[φm]0
m

tm

⎫

⎬

⎭

= f(t)
∑

m≥0

[φm]0tm.

So f(t) ≡ 1 on Uε, hence on P
1. There exists a Picard–Fuchs operator DPF =

δrt +
∑r−1

k=0 gk(t)δ
k
t (gk ∈ K̄(P1)∗, r ≤ rk(Rn−1π̃∗C)) satisfying DPFA(t) =

0, and ∇PF [ω̃t] = 0.
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Corollary 4.1. On P
1\L, ∇δt

[R′t] = [ω̃t], and the periods of R′t (e.g., Ψ(t))
satisfy the homogeneous equation (DPF ◦ δt)(·) = 0.

Corollary 4.2. The classes Ξt ∈ Hn
M(X̃t,Q(n)) and ξt ∈ CHn(X̃∗t , n) are

(AJ-)nontrivial for general t ∈ P
1.

Proof. There are several simple ways to see this; the first is that Theorem
4.1 =⇒ Ψ(t) →∞ as t→ 0, which obviously shows

0 != AJ(ξt) ∈ HomQ(Hn−1(X̃∗t ,Q),C/Q(n)).

One can also use nonvanishing of the infinitesimal invariant ∇[R′t], and there
is an abstract way to do this which bypasses Corollary 4.1 (and the theorem).
Recall X̃ ∗− ∼= (C∗)n, and consider the diagram

CHn(X̃ ∗
−, n)

cl

��

Hn
M(X̃−, n)

j∗��
{AJt}t∈P1\L ��

cl

��

H0
(

P
1\L , Hn−1

X̃/P1/Rn−1π̃∗Q(n)
)

∇
��

F nHn(X̃ ∗
−, C) F nHn(X̃−, C)

j∗�� � � �� H0
(

P
1\L , Ω1

P1 ⊗Fn−1Hn−1

X̃/P1

)

in which

j∗(ΩΞ) = j∗(cl(Ξ)) = cl 〈{x}〉 = [
n
∧

d log x] != 0.

(Note that this implies that
∧n d log x extends to a holomorphic form on

X̃−, namely ΩΞ.) One could also base a proof on Corollary 4.5 below, when
its hypothesis (r = n) holds. �

To put the last result in context, we recall the vanishing theorem of [47]
as it applies to the case of CY’s. For X/C smooth projective of dimension
n− 1, let

KM
n (X) := im{CHn(X,n) → KM

n (C(X))},

and

Hn−1(ηX ,C/Q(n))

:= im

⎧

⎪
⎨

⎪
⎩

Hn−1(X,C/Q(n)) → lim−→
D⊂X

codim. 1

Hn−1(X\D,C/Q(n))

⎫

⎪
⎬

⎪
⎭

∼= Gr0NH
n−1(X,C/Q(n)),
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where N• is the coniveau filtration. (This is nonzero for a CY since [ω] /∈ N1;
for a surface it is H2

tr.) Then the AJ map

KM
n (X) → Hn−1(ηX ,C/Q(n))

is zero for X a CY arising as a very general complete intersection in P
n+r of

multidegree (D0, . . . , Dr),
∑

Dj = n+ r + 1, and n ≥ 3 (X !=curve). (Prob-
ably a similar result holds with P

n+r replaced by another toric Fano variety.)
In contrast, a general member of a one-parameter family arising from The-
orem 3.1 is still rather special, φ having coefficients in a number field which
are further restricted by the tempered requirement. In fact, since 0 != [ω̃t] =
∇δt

[R′t] ∈ N0

N1Hn−1(X̃t,C/Q(n)) for general t and ∇δt
N 1Hn−1 ⊆ N 1Hn−1,

we see that generically 0 != [R′t] ∈ Gr0N and hence that {x} ∈ KM
n (X̃t) is

(AJ-)nontrivial.
So far, little to nothing has been said regarding the behavior of Ψ(t)

globally or near t1 ∈ L\{0} =: L∗. Fix a base point 0′ ∈ Uε, let P denote
the space of C∞ paths P : [0, 1] → P

1\{0} satisfying P (0) = 0′, P ([0, 1)) ⊂
P

1\L, and write P ([0, 1]) =: |P |. Define a projection ρ : P → P
1\{0} by

ρ(P ) := P (1), and let ΦP = ∪t∈|P |ϕ̃t (with [ϕ̃ρ(P )] ∈ Hn−1(X̃ρ(P ),Z)) be a
“topological continuation” of the vanishing cycle. There is an obvious equiva-
lence relation on P◦ := ρ−1(P1\L) — namely, P1, P2 ∈ ρ−1(t) are equivalent
iff the restriction of Rn−1π̃∗Z to |P1| ∪ |P2| is trivial. Extend this to t ∈ L∗ by
requiring only that the union of (|P1| ∪ |P2|)\{t} with some subset of D∗ε(t)
have trivial monodromy. Denote the quotient spaces by P̌◦ ⊂ P̌, topolo-
gizing the latter in analogy with the extended upper half-plane. Note that
L∗ splits into finite and (unipotent and nonunipotent) infinite monodromy
fibers; ρ−1 of the former should be thought of as points interior to P̌, ρ−1

of the latter as cusps.
We want to clarify the following

Assertion: Ψ(t) lifts to a well-defined, continuous function on P̌ with holo-
morphic restriction to P̌◦.

To do this, we must finish defining Ψ(t) by observing that (4.3) makes
sense (in C/Q(n)) even for t ∈ L∗ once the homology class ϕ̃t ∈ Hn−1(X̃t,Z)
is fixed. Since the MHS Hn(X̃t) has weights ≤ n, HomMHS(Q(0),
Hn(X̃t,Q(n))) = {0} andHn

H(X̃t,Q(n)) ∼= Ext1
MHS

(Q(0), Hn−1(X̃t,Q(n))) ∼=
Hn−1(X̃t,C/Q(n)). So AJ(Ξt) is at least defined in the last group (though
we will not say how to compute it until Section 6), and (4.3) simply pairs
homology and cohomology.
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Fix t ∈ P
1\{0}, P ∈ ρ−1(t) and ΦP (hence ϕ̃t). By functoriality of KLM

currents (moving Ξ if necessary to lie in Zn(X̃−, n)X̃t
),
∫

ϕ̃t
RΞt

=
∫

ϕ̃t
RΞ for

any t ∈ P
1\{0}. If we accept (in anticipation of Section 6.1) that

AJ(Ξt)(ϕ̃t) ≡
∫

ϕ̃t
RΞt

even for t ∈ L∗, then (4.3) gives

Ψ(t) =
∫

ϕ̃t

RΞ =
∫

ΦP

d[RΞ] +
∫

ϕ̃0′
RΞ

Q(n)
≡

∫

ΦP

ΩΞ + Ψ(0′)

for the continuation of Ψ corresponding to P . The Assertion follows, using
ΩΞ ∈ Ωn(X̃−) and Morera’s theorem for the holomorphicity (which we
already know in any case), and “smoothing out” any Q(n)-discrepancies.

As for the local behavior of (the multivalued function) Ψ(t) at t1 ∈ L∗
on P

1, this must be consistent with the continuity on P̌. In q := t− t1 we
have in general Ψ = holomorphic plus terms of the form qβ(logk q)H(q)
where β ∈ Q

+, k ∈ {1, . . . , n− 1}, and H is holomorphic. For example, in
the unipotent case suppose we have monodromy T ϕ̃t = ϕ̃t + ηt; then ηt ∈
im(T − I) implies (by Clemens–Schmid) that ηt1 is zero in Hn−1(Xt1 ,Z),
hence pairs to 0 (mod Q(n)) with AJ(Ξt1). Moreover, if ηt ∈ ker(T − I) then
we simply have Ψ = Ψ0(q) + q(log q)Ψ1(q) where Ψ0, Ψ1 are holomorphic
(and single-valued).

Now let t0 be the smallest nonzero element of L; i.e. (at least if φ is
regular) 1

t0
is the critical value of φ of largest finite modulus. Of course,

there might be more than one element of smallest ( != 0) modulus; in this
event just choose one. Putting the above discussion together with Corollary
4.1 yields

Corollary 4.3. The Ψ(t) computation in Theorem 4.1 holds ∀t ∈ D̄∗|t0|.

Proof. The convergence and continuity of
∑ [φm]0

m tm at the boundary follows
from a bit of Tauberian theory, combined with the fact that A(t) = δtΨ(t)
has at worst a logn−1(t− t0) pole at t0. Then one invokes continuity of Ψ(t)
itself. �

We conclude with a number-theoretic application. Various authors [9,
29, 69] have noticed a relation between the logarithmic Mahler measure m
of a Laurent polynomial Q(x1, . . . , xn) and real regulator periods (or special
values of L-functions) associated to the variety Q = 0. Writing

T̂
n := {|x1| = · · · = |xn| = 1} ⊂ (C∗)n,
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this is

m(Q) :=
1

(2πi)n

∫

T̂n

log |Q|
n
∧

d log x,

the real regulator is just the composition

Hn
M(X̃t,Q(n))

AJ� Hn−1(X̃t,C/Q(n))
πR�� Hn−1(X̃t,R(n− 1)),

where (on the level of currents) πR takes R′Ξt
to its “(2πi)n−1·real”-part

rΞt
∈ Dn−1

R(n−1)(X̃t). (The latter is (2πi)n·Goncharov’s current [43], up to
coboundary.) In the present context the two are related as follows.

Corollary 4.4. Under the conditions of Theorem 4.1,

−Re
(

1
(2πi)n−1

Ψ(t)
)

=
−1

(2πi)n−1

∫

ϕ̃t

[rt] = m(t−1 − φ)

for all t in

S := {connected component of (P1\{ 1

φ(T̂n)
}) containing {0}}\{0}

⊆ P
1,

where the bar denotes analytic closure.

Proof. Consider the equation

1
(2πi)n−1

∫

ϕ̃t

[R′t] = log t +
∑

m≥1

[φm]0
m

tm

=
−1

(2πi)n

∫

T̂n

log(t−1 − φ)
n
∧

d log x,

where the first equality holds by Theorem 4.1 for (say) t ∈ Uε, and the second
for t(!= 0) such that |t| < |φ(x)|−1 ∀x ∈ T̂

n. (Note that |φ| is bounded above
on T̂

n.) Now the l.h.s. is analytic multivalued on P
1\L, while the r.h.s.

is analytic multivalued as long as (0 !=) t does not pass through { 1
φ(T̂n)

}
(so that log retains a continuous single-valued branch on the image t−1 −
φ(T̂n)). Since they agree on an analytic open set, they continue to agree on
(the covering space of) the obvious connected component of P

1\L ∪ { 1
φ(T̂n)

}.
Taking real parts of both sides kills multivaluedness. To see this on the r.h.s.,
replace

∧n d log x
(2πi)n by

∧n dargx; for the l.h.s., one easily sees that ϕ̃t has no
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monodromy on S (though [R′t] may, which is harmless). The equality thus
extends to the analytic closure by continuity, erasing L\{0} (where

∫

ϕ̃t
[rt]

is finite). �

4.3. The higher normal function

For this subsection, take the family X̃ π̃→ P
1 to be as in (the assumptions of)

Theorem 3.1. Given any (possibly singular) fiber X̃t=0, we have AJ(Ξt) ∈
Hn−1(X̃t,C/Q(n)). If Rt ∈ Hn−1(X̃t,C) is any lift of this class, then since
ω̃t = 1

2πiResX̃t
Ω̃t ∈ Hn+1

X̃t

(PΔ̃,C) ∼= Hn−1(X̃t,C), the pairing 〈Rt, [ω̃t]〉 ∈ C

makes sense. For X̃t smooth and Rt = [R′t] as in Remark 4.3(a), this is just
∫

X̃t
R′t ∧ ω̃t.

Definition 4.1. The higher normal function associated to Ξ is the multi-
valued function

ν(t) := 〈Rt, [ω̃t]〉

on P
1\L, where Rt is a (multivalued) continuous family of lifts of AJX̃t

(Ξt).

This is a highly transcendental function, but applying DPF kills the
ambiguities (which are periods of ω̃) and produces g(t) := DPFν(t) ∈ K̄(P1)
(see [25]). Viewed as an element of K̄(P1)/DPFK̄(P1), g is the class of a
certain extension of D-modules attached to Ξ. Alternatively, it is the inho-
mogeneous term of the Picard–Fuchs equation

DPF(·) = g

satisfied by ν, and its nonvanishing would give another proof of nontriviality
of Ξt: g != 0 implies that ν != a period of ω̃ which meansRt /∈ Hn−1(X̃t,Q(n))
[general t] and hence that general AJ(Ξt) /≡ 0. Note that conversely, if the
C-span of the {∇i

δt
[ω̃t]}r−1

i=0 is a (complexified) Hodge structure for general
t, then it is possible to show (using ∇δt

Rt = [ω̃t] from Corollary 4.1) g != 0.
The study of inhomogeneous PF equations for higher normal functions

was initiated by del Angel and Müller-Stach [24–26]. Their work focused
on families of higher cycles ηt ∈ CHp(Xt, 2p− n) (p < n = dimX + 1), in
which case

∫

Xt
R′ηt

∧ ωt reduces to integration of ωt over a real membrane.
Here we want to demonstrate that the case p = n is also accessible and
interesting.
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The Yukawa coupling is the function Y ∈ K(P1) defined by

Y(t) :=
〈

[ω̃t],∇n−1
δt

[ω̃t]
〉

for t /∈ L. (A1-singularities for such t are harmless here, as [ω̃] lifts to
Hn−1(˜X̃t).) The next result implies this is the inhomogeneous term in many
cases including that of elliptic curves (n = 2) and K3 surfaces (n = 3) with
generic Picard rank 19.

Corollary 4.5. If the order of DPF is (r =)n, i.e., if the D-module gener-
ated by [ω̃t] has rank n, then g = Y.

Proof. Compute first

δt 〈Rt, [ω̃t]〉 = 〈[ω̃t], [ω̃t]〉+ 〈Rt,∇δt
[ω̃t]〉 = 〈Rt,∇δt

[ω̃t]〉 ,

then inductively

δj<nt 〈Rt, [ω̃t]〉 = δt

〈

Rt,∇j−1
δt

[ω̃t]
〉

=
〈

[ω̃t],∇j−1
δt

[ω̃t]
〉

+
〈

Rt,∇j
δt

[ω̃t]
〉

.

By Hodge type and Griffiths transversality, this

=
〈

Rt,∇j
δt

[ω̃t]
〉

.

Hence, with DPF = δnt +
∑n−1

k=0 gk(t)δ
k
t ,

DPFν(t) = Y(t) + 〈Rt,∇PF[ω̃t] = 0〉 = Y(t).

�

Remark 4.4. For r = n = 2, 3, 4 Y(t) is computed by an obvious differ-
ential equation. To state it, recall that by Lian et al. we have maximal
unipotent monodromy at t = 0. Hence gj(t) = tfj(t) for fj holomorphic at
t = 0, and with q2 = 1, q3 = 2

3 , q4 = 1
2 we get δtY(t) = −qntfn−1(t)Y(t) =⇒

Y(t) = κ exp{−qn
∫

fn−1(t)dt}. From above, Y = g must be a rational func-
tion, and fn−1(t) = −M

qn
· Y

′(t)
Y(t) (for M ∈ Z). (If one has maximal unipotent

monodromy also at t = ∞, then M can be determined also.) The value of
κ requires more precise (e.g., modular) information about the family. Note
that for n = 2, n = 3 and rk(Pic) = 19, or n = 4 and h3 = 4, Corollary 4.1
implies that g != 0 and hence that κ != 0.
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We prove next an interesting result on the monodromy of (a choice of
branch of) ν. Recall from Section 3.3 the definitions (for all n) of J , I ⊆ D̃
and for n = 3 set D :=normalization of J at J ∩ A. From the proof of
Theorem 3.1, X̂ B� X̃ is the simultaneous resolution of the A1-singularities
A(×P

1), and D is just the proper transform of J (along X̂t → X̃t). Let J −
be the union of the Dσ̃’s that are not in I and not of the form {xi1 + xi2 =

1, x±1
i3

= 0}. For all n, let
◦
T

n

:= R
−
x1
× · · · × R

−
xn
⊂ (C∗)n with analytic clo-

sure T
n ⊂ PΔ̃; note that its class in Hn(PΔ̃, D̃) is Lefschetz dual to that of

the n torus T̂
n in Hn((C∗)n). Let K denote the analytic closure of φ(

◦
T

n

) in
P

1
λ, with (open) complement U := P

1\K ⊆ A
1
λ, and set X̃U := π̃−1(U) ⊆ X̃−,

X̃K := π̃−1(K) ⊆ X̃ . (If U is not connected, replace it by a single connected
component, and augment K by the other connected components.) Finally,
let X := X̃λ0 be a very general fiber (with λ0 ∈ U).

Proposition 4.1. (a) Let X̃− be one of the families from Theorem 3.1 with
nonsingular general fiber and assume ker{Hn−2(J ) → Hn−2(X)} = 0. Then
there exists a single-valued family of cohomology classes Rλ ∈ Hn−1(X̃λ,C)
lifting AJ(Ξλ) for λ ∈ U . (This includes singular fibers [= U ∩ L] unless
n = 2 and J ∩ I is nonempty.)

(b) For n = 3 and A nonempty (the case excepted above), H1(J −\J − ∩
A) = 0 so the conclusion of (a) holds as stated. If we assume instead H1(D) =
0, then the conclusion only holds with X̃λ replaced by X̂λ (and Rλ lifts
AJ(Ξλ0) ∈ Hn−1(X̂λ,C/Q(n))).

Remark 4.5. (i) For n = 2, the assumption of (a) says J is one point;
for n = 3 it says H1(J ) = 0: J is a configuration of rational curves whose
associated graph has no loop.

(ii) The continuation of Rλ around a loop not in U may no longer be
single-valued over U .

(iii) A relaxation of the hypotheses (e.g., allowing singularities in the
general fiber, φ not regular) may be necessary to produce examples for n = 4.

Proof. We do this under the assumption that the total space X̃ is nonsingu-
lar. (While such examples come out of Theorem 3.1, we do not know if any
of these survive the extra requirements for this proposition; nevertheless,
the main ideas are contained in our “artificial” proof, and the more general
situation is treated with cone complexes as in Theorem 3.1’s proof.) Write
Z
p(·, n) for ∂B-closed higher Chow precycles.

In the proof of Theorem 3.1 we started by “completing” ξ = {x} ∈
Z
n(X̃−\J × A

1, n) to Ξ ∈ Zn(X̃−, n) restricting to ξ + ∂Bγ (on X̃−\J ×
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A
1); since ξ ∈ ZnR(X̃−\J × A

1, n)X\J (×{x0}), we may arrange to have

Ξ ∈ ZnR(X̃−, n)X , γ ∈ ZnR(X̃−\J × A
1, n+ 1)X\J ,

the first pulling back to Ξλ0 ∈ ZnR(X,n). We take the analytic closure of the
∂-closed Borel–Moore C∞ chain Tξ on X̃−\J × A

1 to get Tξ ∈ Ztop
n (X̃ , X̃0 ∪

J × P
1). Since (X̃U\J × U) ∩ T

n = ∅ by construction, we see that Tξ maps
to 0 in Ztop

n (X̃ , X̃K ∪ J × P
1). Clearly TΞ ∈ Ztop

n (X̃ , X̃0) maps to Tξ + ∂Tγ
in Ztop

n (X̃ , X̃0 ∪ J × P
1), hence to ∂Tγ in Ztop

n (X̃ , X̃K ∪ J × P
1); and so in

Ztop
n (X̃ , X̃K), TΞ is homologous to a cycle τ ∈ Ztop

n (J × (P1,K)) ∼= Ztop
n (J ×

(U, ∂U)) (where ∂U := U\U). (The latter may be put in good position with
respect to X, since TΞ is.)

Now 0 = FnHn(X,C) ∩Hn(X,Q(n)) implies that 0
hom≡ TΞλ0 = TΞ ∩X

(on X) which tells us that τ ∩X hom≡ 0 (on X). Moreover, Hn(J ×
(U, ∂U)) = Hn−2(J )⊗H2(U, ∂U) ∼= Hn−2(J ) since U connected implies
H2(U, ∂U) = Q, K connected yields U simply connected which says
H1(U, ∂U) = 0, and obviously H0(U, ∂U) = 0. Hence, ker{Hn−2(J ) →
Hn−2(X)} = 0 so τ

hom≡ 0 and ∃ Γ ∈ Ztop
n+1(X̃ , X̃K) with ∂Γ = TΞ (mod X̃K),

and we define R′Ξ := RΞ + (2πi)nδΓ ∈ Dn−1(X̃U ). One has d[R′Ξ] = ΩΞ ∈
FnDn(X̃U ).

This ΩΞ, being a d-closed (n, 0)-current, is in fact C∞ (i.e., holomorphic)
by standard regularity results. On X̃U it is cohomologous to 0, hence dη there
for some C∞ (n− 1)-form η. Hence R′Ξ − η is closed and ∃ (n− 2)-current
κ such that R′Ξ − η + d[κ] is C∞ (in the same class); obviously R′Ξ + d[κ] is
also C∞ (but not closed), and so pulls back to every fiber to give a contin-
uous family of (closed C∞ forms and hence) classes in {Hn−1(X̃λ,C)}λ∈U
(including singular fibers).

Next pick any λ1 ∈ U , put X1 := X̃λ1 ; we must show [ι∗X1
(R′Ξ + d[κ])]

lifts AJ(ι∗X1
Ξ1) ∈ Hn−1(X,C/Q(n)) for some “move” Ξ1 of Ξ. Namely, use

M∈ ZnR(X̃−, n+ 1) to get Ξ1 := Ξ + ∂BM∈ ZnR(X̃−, n)X1 , and μ ∈ Ctop
n+2

(X̃ , X̃K) to move Γ to Γ1 := Γ− TM + ∂μ ∈ Ctop
n+1(X̃ , X̃K)X1 . Note that

∂Γ1 = ∂Γ− ∂TM = TΞ − ∂TM = TΞ1 , so that R′Ξ1
:= RΞ1 + (2πi)nδΓ1 has

d[R′Ξ1
] = ΩΞ1 = ΩΞ. Moreover, the d-closed pullback ι∗X1

R′Ξ1
= Rι∗X1

Ξ1 +
(2πi)nδ∂−1(ι∗X1

TΞ1 ) so its class lifts AJ(ι∗X1
Ξ1). Now we compare the two

things pulled back, ι∗X1
of R′Ξ1

and R′Ξ + d[κ]:

R′Ξ1
= RΞ + d

[

RM
2πi

]

+ (2πi)nδTM+Γ1
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= RΞ + d

[

RM
2πi

+ (2πi)nδμ

]

+ (2πi)nδΓ

= R′Ξ + d[=: S],

hence R′Ξ1
−R′Ξ − d[κ] = d[S − κ]. If S − κ does not pull back to X1, it is

replaceable by something that does (since the l.h.s. does). �
Stiller [78] studied monodromy of solutions to inhomogeneous equations,

in the case where the corresponding homogeneous equation DPF(·) = 0 is
solved by the period functions associated to an elliptic modular surface. It
would be interesting to compare his formula ([78], Theorem 10) with the
following for n = 2.

Corollary 4.6. In the situation of Proposition 4.1((a) or (b)), the inho-
mogeneous equation DPF(·) = g admits a solution single-valued in U (i.e.,
also finite at U ∩ L, except possibly when n = 2 and J ∩ I != ∅).

Of course, this is most interesting in case ord(DPF) = n and Corollary 4.5
also applies.

As an application of higher normal functions and Corollary 4.1, we
consider the problem of producing linearly independent families of higher
Chow cycles over P := P

1
t \T , where T " {0} is a collection of points. Since

the idea will be to produce independent topological invariants [Ω] ∈ FnHn

(X̃P ,C) ∩Hn(X̃P ,Q(n)) (X̃P := π̃−1(P)), larger T is better. In fact, T =
{(t =) 0} will not do, as FnHn(X̃−,C) ∼= FnHn((C∗)n,C) ∼= C〈ΩΞ =
∧n d log x〉 has rank 1.

Suppose we have a rational map (defined /Q̄) of families satisfying the
conditions of Theorem 3.1:

X̃P
A ������

π̃

��

′X̃−
′π̃

��
P α �� P1\{0}.

That is, we have Zariski open VP ⊆ X̃P , hence some blow-up YP
B�� X̃P ,

mapping to ′X̃− over α. Write At : X̃t −− > ′X̃α(t), ui := A∗(′xi) ∈ Q̄(X̃P)∗.
If A is the restriction of a rational map PΔ̃ × P

1 −− > P′Δ̃ × P
1 given

by (x1, . . . , xn; t) �→ (f1(x; t), . . . , fn(x; t);α(t)) = (′x1, . . . ,
′xn; ′t), then ui =

fi(x; t).
By pulling ′Ξ back to YP and pushing forward along B we obtain

Θ := A∗(′Ξ) = completion of {u} ∈ CHn(X̃P , n).
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Clearly ΩΘ = A∗(Ω′Ξ), and this is a holomorphic form; since the fibers of
π̃ are CY, [ΩΘ] = [(π̃∗G)ΩΞ] for some G ∈ Q̄(P1)∗. On the fibers we have
A∗t [′ω̃α(t)] = G(t)[ω̃t], and A∗t (′Rα(t)) =: St lifting AJ(Θt). Corollary 4.1 for
′Ξ says ∇δα(t)

′Rα(t) = [′ω̃α(t)], and applying A∗ gives ∇δα(t)St = G(t)[ω̃t], or

∇δt
St =

tα′(t)
α(t)

G(t)[ω̃t].

Comparing this with ∇δt
Rt = [ω̃t] (and noting that ∇δt

removes the ambi-
guities in the lifts of AJ of Θt, Ξt), we obtain:

Corollary 4.7. If tα′

α G is not a rational constant, then the families of
classes Θt, Ξt ∈ CHn(X̃t, n) are (AJ-)independent.

There are examples where α(t) = ±1
t and G(t) = t for n = 2 and 3,

see [48].
We can also compare the higher normal functions ν(t) := 〈Rt, [ω̃t]〉 ,

ε(t) := 〈St, [ω̃t]〉. If 0 != g := DPF ν, and tα′

α G is not a rational constant,
then from

DPFε =
tα′

α
Gg

one may deduce independence of the families of Milnor K-theory classes
{x}, {u} ∈ KM

n (C(X̃t)) for n = 2, 3.
In the event that α is of infinite order (rather than e.g., an involution

like t �→ ±1
t ), iteratively applying the above construction (for α, α ◦ α, α ◦

α ◦ α, etc. which of course requires shrinking P at each stage) would give
explicit countable generation for CHn(generic fiber, n). However it seems
likely (already for n = 2, by comparing with the proof of infinite generation
in [22, Section 7] that this is not possible without allowing α to be algebraic
and replacing the Zariski neighborhood P with an étale one; the relevant
(geometric) generic fiber is then defined over Q(P1) (rather than Q̄(P1)).

4.4. Appendix

Before turning to mirror symmetry and examples, we wish to answer an
interesting question of the third referee. Up to this point we have dealt
with sufficient conditions under which the coordinate symbol completes;
the Proposition below gives a necessary condition.

Let Δ ⊂ R
n (n = 2, 3, 4) be a reflexive polytope and F =

∑

m∈Δ∩Zn

αmx
m ∈ C[x±1

1 , . . . , x±1
n ] a fixed Δ-regular Laurent polynomial. Assume,
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for some ν ∈ Δ(n), that we have normalized αν = 1. We write X∗ := {x ∈
(C∗)n |F (x) = 0} and X̃ ⊂ PΔ̃ for its (smooth) Zariski closure, and consider
the coordinate symbol ξ := 〈{x1|X∗ , . . . , xn|X∗}〉 ∈ CHn(X∗, n).

Proposition 4.2. If ξ is the restriction of a class Ξ ∈ CHn(X̃, n), then
for every m ∈ Δ ∩ Z\{0} we have αm ∈ Q̄.

This justifies our restrictions in Section 3, to the effect that only α0 is
allowed to vary, and moreover that φ be defined over a number field. The
proof has been postponed to this section because it rests on a variant of
Corollary 4.1:

Lemma 4.1. Let Δ′ ⊂ R
� (� = 2, 3) be a polytope, not necessarily reflexive,

with integer interior points {μ
j
}g(>0)
j=1 , and set U = {s ∈ C | |s| < ε}. Con-

sider a one-parameter family

Y∗ =
{

(y, s) ∈ (C∗)� × U
∣

∣

∣ Gs(y) = 0
}

of smooth hypersurfaces with smooth compactification Y ⊂ PΔ̃′ × U , where

Gs(y) :=
g
∑

j=1

βj(s)y
μ

j +
∑

μ′∈∂Δ′∩Z�

γμ′yμ
′
.

Finally let ξ′s :=
〈

{y1, . . . , y�}|Y ∗
s

〉

∈ CH�(Y ∗s , �) be the family of coordinate
symbols on fibers of Y∗ −→

πY∗
U . Then

(a) the forms ωj(s) := ResYs

(

y
μ

jd log y1∧···∧d log y�

Gs(y)

)

give a basis for Ω�−1(Ys)

(∀s ∈ U), hence for its isomorphic image under H�−1,0(Ys) ↪→
H�−1(Y ∗s ); and

(b) under the Gauss–Manin connection on the relative (�− 1)th cohomol-
ogy of πY∗, ∇∂s

[AJY ∗
s
(ξ′s)] =

∑g
j=1 β

′
j(s)[ωj(s)]|Y ∗

s
.

Proof. (a) Is due to [5] (see the top of p. 386).
For (b), look at the analytic higher Chow cycle ξ′ := 〈{y1, . . . , y�}〉 ∈

CH�(Y∗, �). Although Ωξ′ is nonzero, its pullback to fibers is zero by type,
and H�−1(Y∗) ∼= H�−1(Y ∗s ). So 0 = clY∗(ξ′) = [Ωξ′ ] = [Tξ′ ], and there exists
an (�+ 1)-chain Γ on Y with |∂Γ− Tξ′ | ⊂ Y\Y∗, meeting fibers properly.
The restriction of R̃ξ′ := Rξ′ + (2π

√
−1)�TΓ ∈ D�−1(Y∗) to each Y ∗s is closed,
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with class in H�−1(Y ∗s ,C) a lift of AJY ∗
s
(ξ′s). Writing Ω� := d log y1 ∧ · · · ∧

d log y� and G(y, s) := Gs(y), we compute

d[R̃ξ′ ] = Ωξ′ = Ω� = ResY∗ (Ω� ∧ d log G)

= ResY∗

(

Ω� ∧ ∂G
∂s ds

G

)

=
g
∑

j=1

β′j(s)ResY∗

(

y
μ

jΩ�

G

)

∧ ds.

Since ∇∂s
[AJY ∗

s
(ξ′s)] is represented by the interior product of d[R̃ξ′ ] with a

lift of ∂/∂s, this gives the result. �
Proof of Proposition 4.2. We use the notation from Sections 2.5, 3.1 and
take n = 4 for concreteness (the other two cases are treated in the same
way). If ξ “completes” to Ξ, it must be in the kernel of

Resjσ̃ : CH4(X∗, 4) → CH4−j(D∗σ̃, 4− j)

for each j = 1, 2, 3 and σ̃ ∈ Δ̃(j). By Proposition 3.1, it follows that for each
σ ∈ Δ(i) (i = 1, 2, 3),

〈

{xσ1 , . . . , xσ4−i}
〉

∈ CH4−i(D∗σ, 4− i) must be trivial.
For an edge σ ∈ Δ(3), dim(D∗σ) = 0, and triviality of 〈{xσ1}〉 means that

Fσ is cyclotomic. This implies that αm ∈ Q̄ for m ∈ σ ∩ Z
n (∀σ ∈ Δ(3)).

Moreover, since the one-skeleton of Δ is connected, we see that αν = 1 for
every vertex ν ∈ Δ(4).

Now let σ ∈ Δ(2) be a two-face, and assume σ has at least one integer
interior point m0 for which αm0

/∈ Q̄. Write � = 2, Δ′ := conv(MFσ
), G0 :=

Fσ, (y1, y2) := (xσ1 , x
σ
2 ), Y ∗0 = D∗σ, and ξ′0 :=

〈

{y1, y2}|Y ∗
0

〉

. Taking Q̄-spreads
of Y ∗0 and ξ′0 yields a family of curves Y∗S → S (defined over Q̄) over a quasi-
projective variety, with a family of trivial higher Chow cycles on the fibers.
Pulling back along a holomorphic map U → S, we are exactly in the situation
of Lemma 4.1, with at least one β′j(s) != 0 (from spreading αm0

). Together
(a) and (b) obviously contradict the triviality ξ′s (hence [AJY ∗

s
(ξ′s)]) inherits

from ξ′0. We conclude that αm ∈ Q̄ for all σ ∈ Δ(2) and m ∈ σ ∩ Z
n.

It remains to consider facets σ ∈ Δ(1), where the same assumption leads
via spreading out to the setting of Lemma 4.1 (with � = 3) and a contradic-
tion. Hence αm ∈ Q̄ for any m ∈ ∂Δ ∩ Z

n, and since Δ is reflexive we are
done. �

5. An application to local mirror symmetry

For any reflexive polytope Δ ⊂ R
n (n = 2, 3, 4), the total space of KPΔ◦ may

be viewed as a noncompact CY (n+ 1)-fold. If we let F ∈ C[x±1
1 , . . . , x±1

n ]



Algebraic K-theory of toric hypersurfaces 477

range over Laurent polynomials with Conv(MF ) = Δ, then the family

YF := {F (x) + u2 + v2 = 0} ⊂ (C∗)n × C
2

of (n+ 1)-folds is the mirror dual of KPΔ◦ . These are CY, since the holo-
morphic form

ηF := 2i · ResYF

(∧n d log x ∧ du ∧ dv
F + u2 + v2

)

∈ Ωn+1(YF )

yields a nonvanishing global section of the canonical bundle (i.e., KYF
). Its

periods may be interpreted in terms of regulator periods on the X∗F :=
{F (x) = 0} ⊂ (C∗)n. We work out this story in Section 5.1 and use it to
compute the mirror map for n = 2 in Section 5.3. Only in Section 5.4 (and
the end of Section 5.1) do we once again require F to be tempered, in
order to link up with Section 3, 4, 6 and study asymptotic growth of local
Gromov–Witten numbers for KPΔ◦ .

5.1. Periods of an open CY three-fold

Let XF ⊂ PΔ be the Zariski closure of X∗F , with crepant resolution X̃F ⊂
PΔ̃; denote the inclusion J : X∗F ⊂ � X̃F . We assume F is Δ-regular, so
that X̃F is smooth and the Dσ̃ reduced (∀i ≥ 1, σ̃ ∈ Δ̃(i)). Write {x} :=
{x1, . . . , xn} ∈ CHn((C∗)n, n) and ξF := I∗{x} ∈ CHn(X∗F , n) for its
restriction to X∗F ⊂ I� (C∗)n. We use a somewhat nonstandard definition

Htr
n−1(X̃F ) := im{Hn−1(X∗F ,Q)

J∗� Hn−1(X̃F ,Q)}

for the “transcendental part” of homology; clearly this is everything for
n = 2 and contains the orthogonal complement of Pic(X̃F ) for n = 3. Also
define

Kn−1(X∗F ) := ker{Hn−1(X∗F ,Q)
I∗� Hn−1((C∗)n,Q)}.

Lemma 5.1. Kn−1(X∗F ) surjects onto Htr
n−1(X̃F ); that is, every class Γ in

Htr
n−1(X̃F ,Q) has a representative γ ∈ Ztop

n−1(X
∗
F ; Q) that bounds in (C∗)n.

Proof. Choose an edge σ1 ∈ Δ(n− 1) and vertex ν ∈ Δ(n) on σ1. (More
precisely, we take σ̃1 ∈ Δ̃(n− 1) and ν̃ ∈ Δ̃(n) sitting “over” these.) Repeat
the construction of Section 4.1 so that Φν = 0 locally describes X̃F and
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1 + φ1(z1) gives (up to a constant) the edge polynomial of σ1. Fix a root
r(∈ C

∗) of this, define in Ztop
n−1(X

∗
F ; Z)

δσ1 := {Φν = 0} ∩ {|z2| = · · · = |zn| = ε} ∩ {|z1 − r| “small”}

and notice δσ1

hom≡ 0 on X̃F . Write z1(= xσ1
1 ) =: xm(σ1).

Define projections and inclusions
(C∗)n πi �� �� {x ∈ (C∗)n |xi = 1} ∼= (C∗)n−1 � � ιi �� (C∗)n

{xi = 1, |xj | = 1∀j != i} =: T̂
n−1
i .

��

��

We can orient everything so that πi∗(I(δσ1))
hom≡ mi(σ1)T̂n−1

i ; hence I(δσ1) ≡
∑n

i=1mi(σ1)ιi∗(T̂
n−1
i ). Now the {m(σ1)} (taken over all such edges) generate

Q
n; hence the {I(δσ1)} generate Hn−1((C∗)n−1,Q).

Given Γ ∈ Htr
n−1(X̃F ), let γ0 be a representative in Ztop

n−1(X
∗
F ). We may

choose an appropriate sum δ of δσ1 ’s with I(γ0)
hom≡ I(δ); clearly δ

hom≡ 0 on
X̃F , and so taking γ := γ0 − δ we are done. �

Remark 5.1. When |γ0| ⊆ X∗F ∩ {Rn or (iR)n}, I(γ0) bounds on (C∗)n

without modification by a δ. [Proof : For any cycle Z on (C∗)n, Boxn(Z) :=
Z +

∑n
k=1(−1)k

∑

|I|=k(ιI ◦ πI)∗Z
hom≡ 0; since Hn−1((C∗)j<n−1) = 0, it fol-

lows that I(γ0)−
∑n

i=1(ιi ◦ πi)∗I(γ0) bounds (in (C∗)n). But if γ0 has real
support then each (πi)∗I(γ0) “cancels itself out”, being of the same real
dimension as the real part of the target (=disjoint union of copies of
(R+)n−1).] This is essentially used for the real, nonvanishing cycle L0 (for
real t near 0) in Appendix A of [45]. However, the procedure (employed
there) of “bounding” the vanishing cycles {Kj} with noncompact mem-
branes is unnecessary in view of Lemma 5.1, and also incorrect in homology.

Lemma 5.2. If γ ∈ Ztop
n−1(X

∗
F ; Z) has I(γ) = ∂μ, for μ ∈ Ctop

n ((C∗)n; Z),
then

∫

γ
R(ξF ) ≡

∫

μ
∧nd log x mod Z(n).

Proof. On (C∗)n,
∧n d log x = d[R{x}]± (2πi)nδTx

, and so
∫

μ
∧nd log x ≡

∫

μ
d[R{x}] =

∫

∂μ
R{x} =

∫

γ
I∗R{x}.

�
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We want to construct cycles in Ztop
n+1(YF ) over which to integrate ηF .

Considering YF as a fiber bundle over (C∗)n, we have (for n = 2) the picture
displayed in figure 7. In a topological sense, we may view Y as the disjoint
union of an S1-bundle over (C∗)n with a copy of X∗F . More precisely, if
P : YF �� (C∗)n sends (x, u, v) �→ x, then

x ∈ (C∗)n\X∗F =⇒ P−1(x) ∼= C
∗ (homotopic to S1),

x ∈ X∗F =⇒ P−1(x) ∼= {u2 + v2 = 0} =: W = W1 ∪W2,

where Wi
∼= A

1
C. In fact, YF ⊃ X∗F ×W and we can write W = W1 �W ∗2

(W ∗2 := W2\{(0, 0)}); the complement YF \(X∗F ×W1) is then homotopic to
(C∗)n × S1.

Consider the long-exact sequence

Hn(YF \X∗F ×W1) ∼=
��

��

Hn−1((C∗)n)⊕Hn((C∗)n)

Hn−1(X∗F ×W1) ∼=
��

tube

��

Hn−1(X∗F )

(I∗,0)

��

Hn+1(YF )

∩
��

Hn+1(YF \X∗F ×W1)
”forget S1”

∼=
��

��

Hn((C∗)n)

Hn(X∗F ×W1)

tube

��

∼=
�� Hn(X∗F ).

I∗=0

��

��

(5.1)

The bottom I∗ is 0 because the dual map [Fn]Hn((C∗)n) → Hn(X∗F )
must be, as dim(X∗F ) = n− 1 implies that FnHn(X∗F ) = {0}. The
Hn−1(X∗F ) → Hn((C∗)n) is essentially the composition of Tube : Hn−1

(X∗F ) → Hn((C∗)n\X∗F ) with Hn((C∗)n\X∗F ) → Hn((C∗)n); it is 0 for a sim-
ilar reason.



480 Charles F. Doran and Matt Kerr

Figure 7: The open CY (n+ 1)-fold Y.

Using any T̂
n
ν,ε ∈ Z

top
n ((C∗)n\X∗F ) (see Section 4.1) and the topological

“S1-bundle” structure of YF \(X∗F ×W1), gives a cycle T̂
n+1
Y ∈ Ztop

n+1(YF ).
Now (5.1) becomes the short-exact sequence

Q

〈

T̂
n+1
Y

〉

→ Hn+1(YF ) → Kn−1(X∗F ).

To construct explicitly an isomorphism

M : Kn−1(X∗F ) → Hn+1(YF )
/

Q

〈

T̂
n+1
Y

〉

,

let γ, μ be as in Lemma 5.2 (Q-coefficients). The cycle (representing) M(γ)
will have support in P−1(|μ|), with S1-fibers over Int|μ| and point fibers
over |∂μ| = |γ|. More precisely, M(γ) ∩ P−1(x) (for x ∈ |μ|) is given by

V ∈ [−
√

|F (x)|,
√

|F (x)|] , v = e
i
2

arg(−F (x))V , u = ±
√

−(v2 + F (x)).

Note that Q

〈

T̂
n+1
Y

〉

absorbs the ambiguity arising from the choice of μ.

Lemma 5.3. For γ, μ as in Lemma 5.2,
∫

M(γ)
ηF = 2πi

∫

μ
∧nd log x .

Moreover,
∫

T̂
n+1
Y

ηF = (2πi)n+1.
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Proof. Writing u′ := u+ iv, v′ := u− iv, we have (away from v′ = 0) ηF =
ResYF

(∧n d log x ∧ du′∧dv′
F (x)+u′v′

)

=
∧n d log x ∧ d log u′. The result is now immedi-

ate (by integrating “first” over the S1 fibers of M(γ)). �

Lemmas 5.2 and 5.3 imply the following

Proposition 5.1. The periods of ηF are precisely the C → C/Q(n+ 1) lifts
of the 2πi

∫

γ R(ξF ) for γ ∈ Kn−1(X∗F ), including the lifts (2πi)n+1
Q of 0.

If we now assume F = F̂ is tempered, plus additional assumptions for
n = 4 (cf. Theorem 3.1), then ξF̂ comes from some ΞF̂ ∈ CHn(X̃F̂ , n), and
so R(ξF̂ ) has no residues to separate periods over γ1, γ2(∈ Kn−1) with J∗γ1 =
J∗γ2. Therefore (using Lemma 5.1), we get

Corollary 5.1. The periods of ηF̂ may be expressed in terms of the regulator
periods of “transcendental cycles”:

∫

(·) ηF̂ is the composition

Hn+1(YF̂ )

M(ker(J∗) ∩ Kn−1) + Q

〈

T̂
n+1
Y

〉

M−1

∼=
�

Kn−1(X∗F̂ )

ker(J∗) ∩ Kn−1

Lemma 5.1

∼=
�

Htr
n−1(X̃F̂ )

2πi
∫

(·)R(ΞF̂ )
� C/Q(n+ 1).

In particular, if we put ourselves in a one-parameter family setting F̂ =
1− tφ(x) for φ as in Section 2, then Corollaries 4.1 and 5.1 get

Corollary 5.2. The D-submodule of Hn−1
X̃t

generated by [ω̃t] is a quotient
of the submodule of Hn+1

Yt
generated by [ηt], via

∇(Y,η)
PF = ∇(X̃,ω̃)

PF ◦ ∇δt
.

Remark 5.2. If ϕ̃0 is a vanishing cycle (as in Section 4), with Kn−1 "
ϕ0

J∗� ϕ̃0, then by Theorem 4.1 and Corollary 5.1
∫

M(−ϕ0)
ηt

∫

T̂
n+1
Y

ηt
=
−2πi

∫

ϕ̃0
R(Ξt)

(2πi)n+1
=

Ψ(t)
−(2πi)n

∼ log t
2πi

as t→ 0. So this period ratio is custom-made for defining a mirror map.
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5.2. The canonical bundle as a CY toric variety

We specialize to the case n = 2 for the remainder of the section. Let Δ ⊂ R
2

be a reflexive polytope with vertices ν(1), . . ., ν(r+2) numbered counter-
clockwise. Together with ν(0) = {0}, these are the “relevant integral points”
of Δ (any interior points of edges are excluded). We have a (partial)
triangulation tr(Δ) using the segments s(k) = [ν(0), ν(k)], and write ν(i,j) :=
ν(j) − ν(i).

A fan ΣΔ is obtained by taking cones on tr(Δ)× {1} ⊂ R
3. The gener-

ators of ΣΔ(1) are {ν̂(0), . . . , ν̂(r+2)} where ν̂(k) = (ν(k), 1). The associated
toric variety Y ◦ is the total space of KPΔ◦

ρ� PΔ◦ . The line bundle KY ◦ is
trivialized by a [global nonvanishing] “tautological section”, making Y ◦ an
open CY three-fold. If edges of Δ have interior integral points u(�) then Y ◦

is singular (but normal). When we refer to the “singular case” resp. “smooth
case” below, this is what is meant.

The curves C◦i ⊂ Y ◦ dual to subfans Σs(i) are in 1–1 correspondence
with edges of Δ◦, and are supported on the “0-section” D◦0 ∼= PΔ◦ ⊂ Y ◦.
The [C◦i ] generate H2(Y ◦,Z), and the Mori cone (of effective curves) in
H2(Y ◦,R) is just obtained by taking R

≥0-linear combinations of them. We
assume henceforth that the Mori cone with this integral structure is smooth
(cf. [23, p. 32]; this implies simplicial). A simple example where both Y ◦

and Mori are smooth is shown in figure 8.
The divisors D◦i dual to subfans Σν(i) , i = 0, . . . , r + 2, generate

H2(Y ◦,Q). If PΔ◦ (and Y ◦) are smooth then the D◦i = ρ−1(C◦i ). Otherwise,
using the u(�) to refine ΣΔ yields the crepant resolution Y ◦ �p̂

Ỹ ◦ over
PΔ◦ �p

PΔ̃◦ . Denote the exceptional divisors E◦� (for p) and Ê◦� := ρ̃−1(E◦� )
(for p̂); we have H2(Y ◦,Q) ∼= ker{H2(Ỹ ◦) → H2(∪Ê◦� )}. Writing C̃◦i = p∗C◦i

Figure 8: Local mirror CY 3-fold data.
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for the proper transforms, the Di are then represented by cycles on Ỹ ◦ of the
form D̃◦j := ρ̃−1(C̃◦i ) +

∑

� β
i
�Ê
◦
� for βi� ∈ Q satisfying (C̃◦i +

∑

βi�E
◦
� ) · E◦k =

0 ∀i, k.
Intersections Mij :=

〈

C◦i , D
◦
j

〉

under the pairing H2(Y ◦)×H2(Y ◦) →
Q are then computed by C̃◦i · D̃◦j . These need not be integers (see [37])
but the matrix [Mij ]i,j≥1 is symmetric. The Kähler cone is the dual of
Mori in H2(Y ◦,R) under this pairing; it is represented by divisors {D =
∑

αjDj | 〈Ci, D〉 ≥ 0 (∀i)}.
In general, we have in H2(Y ◦)

D◦0 ≡ −
∑

i≥1

D◦i ≡ ρ−1(KPΔ◦ ) ≡ −ρ−1(X◦),

where X◦ is any anticanonical (elliptic curve) hypersurface in good position
with respect to DΔ◦ . Writing di − 1 := number of interior points of the edge
of Δ◦ dual to ν(i), we have (i ≥ 1)

−〈C◦i , D◦0〉Y ◦ = 〈C◦i , X◦〉PΔ◦ = di.

Put ei − 1 := number of interior points on the edge “next” (in the counter-
clockwise direction) to ν(i). We are in the singular case iff some ei > 1.

We are interested in a very explicit (and standard) presentation of the
Mori cone: first, we write down generators for the integral relations on
the ν̂(i) as follows. For any k ∈ {1, . . . , r + 2}, let �(k)k−1ν̂

(k−1) + �
(k)
k+1ν̂

(k+1)

be the minimal Z
+-linear combination lying in the line containing s(k), and

then choose �(k)k ∈ Z, �(k)0 ∈ Z
≤0 such that

(5.2) �
(k)
0 ν̂(0) + �

(k)
k−1ν̂

(k−1) + �
(k)
k ν̂(k) + �

(k)
k+1ν̂

(k+1) = 0.

Note that �(k)k−1 is replaced by �(k)r+2 for k = 1, and �(k)k+1 by �(k)1 for k = r + 2.

Remark 5.3. One can show that these take the form

�
(k)
0 =

−ekek−1dk
e(k,k−1)

, �
(k)
k−1 =

ek
e(k,k−1)

, �
(k)
k =

ekek−1dk − ek − ek−1

e(k,k−1)
,

�
(k)
k+1 =

ek−1

e(k,k−1)
,

where e(k,k−1) := gcd(ek, ek−1).



484 Charles F. Doran and Matt Kerr

This procedure determines a vector �(k) ∈ Z
r+3 with

dk�
(k)
j = −�(k)0 Mkj =

〈

−�(k)0 C◦k , D
◦
j

〉

.

(In the smooth case, dk = −�(k)0 .) That is, the relations vectors �(i) are essen-
tially the rows of M with denominators cleared; write L for the new matrix.

The Mori cone can be represented by the R
≥0-span M⊂ R

r+3 of rows
of L; by our above assumption (on Mori), M is simplicial. However, the
integral structures may not be the same in the “singular case,” so M may
not be smooth. More concretely, write M := {R-span of �(i)} ⊂ R

r+3, with
integral lattice MZ = M ∩ Z

r+3, and MZ = M∩MZ. Then the affine toric
variety

UΔ := Spec {C[am |m ∈MZ]}

is just A
r in the smooth case but can be singular in the singular case.

Using the fact that M is simplicial, take the {�(ik)}rk=1 which cannot
be written as R

≥0-linear combinations of the other {�(j)}. (In the singular
case, if any �(i) are the same, we choose the one for which the “dual” di is
minimized.) Note that M is smooth iff Z

≥0
〈

{�(ik)}
〉

is all of MZ. Next, let

αik ∈ Q be such that J◦m :=
∑r+2

j=1 α
j
mD◦j satisfy

〈

C◦ik , J
◦
m

〉

Y ◦

⎛

⎝=
r+2
∑

j=1

αjm

∣

∣

∣

∣

∣

dik

�
(ik)
0

∣

∣

∣

∣

∣

�
(ik)
j

⎞

⎠ = δkm.

(That is, if we omit a couple of rows from L, the {αjm} give linear com-
binations of the columns that yield êm ∈ R

r.) These {J◦m} then generate
the Kähler cone. We have

∑

dikJ
◦
k ≡ −D◦0 since

∑

k dik

〈

C◦ij , J
◦
k

〉

= dij =

−
〈

C◦ij , D
◦
0

〉

.

Remark 5.4. The {αjm} are nonnegative, since the Kähler cone lies in the
effective divisor cone, see [23]. It follows that MZ ⊇ M ∩ (Z≥0)r+3.

Now we use this construction to identify the complex structure moduli we
will use, for the anticanonical hypersurface Xa given by the Zariski closure of

Fa(x) :=
r+2
∑

i=0

aix
ν(i)

= 0
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in PΔ. The coordinate patch in simplified polynomial moduli space Msimp

(cf. [23]) on which it is natural to work is just UΔ, with coordinates

tk := a�
(ik)

, k = 1, . . . , r.

In the singular case, to parametrize UΔ one really needs all r + 2 of the
a�

(i)
=: si together with their relations, but the functions we consider will

be defined in terms of the {tk}. Moreover, the inclusion of MZ into the
true Mori integral lattice (generated by the {C◦ik}) defines a smooth finite
cover A

r ∼= ŨΔ → UΔ with coordinates {t̃k} satisfying (t̃k)μk = tk, for μk :=
|�(ik)

0 |
dik

= eik
eik−1

e(ik,ik−1)
. This is where we really want to work.

5.3. Construction of the mirror map via regulator periods

The family Ya := {u2 + v2 + Fa(x) = 0} ⊂ (C∗)2 × C
2 treated (in greater

generality) above, with holomorphic form ηa, is considered to be the mirror
of KPΔ◦ . This is in part because its periods satisfy the relevant GKZ equa-
tions Dk(·) = 0.17 The Dk are essentially the push-forwards, under the map
(C∗)r+3 → (C∗)r given by a �→ t, of

D̃k =
∏

{j | �(ik)
j >0}

∂
|�(ik)

j |
aj −

∏

{j | �(ik)
j <0}

∂
|�(ik)

j |
aj .

In view of Proposition 5.1, we will work instead with regulator periods on
X∗a to construct the (inverse of the) mirror map. This will be a map from
complex structure parameters t̃ to complexified Kähler parameters

(5.3) ŨΔ ⊃ P̃ ����������������
{

Z
〈

{J◦k}
r
k=1

〉

⊂ H1,1(Y ◦,Q)
}

⊗Z (C/Z),

where P̃ → P → D∗ε(0)×r are small punctured polycylinders centered at 0
in ŨΔ → UΔ → A

r.
We will follow the method of Sections 4.1 and 4.2 for computing these

periods, taking ν := ν(j) and z1 := xe
−1
j ν(j,j+1)

(see beginning of Section 4.1).

17For a more thorough conceptual treatment of local mirror symmetry, the reader
is encouraged to consult [21,27,45].
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The local affine equation of X̃a is then given by

(fa(z) + a0)z1z2 = aj + aj+1z
ej

1 + φ2(z1, z2) + a0z1z2 = 0,

where φ2(z1, 0) = 0. Assuming 0 < |ai| & |a0| (∀i) [hence 0 < |tk| & 1 (∀k)],
consider the family of cycles

ϕ̂
(j)
0 := {|z1| = ε , |z2| ≤ ε} ∩ X̃a ⊂ X∗a .

This may be thought of as a vanishing cycle being pinched to the “point at
vertex ν(j)” as aj → 0.

As in Section 4.2 we set (working integrally)

ξa := {x1, x2} ≡ {(−1)σjz1, (−1)σj−1z2} ∈ CH2(X∗a , 2),

where σj :=
∣

∣

∣

ν
(j,j+1)
1 ν

(j,j+1)
2

e2j

∣

∣

∣ gives essentially the sign from Remark 3.5.
In CH3((C∗)2\X∗a , 3) we define

ξ̂a :=
{

a0 + fa(z), (−1)σjz1, (−1)σj−1z2
}

≡
{

(−1)σj+σj−1(aj + aj+1z
ej

1 +O(z2)), (−1)σjz1, (−1)σj−1z2
}

.

This has residue ξa along X̃a, so that

1
2πi

AJ(ξa)(ϕ̂
(j)
0 )(5.4)

=
1

(2πi)2
AJ(ξ̂a)(|z1| = |z2| = ε)− 1

2πi
AJ(Res1{z2=0}ξ̂a)(|z1| = ε)

=
∫

|z1|=|z2|=ε

log(a0 + fa(z))
d log(z1)

2πi
∧ d log(z2)

2πi

−
∫

|z1|=ε

log((−1)σj+σj−1(aj + aj+1z
ej

1 ))
d log(z1)

2πi

= log(a0)−
∑

k≥1

1
k

[
(

− 1
a0
fa(z)

)k
]

0

− log((−1)σj+σj−1aj)

= − log
(

(−1)σj+σj−1
aj
a0

)

−H(a).
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Here [·]0 takes the terms constant in z1, z2. Now in the smooth case (essen-
tially following pp. 160–161 [23])

H(a) =
∑

m≥1

1
m

∑

�1,...,�r+2

(
∑

�j)!
∏

(�j !)
·

∏

a�i

i

(−ai)
∑

�i

=
∑

m≥1

1
m

∑

n1,...,nr

(
∑

nk|�(ik)
0 |)!

∏

j(
∑

nk�
(ik)
j )!

·
∏

k

((−1)�
(ik)
0 tk)nk .

The first big
∑

is over nonnegative integers {�j} satisfying
∑

�j = m,
∑

�jν
(j) = 0; the second is over integers {nk} with

∑

nk�
(ik) ∈ Z× (Z≥0)r+2

and
∑

nk|�(ik)
0 | = m. By Remark 5.4 we can take these nk ≥ 0, and so H is

holomorphic (and well-defined) in a neighborhood of 0 in UΔ. In the singu-
lar case, we replace

∑

n1,...,nr
by a sum over M ∩ (Z≥0)r+3 (which involves

nonredundant choices of {ni}r+2
i=1 ) and use all the �(i) and si (not just the �(ik)

and tk). The resulting H is defined on UΔ and pulls back to a holomorphic
function on ŨΔ. Henceforth it will be written H(s).

Clearly the “log”-term of (5.4) makes no sense on UΔ or even ŨΔ; this
reflects the fact that ξa is not invariant under the action of the torus (C∗)2.
But the periods of R{x1, x2} over cycles in

K(X∗a) := ker{H1(X∗a ,Z) → H1((C∗)2,Z)}

are torus-invariant, and r distinguished vanishing cycles inK(X∗a) are given by

ϕ
[k]
0 := −

r+2
∑

j=1

�
(ik)
j ϕ̂

(j)
0 k = 1, . . . , r .

The map H1(X∗a) �� H1(X̃a) induced by inclusion sends ϕ[k]
0 to �(ik)

0 times
a primitive vanishing cycle ϕ̃0. If ϕ1 ∈ K(X∗a) is a lift of a complimentary
generator −ϕ̃1, then AJ(ξa)(ϕ1) and the AJ(ξa)(ϕ

[k]
0 ) form a Q-basis for

the periods (modulo Q(2)) of AJ(ξa) = [R{x, y}] over cycles in K(X∗a). One
should view the ϕ[k]

0 as differing by loops around points of D ⊂ X̃a, hence
the AJ(ξa)(ϕ

[k]
0 ) as differing by residues.
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Now we slightly change our notation to bring it in line with [45]. Write
(multivalued) functions of t

w̃(0) := (2πi)3 =
∫

T̂3
Y

ηa ,

w̃
(1)
k := 2πiAJ(ξa)(ϕ

[k]
0 ) =

∫

M(ϕ
[k]
0 )
ηa ,

w̃(2) := 2πiAJ(ξa)(ϕ1) =
∫

M(ϕ1)
ηa,

and normalize these by setting w(·)
· := w̃

(·)
· /w̃(0).

Theorem 5.1. The w(1)
k are well-defined C/Z-valued functions on P, given

by 1
2πi times

log ((−1)εktk) + |�(ik)
0 |H(s),

where εk :=
∑r+2

j=1(σj + σj−1)�
(ik)
j .

Definition 5.1. The (inverse) mirror map (5.3) is given by

(t̃1, . . . , t̃r) �−→
r
∑

k=1

J◦k ⊗W
(1)
k (t̃),

where W (1)
k (t̃) := 1

μk
w

(1)
k (s(t̃)).

Remark 5.5. (i) Hosono [45] considers the (conjectural!) map

mir : Kc(Y ◦) → H3(Y,Z)

arising from Kontsevich’s homological mirror symmetry conjecture, and pro-
poses that one should have T̂

3
Y = mir(Opt), 1

μk
M(ϕ[k]

0 ) = mir(OC◦
ik

(−J◦k )),
M(ϕ1) = mir(OD0).

(ii) Set δT :=
∑r

j=1 |�
(ij)
0 |δtj . The W (1)

k are logarithmic integrals of periods of

ωa := Res
(

dx1
x1
∧ dx2

x2
Fa(x1,x2)

)

in the (limited) sense that

δTW
(1)
k =

dik
(2πi)2

∫

ϕ̃0

ωa

for each k. We also write (after [21]) ∂S :=
∑r

k=1 dik∂W (1)
k

.
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5.4. Growth of local Gromov–Witten invariants

Define (on P̃) the Gromov–Witten prepotential

Floc(W (1)) :=
1
2

∑

j,�

〈

J◦j |PΔ◦ , J
◦
�

〉

W
(1)
j W

(1)
� +

{

lower-order
terms

}

(W (1))

−
∑

k1,...,kr

⎛

⎝

r
∑

j=1

dijkj

⎞

⎠Nk1,...,kr
Qk1

1 · · ·Qkr
r ,

where Qj := exp(2πiW (1)
j ) and Nk is the genus zero (local) G–W invari-

ant “counting rational curves in [the total space of] KPΔ◦” of homology class
∑

kj [C◦ij ] ∈ H2(Y ◦,Z). (See [56, Section 6.1] for a precise definition.) Chiang
et al. [21] originally obtained (essentially) this expression by writing a com-
pact CY three-fold X (with prepotential F) as a torically described elliptic
fibration over PΔ◦ , and taking the limit of [a suitable partial of] F under
degeneration of the fiber. Morally, the resulting (local) Nk were supposed to
measure the contribution of the zero-section PΔ◦ to G–W invariants of X.

Here then is the fundamental local mirror symmetry prediction:

Conjecture 5.1 [21,45]. For a suitable choice of ϕ1,

(5.5) Floc(W (1)) = w(2)(t̃)

under the mirror map.

To summarize: the first regulator period yields the mirror map; the sec-
ond gives the prepotential.

We will now pull (5.5) back to a “diagonal slice” of P̃ where residual
differences between the w(1)

k vanish. Write

(5.6) φ :=
r+2
∑

j=1

αjx
ν(j)

, Fφ,t(x) := 1− tφ(x);

this gives a0 = 1, aj = tαj ,

tk = (−1)�
(ik)
0

⎛

⎝

r+2
∏

j=1

α
�
(ik)
j

j

⎞

⎠ t|�
(ik)
0 |.
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If we further set

(5.7) αj := (−1)σj+σj−1+1,

then tk(t) = (−1)εkt|�
(ik)
0 |, and the “slice” is given by t̃k(t) := ζkt

dik (ζk =
some root of unity with μkth power (−1)εk ; the choice will not affect calcu-
lations). The pullback of W (1)

k (t̃) under t �→ t̃(t) is then simply

W
(1)
k (t) =

dik
2πi

{log t + H(t)} =: dikw
(1)(t),

where H(t) (:= H(s(t))) can frequently be easier to determine than H(s).
So the map of families {Fφ,t(x) = 0} → {Fa(x) = 0}/(C∗)3 induces a

“diagonal” embedding D : w(1) �→ (di1w(1), . . . , dirw
(1)) of Kähler moduli.

Clearly D∗ ◦ ∂S = ∂w(1) ◦D∗, and by (5.5)

D∗Floc(W (1)) = w(2)(t(w(1))),

it follows that

(5.8) D∗∂2
SFloc(W (1)) =

(

d

dw(1)

)2

w(2)(t(w(1))).

For the l.h.s. of (5.8),

∂2
SFloc =

∑

j,�

dijdi�
〈

J◦j |PΔ◦ , J
◦
�

〉

Y ◦

− (2πi)2
∑

k1,...,kr

⎛

⎝

r
∑

j=1

dijkj

⎞

⎠

3

Nk1,...,kr
Qk1

1 · · ·Qkr
r

= 〈−KPΔ◦ ,−KPΔ◦ 〉PΔ◦ − (2πi)2
∑

D≥1

D3
∑

{k | ∑ dij
kj=D}

NkQ
k.

Thinking of k as the homology class
∑

kj [C◦ij ] ∈ H2(Y ◦) = H2(PΔ◦), we have
〈k,X◦〉PΔ◦ =

∑

kjdij ; hence applying D∗ yields

r+2
∑

i=1

di − (2πi)2
∑

D≥1

D3

⎛

⎝

∑

{k | 〈k,X◦〉=D}
Nk

⎞

⎠QD,

where Q = exp(2πiw(1)). Note that the constant term just records the num-
ber of components N0 of the singular fiber of the diagonal family at t = 0
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(after a minimal desingularization of the total space). We also rechristen the
sum in parentheses N 〈X

◦〉
D . It would be very interesting to have an interpre-

tation of these numbers in terms of X◦ alone, since the mirror map is defined
only in terms of X (not Y ). To venture out on a limb, can one suitably define
a class in K2 of (the nerve of) the Fukaya category (of X◦), which completes
X◦ to a datum “mirror” to the family {Xt} together with {ξt ∈ K2(Xt)}?
Is there then a “regulator” of this class which pairs with OD0 |X◦ (recall
M(ϕ1)’s conjectural mirror is OD0) to yield the prepotential Floc?

For the r.h.s. of (5.8), write π(1) and π(2) for the periods
(2πi)2 of ωt := ResXφ,t

(∧

d log x
Fφ,t

)

; then δtw(�)(t) = π(�)(t) (� = 1, 2). So we have

d

dw(1)
w(2) =

δtw
(2)

δtw(1)
=
π(2)

π(1)
,

and applying one more d
dw(1) yields

δt

(

π(2)

π(1)

)

δtw(1)
=
π(1)δtπ

(2) − π(2)δtπ
(1)

(π(1))3
.

Writing this in terms of functions from Sections 4.1, 4.3 for the diagonal
family X̃φ,t (and dividing l.h.s. and r.h.s. by (2πi)2), we have the following
equality of a G–W generating function and Yukawa coupling:

(5.9)
N0

(2πi)2
−
∑

D≥1

D3N
〈X◦〉
D QD =

Y(t)
(A(t))3

under the mirror map. The latter is just the local analytic isomorphism
t �→ Q(t) [Q(0) = 0], extending at least to D|t0|. (Recall X̃φ,t0 is the sin-
gular fiber nearest t = 0 in the punctured diagonal family.) The r.h.s. of
(5.9) blows up at t0 since Y(t) ∼ 1

t−t0 and A(t) ∼ log(t− t0) (up to con-
stants) for t → t0. Hence the l.h.s. series has radius of convergence |Q(t0)| =
exp{'(2πiw(1)(t0))} = exp{ 1

2π�(Ψ(t0))} where Ψ(t) = (2πi)2w(1)(t). If
there is more than one t0 of minimal modulus, one should of course pick
the one that minimizes |Q(t0)|; but in every case we have tested, symmetry
ensures that this is independent of the choice.

Theorem 5.2. Let Δ be a reflexive polytope ⊆ R
2 such that the Mori cone

of Y ◦ := KPΔ◦ is smooth, determine φ(x) by (5.6), (5.7), and let Ψ(t) and
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|t0| be as in Corollary 4.3. Assume Conjecture 5.1. Then the local Gromov–
Witten invariants of Y ◦ have exponential growth-rate

(5.10) lim sup
D→∞

|N 〈X
◦〉

D | 1
D = e

−1
2π
�(Ψ(t0)).

Remark 5.6. (i) In Section 6 we will describe a procedure for computing
the “regulator period” Ψ(t0) on a singular elliptic fiber of Kodaira type
In. This identifies with the image of an indecomposable K3 class under the
composition

K ind
3 (Q̄) ∼= H2

M,hom(X̃t0/Q̄ , Q(2))
AJ2,2

� H1(X̃t0 ,C/Q(2)) ∼= C/Q(2),

which (after taking the imaginary part) coincides (up to a factor of 2) with
the Borel regulator. This explains the occurrence of Dirichlet L-functions in
results of [59] related to (5.10). (We will be more precise about the field of
definition in Section 6.)

(ii) Equation (5.9) gives, for t = 0, the correct value Y(0) = 2πiN0.

Finally, we want to explain how “reasonable” assumptions on the {N 〈X
◦〉

D }
lead to a more precise characterization of their growth. (The argument is
similar to that in [20] but more rigorous.) Let d := gcd{di | i = 1, . . . , r + 2},
put Ψ̃(t) = d · {Ψ(t)−'(Ψ(t0))}, and define “normalized” quantities

ÑD := −d3N
〈X◦〉
d·D e−i d·D

2π
�(Ψ(t0)), Q̃ := exp

{

−i
2π

Ψ̃(t)
}

.

Reindexing, (5.9) becomes

− N0

4π2
+
∑

D≥1

D3ÑDQ̃
D =

Y(t)
A3(t)

,

and we assume

(a) the ÑD are uniformly positive (or negative) for sufficiently large D.
Next define nD (> 0) by

ÑD = ±e
−D

2πi
Ψ̃(t0)D−3nD,

and assume that

(b) limD→∞ nD log2D exists (in the extended reals R
≥0 ∪ {∞}), i.e., that

the ÑD “do not oscillate too much” in the limit.
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Now asymptotically as t→ t0 (keeping t− t0 ∈ R and |t| < |t0|),
π(1) ∼ −mπ(2)(t0)

log |t−t0|
2πi (where m ∈ Z

+ is essentially the number of
components of Xt0); logarithmically integrating this, we have
x := 1

2πi(Ψ̃(t0 )− Ψ̃(t)) = d
2πi(Ψ(t0 )−Ψ(t)) ∼ d ·m · π(2)(t0)

(

t
t0
− 1

)

log |t− t0|. This implies the r.h.s. of

(c) ±
∑

D≥1 nDe−Dx = Y(t)
A3(t) + N0

4π2 is asymptotic to d
mx log2(t−t0) ∼

d
mx log2 x

,
where we can replace t→ t0 by x→ 0+.

We need a result from Laplace Tauberian theory.

Lemma 5.4. Given a sequence {nk} of real numbers satisfying

(a′) nk positive (or at least nk ≥ − C
log2 k

for some C > 0),

(b′) limn→∞ nk log2 k exists (finite or infinite),

(c′)
∑∞

k=0 nke
−kx ∼ 1

x log2 x
as x→ 0+.

(Here (a′) is the “Tauberian” hypothesis.) Then nk ∼ 1
log2 k

as k →∞.
That is, nk log2 k → 1.

Proof. For mk :=

⎧

⎪
⎨

⎪
⎩

1, k = 0
0, k = 1

1
log2 k

, k ≥ 2
, it is an exercise in elementary analysis

to prove
∑∞

k=0mke−kx ∼ 1
x log2 x

(x→ 0+), e.g., in the form limy→∞
∑∞

k=2

1
y

(

log2 y
log2 k

− 1
)

e−
k

y = 0. Now let N(k), M(k) be the respective kth partial
sums of nk, mk, viewed as functions on R

≥0. Hypothesis (c′) obviously
implies

∫∞
0 e−kxdN(k) ∼

∫∞
0 e−kxdM(k) (for x→ 0+) and then (using (a′))

[31] gives N(k) ∼M(k) for k →∞. Hypothesis (b′) says limk→∞ nk

mk
exists

(finite or +∞), in which case it must equal limk→∞
N(k)
M(k) , which is 1. �

In our situation this yields nD ∼ d
m log2D

, hence the following result:

Corollary 5.3. Under assumptions (a) and (b) above (and the conditions
of Theorem 5.2), the “normalized” G–W invariants have asymptotic
behavior

ÑD ∼ ± d

m

exp
{

−D·Ψ̃(t0)
2πi

}

D3 log2D

for D →∞.
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Remark. It seems likely that one could use a Fourier Tauberian argument
to eliminate the assumptions.

6. First examples: limits of regulator periods

A well-traveled road in dealing with computations for one-parameter families
of varieties is to attempt to recognize “modularity” in some suitable sense.
For example, this approach was employed in [32,33] to describe mirror maps
and Picard–Fuchs equations for families of CYs. Here (in Section 10) we
use it, for the families (and higher cycles) produced by Theorem 3.1, to
compute the cycle class, higher normal function, and regulator periods —
especially their limiting values at cusps. The central purpose of this section,
in contrast, is to illustrate a procedure inspired by Bloch [12] for computing
these “special values” of Ψ(t) (at singular fibers), that does not rely on
modularity. This leads to a formula (Proposition 6.3) for essentially the
Ψ̃(t0) of Theorem 5.2/Corollary 5.3, which we apply to some key examples
in Section 6.3. Throughout this section X̃− is as in Theorem 3.1 (so that Ξ
and Ψ have the established meaning).

6.1. AJ map for singular fibers

Fixing α ∈ L∗, write X̃α =: Y = ∪Yi with Yi irreducible, ϕ̃α =
∑

ϕi for ϕi ∈
Ctop
n−1(Yi); we do not require that π̃−1(α) =

∑

miYi to be reduced, here or
in the Y = NCD case. Assume further that Ξ ∈ Zn

∂B−cl.
(X̃−, n)Y so that the

Ξi := Ξ · Y are defined. Our first goal is to verify the claim from Section 4.2
(cf. the discussion leading up to Corollary 4.3) that

(6.1) AJ(Ξα)(ϕ̃α) =
∫

ϕ̃α

RΞ =
∑

i

∫

ϕi

RΞi
,

to this end we review briefly the computation of AJ(Ξα) from Section 8
of [49]. The (somewhat technical) general conditions under which it (hence
(6.1)) is valid are described in [49] following Proposition 8.17, and allow for
all singular curves, as well as any local-normal-crossing or nodal singularities.

Here we shall focus on the case Y = NCD, writing YI := ∩i∈IYi, Y [j] :=
�|I|=j+1YI , and Y I for the collection {YJ ∩ YI}J∩I=∅ of subsets of YI . This



Algebraic K-theory of toric hypersurfaces 495

“hyper-resolution” of Y gives rise to fourth quadrant double complexes

Z�,mY (n) := Zn(Y [�],−m)#
:= ⊕|I|=�+1Z

n
R(YI ,−m)

Y I ,

∂B : Z�,mY (n) → Z�,m+1
Y (n),

I : Z�,mY (n) → Z�+1,m
Y (n),

∣

∣

∣

∣

∣

∣

∣

∣

∣

CY�,m(n) := Ctop
2n+m−1(Y

[�]; Q),
(piecewise C∞ chains)

∂top : CY�,m(n) → CY�,m−1(n),
Gy : CY�,m(n) → CY�−1,m(n),

where I (resp. Gy) is the alternating sum (cf. [49] for signs) of pullbacks
(resp. pushforwards). These have associated simple complexes/total differ-
entials/(co)homology

Z•Y (n) := s•Z•,•Y (n),
∂B := ∂B ± I,

H∗(Z•Y (n)) ∼= H2n+∗
M (Y,Q(n)),

∣

∣

∣

∣

∣

∣

CY• (n) := s•CY•,•(n),
∂top := ∂top ±Gy,

H∗(CY• (n)) ∼= H2n+∗−1(Y ).

The KLM currents (Z �→ TZ,ΩZ, RZ) give a map of complexes (described
in full in [49]) inducing an Abel–Jacobi map from H2n+∗

M (Y,Q(n)) to

H2n+∗
D (Y,Q(n))

∗<0∼= Ext1
MHS

(Q(0), H2n+∗−1(Y,Q(n)))
∗≤−n∼= H2n+∗−1(Y,C/Q(n)).

For ∗ = −n in particular, this is

(6.2) AJn,nY : Hn
M(Y,Q(n)) → Hom(Hn−1(Y,Q),C/Q(n)).

To compute this for dim(Y ) = n− 1, let

Z =
∑

�

{Z[�] ∈ ZnR(Y [�], n+ �)} ∈ {ker(∂B) ⊂ Z−nY (n)},(6.3)

γ =
∑

�

{γ[�] ∈ Ctop
n−�−1(Y

[�]; Q)} ∈ {ker(∂top) ⊂ CY−n(n)},

with each γ[�] (resp. Z[�]) decomposing into {γI}|I|=�+1 (resp. {ZI}|I|=�+1).
Then

(6.4) AJn,nY (Z)(γ) ≡
∑

�≥0

∫

γ[�]

RZ[�] =
∑

�≥0

∑

|I|=�+1

∫

γI

RZI

gives a well-defined pairing H−n(Z•Y (n))×H−n(CY• (n)) → C/Q(n). Now
consider the map

I∗Y : Zn
R,∂B−cl.

(X̃−, n)Y → {ker(∂B) ⊂ Z−nY (n)}
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given by restricting to the irreducible components of Y . That is, if Z = I∗Y Ξ
then Z[0] is the collection {ι∗Yi

Ξ} while Z[�] = 0 for � > 0. Let γ be the ∂top-

cycle corresponding to ϕ̃α: i.e., γ[0] = {ϕi}, while the γ[�](!= 0) comprise
iterated boundaries of the ϕi. Then

AJ(Ξα)(ϕ̃α) = AJ(Z)(γ)
(6.4)
=

∑

i

∫

ϕi

Rι∗Yi
Ξ=Ξi

confirms (6.1).
Continuing to assume Y a (connected) NCD of dimension n− 1, we want

to say something about the value of (6.1) in C/Q(n). Place the “weight”
filtration

WβH
2n+∗
M (Y,Q(n)) := im{H∗(s•Z(•≥−n−β),•

Y (n)) → H∗(Z•Y (n))}

on motivic cohomology, and note thatW−2n+1H
n
M(Y,Q(n)) consists of those

classes representable by ∂B-cocycles supported on points pI := YI , |I| = n.
(For simplicity we assume these are each one point.) This is compatible with
the weight filtration on the generalized Jacobians in the sense that AJn,rY is
“filtered” by maps

W•H2n−r
M (Y,Q(n))

W•AJ
n,r
Y� Ext1

MHS
(Q(0),W•−1H

2n−r−1(Y,Q(n))).

In particular the target of W−2n+1AJ
n,n
Y is Ext1

MHS
(Q(0),Q(n)⊕bY ) ∼=

(C/Q(n))⊕bY , where bY := rk{coker(H0(Y [n−2]) → H0(Y [n−1]))}. For Y =
X̃α a degenerate CY, bY = 0 or 1: bY = 1 implies maximal quasi-unipotent
monodromy about α; and in the unipotent case, maximal monodromy =⇒
bY = 1.

We need to be more precise about the field of definition: recall that X̃− is
defined over a number field K; it may be that α /∈ K, and that to “separate
components” of Y requires an algebraic field extension larger than K(α).

Definition 6.1. L/K(α) is a splitting field for the NCD Y iff all the com-
ponents YI of the hyper-resolution are defined over L. Furthermore, Y is
simple iff all YI are rational.

With such a choice of L, and assuming bY = 1, we have

(6.5) W−2n+1H
n
M(Y/L,Q(n)) ∼= CHn(Spec(L), 2n− 1) ∼= Kalg

2n−1(L)⊗Q.
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Let γ,Z be as in (6.3) with γ[n−1] = {qI [pI ]}|I|=n (qI ∈ Q) and [Z] ∈ (6.5).
Then Z ≡ {WI}|I|=n modulo ∂B-coboundary, and

(6.6) AJn,nY (Z)(γ) = AJ2n−1,n
Spec(L)

(∑

±qIWI

)

∈ C/Q(n),

where in light of (6.5) AJ2n−1,n
Spec(L) should be thought of essentially as the Borel

regulator. The key result, which the computations below will reflect (but not
use), is

Proposition 6.1. Let n = 2 or 3, Y = X̃α be a simple NCD with abelian
splitting field extension L/Q, and if n = 3 assume L totally real. Then
Hn
M(Y/L,Q(n)) = W−2n+1H

n
M(Y/L,Q(n)), and Ψ(α) is a sum of Dirich-

let L-series L(χ, n) with algebraic coefficients.

Remark. For L nonabelian one might hope to relate the collection of values
of Ψ at (some) points of L∗ to Artin L-series corresponding to a represen-
tation of Gal(L/Q).

Proof. In order to “move” an arbitrary ∂B-cocycle (in Z−nY (n)) into
Zn−1,−2n+1
Y (n), we need only know that (for n = 2) CH2(Yi, 2) = {0} (∀i)

and (for n = 3) CH3(Yi, 3) and CH3(Yij , 4) are 0 (∀i, j). This follows from
vanishing of CHp(P1

L, n) ∼=n.c. CH
p(L, n)⊕ CHp−1(L, n) and (for

S := Bl{p1,...,pN}(P
2))

CHp(SL, n) ∼= CHp(L, n)⊕ CHp−1(L, n)⊕(N+1) ⊕ CHp−2(L, n).

Now since Ξ is (like X ) defined over K, its pullback to (the components of)
Y is defined over L. The last statement (of the proposition) then follows from
Beilinson’s fundamental result [7, 62] on higher regulators of a cyclotomic
field (⊃ L), together with (6.5) and (6.6). �

For actually computing (6.1) we shall take a different approach, for which
one may drop the assumption that Y is a NCD. Using the fact that Ξ and ξ
differ by a ∂B-coboundary on X̃ ∗−,

∫

ϕ̃t
RΞ ≡

∫

ϕ̃t
Rξ (mod Q(n)) provided ϕ̃t

does not meet D̃. For t = α this yields

(6.7) Ψ(α)
Q(n)
≡

∑

i

∫

ϕi

R{x1|Yi
, . . . , xn|Yi

}.
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In the event that (t =)α = t0 (at the boundary of convergence of (4.5)),
using Corollary 4.3 gives

(6.8) log(t0) +
∑

k≥1

[φk]0
k

tk
Q(1)
≡ 1

(2πi)n−1

∑

i

∫

ϕi

R{x}|Yi
,

in particular, if t0 ∈ R
+ and K ⊂ R then the l.h.s. = '(r.h.s.).

These formulas are of greatest practical use — i.e., the r.h.s. of (6.7) and
(6.8) is directly computable — when the {YI} are rational (and explicitly
parametrized). This is automatic for n = 2, but unfortunately (at least for
(6.8)) doesn’t tend to occur at t0 for n = 3 — in all the examples we have
analyzed (see e.g., Sections 6.4 and 10.5), the K3 acquires a node there.

We conclude with a general result which best captures the sense in which
“singular” AJX̃α

(Ξα) is a limit of “smooth” {AJX̃t
(Ξt)}. Let X π→ S be a

proper, dominant morphism of smooth varieties with dim(S) = 1 and unique
singular fiberX0; since S is not required to be complete, this can be arranged
by omitting other singular fibers. Assume X0 is a reduced NCD so that the
local degeneration (over a disk with coordinate s)

X ∗Δ � � ��

f

��

XΔ

f̄

��

X0
� 	

ιX0��

��

∪Yi

Δ∗ � � j �� Δ {0}� 	��

is semistable; and let Ξ∗ ∈ CHp(X\X0, r). Define the local system HQ :=
R2p−r−1f∗Q(p), cohomology sheavesH := R2p−r−1f∗C⊗OΔ∗ with holomor-
phic Hodge subsheaves Fm, and Jacobian sheaf (via the s.e.s.)

(6.9) HQ ↪→ H
Fp

� J p,r.

Then Ξ∗ gives rise to the higher normal function

νΞ∗(s) := AJXs
(Ξs) ∈ Γ(Δ∗,J p,r),

where Ξs := ι∗Xs
(Ξ∗). Writing T ∈ Aut(HQ) for the (unipotent) monodromy

operator (with N := log T ), consider the Clemens–Schmid exact sequence of
MHS

· · · → H2p−r−1(X0)
ρ→ H2p−r−1

lim (Xs)
N→ H2p−r−1

lim (Xs)(−1) → · · ·
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and the canonically extended sheaves He, Fp
e , and

(6.10) j∗HQ ↪→ He

Fp
e

� J p,r
e

over Δ. Set

Jp,rlim(Xs) :=
He,0

(j∗HQ)0 + Fp
e,0

∼= Ext1
MHS

(Q(0), H2p−r−1
lim (Xs,Q(p)))

and Jp,r(X0) := Ext1
MHS

(Q(0), H2p−r−1(X0,Q(p))), where (j∗HQ)0 is the
stalk of the local system at 0 (i.e., invariant cycles), while He,0 and Fp

e,0

are the fibers (over 0) of the corresponding holomorphic vector bundles.
Then ρ induces

J(ρ) : Jp,r(X0) → Jp,rlim(Xs).

Note that any section ν ∈ Γ(Δ,J p,r
e ) has a well-defined “value” ν(0) ∈

Jp,rlim(Xs).

Proposition 6.2. Suppose ResX0(Ξ
∗) ∈ CHp−1(X0, r − 1) (∼= H2p−r+1

M,X0

(X ,Q(p))) is zero. Then νΞ∗ lifts uniquely to a section ν ∈ Γ(Δ,J p,r
e ), and

we define lims→0 νΞ∗(s) := ν(0) ∈ Jp,rlim(Xs). Furthermore, if Ξ ∈ CHp(X , r)
restricts to Ξ∗ then

lim
s→0

νΞ∗(s) = J(ρ)(AJX0(ι
∗
X0

Ξ)).

Proof (Sketch) The existence of Ξ follows from Bloch’s moving lemma [11],
and we can put it into good position relative to X0. Since

ι∗X0
(cl(Ξ)) ∈ HomMHS(Q(0), H2p−r(X0,Q(p))) = {0},

and X0 is a deformation retract of XΔ, the restriction of cl(Ξ) = [ΩΞ] =
(2πi)p[TΞ] to XΔ (hence to X ∗Δ) is trivial.18 So the image of νΞ∗ inH1(Δ∗,HQ)
vanishes, and its lift to Γ(Δ∗, HFp ) is actually computed by fiberwise integra-
tion of the completed regulator current R′′(Ξ|XΔ ) := RΞ|XΔ − d−1(ΩΞ|XΔ) +

(2πi)pδ∂−1(TΞ|XΔ ) against sections of f̄∗Fn−pA
2(n−p)+r−1
X/S (logX0)(n = dimX ).

As s→ 0 these integrals do not blow up, so the lift extends to ν̃ ∈ γ(Δ, He

Fp
e
);

this has image ν ∈ Γ(Δ,J p,r
e ). (In fact, at s = 0 they compute AJX0(ι

∗
X0

Ξ)
by generalizing the argument used to prove (6.1) above.) The uniqueness
of ν is a simple argument using the long-exact cohomology sequences of
(6.9), (6.10). �

18After this step, remaining details are similar to those in [40, Section 3].



500 Charles F. Doran and Matt Kerr

6.2. Formula for AJ on a Néron N-gon

Returning to the setting of Theorem 3.1, we will now compute the r.h.s. of
(6.7) for Kodaira type IN degenerations of elliptic curves. Specialize to the
case n = 2, X̃α = Y = ∪Ni=1Yi with each Yi ∼= P

1, Yi0i1 nonempty iff i0 − i1 ≡
±1 mod N , and Y [2] ∩ D̃ = ∅. Let zi : Yi

∼=→ P
1 be such that zi(Yi,i−1) = ∞,

zi(Yi,i+1) = 0, and ϕ̃α = εα ·
∑N

i=1 Tzi
(for some ε ∈ Z). Then restrictions of

toric coordinates x1|Yi
, x2|Yi

will be written

fi(zi) = Ai
∏

j

(

1− αij
zi

)dij

, gi(zi) = Bi
∏

k

(

1− zi
βik

)eik

(with no αij or βik 0 or ∞); note that
∑

j dij =
∑

k eik = 0 (∀i) and

(fi(0), gi(0)) =

(

Ai
∏

i

α
dij

ij , Bi

)

, (fi(∞), gi(∞)) =

(

Ai, Bi
∏

k

β−eik

ik

)

.

Since Y is a singular fiber in a family of elliptic curves produced via a
tempered Laurent polynomial, Tameξ{fi, gi} is torsion for every ξ ∈ |(fi)| ∪
|(gi)|. We do not require that |(fi)| ∩ |(gi)| = ∅, so for sums over both j and
k the notation

∑′
j,k means to omit terms for which αij = βik. In particular,

we set

Nfi,gi
:=

∑

j,k

′
dijeik

[

αij
βik

]

∈ Z[P1\{0,∞}]

and Nα :=
∑

iNfi,gi
. Another important notational point is that log z is

regarded as a 0-current with branch cut along Tz, so that
(

with d log z := dz
z

)

δTz
= 1

2πi(d log z − d[log z]); also d
[

d log z
2πi

]

= δ{0} − δ{∞}.While this approach
“keeps track of branches of log,” a nasty side effect is that log a− log b !=
log a

b ; although the discrepancy lies in Z(1) this becomes significant when
multiplied by another function.

Now recalling that

R{f, g} := log fd log g − 2πi(log g)δTf
,

one easily checks that (in D1(Yi\|(fi)| ∪ |(gi)|))

R{fi, gi} ≡
∑

j,k

′
dijeikR

{

1− αij
zi
, 1− zi

βik

}

+R{fi, Bi}+R{Ai, gi},
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where the equivalence is generated by d{0-currents which are 0 at z = 0,∞}
and δ{Z(2)[ 1

2
]−chains}. This gives the r.h.s. of (6.7) (for now omitting εα)

∑

i,j,k

′
dijeik

∫

Tzi

R

{

1− αij
zi
, 1− zi

βik

}

− 2πi
∑

i

logBi
∫

Tzi

δTfi

+
∑

i

logAi
∫

Tzi

d log gi.

Rewriting
∫

Tzi

(·) as 1
2πi

∫

P1

(

dzi

zi
− d[log zi]

)

∧ (·) = −1
2πi

∫

P1(·) ∧ dzi

zi
+

1
2πi

∫

P1(log zi)d(·) yields

′
∑

i,j,k

dijeik

⎛

⎝

∫

T
1− αij

zi

log
(

1− zi
βik

)

dzi
zi

+
∫

P1

log zi
2πi

d

[

R

{

1− αij
zi
, 1− zi

βik

}]

⎞

⎠

(6.11)

+
1

2πi

∑

i

logBi
∫

P1

{

(log fi)d
[

dzi
zi

]

− (log zi)d
[

dfi
fi

]}

+
1

2πi

∑

i

logAi
∫

P1

(log zi)d
[

dgi
gi

]

.

The directed line segments (for distinct a, b ∈ C
∗)

T1− a

z
= ei arg a[0, |a|], T1− z

b
= ei arg b[−∞, |b|]

in P
1 do not intersect unless arg a ≡ arg b (mod 2πZ) and |b| < |a|, in which

case a global perturbation as in Section 9 of [47] may be deployed to kill the
intersection. Since in general

d[R{f, g}] = 2πi(log f |(g) − log g|(f))− (2πi)2δTf ·Tg
,

(6.11) becomes (Ψ(α)
Q(2)
≡ )

−
′
∑

i,j,k

dijeik

{

Li2

(

αij
βik

)

+ (logαij − log βik) log
(

1− αij
βik

)}

(6.12)

+
∑

i

log gi(0)(log fi(0)− log fi(∞))

−
∑

i

logBi
∑

j

dj logαij +
∑

i

logAi
∑

k

eik log βik.



502 Charles F. Doran and Matt Kerr

This is the best we can do without further information.
Next, suppose that we know Ψ(α) is pure imaginary (up to Q(2)), or

just want its imaginary part. Taking �{(6.12)} gives

−
′
∑

i,j,k

dijeik

{

�Li2
(

αij
βik

)

+ log
∣

∣

∣

∣

αij
βik

∣

∣

∣

∣
arg

(

1− αij
βik

)}

(6.13)

+
∑

i

log |gi(0)|(arg fi(0)− arg fi(∞)) +
∑

i

arg(gi(0)) log
∣

∣

∣

∣

fi(0)
fi(∞)

∣

∣

∣

∣

−
∑

i

arg(gi(0)) log
∣

∣

∣

∣

fi(0)
fi(∞)

∣

∣

∣

∣
+
∑

i

arg(fi(∞)) log
∣

∣

∣

∣

gi(0)
gi(∞)

∣

∣

∣

∣

−
∑

i

log |Bi|
∑

j

dij argαij +
∑

i

log |Ai|
∑

k

eik arg βik

−
∑

i

∑

j

dij argαij log

∣

∣

∣

∣

∣

′
∏

k

(

1− αij
βik

)eik

∣

∣

∣

∣

∣

+
∑

i

∑

k

eik arg βik log

∣

∣

∣

∣

∣

∣

′
∏

j

(

1− αij
βik

)dij

∣

∣

∣

∣

∣

∣

,

where the
∏′
k,
∏′
j mean to omit terms which are 0. The last four terms of

(6.13) may be rearranged to give

∑

i

∑

ξ∈C∗

arg(ξ) log

∣

∣

∣

∣

∣

∣

∣

∣

∣

{

Ai
∏′
j

(

1− αij

ξ

)dij

}νξ(gi)

{

Bi
∏′
k

(

1− ξ
βik

)eik
}νξ(fi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

i

∑

ξ∈C∗

arg(ξ) log |Tameξ{fi, gi}| = 0.

The second and third rows of (6.13), after obvious cancelations, yield
the collapsing sum

∑

i

{log |gi(0)| arg fi(0)− log |gi(∞)| arg fi(∞)} = 0.
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This leaves us with the first row, which is just

−
′
∑

i,j,k

dijeikD2

(

αij
βik

)

=: −D2(Nα),

where D2(z) := �(Li2(z)) + log |z| arg(1− z) is the (real, single-valued)
Bloch–Wigner function. Summarizing this discussion and combining with
(6.8) gives immediately

Proposition 6.3. For a family of elliptic curves as in Theorem 3.1 (n = 2),

with X̃α a Néron N -gon (including cases N = 1, 2), Ψ(α)
Q(2)
≡ εα · (6.12) with

�(Ψ(α)) = −εαD2(Nα). In particular if α = t0, and K(t0) ⊂ R, we have

(6.14) log
∣

∣

∣

∣

1
t0

∣

∣

∣

∣
−
∑

k≥1

[φk]0
k

tk0 =
εα
2π
D2(Nt0),

plus or minus πi if t0 < 0.

If the family X̃− or a t �→ tκ quotient thereof has just three singular
fibers, then the l.h.s. of (6.12) is a special value of a “hypergeometric inte-
gral” or Meijer G-function, and such identities seem to go back essentially to
Ramanujan. In addition, the Meijer G-functions studied in [59] for the E6,
E7, E8 cases below are nothing but 1

2πi times the regulator period Ψ(tκ).
We should emphasize that (6.14) (as derived above) is a motivic identity

which directly reflects the limit AJ result Proposition 6.2.

6.3. Examples D5, E6, E7, E8

We turn now to four “mirror pairs” of elliptic curve families with common
fundamental periods. The Laurent polynomials φI, φII in the first column of
the table below have dual Newton polytopes and are of the type considered in
Example 3.1. The corresponding X̃I, X̃II are smooth and the second column
lists their Kodaira fiber types over t = 0, t ∈ L ∩ C∗, and t = ∞ (in that
order). These two families share a common degree-κ quotient (over simply
t �→ tκ for each X̃II), whose singular fibers (after a minimal desingularization
of the total space) are listed next. This is followed by the Dynkin diagram
type of the dual graph of the singular fiber over tκ = ∞ (in the quotient),
which we use to “identify” each example. The vanishing-cycle periods about
t = 0 (being pullbacks from the quotient families) take the form AI(t) =
AII(t) =

∑

m≥0 amt
κm, and so ΨI(t) = ΨII(t) = 2πi

(

log t+
∑

m≥1
am

κm t
κm
)

.
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Finally, if we take φ = φII in Section 5, then the {N 〈X
◦〉

D } are local Gromov–
Witten invariants of the Y ◦II indicated and these will have exponential growth
rate exp

(

−'
(

ΨII(t0)
2πi

))

by (5.10).

φI
φII

Fibers of X̃ κ
Fibers of

˜̃X/Zκ

Type
at ∞ am t0 Y ◦

II

(

x + 1
x

)
(

y + 1
y

)

x + 1
x

+ y + 1
y

I4, 2I2, I4
I8, 2I1, I2

2 I4, I1, I∗
1 D5

(

2m
m

)2 1
4 K

P1×P1

x2
y

+ y2
x

+ 1
xy

x + y + 1
xy

I3, 3I3, I0
I9, 3I1, I0

3 I3, I1, IV∗ E6

(

3m
m,m,m

)

1
3 K

P2

x
y

+ y3
x

+ 1
xy

x + y + 1
x2y

I4, 4I2, I0
I8, 4I1, I0

4 I2, I1, III∗ E7

(

4m
2m,m,m

)

1
2
√

2
K

P(1,1,2)

x
y

+ y2
x

+ 1
xy

x + y + 1
x3y2

I6, 6I1, I0
I6, 6I1, I0

6 I1, I1, II∗ E8

(

6m
3m,2m,m

)

1

4
1
3

√
3

K
P(1,2,3)

Obviously, we may use either X̃I or X̃II to compute ΨII(t0)(= ΨI(t0)), and
for E6, E7, E8 we will use X̃I. For D5, we use instead the family X̃ produced
by φ := (x−1)2(y−1)2

xy , with t0 = 1
16 andA(t) =

∑

m≥0

(
2m
m

)2
tm (hence ΨII(t) =

1
2Ψ(t2)); in fact, its minimal desingularization is the quotient family.

What we now do in each case is find an explicit parametrization of (each
component of) X̃t0 via {fi, gi}, then compute N := Nt0 and D2(N ). First,
to record some notation: we shall consider L-functions L(χ, s) :=

∑

k≥1
χ(k)
ks

of primitive Dirichlet characters

χ−3(·) = 0, 1,−1, . . . (mod 3),
χ−4(·) = 0, 1, 0,−1, . . . (mod 4),
χ+i,5(·) = 0, 1, i,−i,−1, . . . (mod 5),
χ−i,5(·) = 0, 1,−i, i,−1, . . . (mod 5),
χ−8(·) = 0, 1, 0, 1, 0,−1, 0,−1, . . . (mod 8)

at s = 2. An easy way to get such values is by taking Bloch–Wigner of roots
of unity: e.g., for ζa = e

2πi
a ,

D2(ζa) = �(Li2(ζa)) + 0 =
∑

k≥1

�(ζka )
k2

.

To simplify D2(N ) to terms of this form, we manipulate N in a quotient
of the pre-Bloch group B2(C). Namely, work in Z[P1

C\{0, 1,∞}] modulo
(the subgroup generated by) relations: [ξ] + [1ξ ]; [1− ξ] + [ξ]; [ξ] + [ξ̄]; and
∑5

i=1[ξi] where (with subscripts mod 5) ξi = 1− ξi+1ξi−1 (∀i), pictured as
in figure 9. (These are all well-known relations on D2, see [12].)
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Figure 9: Mnemonic for 5-term relations.

D5 : In P
1 × P

1, 1− 1
16

(x−1)2(y−1)2

xy = 0 is an I1 normalized by

f(z) = −
(

1 + 1
z

)2

(

1− 1
z

)2 , g(z) = −
(

1 + z
i

)2

(

1− z
i

)2 .

Hence N = 8[−i]− 8[i] ≡ −16[i], and

D2(N ) = −16D2(i) = −16L(χ−4, 2).

(So in fact the correct D2(Nt0) to use for φII is −8L(χ−4, 2).)
E6 : In P

2, 0 = 1− 1
3
x3+y3+1

xy = −1
3xy (1 + x+ y)(1 + ζ3x+ ζ̄3y)(1 + ζ̄3x+

ζ3y) is normalized by

f1(z1) = ζ̄3

(

1− ζ3
z1

)

(

1− 1
z1

) , g1(z1) =

(

1− z1
ζ̄3

)

(1− z1)
,

f2(z2) =

(

1− ζ3
z2

)

(

1− 1
z2

) , g2(z2) = ζ̄3

(

1− z2
ζ̄3

)

(1− z2)
,

f3(z3) = ζ3

(

1− ζ3
z3

)

(

1− 1
z3

) , g3(z3) = ζ3

(

1− z3
ζ̄3

)

(1− z3)
,

so that N = 3[ζ̄3]− 6[ζ3] ≡ −9[ζ3] and

D2(N ) = −9D2(ζ3) = −9
√

3
2
L(χ−3, 2).
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BA

δ γ −δ −1 −γ −1

1−γ1−δ2

C

1−δ
2

1−γ
2

1+δ
1−δ

2
1−δ

⎯ 2
1−γ

1+γ
1−γ

Figure 10: 5-term relations for E7.

E7 : In P(1, 1, 2), 0 = 1− 1
2
√

2

x2+y4+1
xy = −1

2
√

2xy
(x+ iy2 −

√
2y − i)(x− iy2 −√

2y + i) is normalized by

f1(z1) = −
√

2

(

1− γ
z1

)(

1− δ
z1

)

(

1 + 1
z1

)2 , g1(z1) =
1− z1
1 + z1

,

f2(z2) =
√

2

(

1− γ
z2

)(

1− δ
z2

)

(

1 + 1
z2

)2 , g2(z2) =
1− z2
1 + z2

,

where γ := i(
√

2− 1), δ := i(
√

2 + 1) (and γδ = −1). We read off

N = 2[γ] + 2[δ]− 2[−γ]− 2[−δ]− 2[−1] = 4[γ] + 4[δ]

using γ̄ = −γ, δ̄ = −δ. Now using the three five-term relations pictured in
figure 10, together with 1+γ

1−γ = ζ8, 1+δ
1−δ = ζ3

8 , we have

[γ] + [δ]
A≡ 2([γ] + [δ]) +

[

1− δ

2

]

+
[

1− γ

2

]

≡ −[−γ]− [1− γ]− [−δ]− [1− δ]−
[

2
1− γ

]

−
[

2
1− δ

]

B,C≡ [ζ8] + [ζ3
8 ].

Hence

D2(N ) = 4D2(ζ8) + 4D2(ζ3
8 ) = −2i

∑

k≥1

k−2{ζk8 + ζ3k
8 − ζ5k

8 − ζ7k
8 }

= 4
√

2L(χ−8, 2).
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E8 : In P(1, 2, 3), 1− x2+y3+1

4
1
3 3

1
2 xy

= 0 is an I1 whose normalization takes the
form

f(z) =
√

3

∏3
j=1

(

1− αj

z

)

(

1− 1
z

)3 , g(z) = 3
√

2

∏2
k=1

(

1− z
βk

)

(1− z)2
,

where
∏

αj =
∏

βk = 1, g(αj) = −ζj3 and f(βk) = (−1)ki.

Conjecture.
∑

i,j

[

αj

βk

]

− 3
∑

k

[

1
βk

]

− 2
∑

j [αj ] ≡ 20
3 [i].

If this is true then D2(N ) = 20
3 L(χ−4, 2).

In each of these four cases, εt0 = −1 and multiplying (6.14) by κ yields

(6.15) log
∣

∣

∣

∣

1
tκ0

∣

∣

∣

∣
−
∑

m≥1

am
m

(tκ0)m =
−κ
2π

D2(Nt0);

or on an individual basis
(

writing G :=
∑

k≥0
(−1)k

(2k+1)2 for Catalan’s constant
)

D5 : log 16−
∑

m≥1

(
2m
m

)2

m(16)m
=

8
π
G,

E6 : log 27−
∑

m≥1

(3m)!
m(m!)3(27)m

=
27
√

3
4π

L(χ−3, 2),

E7 : log 64−
∑

m≥1

(4m)!
m(2m)!(m!)2(64)m

=
8
√

2
π

L(χ−8, 2),

E8 : log 432−
∑

m≥1

(6m)!
m(3m)!(2m)!m!(432)m

?=
20
π
G.

Of these identities, D5 and E6 were known to [69], while E7 and E8 were
conjectured on the basis of numerical experiment in [19, 59]. The latter
two examples (modulo the E8 Conjecture) make the strongest case for the
method of Proposition 6.3; they are not amenable to the approach in Sec-
tion 10.4 since X̃I, X̃II, X̃II/Zκ all fail to be modular in the sense required
there.

The four cases in this section correspond to fundamental examples in
the local mirror symmetry literature. The instanton numbers that appear in
[21, Table 7; 59, Table 1; 77, Ex. 1–4] (“rational”) have the same exponen-
tial growth rates as our {N 〈X

◦〉
κD }, namely exp{r.h.s. of (6.15)}. The “κD”
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(instead of D) appears due to a discrepancy in indexing of cohomology
classes.

6.4. Other examples

We begin with an elliptic curve family for which Ψ(t0) involves more than
one Dirichlet character: the universal curve with a marked five-torsion point,
or “A5” family. This arises via minimal desingularization of the X̃ obtained
from

φ =
(1− x)(1− y)(1− x− y)

xy
,

and is birational to the family considered by Beukers [15] in relation to
irrationality of ζ(2). This has

A(t) =
∑

m≥0

(

m
∑

�=0

(

m

�

)2(m+ �

�

)
)

tm, t0 =
−11± 5

√
5

2
,

with singular fibers I5, I1, I1, I5; Xt0 = {1− tφ = 0} is normalized by

f(z) = γ

(

1− 1
z

)2

(

1− ζ25
z

)(

1− ζ35
z

) , g(z) = γ

(

1− z
ζ5

)2

(

1− z
ζ45

)(

1− z
ζ35

) ,

where γ = −1+
√

5
2 = 2'(ζ2

5 ) = ζ̄5
2(ζ̄5 + 1) = ζ2

5 (ζ5 + 1). This gives N =

−4[ζ5]− 4[ζ2
5 ] + [ζ3

5 ] + 6[ζ4
5 ] ≡ −10[ζ5]− 5[ζ2

5 ]. Writing δ± :=
√

5±√5
8 (δ+ =

�(ζ5), δ− = �(ζ2
5 )) and λ0 = 11+5

√
5

2 , we compute

D2(N ) = −5
{(

1 +
i
2

)

δ+ +
(

1
2
− i
)

δ−
}

L(χ+i,5, 2)

− 5
{(

1− i
2

)

δ+ +
(

1
2

+ i
)

δ−
}

L(χ−i,5, 2)

and

log λ0 −
∑

m≥1

∑m
�=0

(
m
�

)2(m+�
�

)

mλm0
= −D2(N )

2π
(∈ R

+).

Turning to n = 3, consider the irregular (but reflexive and tempered) Lau-
rent polynomial

φ =
(

1− 1
x

)(

1− 1
y

)(

1− 1
z

)

(1− x− y + xy − xyz).
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This gives rise to the (“Apéry”) family X̃ of singular K3’s related to irra-
tionality of ζ(3) from the Introduction. The general fiber has seven A1

(node) singularities and Theorem 3.1 applies (with K = Q), producing Ξ ∈
H3
M(X̃−,Q(3)). The degenerations occur over L =

{

0, t0, 1
t0
,∞

}

where t0 =

(
√

2− 1)4; Xt0 and X 1
t0

just have extra nodes ( =⇒ order 2 monodromy),
while X0 and X∞ are unions of rational surfaces (and the correspond-
ing monodromies maximally unipotent). One can therefore use (6.7) (but
with a different choice ϕ′∞ of topological two-cycle) to directly compute
AJ(Ξ∞)(ϕ′∞) = −2ζ(3). This is done in [49] (Example 10.21) and is behind
the assertion about V (0) in the Introduction.

Now for the n = 2 families A5, D5, E6, we can take advantage of their
modularity to obtain an alternate computation of limt→t0 Ψ(t); this is carried
out for D5 in Example 10.1. Similarly, by identifying the Apéry K3 family as
modular (and Ξ essentially as an Eisenstein symbol), one can compute that
(one continuation of) Ψ(∞) = −48ζ(3), see Examples 10.2 and 10.5. More
interestingly, we can even use (9.17) and (9.18) to compute Ψ(t0), which is
not amenable to (6.8) (due to the nodal degeneration). Since the fixed point

τ0 = i√
6
∈ H of

(

0 −1√
6√

6 0

)

corresponds to t0, we have (with ′ϕ̂f,+6 as in

(10.5))

Ψ((
√

2− 1)4)
Q(3)
≡ (2πi)3

i√
6
H

[2]
[i∞](

′ϕf,+6)

+
1

2πi

∑

n

′
lim
M→∞

M
∑

m=−M

′ ′ϕ̂f,+6(m,n)
m(m i√

6
+ n)3

,

or dividing by −4π2,

4 log(
√

2− 1) +
∑

k≥1

(
√

2− 1)4k

k

⎧

⎨

⎩

k
∑

j=0

(

k

j

)2(k + j

j

)2
⎫

⎬

⎭

= 4
√

6π −
√

6
8π3

∑

n∈Z\{0}

∑

m≥1

′ϕ̂f,+6(m,n)

(

m2

18 − n2
)

(
m2

6 + n2
)3 .

Presumably something more can be said about the r.h.s. but we have not
attempted this.
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7. The classically modular analogue: Beilinson’s Eisenstein
symbol

The next three sections run parallel to what was done for the toric symbols
in Sections 3 and 4: here we will construct the basic higher cycles, and in
Sections 8 and 9 compute the cycle class and evaluate the fiberwise AJ map
on them (and consider some variations on the basic cycles). Starting from
an (�+ 1)-tuple of functions on an elliptic curve with divisors supported on
N -torsion (or the (�+ 1) divisors themselves, or even just their Pontryagin
product), the goal is essentially to construct a family of CH�+1(·, �+ 1)-
cycles on the �th fiber product of the universal elliptic curve with marked N -
torsion over Γ(N)�H. The idea comes from work of Bloch for � = 2 [12,13],
and first appeared in the generality considered here (but for infinite level)
in [8]. Interesting aspects of the story include the relationship between the
“vertical” choice of divisors and the “horizontal” values of the resulting
global cycle’s residues over the cusps; and the role played by modular forms
and especially Eisenstein series. Much of the material in this section (and
Section 8.1) is expository, but is set up to better enable the AJ computations
(and for potentially easier reading) than the presentations in the existing
literature, amongst which we have found [8,28,30,72] to be especially helpful.

7.1. Motivation via the Beilinson–Hodge Conjecture

For a quasi-projective variety V defined over Q̄, this conjecture predicts that
the cycle-class map

clp,rV : CHp(V, r) → HomMHS(Q(0), H2p−r(V an
C ,Q(p)))

should surject, i.e., that there “exist enough cycles.” In the context below
(with p = r = �+ 1), it translates to the statement that every Eisenstein
series is, in a precise sense, the fundamental class of an “Eisenstein cycle”
(or “symbol”). This case will be proved in Section 8.1 when we compute the
classes of the symbols constructed in Section 7.3. In a sense our motivation
is backwards since the Eisenstein material was originally a major piece of
evidence leading to the conjecture.

7.1.1. Construction of Kuga modular varieties. Z
2� acts on H× C

�

(H = upper half-plane) by

((m1, n1), . . . , (m�, n�)) · (τ ; z1, . . . , z�) := (τ ; z1 +m1τ + n1, . . . , z�

+m�τ + n�)
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and we quotient

Z
2�

�H× C
� =: E [�] π→ H.

Recall Γ(N) := ker{SL2(Z) → SL2(Z/NZ)} =
{
(

a b
c d

)∣

∣

ad − bc = 1
a ≡ 1 ≡ d(N)
b ≡ 0 ≡ c(N)

}

and
take Γ ⊂ SL2(Z) s.t. {−id} /∈ Γ and Γ ⊃ Γ(N) for some N ≥ 3 (such a Γ
is a congruence subgroup of SL2(Z)).

Now γ =
(

a b
c d

)

∈ Γ acts on H∗ := H ∪ P
1(Q) by γ(τ) = aτ+b

cτ+d , and we
define modular curves

Y Γ := Γ�H∗ ⊃ Γ�H =: YΓ

with the cusps as complement:

κΓ := Y Γ\YΓ =

{

r
s ∈ P

1(Q)
∣

∣

∣

∣

∃p, q ∈ Z/NZ s.t.
pr + qs ≡ 1 mod N

}

Γ

=

{

(−s, r) ∈ (Z/NZ)2 | | 〈(−s, r)〉 | = N
}

〈

(−s, r) ∼ γ.(−s, r) = (−cr − ds, ar + bs)
(−s, r) ∼ (s,−r)

〉 .

One has also the elliptic points

εΓ :=

(

{τ ∈ H | ∃γ ∈ Γ s.t. γ(τ) = τ}
︸ ︷︷ ︸

=: ε̃Γ

/

Γ

)

⊂ YΓ.

Now let Γ act on E [�]\π−1(ε̃Γ) by

γ.(τ ; [z1, . . . , z�]τ ) :=

(

γ(τ);
[

z1
cτ + d

, . . . ,
z�

cτ + d

]

γ(τ)

)

;

the quotient is denoted E [�]
γ

πΓ� YΓ\εΓ and Shokurov’s smooth compatifi-
cation [75] is E [�]

Γ
πΓ� Y Γ (we just need its existence).

7.1.2. Monodromy on E [�]
Γ . To understand monodromy about εΓ ∪ κΓ,

first take � = 1 and let α resp. β be the families of one-cycles [0, 1] resp. [0, τ ]
on fibers Eτ of E [1] → H. Each γ ∈ Γ should be thought of as a composition
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of monodromy transformations with action

α �→ aα+ cβ, β �→ bα+ dβ.

If γ fixes r
s ∈ P

1(Q) (resp. τ0 ∈ H) then it corresponds to going around (some
number of times) [ rs ] ∈ κΓ (resp. [τ0] ∈ εΓ). The εΓ are just the finite mon-
odromy points, with order= 3 and monodromy locally of the form

(
0 −1
1 −1

)

in an appropriate basis (Kodaira type IV ∗). If we had not required −id /∈ Γ
then they could have order 2 or 4). If Γ = Γ(N) then εΓ = ∅.

To put all the cusps on an equal footing with regard to monodromy
matrices, given r

s ∈ P
1(Q) pick p, q ∈ Z such that pr + qs = 1 and define a

“local monodromy group”

MΓ

([r

s

])

:=
(

p q
−s r

)

StabΓ

(r

s

)
(

r −q
s p

)

,

which is generated by
(

1 m
0 1

) (

or
(−1 −m

0 −1

))

for some m|N
(

resp. m|N2
)

. For

E [1], this yields a fiber of type Im (resp. I∗m) in Kodaira’s classification; we
subdivide κΓ =: κIΓ ∪ κI

∗
Γ .

For � ≥ 1, one has an isomorphism of VHS

H�
E[�]
/Y

∼= ⊕
0≤a≤( �

2)

(

H1
E[1]

/Y
(−a)⊗(�−2a)

)⊕( �

�−2a,a,a)

so that monodromy about type I cusps is (maximally) unipotent for all �,
while that about type I∗ cusps is only unipotent for � even (by considering
�th symmetric powers of

(−1 −m
0 −1

)

).

7.1.3. MHS on the singular fibers of E [�]
Γ . We will use the notation

E
[�]
Γ,y(∼= E

[�]
τ for some τ ∈ H) for smooth fibers and Ê

[�]
Γ,y0

for singular fibers,

which are NCDs in the Shokurov compactification. (Note: Ê[�]
Γ,y0

does not
count multiple fiber-components with multiplicity.)

(A) Elliptic points. (y0 ∈ εΓ) Take a degree-3 cover ˜Y Γ
μ� Y Γ with rami-

fication index 3 at ỹ0 �→ y0, and let ˜E
[�]

Γ be a smooth resolution of E [�]
Γ ×μ ỸΓ.

This maps to ′˜E
[�]

Γ where

(a) ′˜E
[�]

Γ \′Ẽ
[�]
Γ,ỹ0

= Ẽ
[�]

Γ \Ẽ
[�]
Γ,ỹ0

(here Ẽ[�]
Γ,ỹ0

is possibly singular)
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(b) ′Ẽ[�]
Γ,ỹ0

is the �th self-product of a smooth elliptic curve (τ = e
2πi
3 or

e
2πi
6 ), yielding a diagram

′˜E
[�]

Γ

′π̃ ���
��

��
��

˜E
[�]

Γ M
��

π̃

��

p
�� E [�]

Γ

π̄

��
˜Y Γ μ

�� Y Γ

Now (a) + (b) =⇒ H�+1(˜E
[�]

Γ \Ẽ
[�]
Γ,y0

) = W�+2H
�+1(˜E

[�]

Γ \Ẽ
[�]
Γ,ỹ0

), while
1
3M∗M∗ is the identity on H�+1(E [�]

Γ \E
[�]
Γ,y0

). By the localization sequence

→ H�+1(E [�]
Γ \Ê

[�]
Γ,y0

) → H�(Ê
[�]
Γ,y0

)(−(�+ 1)) → H�+2(E [�]
Γ ) →,

H�(Ê
[�]
Γ,y0

) is a pure HS of weight −�.

(B) Nonunipotent cusps. (y0 ∈ κI
∗

Γ , � odd) Even in the quasi-unipotent/ non-
semistable degeneration setting, if the total space is smooth (with NCD cen-
tral fiber) the Wang sequence, relative homology sequence, and deformation
retract business goes through, yielding a long-exact sequence

→ H�+2(Ê
[�]
Γ,y0

(−(�+ 1))
ξ� H�(Ê[�]

Γ,y0
→ H�(E[�]

Γ,y)
T−I� H�(E[�]

Γ,y) →;

(7.1)

here ξ is a morphism of MHS (as ι∗y0 ◦ (ιy0)∗, it is motivic). For the
monodromy matrix, taking �th symmetric power of

(−1 −m
0 −1

)

for � ≥ 1 odd

gives T =

(

1 ∗
. . .

0 1

)

; hence T − I has maximal rank and ξ is surjective.

Since H�+2(Ê)(−(�+ 1)) has weights ≥ � and H�(Ê) weights ≤ �, we find
again that H�(Ê) (hence H�(Ê

[�]
Γ,y0

)) is a pure HS.

(C) Unipotent cusps. (y0 ∈ κI
∗

Γ and � even; y0 ∈ κIΓ) Start with � = 1: taking
y = [i∞] as our prototypical such cusp and assuming an Im degeneration
there, the choice of local parameter q

1
m =: q̃ := exp

(
2πi
m τ

)

= exp
(

2πi
m

∫

β
dz

∫

α
dz

)

splits the LMHS:
H1

limq̃→0
(EΓ,q̃) ∼= Q(0)⊕Q(−1).

Similarly, H�
lim(E[�]

Γ,q̃) is a ⊕ of copies of Q(0) thru Q(−�) — in particular
one copy of Q(0). (Think of this as a consequence of the fact that the
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periods are all powers of m log q̃; the Q(0) corresponds to α×� with period
1.) Equation (7.1) becomes the Clemens–Schmid sequence

→ H�+2(Ê
[�]
Γ,y0

)(−(�+ 1))
ξ� H�(Ê[�]

Γ,y0
) → H�

lim(E[�]
Γ,y)

N� H�
lim(E[�]

Γ,y) →

(where N = log(T ) now makes sense); since N is of type (−1,−1) it kills
Q(0). By the same reasoning as above, im(ξ) has pure weight �; so H�(Ê[�]

Γ,y0
)

is completely split into Q(−j)’s (independent of the choice of parameter),
in particular H�(Ê[�]

Γ,y0
) ∼= Q(0)⊕H where W0H = {0}.

Conclusion:
HomMHS(Q(0), H�(Ê

[�]
Γ,y0

)) is {0} in cases (A) and (B) (or for a smooth fiber),
and one copy of Q(0) for case (C).

7.1.4. Residues and Beilinson–Hodge Let p ⊂ YΓ\εΓ be a finite point

set, and consider open subsets of
E [�]

Γ
⋂

E [�]
Γ

(E [�]
Γ )◦

π◦
Γ� Y ◦Γ := YΓ\εΓ ∪ p = Y Γ\P,

⋂ ⋂

(E [�]
Γ )◦

π◦
Γ� Y

◦
Γ := Y Γ\κ[�]

Γ ,

where P := κIΓ ∪ κI
∗

Γ ∪ εΓ ∪ p, and κ
[�]
Γ :=

{

κΓ, � odd
κIΓ, � even

consists of the

unipotent cusps. Applying HomMHS(Q(0),—⊗Q(�+ 1)) to the “localization
sequence”

0 → coker
{

j∗�+1 : H�+1(E [�]
γ ) → H�+1((E [�]

Γ )◦)
}

⊕Resy0
(2πi)�� ⊕y0∈PH�(

(∧)

E
[�]
Γ,y0

)(−(�+ 1))
(2πi)�+1(⊕(ıy0 )∗)� ker

{

j∗�+2 : H�+2(E [�]
Γ ) → H�+2((E [�]

Γ )◦)
}

→ 0

gives

HomMHS(Q(0), coker(j∗�+1)⊗Q(�+ 1)) ∼= ⊕
y0∈P

HomMHS(Q(0), H�(
(∧)
E

[�]
Γ,y0

))

by §7.1.3∼= ⊕y0∈κ[�]
Γ

Q(0),
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since ker(j∗�+2) has pure weight �+ 2 (and � ≥ 1). Using

0 → im(j∗�+1) → H�+1((E [�]
Γ )◦) → coker(j∗�+1) → 0,

we then clearly have HomMHS(Q(0), H�+1((E[�]
γ )◦,Q(�+ 1))) ⊂

HomMHS(Q(0), H�+1((E [�]
Γ )◦,Q(�+ 1))) ⊂

⊕ Res
(2πi)�� ⊕[ r

s ]∈κ
[�]
Γ

Q.

Claim 7.1. The composition

CH�+1
(

(E[�]
Γ )◦, �+ 1

)

��������������

[·]
��

HomMHS

(

Q(0), H�+1
(

(E[�]
Γ )◦,Q(�+ 1)

))

⊕ Res
(2πi)�

�� ⊕[ r

s ]∈κ
[�]
Γ

Q

is surjective.

If this is true, then we have clearly proved that for any P as just described

CH�+1((E [�]
Γ )◦, �+ 1) � HomMHS(Q(0), H�+1((E [�]

Γ )◦,Q(�+ 1))),

which is the relevant special case of the Beilinson–Hodge conjecture.

7.1.5. Holomorphic forms of top degree. Clearly on E [�](→ H) these
are of the form

Ω�+1
F := F (τ)dz1 ∧ · · · ∧ dz� ∧ dτ,

for F holomorphic (F ∈ O(H)). For this to descend to E [�]
Γ (recalling from

Section 7.1.1 the action of γ ∈ Γ ⊂ SL2(Z) on E [�]\π−1(ε̃Γ)), we must have

Ω�+1
F = γ∗Ω�+1

F = F (γ(τ))
dz1

cτ + d
∧ · · · ∧ dz�

cτ + d
∧

=1
︷ ︸︸ ︷

(ad− bc) dτ
(cτ + d)2

,

which is equivalent to

(7.2) F (τ) =
F (γ(τ))

(cτ + d)�+2
=: F |�+2

γ (τ)(∀γ ∈ Γ).
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Definition 7.1. (i) F ∈ O(H) and (7.2) holds if and only if F (τ) an
automorphic form of weight �+ 2 with respect to Γ.

(ii) limτ→i∞ F (τ) =: R[i∞](F ) <∞ if and only if F (τ) bounded at i∞.

(iii) R[i∞](F ) = 0 if and only if F (τ) cusp at i∞.
Now assuming F automorphic of weight �+ 2 (w.r.t. some Γ):

(iv) F is cusp (resp. bounded) at
[
r
s

]

if and only if F |�+2
(

r −q
s p

) cusp (resp.

bounded) at i∞, where p, q are chosen so that the matrix ∈ SL2(Z);
and

(v) F cusp (resp. modular) form of weight �+ 2 (w.r.t. Γ) if and only if
F cusp (resp. bounded) at every cusp(∈ κΓ).

Remark. Unconventionally, a meromorphic modular form will mean the
same thing as modular form except that poles at cusps κΓ and elliptic points
ε̃Γ are permitted. (For each cusp

[
r
s

]

, this means q−KF |�+2
(

r −q
s p

) is bounded at

i∞ for some K ∈ Z
+.) We write A�+2(Γ) (resp. S�+2(Γ), M�+2(Γ), M̌�+2(Γ))

for automorphic (resp. cusp, modular, mero. modular) forms.

Example 7.1. Let F ∈ A�+2(Γ). If the cusp [i∞] ∈ κΓ is type Im then
(

1 m
0 1

)

∈ Γ, so that F (τ +m) = F (τ); if type I∗m then
(−1 −m

0 −1

)

∈ Γ, ensur-
ing F (τ +m) = (−1)�+2F (τ). Either way, q̃ := q

1
m (see Section 7.1.3(C))

gives a local coordinate on Y Γ at [i∞]. In the unipotent case, we conclude
that F has a Laurent expansion F (τ) =

∑

k∈Z akq̃
k; in the nonunipotent (I∗m

and � odd) case we get instead F (τ) =
∑

k∈Z odd akq̃
k

2 (ΩF still gives a well-
defined holomorphic form on the quotient EΓ). Evidently, the “bounded”
condition says in both cases that ak = 0 for k < 0 (and “cusp” forms have
no constant term); so in the nonunipotent case, bounded implies cusp.

Shokurov [75] proved the following:

Proposition 7.1. (i) Ω�+1(E [�]
Γ \π−1(κΓ)) = {ΩF |F ∈ A�+2(Γ)}, i.e.,

such ΩF extend holomorphically across the singular fibers over elliptic
points;

(ii) Ω�+1(E [�]
Γ )〈log(π−1

Γ (κΓ))〉 = Ω�+1(E [�]
Γ )〈log(π−1

Γ (κ[�]
Γ )〉 = {ΩF |F ∈

M�+2(Γ)}; and

(iii) Ω�+1(E [�]
Γ ) = {ΩF |F ∈ S�+2(Γ)}.
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This gives the dictionary between automorphic forms and holomorphic
forms that we will need. To start relating modular forms to Beilinson–Hodge,
make the following.

Definition 7.2. Given F ∈M�+2(Γ) and
[
r
s

]

∈ κ[�]
Γ , take any

(
r −q
s p

)

∈
SL2(Z) and set

R[ r

s ]
(F ) := lim

τ→i∞
F |�+2

(

r −q
s p

)(τ) = lim
τ→i∞

F
(

rτ−q
sτ+p

)

(sτ + p)�+2
∈ C.

This gives an interpretation of residues, in the sense that the following
diagram commutes:

HomMHS(Q(0), H�+1((E [�]
Γ )◦,Q(�+ 1)))� 	

��
=:θ�+2

		

��

⊕
Res

[ r
s ]

(2πi)� =:Res
�� ⊕[ r

s ]∈κ
[�]
Γ

Q
� 	

��

Ω�+1(E [�]
Γ )〈log(π−1(κ[�]

Γ ))〉

����������������

M�+2(Γ)

∼=
��

⊕R[ r
s ]=:R

�� ⊕[ r

s ]∈κ
[�]
Γ

C

where the vertical isomorphism sends F �→ (2πi)�+1ΩF .

Definition 7.3. MQ
�+2(Γ) := im(Θ�+2) = modular forms corresponding to

holomorphic forms with log poles (at cuspidal fibers) and rational periods.

By pure thought we have

Proposition 7.2. (i) R is surjective;

(ii) R|MQ

�+2⊗C is injective; and

(iii) (MQ
�+2 ⊗ C)⊕ S�+2 ↪→M�+2(Γ).

Proof. Since ker(R) = S�+2(Γ), the kernel of the dotted arrow is actually
Ω�+1(E[�]

Γ ). This arrow must surject, since the ⊕Q’s (hance ⊕C’s)
correspond to weight 2�+ 2 > �+ 2 in ⊕H�(Ê

[�]
Γ,[ r

s
])(−(�+ 1)) (hence can-

not be absorbed by the next term in the localization sequence); (i) follows.
Injectivity of Res implies (ii), which in turn implies (iii). �
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Now if Claim 7.1 holds, we have also MQ
�+2(Γ) � ⊕Q, hence MQ ⊗ C � ⊕C

(hence ∼=), which would imply

(7.3) M�+2(Γ) = (MQ
�+2(Γ)⊗ C)⊕ S�+2(Γ).

7.1.6. Reduction to (Γ =)Γ(N). Assume SL2(Z) ⊃ Γ ⊃ Γ(N). Since
Γ(N) � SL2(Z), Γ(N) � Γ and the coset representatives {γi}[Γ:Γ(N)]

i=1 act on
the sheets of the branched cover Y Γ(N)

ρ� Y Γ, and also on

E [�]
Γ(N)\π

−1
Γ(N)(ρ

−1(εΓ))
P [�]

Γ(N)/Γ ��

πΓ(N)

��

E [�]
Γ

πΓ

��
YΓ(N)\ρ−1(εΓ)

ρΓ(N)/Γ �� YΓ\εΓ.

We can interpret the action of this P on holomorphic forms (and eventually,
algebraic cycles) in terms of modular forms and residues:

Ω�+1
(

E [�]
Γ(N)

)〈

log π−1
Γ(N)(ρ

−1(εΓ) ∪ κΓ(N))
〉 P∗ ��

Ω�+1
(

E [�]
Γ

)
〈

log π−1
Γ (κΓ)

〉

P∗
��

M�+2(Γ(N))
F (τ) �→∑ i F |�+2

γi
(τ)

��

∼=
��

R
��

M�+2(Γ)

∼=
��

F (τ)←F (τ)
��

R
��

Υ2(N) := ⊕κ[�]
Γ(N)

C

trace T[�]
Γ(N)/Γ

(of C-valued functions on cusps)
�� ⊕κ[�]

Γ
C =: Υ2(Γ)

pull-back P[�]
Γ(N)/Γ

��

More precisely (for the “trace”): given [ r0s0 ] ∈ κ
[�]
Γ , the image of an element

{β : κ[�]
Γ(N) → C} ∈ Υ2(N) takes value (T∗β)([ r0s0 ]) =

∑

[ r

s
]∈ρ−1([

r0
s0

]) ord[ r

s
](ρ) ·

β([ rs ]). This map is surjective since unipotent cusps cover unipotent cusps;
though when � is odd, unipotent ([ rs ] ∈ κ

[�]
Γ(N)) can map to nonunipotent

([ rs ] ∈ κI
∗

Γ ), in which case the value is lost.
The main point is that

Claim 7.1 (hence Beilinson–Hodge) for Γ(N) implies Claim 7.1 for Γ,

since the trace surjects and one can use P∗ on higher Chow cycles, to push
them from E [�]

Γ(N) to E [�]
Γ . We write Y Γ(N) =: Y (N), κΓ(N) =: κ(N), etc. for

simplicity.
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Why do we want to do make this reduction? Y (N) is the moduli space
of elliptic curves with “completely marked N -torsion” (in particular, two
marked generators), so E(N)(:= EΓ(N)) has N2 N -torsion sections — ideal
for building relative higher Chow cycles (from functions with divisors sup-
ported on that N -torsion). Also, all cusps are (unipotent) of type IN . One
reason why we exclude N = 2 is that this is false — there are two cusps of
type I2 and one of type I∗2 . The downside is that Y (N) has genus zero only
for N = (2), 3, 4, 5.

For the cusps, writing G(N) for the set of subgroups of (Z/NZ)2 isomor-
phic to Z/NZ, we have κ[�](N) =

κ(N) =

{

(−s, r) ∈ (Z/NZ)2
∣

∣ | 〈(−s, r)〉 | = N
}

〈(−s, r) ∼ (s,−r)〉 =
⋃

G∈G(N)

G∗/ 〈±1〉

∼= PSL2(Z/NZ)
/〈(

1 ∗
0 1

)〉

;

since each G ∈ G(N) has |G∗| = φeuler(N),

|κ(N)| = φeuler(N)
2

· |G(N)| = N

2

∏

p|N

(

1− 1
p

)

·N
∏

p|N

(

1 +
1
p

)

=
N2

2

∏

p|N

(

1− 1
p2

)

.

Now given a field K ⊆ C set19

ΦK
m(N) := {K-valued functions on (Z/NZ)m},

ΦK
m(N)◦ := {ϕ ∈ ΦK

m(N) |ϕ(0̄, . . . , 0̄) = 0)},
ΦK
m(N)◦ := ker{augmentation map: ΦK

m(N) → K}.

Ultimately, ΦK
2 (N)◦ will be divisors (⊗Q) of degree 0 on N -torsion.

Choose once and for all a representative (−s, r) for each cusp σ ∈ κ(N)
(s.t. σ = [ rs ]) and a matrix

(
p q
−s r

)

∈ SL2(Z). Writing

π[ r

s
] : (Z/NZ)2 � Z/NZ, ι[ r

s
] : Z/NZ ↪→ (Z/NZ)2,

(m,n) = a(p, q) + b(−s, r) �→ a, a �→ a(−s, r),

19Notationally, we drop m = 1 or K = C.
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one has

(π[ r

s
])∗ : Φ2(N)(◦)

trace�� Φ(N)(◦), (ι[ r

s
])
∗ : Φ2(N)(◦)

pullback�� Φ(N)(◦),

etc.

7.2. Divisors with N-torsion support

Here we collect together related material on finite Fourier transforms, L-
functions, and meromorphic functions on E(N) with divisors supported on
the N -torsion sections. The technical “(p, q)-vertical” subsection will be used
in Section 9 to compute the AJ map.

7.2.1. Some Fourier theory. We define Fourier transforms

̂ : Φ(N)(◦)
∼=� Φ(N)(◦),

ϕ(a) �→ ϕ̂(k) :=
∑

a∈Z/NZ

ϕ(a)e−
2πi
N
ka,

̂ : Φ2(N)(◦)
∼=� Φ2(N)(◦),

ϕ(m,n) �→ ϕ̂(μ, η) :=
∑

(m,n)∈(Z/NZ)2

ϕ(m,n)e
2πi
N

(μn−ηm).

One can show (easily) that for ϕ0 ∈ Φ(N), ϕ ∈ Φ2(N)

1
N
· π̂∗[ r

s
]ϕ0 = (ι[ r

s
])∗ϕ̂0,(7.4)

̂(π[ r

s
])∗ϕ = ι∗[ r

s
]ϕ̂,(7.5)

and also (π∗[ r

s
]ϕ̂0)(·) = ̂(ι[ r

s
])∗ϕ0(−·). Note that for N prime, one has (divid-

ing by φeuler(N)
2 = the number of cusps “in” each Z/NZ subgroup) ϕ̂ =

2
φeuler(N)

∑

σ∈κ(N)(ι[ r

s
])∗(ι[ r

s
])∗ϕ̂ implies that ϕ = 2

N ·φeuler(N)

∑

σ(π[ r

s
])∗(π[ r

s
])∗ϕ

for ϕ ∈ Φ2(N)◦ but this does not hold for N not prime. Finally, if
μa : Z/NZ

∼=� Z/NZ is multiplication (mod N) by a ∈ (Z/NZ)∗, one has

(7.6) μ̂∗aϕ0 = μ∗a−1ϕ̂0.

One wonders why undergraduates do not learn these discrete Fourier
transforms in linear algebra (or at least before the continuous/L2/L1 theory),
considering that future mathematicians might use them in number theory
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and engineers in MATLAB. Moreover, together with Bernoulli numbers and
polynomials, they have a very attractive application to computing series
yielding rational multiples of powers of π. Recall that the Bernoulli num-
bers

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 =

−1
30
, B5 = 0, etc.

satisfy
∑∞

k=0Bk
tk

k! = tet

et−1 . If we define Bernoulli polynomials

Bk(x) :=
k
∑

j=0

(

k

j

)

Bjx
k−j

(e.g., B3(x) = x3 − 3
2x

2 + 1
2x, B4(x) = x4 − 2x3 + x2 − 1

30) then they con-
sequently satisfy

∑∞
k=0Bk(x)

tk

k! = tet(1+x)

et−1 . One also has (for k ≥ 2) Bk =
{ −k!

(2πi)k 2ζ(k), k even
0, k odd

and correspondingly Bk(x) = (−1)k−1k!
(2πi)k

∑′
m∈Z

e−2πimx

mk .

For us the key calculation is: given ϕ ∈ Φ(N) (and � ≥ 1),

N−1
∑

a=0

ϕ(a)B�+2

( a

N

)

=
(−1)�+1(�+ 2)!

(2πi)�+2

N−1
∑

a=0

ϕ(a)
∑

m∈Z

′ e−2πim a

N

m�+2

=
(−1)�+1(�+ 2)!

(2πi)�+2

∑

m∈Z

′ 1
m�+2

N−1
∑

a=0

ϕ(a)e−
2πi
N
ma

︸ ︷︷ ︸

ϕ̂(m)

=
(−1)�+1(�+ 2)!

(2πi)�+2
L̃(ϕ̂, �+ 2),

where L̃(ϕ̂, �+ 2) :=
∑′

m∈Z
ϕ̂(m)
m�+2 (thinking of ϕ̂ as an N -periodic function

on Z). Note that, by this calculation, if ϕ ∈ ΦQ(N) then regardless of ratio-
nality of ϕ̂, L̃(ϕ̂, �+ 2) is always in Q(�+ 2).

Example 7.2 (For the undergraduates). N = 4, ϕ = 0, 1, 0,−1; . . . FT�→ ϕ̂ =
0, 2i, 0,−2i; . . . . Say we want to compute 1− 1

33 + 1
53 − 1

73 + · · · =
∑

M≥0
(−1)M

(2M+1)3 . This is 1
2 ·

1
(−2i) ·

∑

m∈Z
′ ϕ̂(m)
m3 = −1

4i ·
(2πi)3

(−1)23!

∑3
a=0 ϕ(a)B3

(
a
4

)

= −8π3i
−4i·6

(

B3(1
4)−B3

(
3
4

))

= π3

3

(
3
64 −

(−3
64

))

= π3

32 . Much more complicated rational
numbers (than 1

32) usually arise.

7.2.2. The horospherical map. Now we establish the central number-
theoretic Lemma 7.1 which will ultimately translate to “surjectivity of
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residues of higher Chow cycle classes onto the cusps,” hence Beilinson–
Hodge. Define for σ ∈ κ(N), Q ⊆ K ⊆ C

H[�]
σ : ΦK

2 (N)◦ → K

ϕ �→ (−1)�(�+ 1)
(�+ 2)!

N−1
∑

a=0

((πσ)∗ϕ) (a) ·B�+2

( a

N

)

.

If the following is true for K = C then it holds for any K:

Lemma 7.1.
(

⊕σ∈κ(N)H
[�]
σ

)

: ΦK
2 (N)◦ → ΥK

2 (N) is surjective.

Proof. Let (Φ(N)◦ ⊃)

Υ[�](N) :=
{

functions on (Z/NZ)∗ satisfying f(−y) = (−1)�f(y)
}

∼= {functions on those cusps (−s, r) “contained” in any one G ∈ G(N)} .

Writing

L[�] : Φ(N)◦ → C

ξ �→ − �+ 1
(2πi)�+2

L̃(ξ, �+ 2),

by results of Section 7.2.1 we have

⊕
σ

H[�]
σ = ⊕

σ
L[�] ◦̂◦ (πσ)∗ = ⊕

σ
L[�] ◦ ι∗σ ◦̂= ⊕

G∈G(N)

⊕
a∈(Z/NZ)∗

L[�] ◦ μ∗a ◦ ι∗σG
◦ ,̂

for σG some choice of generator (−s, r) for each G ⊂ (Z/NZ)2. Obviously
(

⊕
G∈G(N)

Υ[�](N)
)

⊆ image
{

⊕
G∈G(N)

ι∗σG
: Φ2(N)◦ → ⊕

G(N)

Φ(N)◦
}

,

and ̂ : Φ2(N)◦ → Φ2(N)◦ is also obviously surjective; so it will suffice to
check the following

Sublemma:
(

⊕
a∈(Z/NZ)∗

L[�] ◦ μ∗a
)
∣

∣

Υ(N) : Υ[�](N) (⊆ Φ(N)◦)
∼=→ Υ[�](N).

Proof. Working over C, Υ[�](N) is spanned (depending on �) by even or odd
Dirichlet characters (mod N) {χi}

1
2
φeuler(N)

i=1 . These satisfy (by definition)
(μ∗aχ)(b) = χ(a) · χ(b). So

(

L[�] ◦ μ∗a
)

(χi) = χi(a) · L[�](χi), and by Neukirch
[62, Section VII.2] L̃(χi, �+ 2) != 0. We may therefore divide χi(·)

L[�](χi)
=: χ̃i(·),
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so that
(

L[�] ◦ μ∗a
)

(χ̃i) = χi(a). Thus each χi appears in the image (in Υ[�](N))
of this map, and since they span Υ[�](N) we are done. �

We can be more explicit and produce a “rational basis for the surjection”
of Lemma 7.1 (onto Υ[�](N)).

Proposition 7.3. There exists a unique “fundamental vector” ϕ
[�]
N ∈

ΦQ(N)◦ satisfying H
[�]
σ′

(

1
N π
∗
σ(ϕ

[�]
N )
)

= δσσ′ (∀σ, σ′ ∈ κ(N)).

Proof. The proof of the sublemma implies the existence of ϕ ∈ Φ(N)◦ with
(i) L[�](ϕ̂) = 1, (ii) L[�](̂μ∗aϕ) = 0 ∀a ∈ (Z/NZ)∗\{±1}, and (iii) ϕ̂(n) = 0 ∀n
not relatively prime to N . If we ask that (iv) ϕ(−a) = (−1)�ϕ(a) (∀a), then
ϕ is uniquely determined. Conditions (i)–(iii) translate to (somewhat redun-
dantly expressed) Q-linear conditions on ϕ:

(i′) 1 = (−1)�(�+1)
(�+2)!

∑N−1
c=0 ϕ(c)B�+2

(
c
N

)

.
(ii′) 0 =

∑N−1
c=0 ϕ(ac)B�+2

(
c
N

)

(∀a /≡ ±1 (N) with gcd(a,N) = 1).
(iii′) 0 =

∑r−1
b=0 ϕ(a+ bNr ) (∀a = 0, . . . , Nr − 1) for each r(!= 1, N)

dividing N .
Then H

[�]
σ′ ( 1

N π
∗
σϕ) = L[�]( 1

N π̂σ′∗π
∗
σϕ) = L[�](ι∗σ′ισ∗ϕ̂), which is 0 if σ′

“belongs to a different subgroup” than σ (using condition (iii) if N is not
prime); otherwise it becomes L[�](μ∗a−1ϕ̂) (= 0 if σ′ /≡ σ[↔ a /≡ ±1], by (ii);
or = 1 by (i)). �

Example 7.3. Here are a few of the fundamental vectors for � = 1, 2 (where
we list the values ϕ(0), . . . , ϕ(N − 1))

ϕ
[1]
3 = 0,−81

2
,
81
2

; ϕ
[1]
4 = 0,−32, 0, 32 ; ϕ

[1]
5 = 0,−25,−25

2
,
25
2
, 25 ;

ϕ
[2]
3 = −162, 81, 81 ; ϕ

[2]
6 = −432

5
,−216

5
,
216
5
,
432
5
,
216
5
,−216

5
.

7.2.3. Pontryagin products. Consider the map

(

ΦQ
2 (N)◦

)⊗�+1 ∗�+1

� ΦQ
2 (N)◦

ϕ1 ⊗ · · · ⊗ ϕ�+1 �→ (ϕ1 ∗ · · · ∗ ϕ�+1)(m,n) :=
∑

{mi,ni}∈(Z/NZ)2�+2

∑

(mi,ni)
(N)
≡ (m,n)

�+1
∏

i=1

ϕi(mi, ni)

which becomes Pontryagin product when Φ2(N)◦ is interpreted as divisors
on N -torsion.
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Lemma 7.2. (i) ∗�+1
is surjective;

(ii) ̂ϕ1 ∗ · · · ∗ ϕ�+1 =
∏�+1
i=1 ϕ̂i.

Proof. Condition (ii) is a trivial computation.

For (i) write βN (m,n) :=

{

N2−1
N2 (m,n) ≡ (0, 0)
1
N2 otherwise

, and let ϕ ∈ ΦQ
2 (N)◦.

Then ϕ ∗ βN ∗ · · · ∗ βN
︸ ︷︷ ︸

� times

= ϕ. �

7.2.4. Decomposition into (p, q)-verticals. For (p, q) ∈ (Z/NZ)2

such that 〈(p, q)〉 ∼= Z/NZ, define in ΦQ
2 (N)◦ a subgroup of “(p, q)-vertical -

degree-0” functions

ΦQ
2 (N)◦(p,q) :=

⎧

⎨

⎩

ϕ ∈ ΦQ
2 (N) |

∑

a∈Z/NZ

ϕ(a(p, q) + (m,n)) = 0

∀(m,n) ∈ (Z/NZ)2

⎫

⎬

⎭

.

Inside this we have the set

S(N)(p,q) :=

⎧

⎨

⎩

translates of the function ϕ(p,q)(m,n) :=

⎧

⎨

⎩

−2, (m, n)
(N)≡ (0, 0)

1, (m, n)
(N)≡ ±(p, q)

0 otherwise

⎫

⎬

⎭

.

The next result says that ϕ ∈ ΦQ
2 (N)◦ can be written as a sum of Pontryagin

products where each term contains only functions from S(N)(p,q) for some
(p, q).

Decomposition Lemma. (i) The map

Q[S(N)×(�+1)
(p,q) ] → ΦQ

2 (N)◦(p,q)
∑

aj [(ϕ
(j)
1 , . . . , ϕ

(j)
�+1)] �→

∑

ajϕ
(j)
1 ∗ · · · ∗ ϕ(j)

�+1

is surjective (� ≥ 0);
(ii) If σ ∈ κ(N) corresponds to

(
p q
−s r

)

∈ SL2(Z) (see the end of §7.1.6),
then

ΦQ
2 (N)◦(p,q) ⊃ π∗σΦ

Q(N)◦;

(iii) ⊕
G∈G(N)π

∗
σG

ΦQ(N)◦ � ΦQ
2 (N)◦ (σG as in the proof of Lemma 7.1).
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Proof. (i) First note ⊗�+1ΦQ
2 (N)◦(p,q)

∗�+1

�� ΦQ
2 (N)◦(p,q) using

β
(p,q)
N (m,n) :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

N−1
N , (m,n)

(N)
≡ (0, 0),

1
N , (m,n) ∈ 〈(p, q)〉 \ {(0, 0)},
0 otherwise

in place of βN above; so it suffices to prove case � = 0. Put ϕ{k}(p,q)(m,n) :=

ϕ(p,q)((m,n)− k(p, q)) and Δ(p,q)(m,n) :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, (m,n)
(N)
≡ (p, q)

−1, (m,n)
(N)
≡ (0, 0)

0 otherwise

. Trans-

lates of Δ(p,q) clearly generate ΦQ
2 (N)◦(p,q), and

∑N
k=1

k
Nϕ
{k}
(p,q) = Δ(p,q).

(ii) Obvious.
(iii) Follows from

Φ̂2(N)◦ = Φ2(N)◦ =
∑

G∈G(N)

(ισG
)∗(Φ(N)◦) =

∑

G∈G(N)

̂(πσG
)∗(Φ(N)◦).

�

7.2.5. Functions with divisors supported on N-torsion. Writing
E(N), E for E [1](N), E [1] we have

E PN

�� ��

π

��

E(N) � � ��

π(N)

��

E(N)

π(N)

��
H ρN

�� �� Y (N) � � �� Y (N).

Let U(N)
j(N)
⊂ E(N) be the complement of the N2 N -torsion sections; there

is a “relative divisor” map20

O∗(U(N))
÷� Φ2(N)◦

f �→ ϕf

(which ignores divisor components supported on the singular fibers over
cusps {Êy0(N) | y0 ∈ κ(N)}). Now assume p, q have been chosen as in the

20Note that O∗(U(N)) ⊂ C(E(N))∗.
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beginning of Section 7.2.4. Taking any r, s such that γ :=
(

p q
−s r

)

∈ SL2(Z),
define F(N)γ :=
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f ∈ O∗(U(N))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P∗Nf has “(p, q)-vertical” TP∗
Nf over the hyperbolic

geodesic (τ ∈)Aγ := { ibr−qibs+p | b ∈ R
+} ⊂ H

connecting [ rs ] and [−qp ], in the sense
that its support in Eτ lies in one connected

component of W (p,q)
τ (N) :=

{ξ(pτ + q) + mτ+n
N |m,n ∈ Z/NZ, ξ ∈ C/Z}

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

.

Lemma 7.3. (i) ÷ is surjective.

(ii) ÷(F(N)γ) ⊃ S(N)(p,q).

Remark 7.1. (a) Together with the Decomposition Lemma, (ii) ensures
that we can actually compute with the KLM formula (because we are able
to work with functions with known Tf on π−1 of the arc Aγ).

(b) It is obvious that the definition of F(N)γ only depends on the coset
of γ in SL2(Z)/Γ(N), but we will not need this.

Proof. (i) Working on E , we will construct a meromorphic function f ∈
im(P∗N ) with divisor

∑

(m,n)∈(Z/NZ)2 am,n
[
mτ+n
N

]

for any given

{am,n}(m,n)∈(Z/NZ)2
satisfying

∑

am,nm
(N)
≡ 0

(N)
≡
∑

am,nn and
∑

am,n = 0. In
fact, we can choose {ãm,n}(m,n)∈Z2 (all but finitely many zero) “lifting”
{am,n} such that

∑

ãm,nm = 0 =
∑

ãm,nn exactly; this leads (following
[13, p. 8.8]) to the construction of a function f0 on H× C descending to E :

(7.7) f0(τ, z) :=
∏

k∈Z

∏

(m,n)∈Z2

(

1− e2πi(kτ+z−mτ+n

N
)
)am,n

.

Factoring f0 if necessary, we may assume that some (m0, n0) ∈ (Z/NZ)2 has
am0,n0 = 0; then

(7.8) f(τ, z) :=
f0(τ, z)

f0

(

τ, m0τ+n0
N

) descends to E(N).

(ii) We will use the proof of (i) to construct f ∈ F(N)(1 0
0 1

) with

ϕf (m,n) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−1, (m,n)
(N)
≡ (±1, 0)

2, (m,n)
(N)
≡ (0, 0)

0, otherwise

;
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then the idea is simply to translate and pull back (using the action of
(

p q
−s r

)

∈ SL2(Z) on E(N) induced from that on E) this f .
Taking ã0,0 = 2, ã1,0 = ã−1,0 = −1 (all other ãm,n = 0) in (7.7), one eas-

ily computes that (with τ = iy ∈ iR+) f0(iy, iY ) ∈ R
≤0 for Y ∈ (−yN , yN ).

So on each Eτ=iy, |Tf0 | ⊃ {z = iY |Y ∈ [−yN , yN ]}, while f0 is of degree 2;
it follows that Tf0 is just the sum of two directed line segments, from
± τ
N (= ± iy

N ) to 0. In (7.8), we take (m0, n0) = (0, 1), and check that Tf = Tf0
over τ = iy (y ∈ R

+), or equivalently that f(iy, 1
N ) ∈ R+. To do this, observe

that f0(iy, z) is (a) holomorphic and has (b) the same divisor as f0(iy, z)
and (c) the same leading coefficient of power series expansion at z = 0 (f0 =
Cz2 + · · · , where [0 !=]C ∈ R

+ since Tf0 is vertical). Thus f0(z) = f0(z),
which implies f0( 1

N ) = f0( 1
N ) (∈ R). Since 1

N /∈ Tf0 , f0( 1
N ) ∈ R

+. �

Now we can obtain meromorphic functions on E [�](N) by noting that
E [�](N) = ×�Y (N)E(N), E [�] = ×�HE , and (by abuse of notation) writing the
projections to these factors E[�](N)

zi

��



�
��

��
��

��
E(N)

��		
		
		
		
	

Y (N)

so that f(zi) denotes

z∗i f , etc.

7.3. Construction of the Eisenstein symbols

7.3.1. Eisenstein series. Since the cycle-class computation (Section 8.1)
will show that these series actually yield modular forms, we will not bother
proving this directly. Note that for the double sums

∑′
m,n means to omit

(m,n) = (0, 0).
For N ≥ 3 and � ∈ Z

+ define

E�+2(Γ(N))

:=

⎧

⎨

⎩

F ∈ O(H)

∣

∣

∣

∣

∣

∣

F of form
∑

(m,n)∈Z2

′ ψ(m,n)
(mτ + n)�+2

for ψ ∈ Φ2(N)

⎫

⎬

⎭

.

(The series is necessarily convergent.)

Lemma 7.4. The map

Φ2(N)◦
E[�]

� E�+2(Γ(N))



528 Charles F. Doran and Matt Kerr

defined by

ϕ �→ E[�]
ϕ (τ) :=

−(�+ 1)
(2πi)�+2

∑

(m,n)∈Z2

′ ϕ̂(m,n)
(mτ + n)�+2

is surjective.

Proof. Let ψ0 :=

{

N �+2 − 1, (m,n)
(N)
≡ (0, 0)

−1 otherwise
; then

∑′ ψ0(m,n)
(mτ+n)�+2 is obvi-

ously 0. This implies that we may assume ψ ∈ Φ2(N)◦ ( =⇒ ψ = ϕ̂, ϕ ∈
Φ2(N)◦) in the definition. �

Put E
Q
�+2(Γ(N)) := E[�]

(

ΦQ
2 (N)◦

)

. (Clearly E�+2 = E
Q
�+2 ⊗ C.)

Lemma 7.5. For E[�]
ϕ ∈ E

Q
�+2(Γ(N)), limτ→i∞E

[�]
ϕ (τ) = H

[�]
[i∞](ϕ) (∈ Q).

Proof. limτ→i∞
∑′

m,n
ϕ̂(m,n)

(mτ+n)�+2 =
∑′

n
ϕ̂(0,n)
n�+2 =

∑′
n

(ι∗[i∞]ϕ̂)(n)

n�+2 =
∑′

n
π̂[i∞]∗ϕ(n)

n�+2

= L̃(π̂[i∞]∗ϕ, �+ 2) =
−(2πi)�+2

�+ 1
H

[�]
[i∞](ϕ),

by Sections 7.2.1 and 7.2.2. �

7.3.2. Group actions. Writing S� for the symmetric group, let G :=
S� � (Z/2Z)� act on H× C

� by

(c, ε)(τ ; z1, . . . , z�) := (τ ; (−1)ε1zc(1), . . . , (−1)ε�zc(�));

this descends to E [�] and E [�](N). Fixing N , let Λ� := (Z/NZ)2� act on E [�]

via translations

trλ(τ ; z1, . . . , z�) :=
(

τ ; z1 +
λ1τ + λ2

N
, . . . , z� +

λ2�−1τ + λ2�

N

)

;

this descends to E [�](N).
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7.3.3. Inclusions and open subsets of

E [�](N) ⊃ Ū [�](N) ⊃ Ũ [�](N)
∪ ∪

U [�](N) ⊃ Û [�](N)

(to be defined). Writing “FP” for fixed points, set

Ŵ
[�]
N :=

⋃

λ∈Λ�

trλ

{

∪
(c,ε)∈G

FP((c, ε))
}

⊂ E [�] , Ŵ [�](N) := PN (W [�]
N ),

Û [�](N) := E [�](N)\Ŵ [�](N).

Next, generalize U(N) in two different ways:

U [�](N) := ×�Y (N)U(N), Ū [�](N) := E [�](N)\{N2� N -torsion sections}.

The inclusion H× C
� ↪→ H× C

�+1 given by

(z1, . . . , z�) �→ (−z1, z1 − z2, . . . , z�−1 − z�, z�) =: (u1, . . . , u�+1)

descends to define maps ι : E [�] ↪→ E [�+1] and

ι(N) : E [�](N) ↪→ E [�+1](N).

Finally, put

Ũ [�](N) := ι(N)−1
(

U [�+1](N)
)

.

To summarize,

Ū [�](N)
Û [�](N)
Ũ [�](N)
U [�](N)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

means the
“complement of
translates of”

⎧

⎪
⎪
⎨

⎪
⎪
⎩

z1 = · · · = z� = 0,
all zi = ±zj , zi = 0,

z1 = 0, z1 = z2, . . . , z�−1 = z�, z� = 0,
z1 = 0, z2 = 0, . . . , z� = 0

and makes sense in E [�] or E [�](N) (where in E [�] these open sets are denoted
instead Ū

[�]
N , Û

[�]
N , etc.). Denote the U -complements (i.e., the translates of

the sets on the r.h.s.) by W̄ , Ŵ , etc.

7.3.4. Completion of symbols. Write Q[O∗(U(N))] for the ⊗Q free-
abelian group on the set of elements of O∗(U(N)), and recall � := P

1\{1}.
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To each monomial f := f1 ⊗ · · · ⊗ f�+1 ∈ ⊗�+1
Q[O∗(U(N))] we associate the

graph cycle {f} :=

{f1(u1), . . . , f�+1(u�+1)} :=
{

(τ ; u; f1(τ, u1), . . . , f�+1(τ, u�+1))
∣

∣

∣

(τ, u) ∈ U [�+1](N)
}

⊂ U [�+1](N)×��+1.

Its pullback by ι(N) should be thought of as the symbol

(7.9) ι∗{f} := {f1(−z1), f2(z1 − z2), . . . , f�(z�−1 − z�), f�+1(z�)},

which is evidently in good position (i.e. yields a higher Chow precycle) over
all of Ū [�](N). To kill ∂B of this symbol in Ŵ [�](N), we flip it about compo-
nents of Ŵ [�](N) and subtract the result: writing G̃ := G � Λ�, define

G̃∗ :=
1

�!2�N2�

⎧

⎨

⎩

∑

(c,ε,λ)∈G̃
(−1)sgn(σ)+

∑

εi(c, ε)∗(trλ)∗

⎫

⎬

⎭

,

and G̃∗0 if signs are removed. (There is also G∗, defined by forgetting the
1
N2�

∑

λ(trλ)
∗ part.)

Now consider the diagram

⊗�+1
Q [O∗(U(N))]

{·}
��

G̃∗ ◦ ι(N)∗ ◦ {·}, followed
by Zariski closure

��

Z�+1
∂B-cl.

(

U [�+1](N), �+ 1
)

{∑ ui=0}

ι(N)∗

��

Z�+1
∂B-cl.

(

Ũ [�](N), �+ 1
)

G̃∗
��

[

Z�+1
∂B-cl.

(

Û [�](N), �+ 1
)]G̃ [

Z�+1
∂B-cl.

(

Ū [�](N), �+ 1
)
]G̃restriction��

in which we denote the images of f as follows:
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f�

��






{f}
�

��
ι∗
(N)
{f}
�

��
Zf Zf.

���

Unless α1 + · · ·+ α�+1 != 0 ∀{α1, . . . , α�+1} ∈ |(f1)| × · · · × |(f�+1)|,
extending the cycle over the N -torsion sections to E [�](N) requires a “move”
(by adding a ∂B-coboundary). This condition just says that 0 /∈ |(f1)| ∗ · · · ∗
|(f�+1)|. Such a move always exists, as

[

CH�+1(E [�](N), �+ 1)
]G̃ ∼=

restriction
�

[

CH�+1(Û [�](N), �+ 1)
]G̃
.

Of course this eliminates well-definedness on the level of precycles (but not
cycle-class) for the resulting

Zf ∈ Z�+1
∂B-cl.

(E [�](N), �+ 1).

Proposition 7.4. We have a well-defined map of precycles

⊗�+1
Q[O∗(U(N))] −→ [Z�+1

∂B-cl.
(Ū [�](N), �+ 1)]G̃

f �−→ Zf.

Going modulo relations, this induces a well-defined map

O∗(U(N))⊗�+1 ��

�����
����

����
����

�
[

CH�+1(Ū [�](N), �+ 1)
]G̃

f �

��








[

CH�+1(E [�](N), �+ 1)
]G̃

∼=
��

〈Zf〉 .
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8. Fundamental class computations

8.1. Cycle class of the Eisenstein symbol

8.1.1. More Fourier theory. Now we introduce “fiberwise Fourier series”
for

E
π

��
H

e:=zero section.

��

Writing coordinates (τ, u = x+ yτ) on E , and ν := τ̄ − τ , we note that du
is only well-defined in Ω1(E/H), whereas

˜du := du− ū− u

ν
dτ ∈ A1,0(E) [resp. ˜dū := ˜du ∈ A0,1(E)]

make sense on E .
Let Γ := Γ(H, R1π∗Z) ∼= Z 〈[α], [β]〉, so that γ = m[β] + n[α] =“(m,n)”∈

Γ has period ω(γ) := π∗(du · δγ) = mτ + n against du; and write

χγ(u) := exp(2πi(mx− ny)), dχγ(u) =
2πi
ν
{ω(γ)du− ω(γ)du}χγ .

Associate to a current K ∈ DM (E) “Fourier coefficients”

K̂(γ) :=

{

π∗(K · χγ) ∈ DM−2(H), M ≥ 2,
ν−1π∗(K · χγ˜du ∧˜dū) ∈ DM (H), M < 2

for each γ ∈ Γ. (Note: ν−1du ∧ dū = dx ∧ dy.)

Lemma 8.1. (i) If K ∈ AM (E) (M < 2) then

e∗K =
∑

γ∈Γ
K̂(γ),

and the r.h.s. is absolutely convergent.
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(ii) Recalling the notation of Section 7.2.5,21 if K ∈ D0(Eτ ) is a smooth
function on the complement of W (p,q)

τ (N)\{connected component of
u = 0}, then

K(0) = e∗K =
∑

k∈Z

P.V.
∑

j∈Z

K̂(jp− ks, jq + kr)

where
∑P.V.

j∈Z := limJ→∞
∑J

j=−J (or alternatively, add ±j terms then
sum j ≥ 0; obviously the singularities are L1-integrable since K is a
current).

Proof. Condition (i) is just the statement “K(0) ={inverse FT evaluated at
0}=

∑

{Fourier coefficients}” for smooth functions.
(ii) Say (p, q) = (1, 0), M = 0. Then (working on some Eτ ) put Gk(x) :=

∫ 1
0 K(x, y)e−2πinydy ∈ D0(C/Z); this restricts to a smooth function on the

complement of { 1
N ,

2
N , . . . ,

N−1
N }. By Wilcox and Myers [84, Corollary 41.4]

Gk(0) =
∑P.V.

j∈Z
̂Gk(j) =

∑P.V.
j∈Z

∫ 1
0 Gk(x)e

2πijxdx======
Fubini ∑P.V.

j∈Z

∫ ∫

Eτ
K(x, y)

χ(j,k)dx ∧ dy =
∑P.V.

j∈Z K̂(j, k). But the {Gk(0)} are the Fourier coefficients
of the smooth function K(0, y) =⇒ K(0, 0) =

∑

Gk(0). �

Lemma 8.2. If F ∈ D0(E), ∂F
∂ū ∈ D0(E) is defined and ∂̂F

∂ū (γ) = 2πiω(γ)
ν

F̂ (γ).

Lemma 8.3. Let f ∈ O∗(UN ), and write ϕ̂f (γ) := ϕ̂f (m,n).

(i) ̂δ(f)(γ) = ϕ̂f (γ);

(ii) l̂og f(γ) =
∫

Tf
χγdu

ω(γ) for γ != (0, 0), while l̂og f(0) = 0 if f ∈
F(N)( p q

−s r

) ;

(iii) d log f = αf˜du+ βfdτ =⇒ α̂f (0) = ̂βf (0) = 0 while for γ != (0, 0),

α̂f (γ) =
−ϕ̂f (γ)
ω(γ)

and ̂βf (γ) =
̂φf (γ)

2πi(ω(γ))2
.

21Warning: in this section we are no longer using γ to denote
(

p q
−s r

)

∈ SL2(Z).
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Proof. Lemmas 8.2 and 8.3(i), (iii) (which uses 8.2) are essentially done
in [8]. For (ii) (and to get a feel for how the others go),

l̂og f(γ) = ν−1π∗(log f χγdu ∧ dū)

= (2πi)−1ω(γ)−1π∗
(

log f
2πi
ν
{ω(γ)du− ω(γ)dū}χγ ∧ du

)

= (2πi)−1ω(γ)−1π∗(log f dχγ ∧ du)

= (2πi)−1ω(γ)−1

⎧

⎪
⎨

⎪
⎩

−π∗(χγd[log f ] ∧ du) + π∗(χγ df
f ∧ du
︸ ︷︷ ︸

0

)

⎫

⎪
⎬

⎪
⎭

= ω(γ)−1π∗(χγδTf
∧ du) =

∫

Tf
χγdu

ω(γ)
,

where at the end we have used d[log f ] = df
f − 2πiδTf

. As for l̂og f(0), we have

l̂og |f |(0) = ν−1π∗(log |f | du ∧ dū) = 0 since log |f |du ∧ dū = d log |f | ∧ dū =
d[log |f |dū]. Now, using our prototype (from the proof of Lemma 7.3(ii)) for
f ∈ F(N)(1 0

0 1

) with f(z̄) = f(z), one finds (τ ∈ iR+) that π∗(arg f du ∧
dū) = π∗(arg f̄ du ∧ dū) = π∗(− arg f du ∧ dū). (A similar argument works
in general.) �

Lemma 8.4. Let f ∈ F(N)( p q
−s r

) , γ = (m,n). Then over (τ ∈)A(

p q
−s r

)

⊂ H,

∫

Tf

χγd

{

u
ū

}

=
p

{

τ
τ̄

}

+ q

2πi(mq − np)
ϕ̂f (γ)

if mq − np != 0; otherwise the l.h.s. is 0.

Proof. Represent Tf as a sum of straight paths of the following type, assum-
ing (f) =

∑N−1
K=0 aK

[

K pτ+q
N + L−sτ+rN

]

(L ∈ {0, . . . , N − 1} fixed). For the
paths, write

P : [0, 1] ↪→ Eτ

t �→ L
−sτ + r

N
+ t(pτ + q);
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then

Tf =
∑

K

aK

{

N −K

N
· P ([0,K/N])− K

N
· P ([K/N, 1])

}

+ b · P([0, 1])

=: T̃f + Sf ,

where b ∈ Q. We have

P∗(χγdu) = e2πi{m(Lr

N
+qt)−n(−Ls

N
+pt)}(pτ + q)dt

= e2πit(mq−np)e
2πiL

N
(mr+ns)(pτ + q)dt.

Now 1
pτ+q

∫

Sf
χγdu = b · e 2πiL

N
(mr+ns)

∫ 1
0 e2πit(mq−np)dt is obviously 0 if

mq − np != 0; but if mq − np = 0 then

e
−2πiL

N
(mr+ns)

pτ + q

∫

Tf

χγdu =
∫

Tf

du =
1

2πi

∫ (

df

f
− d[log f ]

)

∧ du

=
1

2πi

∫

(log f)d[du] = 0.

For mq − np != 0 we have

1
pτ + q

∫

T̃f

χγdu = e
2πiL

N
(mr+ns)

∑

K

aK

{

N −K

N

×
∫ K

N

0
e2πit(mq−np)dt− K

N

∫ 1

K

N

e2πit(mq−np)dt

}

=
e2πi L

N
(mr+ns)

2πi(mq − np)

(

∑

K

aKe2πi K

N
(mq−np) −

∑

K

aK

)

=
1

2πi(mq − np)

∑

K

aKχγ

(

K
pτ + q

N
+ L

−sτ + r

N

)

=
ϕ̂f (γ)

2πi(mq − np)

(where we have used that
∑

aK = 0). �

Remark 8.1. Lemma 8.3(iii) can be read
∫

Eτ
χγd log f ∧ dū = −νϕ̂f (γ)

ω(γ) .
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8.1.2. Main computation; proof of Beilinson-Hodge. We now use
the Fourier “technology” to compute

CH�+1(E [�](N), �+ 1)
[·]� HomMHS

(

Q(0), H�+1
(

E [�](N),Q(�+ 1)
))

for

Zf �−→ ΩZf
∈ Ω�+1(E [�](N))

〈

log π−1(κ(N))
〉

.

By Section 7.1.5, P∗NΩZf
= (2πi)�+1ΩFf

= (2πi)�+1Ff(τ)dz1 ∧ · · · ∧ dz� ∧ dτ
for some Ff(τ) ∈MQ

�+2(Γ(N)), and it is this modular form we must identify.

Consider Ωι(N)∗{f} ∈ Ω�+1(E [�](N))
〈

log
(

W̃ [�](N) ∪ π−1(κ(N))
)〉

, which

pulls back by G̃∗ to ΩZf
. The latter is not affected by moving Zf into

good position over W̄ [�](N) and completing it to Zf; so ΩZf
= G̃∗Ωι(N)∗{f} =

G̃∗ι(N)∗d log f1(u1) ∧ · · · ∧ d log f�+1(u�+1).
Write A{f} := (−1)�ΩP∗

N{f} ∧˜dū1 ∧ · · · ∧˜dū� ∈ A�+1,�(E [�+1])
〈

logW [�+1]
N

〉

and ι∗A{f} = P∗NΩι(N)∗{f} ∧ ˜dz̄1 ∧ · · · ∧ ˜dz̄� ∈ A�+1,�(E [�])
〈

log W̃ [�]
N

〉

⊂ D�+1,�

(E [�]). Using the diagram

(8.1) E [�] �
� ι ��

π[�]

����
���

���
���

��� E [�+1]
P �� ��

π[�+1]

��

E
π

�����
���

���
���

���

H
e

��

where P (τ ; [u1, . . . , u�+1]τ ) := (τ ; [u1 + · · ·+ u�+1]τ ), we compute π[�]
∗ (ι∗A{f})

in two different ways.
For the first,

π
[�]
∗ (ι∗A{f}) = π

[�]
∗ (G̃0ι

∗A{f}) = π
[�]
∗ {G̃∗(P∗NΩι(N)∗{f}) ∧ ˜dz̄1 ∧ · · · ∧ ˜dz̄�}

= π
[�]
∗
{

(2πi)�+1Ff(τ)dz1 ∧ · · · ∧ dz� ∧ dτ ∧ ˜dz̄1 ∧ · · · ∧ ˜dz̄�

}

= (−1)(
�+1
2 )(2πi)�+1ν�Ff(τ)dτ ∈ A1,0(H).

For the second,

π
[�]
∗ (ι∗A{f}) = e∗P∗A{f} ==========

Lemma 8.1(i) ∑

γ∈Γ
P̂∗A{f}(γ)
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= ν−1
∑

γ∈Γ

π∗(χγP∗A{f} ∧˜du ∧˜dū)

= ν−1
∑

γ∈Γ

π
[�+1]
∗

(

(P ∗χγ)A{f} ∧ (˜du1 + · · ·+ d̃u
�+1) ∧ P ∗˜dū

)

.

Writing d log(P∗Nfi(ui)) = αi˜dui + βidτ , this

= (−1)(
�+2
2 )ν−1

∑

γ∈Γ

�+1
∑

i=1

π
[�+1]
∗

×

⎧

⎨

⎩

(

�+1
∏

k=1

χγ(uk)

)

βi
∏

j =i
αj ˜du1 ∧˜dū1 ∧ · · · ∧ d̃u�+1 ∧ d̃ū�+1 ∧ dτ

⎫

⎬

⎭

= (−1)(
�+2
2 )ν�

∑

γ∈Γ

�+1
∑

i=1

̂βi(γ)
∏

j =i
α̂i(γ)dτ

=
(−1)�(�+ 1)

2πi
(−1)(

�+2
2 )ν�

∑

γ∈Γ

′
∏�+1
i=1 ϕ̂fi

(γ)
(ω(γ))�+2

.

So defining ϕf := ϕf1 ∗ · · · ∗ ϕf�+1 ∈ ΦQ
2 (N)◦ (and linearly extending this to

sums of “monomials” f1 ⊗ · · · ⊗ f�+1), we have proved

Theorem 8.1. Ff(τ) = −(�+1)
(2πi)�+2

∑

m,n∈Z2
ϕ̂f(m,n)

(mτ+n)�+2 = E
[�]
ϕf (τ).

Together with Lemma 7.2(i), the Decomposition Lemma (i), and
Lemma 7.4, this immediately yields

Corollary 8.1. E�+2(Γ(N)) ⊂M�+2(Γ(N)), E
Q
�+2(Γ(N)) ⊂MQ

�+2(Γ(N)).

(In particular, the map O∗(U(N))⊗�+1 → E
Q
�+2(Γ(N)) defined by f1 ⊗

· · · ⊗ f�+1 �→ E
[�]
ϕf (τ) is surjective.)

What is striking here is how simple cycles (once they are constructed)
make it to prove statements about related objects: in this case, that Eisen-
stein series are modular forms; in the same spirit we can identify their
“values” at cusps, and show that they yield all holomorphic forms with log
poles and Q-periods.

Corollary 8.2. For σ ∈ κ(N),

1
(2πi)�

Resσ(ΩZf
) = Rσ(Ff) = H[�]

σ (ϕf) =
−(�+ 1)
(2πi)�+2

L̃( ̂(πσ)∗ϕf, �+ 2).
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Proof. The outer equalities are just Sections 7.1.5 and 7.2.2, respectively
(∀σ). For σ = [i∞], R[i∞](Ff) := limτ→i∞ Ff(τ) = limτ→i∞E

[�]
ϕf (τ) = H

[�]
[i∞]

(ϕf) by Section 7.3.1.
Now SL2(Z) acts compatibly on the diagram

W̄
[	+1]
N

P

���
��

��
��

�
� � �� E [	+1]

P

���
��

��
��

��
��

��

E [	+1](N)

P

����
���

���
���

���

��

W̄N
� � �� E ��

����
��
��
��
�

E(N)

�����
���

���
���

���

H �� Y (N)
� � �� Y (N) = Y (N) ∪ κ(N)

since Γ(N) � SL2(Z). In particular, the action on connected components
of W̄N (the union of N -torsion sections) induces an action (by pullback) on
ΦQ

2 (N)◦ compatible with Pontryagin ∗ and pullbacks of functions ∈ O∗(UN ),
etc. Explicitly, Mσ :=

(
r −q
s p

)

sends: (in κ(N)) [i∞] �→ [ rs ] =: σ, (in H) τ �→
rτ−q
sτ+p =: τ0, (in W̄N ) m τ

N + n 1
N �→ 1

N
mτ+n
sτ+p = (mp− ns) τ0N + (mq + nr) 1

N =:

μ τ0N + η 1
N , and (in ΦQ

2 (N)◦, by pullback) ϕf(μ, η) �→
(
(

r −q
s p

)∗
ϕf

)

(m,n) :=
ϕf(mp− ns,mq + nr). So

(

π[i∞]∗

(
r −q
s p

)∗
ϕf

)

(m) =
∑

n∈Z/NZ

ϕf(mp− ns,mq + nr)

=
∑

n

ϕf(m(p, q) + n(−s, r))

=
(

π[ r

s
]∗ϕf

)

(m),

and

Resσ
(2πi)�

(ΩZf
) =

Res[i∞]

(2πi)�
(M∗σΩZf

)

=
Res[i∞]

(2πi)�
(

ΩZM∗
σf

)

=
−(�+ 1)
(2πi)�+2

L̃
(

̂π[i∞]∗ϕM∗
σ f, �+ 2

)

=
−(�+ 1)
(2πi)�+2

L̃
(

π̂σ∗ϕf, �+ 2
)

.

�
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Corollary 8.3. (i) Claim 7.1 holds for Γ(N) ( this implies Beilinson-
Hodge for E [�](N)).

(ii) E
Q
�+2(Γ(N)) = MQ

�+2(Γ(N)) ∼= HomMHS

(

Q(0), H�+1(E [�](N),Q(�+ 1)
)

,
with dimension |κ(N)|.

(iii) M�+2(Γ(N)) = E�+2(Γ(N))⊕ S�+2(Γ(N)).

Remark. Note that dimC E = dimQ E
Q = dimQM

Q ≤ dimCM in general.

Proof. It is basically contained in the diagram

O∗(U(N))⊗�+1

⊗�+1÷

���������
�����

�����
�����

Z

		���
����

����
����

��

(

ΦQ

2 (N)◦
)⊗�+1

∗�+1

����

CH�+1(E[�](N), � + 1)

[·]

��
ΦQ

2 (N)◦

H=⊕
σ∈κ(N)H

[�]
σ

�� ����
���

���
���

���
���

���
���

���
�� �� EQ

�+2(Γ(N))
� � ��

⊕Rσ|
EQ

���
��

��
��

��
��

��
��

�
M

Q

�+2(Γ(N))

[(2πi)�+1Ω(·)]

∼=
��

⊕Rσ|
MQ

��

HomMHS

(

Q(0), H�+1(E[�](N), Q(� + 1))
)


�

Res=⊕ Resσ
(2πi)�

�����
���

���
���

���
���

���
�θ�+2

��

ΥQ

2 (N)

(The arrows around the outer left surject by Sections 7.2.5, 7.2.3, 7.2.2
(resp.), as does the map to E

Q
�+2 by Section 7.3.1; the map from E

Q
�+2 injects

by Corollary 8.1 and Res by Section 7.1.4. The upper pentagon commutes
by Theorem 8.1, and the lower triangles by Corollary 8.2.) We can track
f := f1 ⊗ · · · ⊗ f�+1 though the diagram:

f�

�����
���

���
���

�� �

���
��

��
��

��
�

ϕf1 ⊗ · · · ⊗ ϕf�+1�

��

〈Zf〉�

��
ϕf

� ��
�

���
������ Ff

� ��
�

��

[ΩZf
]�

��� �
�
�
�
���

R(Ff)
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To see (i), note the composition H ◦ ∗�+1 ◦ ⊗�+1÷ surjective =⇒ Res ◦ [·] ◦
Z surjective =⇒ Res ◦ [·] surjective (=Claim 7.1) (which implies [·] is sur-
jective (=Beilinson–Hodge)).

For (ii), Res ◦ [·] ◦ Z surjective implies that [·] ◦ Z is surjective (and Res ∼=)
which shows θ�+2 ◦ [·] ◦ Z is surjective and hence that E

Q ⊆MQ is equality.
Finally, dim ΥQ

2 (N) = |κ(N)|.
Now (iii) follows from Equation (7.3). �

Remark 8.2. Corollary 8.3 holds for arbitrary congruence subgroups Γ
(between Γ(N) and SL2(Z)), given an appropriate definition of Eisenstein
series for Γ. This is (referring to Section 7.1.6)

E
Q
�+2(Γ) := R−1

(

P
[�]
Γ(N)/Γ(Υ

Q
2 (Γ))

)

∩ E
Q
�+2(Γ(N)),

the important point being that these are generated by ϕ ∈ Φ2(N)◦ satisfying
H

[�]
[ r

s
](ϕ) = H

[�]

[ r′
s′ ]

(ϕ) whenever [ rs ], [ r
′

s′ ] ∈ κ(N) map to the same cusp in κ(Γ).

We will look at this condition further below (in Section 8.2.1).
Also, a version of the above construction can be made to work for PΓ(2)

(by choosing an ∼= subgroup of SL2(Z)) if � is even, but we have omitted
this.

8.1.3. Additional calculations for the cycle class The results of Sec-
tion 8.1.2 lead naturally to a basis for E

Q
�+2(Γ(N)) whose elements cor-

respond to holomorphic (�+ 1)-forms with Q(�+ 1) periods and log poles
along the fiber over exactly one cusp σ. (In some sense this is the most
explicit confirmation of Beilinson–Hodge.)

Writing

Γ(N)i∞ := Stab(i∞ ∈ H∗) =
{(

1 aN
0 1

)}

⊂ Γ(N),

PSL2(Z)i∞ := Stab(i∞ ∈ H∗) =
{

±
(

1 a
0 1

)}

⊂ PSL2(Z),

we have a short-exact sequence

Γ(N)i∞�Γ(N) −→ PSL2(Z)i∞�PSL2(Z)
−→

〈(
1̄ ā
0̄ 1̄

)〉

�PSL2(Z/NZ)
︸ ︷︷ ︸

∼= κ(N)

.
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Hence

E[�]
ϕ (τ) =

−(�+ 1)
(2πi)�+2

∑

(m,n)∈Z2

′ ϕ̂(m,n)
(mτ + n)�+2

=
−(�+ 1)
(2πi)�+2

∑

±(m0, n0) ∈ Z2/±
rel. prime

	 γ =

( ∗ ∗
m0 n0

)

∑

γ∈ P SL2(Z)
P SL2(Z)i∞

∑

z∈Z

′ ϕ̂(zm0, zn0)
(zm0τ + zn0)�+2

=
−(�+ 1)
(2πi)�+2

∑

σ ∈ κ(N)
‖

[ r
s
]

∑

γ′ ∈ Γ(N)
Γ(N)i∞ ·

(

p q
−s r

)

	 γ′ =

( ∗ ∗
m0 n0

)

∑

(m0, n0) rel. prime,
(N)≡ (−s, r)

∑

z∈Z

′ ϕ̂(zm0, zn0)
z�+2(m0τ + n0)�+2

.

Now since (in the sum) (m0, n0)
(N)
≡ (−s, r), ϕ̂(zm0, zn0) = ϕ̂(−zs, zr) = (ι∗[ r

s
]ϕ̂)

(z) = π̂[ r

s
]∗ϕ(z) and the above

=
∑

σ∈κ(N)

⎡

⎣

−(�+ 1)
(2πi)�+2

∑

z∈Z

′ π̂[ r

s
]∗ϕ(z)

z�+2

⎤

⎦

∑

(m0, n0)
(N)≡ (−s, r)

gcd(m0, n0) = 1

1
(m0τ + n0)�+2

=:
∑

σ∈κ(N)

H[�]
σ (ϕ)Ẽ[�]

σ (τ),

where the
∑

z = L̃(π̂[ r

s
]∗ϕ, �+ 2) and H

[�]
σ (ϕ) (σ = [ rs ]) is the entire bracketed

quantity.

Proposition 8.1. (i) We have, for σ = [ rs ],

Ẽ[�]
σ (τ) =

∑

(m0,n0)∈Z2

rel. prime,
(N)≡ (−s,r)

1
(m0τ + n0)�+2

=
∑

(α′,β′)∈Z2

gcd(r+Nα′,s+Nβ′)=1

1
(r +Nα′ − (s+Nβ′)τ)�+2
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=
∑

(α,β)∈Z2

gcd(1+Nα,Nβ)=1

1
[(1 + αN)(r − sτ) + βN(q + pτ)]�+2

.

In particular,

Ẽ
[�]
[i∞](τ) =

∑

(α,β)∈Z2

gcd(1+Nα,Nβ)=1

1
(1 +Nα−Nβτ)�+2

.

(ii) The {Ẽ[�]
σ (τ)}σ∈κ(N) give a basis for the E

Q
�+2(Γ(N)), satisfying Rσ′

(Ẽ[�]
σ ) = δσσ′ .

(iii) Given f ∈ O∗(U(N))⊗�+1,

Ff(τ) =
∑

σ∈κ(N)

H[�]
σ (ϕf)Ẽ[�]

σ (τ).

Proof. For (ii), pick for each σ a ϕ ∈ ΦQ
2 (N)◦ so that H

[�]
σ′ (ϕ) = δσσ′ , and

plug into the computation above. The remainder is clear. �

Next, we have a q-series expansion at [i∞] for the usual Eisenstein series
associated to a “divisor onN -torsion” ϕ ∈ ΦQ

2 (N)◦: write q0 := e
2πiτ

N =“q
1
N ”,

ξN (a) := e
2πia

N , �ϕ̂(m,n) := ϕ̂(m,n) + (−1)�ϕ̂(−m,−n).

Proposition 8.2.

E[�]
ϕ (τ) = H

[�]
[i∞](ϕ)

+
(−1)�+1

N �+2�!

∑

M≥1

qM0

⎧

⎨

⎩

∑

r|M
r�+1

⎛

⎝

∑

n0∈Z/NZ

ξN (n0r) · �ϕ̂
(

M

r
, n0

)

⎞

⎠

⎫

⎬

⎭

.

Proof. Essentially in [44] for � even (also see [57]), but can be derived from
scratch using ideas in [76] (will be done below for q-series of regulator
periods). �

Since q0 is the local coordinate at [i∞] ∈ Y (N), this yields a power-
series expansion for Ff there. We have not tried to directly compute
q-expansions for the Ẽ[�]

σ , but one can plug ϕ := 1
N π
∗
σϕ

[�]
N into E[�]

ϕ to have
the same effect (see Proposition 7.3). We are particularly interested in the
case σ = [i∞]. First, a simplification of Proposition 8.2:
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Corollary 8.4. For ϕ0 ∈ ΦQ(N)◦, ϕ := 1
N π
∗
[i∞]ϕ0, we have

E[�]
ϕ (τ) =

(−1)�

�!(�+ 2)

N
∑

a=0

ϕ0(a)B�+2

( a

N

)

+
(−1)�+1

N �+1�!

∑

μ≥1

qNμ0

⎧

⎨

⎩

∑

r|μ
r�+1 · �ϕ0(r)

⎫

⎬

⎭

,

where �ϕ0(a) = ϕ0(a) + (−1)�ϕ0(−a).

Proof. �ϕ̂ = � ̂( 1
N π
∗
[i∞]ϕ0) = ι[i∞]∗

�ϕ̂0 implies that
∑

n0
ξN (n0r) · �ϕ̂(Mr , n0) =

0 if N 

M
r ; otherwise =

∑

n0
ξN (n0r) · �ϕ̂0(n0) = N · �ϕ0(r). Put M = μN .

�

Now take ϕ0 to be the “fundamental vector” ϕ[�]
N ; then

E[�]
ϕ (τ) = 1 +

2(−1)�+1

N �+1�!

∑

μ≥1

qNμ0

⎧

⎨

⎩

∑

r|μ
r�+1ϕ

[�]
N (r)

⎫

⎬

⎭

has Rσ(E
[�]
ϕ ) = δσ,[i∞].

Example 8.1. If � = 1 and N = 3, from Example 7.3 we get

1− 9
∑

μ≥1

q3μ0

⎧

⎨

⎩

∑

r|μ
r2χ−3(r)

⎫

⎬

⎭

.

8.2. Push-forwards of the construction

8.2.1. Eisenstein symbols for other congruence subgroups Γ. Recall
that this means Γ(N) ⊆ Γ ⊆ SL2(Z) (N ≥ 3), {−id} /∈ Γ; that automati-
cally Γ(N) � Γ; and that there are corresponding quotients

(E [�](N)\fibers)
P [�]

Γ(N)/Γ�� E [�]
Γ , (Y (N)\pts.)

ρΓ(N)/Γ�� YΓ\εΓ. Our main examples
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will be

Γ1(N) :=
{

(
a b
c d

)

∈ SL2(Z)
∣

∣ a
(N)
≡ 1

(N)
≡ d, c

(N)
≡ 0

}

=
〈

Γ(N),
(

1 1
0 1

)〉

,

Γ
′
1(N) :=

{

(
a b
c d

)

∈ SL2(Z)
∣

∣ a
(N)
≡ 1

(N)
≡ d, b

(N)
≡ 0

}

=
〈

Γ(N),
(

1 0
1 1

)〉

=
(

0 1
−1 0

)

Γ1(N)
(

0 1
−1 0

)

.

Already for Γ(′)
1 (N), N not prime, one has type I∗m cusps — e.g., Y

′

1(4) has
cusps [i∞] (I4), [0] (I1), [2] (I∗1 ). (Also, Y (′)

1 (3) has an elliptic point, but for
simplicity our notation will ignore this fact.)

However, we will consider also “traditional” congruence subgroups that
do not fit our convention e.g.,

Γ0(N) :=
{

(
a b
c d

)

∈ SL2(Z)
∣

∣ c
(N)
≡ 0

}

(" {−id}),

for which one has Y Γ but no canonically defined E [�]
Γ (though when N =

3, 4, 6 one can get around this problem by observing that SL2(Z) � PSL2

(Z) sends Γ1(N)
∼=� PΓ0(N)). We will also consider (in Section 8.2.2)

Γ+N :=
〈

Γ, ιN :=
(

0 −1/
√

N√
N 0

)〉

(� SL2(Z))

for Γ = Γ0(N),Γ1(N).
We will now (e.g., using P [�]

Γ(N)/Γ∗) push the {Zf} constructed in Sec-
tion 7.3.4 forward to cycles (on families) over these new YΓ. The aim in
doing this is to produce more Eisenstein symbols (on families of abelian
varieties or CY ’s) that live over genus 0 curves, in order to link up with
those cases of the construction of Sections 3 and 4 which are classically
modular. We note that, while g(Y (N)) = 0 only for N = (2,) 3, 4, 5, on the
other hand Y (′)

1 (2− 10, 12) and Y0(2− 10, 12, 13, 16, 18, 25) are all rational.
To get a feel for the behavior of cusps under the various ρΓ′

/Γ, consider
the maps Y (N) → Y 1(N) → Y 0(N) → Y 0(N)+N for N prime, with (resp.)
N2−1
N (all IN ), N − 1 (half each of IN , I1), 2 (IN , I1), and 1 cusp(s). Since

N is prime, one has a correspondence κ(N) ∼= (Z/NZ)2\{(0,0)}
〈±id〉 , and one can

picture how these get equated (e.g., for N = 5) as in figure 11, where circles
are chosen representatives of equivalence classes. Flipping about the diagonal
gives the picture for κ(5) → κ′1(5).

For Γ′ ⊂ Γ if index r, ρΓ′
/Γ : Y Γ′ → Y Γ is of degree r; if Γ′ � Γ then ρΓ′

/Γ

(omitting cusps/elliptic points and their preimages) is a Galois covering, so
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Figure 11: Behavior of cusps under brached coverings.

that one has deck transformations {jj}rj=1 satisfying
∑

j∗j = ρ∗ρ∗ (on forms,
cycles, etc.), and corresponding transformations on the Kuga varieties. For
example, one has a diagram (j = 1, . . . , N)

E [�]

π[�]

��

P [�]
Γ1(N) ��

P [�]
Γ(N)

  
  

  
  

 

�� 
  

  
  

 

E [�]
Γ1(N)

π
[�]
1 (N)

��
H

ρΓ1(N) ��

ρΓ(N)

��
��

��
��

��

���
��

��
��

��

Y1(N)

E [�](N)

Jj

��

π[�](N)

��

P [�]
Γ(N)
Γ1(N)!!!!!!!!

��!!!!!!!

Y (N)

jj

��

ρ Γ(N)
Γ1(N)���������

�����������

(and a similar diagram for Γ
′
1(N)) where (′)Jj and (′)jj are induced by

the action of coset representatives γ(′)
j =

(
1 j
0 1

)

[resp.
(

1 0
j 1

)

]∈ SL2(Z) for
Γ

(′)
1 (N)/Γ(N), on E [�] and H. Now define

Zf,1(′) :=
1
N

(

P [�]
Γ(N)/Γ(′)

1 (N)

)

∗
Zf ∈ CH�+1(E [�]

Γ
(′)
1 (N)

, �+ 1);

then we have

Ff,1(′) := θ�+2(ΩZ
f,1(

′) ) = θ�+2

((

P [�]
Γ(N)/Γ(′)

1 (N)

)∗
Zf,1(′)

)
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=
1
N
θ�+2

⎛

⎝

N
∑

j=1

(′)J ∗j ΩZf

⎞

⎠

=
1
N

N
∑

j=1

θ�+2(ΩZf
)|�+2

γ
(′)
j

=
1
N

N
∑

j=1

Ff|�+2

γ
(′)
j

,

i.e.,

Ff,1(τ) =
1
N

N−1
∑

j=0

Ff(τ + j) and Ff,1′(τ) =
1
N

N−1
∑

j=0

Ff( τ
jτ+1)

(jτ + 1)�+2
.

Writing

(ρ∗ϕ̂f)(m,n) :=
∑

j

ϕ̂f(m,n−mj), (ρ∗′ϕ̂f)(m,n) :=
∑

j

ϕ̂f(m− nj, n)
(8.2)

we get

Ff,1(′)(τ) =
−(�+ 1)
(2πi)�+2

∑

m,n

′
1
N (ρ(′)

∗ ϕ̂f)(m,n)
(mτ + n)�+2

.

Using Corollary 8.3(ii) for Γ(′)
1 (N) and surjectivity of κ(N) → κ

(′)
1 (N), this

implies

Proposition 8.3.
(

P [�]

Γ
(′)
1 (N)

)∗
of any class in F �+1 ∩H�+1(E [�]

Γ
(′)
1 (N)

,

Q(�+ 1)) is (2πi)�+1ΩF for F = E
[�]
ϕ , ϕ ∈ ΦQ

2 (N) with ϕ̂ = 1
N ρ

(′)
∗ ϕ̂.

The effect of ρ∗ on the q-expansion is especially simple:

Ff(τ) =
∑

M≥0

αMq
M
0

=⇒ Ff,1(τ) =
1
N

∑

M≥0

αM

N−1
∑

j=0

(ξN (j) q0)M =
∑

m≥0

αmNq
m,

which makes sense since q is the local coordinate at [i∞] on Y 1(N).
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We are interested in Eisenstein symbols with their only residue at [i∞],
in analogy to Sections 3 and 4. If Ff = Ẽ

[�]
[i∞], then clearly

Ff,1 = Ẽ
[�]
[i∞], while

Ff,1′ =
1
N

N−1
∑

j=0

Ẽ
[�]

[ 1
j
]
=

1
N

∑

(α,β)∈Z2

gcd(1+Nα,β)=1

1
(1 +Nα+ βτ)�+2

.

Once Γ and � are specified, such symbols (or rather, their cycle classes) are
unique (up to scaling), so for Γ1(N) and Γ(′)

1 (N) this is it!

8.2.2. Eisenstein symbols for K3 surfaces and CY three-fold fam-
ilies. Given a cycle Z ∈ CH�+1(E [�]

Γ , �+ 1) (e.g., Γ = Γ(N) or Γ(′)
1 (N)),

we have ΩZ = (2πi)�+1FZ(τ) dz1 ∧ · · · ∧ dz� ∧ dτ (FZ ∈ E
Q
�+2(Γ)), which we

assume != 0. If � = 2, then there is an involution I : (τ ; z1, z2) �→ (τ ;−z1,
−z2), with I∗ΩZ = ΩZ. Set X̌ [2]

Γ := E [2]
Γ
I , and let X [2]

Γ → X̌ [2]
Γ be the (smooth)

Kummer K3 family over YΓ\εΓ obtained by blowing up the two-torsion
multisections. Using the diagram

(8.3) ˜X [2]
Γ ×X̌ [2]

Γ
E [2]

Γ

p2

��

�
"

#
$

%

&

�� p1

��

�
'
(
)

�

*

X [2]
Γ ×X̌ [2]

Γ
E [2]

Γ

2:1
  +++

++
++
++
+

��,
,,

,,
,,

,,
,

X [2]
Γ

!!--
--

--
--

--
- E [2]

Γ

2:1
  +++

+++
+++

+++

X̌ [2]
Γ

we define a (nontrivial) cycle by ZX := 1
2p2∗p

∗
1Z ∈ CH3(X [2]

Γ , 3). (This will
have the same regulator periods and higher normal function as Z by the
monodromy argument below. Note also that if we take Γ = Γ1(N), then
quotienting E [2]

Γ by the action of Γ0(N)/Γ1(N) and blowing up also yields
— due to the presence of

(−1 0
0 −1

)

— a family of Kummer K3 surfaces over
Y0(N)\ · · · and a nontrivial cycle.) There is a fiberwise involution I ′ : X [2]

Γ →
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X [2]
Γ induced by (z1, z2) �→ (z1,−z2) [or equivalently (−z1, z2)], sending dz1 ∧

dz2 �→ −dz1 ∧ dz2 and fixing the exceptional divisors.
Passing to � = 3, and taking Z ∈ CH4(E [3]

Γ , 4), we can apply the process
above to the first two fiber-factors to obtain Z′ ∈ CH4(X [2]

Γ ×
YΓ\εΓ

EΓ, 4).
Writing I ′′ : EΓ → EΓ [z �→ −z], we have an involution I ′ × I ′′ on X [2]

Γ ×··· EΓ

evidently fixing ΩZ′ . Blowing up along the singular set (in each fiber this
looks like a disjoint union of 64 rational curves) and applying a process
similar to the � = 2 case, yields a family X [3]

Γ of Borcea–Voisin (CY ) three-
folds over YΓ\εΓ, and a nontrivial cycle ZX ∈ CH4(X [3]

Γ , 4). (Again, this will
have the same regulator periods as Z.)

Here is a more interesting construction, which yields a K3-class on a
K3 surface family over Y1(N)+N . Recall that the Fricke involution ιN ∈
SL2(R) acts on H by τ �→ − 1

Nτ ; this yields an action of Γ1(N)+N on H∗

with Y 1(N)+N as quotient. By normality of Γ1(N) � Γ1(N)+N , ιN also
acts on Y 1(N) with quotient map ρ+N : Y 1(N) � Y 1(N)+N .

Set ′E1(N) := E(N)×ιN Y1(N), representing points by (τ ; [z] −1
Nτ

), and
consider the relative N -isogeny (not an involution!) JN : ′E1(N) → E1(N)
induced by (τ ; z) �→ (τ ;−Nτz). Writing ′E [2]

1 (N) := E1(N)×
Y1(N)

′E1(N), we
have id× JN =: J [2]

N : ′E [2]
1 (N) → E [2]

1 (N); given F ∈MQ
4 (Γ1(N)), ′ΩF :=

− 1
N (J [2]

N )∗ΩF = τΩF . Also write J̃ [2]
N : E [2]

1 (N) → ′E [2]
1 (N) for (τ ; z1, z2) �→

(τ ; z1, z2τ ).
Now we are ready to consider the involution

′E [2]
1 (N)

π

��

I
[2]
N �� ′E [2]

1 (N)

π

��
H

ιN �� H

induced by exchanging factors: (τ ; [z1]τ , [z2] −1
Nτ

) �→ (−1
Nτ ; [z2] −1

Nτ
, [z1]τ ). We

have

(I [2]
N )∗(′ΩF ) =

−1
Nτ

F

(

−1
Nτ

)

dz2 ∧ dz1 ∧ d
(

−1
Nτ

)

= τ

(

1
N2τ4

F

(

−1
Nτ

))

dz1 ∧ dz2 ∧ dτ

= ′ΩF |4ιN
,
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where F |kιN (τ) := F (ιN (τ))

(
√
Nτ)k

. Set

(8.4) F+ := 1
2

(

F + F |4ιN
)

.

Taking the quotient by I [2]
N

E [2]
1 (N)+N :=

′E [2]
1 (N)\π−1(i/

√
N)

I
[2]
N

��P+N ′E [2]
1 (N)\π−1(i/

√
N)

and replacing E [2]
Γ in (8.3) by this, we get a family X [2]

1 (N)+N of (smooth)
Kummer K3 surfaces over Y1(N)+N\{i/√N}. It may be more desirable to
try to construct cycles on a Shioda–Inose K3 family, especially one over
Y0(N)+N — but this seems difficult to do canonically. If Z ∈ CH3(E [2]

1 (N), 3)
with θ4(ΩZ) =: FZ, we may define a cycle

(8.5) Z+N :=
−1
4N

p2∗p∗1(P+N )∗(J
[2]
N )∗Z ∈ CH3(X [2]

1 (N)+N , 3).

Also take W ∈ CH3(X [2]
1 (N)+N , 3) to be an arbitrary cycle.

Proposition 8.4. (i) ′ΩF descends to a holomorphic three-form with
Q(3) periods on X [2]

1 (N)+N if and only if F ∈MQ
4

(

Γ1(N)+N
)

:=
[MQ

4 (Γ1(N))]+.

(ii) ˜W := (J̃ [2]
N )∗(P+N )∗p1∗p∗2W (on E [2]

1 (N)) has “cycle-class” θ4(ΩW̃ ) ∈
MQ

4

(

Γ1(N)+N
)

.

(iii) θ4(Ω˜Z+N
) = F+

Z .

Because ′E [2]
1 (N)+N is not a Kuga variety, we no longer have that pull-

backs Ω
˜W

to E [2]
1 (N) have equal residues at cusps ∈ κ1(N) mapping to

the same cusps ∈ κ(N)+N . Consider for simplicity the residues at22 [0]

22Note: the residues of F (hence F+) at all [j] (j ∈ Z) are the same (as the residue
at [0]).
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and [i∞], which are exchanged by the involution on E [2]
1 (N) induced by

γ0 =
(

0 −1
1 0

)

∈ SL2(Z), and assume F ∈MQ
4 (Γ1(N)+N ) (which implies that

N−2τ−4F
(−1
Nτ

)

= F (τ)). Then

R[0](F ) = lim
τ→i∞

F |4γ0
(τ)

= lim
τ→i∞

τ−4F

(

−1
τ

)

=====
τ0:=

τ

N

lim
τ0→i∞

N−4τ−4
0 F

(

−1
Nτ0

)

= N−2 lim
τ0→i∞

F (τ0) =
R[i∞](F )
N2

.

If we assume only F ∈MQ
4 (Γ1(N)), then

lim
τ→i∞

N−2τ−4F

(

−1
Nτ

)

=====
τ1:=Nτ

N2 lim
τ1→i∞

τ−4
1 F

(

− 1
τ1

)

= N2 lim
τ1→i∞

F |4γ0
(τ1)

= N2R[0](F ).

So

R[i∞](F
+) =

1
2
{

R[i∞](F ) +N2R[0](F )
}

,

R[0](F
+) =

1
2

{

1
N2

R[i∞](F ) + R[0](F )
}

.
(8.6)

This calculation shows
〈

˜Z+N

〉

is nontrivial if one picks Z so that R[i∞](FZ) !=
−N2R[0](FZ) (obviously possible by Section 8.1.2).

Remark 8.3. If we replace I [2]
N by the order 4 automorphism ′I [2]

N (τ ; [z1]τ ,
[z2] −1

Nτ
) = (−1

Nτ ; [−z2] −1
Nτ
, [z1]τ ), then the corresponding quotient ′P+N yields a

family of singular Kummer surfaces which is then resolved to yield a smooth
K3 family ′X [2]

1 (N)+N
π�� Y1(N)+N . Reworking this in analogy to (8.3) (so

as not to pass through a singular variety), one constructs a cycle ′Z+N and
most of the exposition goes through as above with the crucial replacement
of F |4ιN by −F |4ιN (and N2 by −N2 in (8.6)). In some sense this is the more
natural construction (as the examples in Section 10 will suggest).
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9. Regulator periods and higher normal functions (bis)

9.1. Setup for the fiberwise AJ computation

We restrict once more to Γ = Γ(N) and the Kuga modular varieties E [�]

(N)
π[�](N)�� Y (N), and write their middle relative cohomology groups: H

[�]
N :=

R�π[�](N)∗Z, H[�]
N := H

[�]
N ⊗OY (N), H

[�],∞
N := H

[�]
N ⊗OY (N)∞ , etc. — drop-

ping the “N” to work on E [�]/H, and flipping super/sub-scripts for homol-
ogy. One has the subsheaves of G∗( =⇒ G̃∗)-invariants Sym�

H
[1]
N,Q ⊂ H

[�]
N,Q,

Sym�H[1]
N ⊂ H[�]

N ; as well as G∗-coinvariants H
N,Q
[�] � Sym�H

N,Q
[1]

G∗◦P.D.

∼=
�

Sym�
H

[1]
N,Q. There are the following well-defined sections /H (multivalued

/Y (N)):

α =
−−→
[0, 1], β =

−−→
[0, τ ] ∈ Γ(H,H[1]),

γ
[�]
k := α�−kβk ∈ Γ(H,Sym�H

Q

[1]),

γ̃
[�]
k := G∗(α1 × · · · × α�−k × β�−k+1 × · · · × β�) ∈ Γ(H,Sym�

H
[1]
Q ),

η
[�]
�−k := G∗(dz1 ∧ · · · ∧ dz�−k ∧ dz̄�−k+1 ∧ · · · ∧ dz̄�)

∈ Γ(H,F �−kSym�H[1],∞),

where one should think of G∗ as reordering the dz/dz̄’s or α/β’s in all possible
ways and dividing by

(
�
k

)

. Writing [·]k =“term of homogeneous degree k in
τ, τ̄”,

〈

γ
[�]
k , η

[�]
�−j
〉

=
(

�

k

)−1 [

(1 + τ)�−j(1 + τ̄)j
]

k
(9.1)

=

∑k
a=0

(
�−j
a

)(
j

k−a
)

τaτ̄k−a
(
�
k

) =: P
[�]
jk

Viewed as the monodromy transformation corresponding to an element
of π1(Y (N)), γ ∈ Γ(N) acts on (γ[�]

0 , . . . , γ
[�]
� ) from the right, as Sym�γ;

we think of the γ
[�]
i as degree-� homogeneous polynomials in α and β,

with μi∞ :=
(

1 N
0 1

)

: β �→ β +Nα, α �→ α and μ0 :=
(

1 0
N 1

)

: β �→ β, α �→
α+Nβ. (Also, γ sends η[�]

�−k �→
η
[�]
�−k

(cτ+d)�−k(cτ̄+d)k ; note that the {η[�]
�−k} and

γ
[�]
0 are well-defined over an analytic neighborhood of [i∞] in Y (N).)
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Now refer to the cycle-construction of Section 7.3.4, denote the fiberwise
“slices” (pullbacks) of 〈Zf〉 by 〈Zf〉y (or τ), etc.; and consider the diagram

O∗(U(N))⊗�+1

f �→〈Zf〉
��

R[�]
N

:=

""

H◦∗�+1◦⊗�+1÷ �� �� ΥQ

2 (N)

Res−1∼=
��

[

CH�+1(E[�](N), � + 1)
]G̃

〈Z〉
↓

{

AJ�+1,�+1(〈Z〉y)
}

y∈Y (N)

��

[·]

〈Zf〉 �→[ΩZf
]

�� �� HomMHS

(

Q(0), H�+1(E[�](N), Q(� + 1))
)

� 	

locally
Fdz ∧ dτ

↓
(Fdz) ⊗ dτ

“Leray
{1, 	}
part”

��

Γ

(

Y (N),
Sym�H[1]

N

(Sym�H
[1]
N

)⊗Q(�+1)

)

� 	

��

Γ

(

Y (N),
H[�]

N

H
[�]
N,Q(�+1)

)

(−1)�·∇ �� Γ
(

Y (N),F�H[�]
N ⊗ Ω1

Y (N)

)

in which the upper square commutes by the proof of Corollary 8.3. Write
simply Rf(y) for the R[�]

N -image of f; if we pull this back to H, we may choose
a well-defined lift R̃f(τ) ∈ Γ(H,Sym�H[1]).

Lemma 9.1. (i) The bottom square commutes.

(ii) ∇ is surjective.

Proof. (i) 〈Z〉 ∈ CH�+1(E [�](N), �+ 1) has TZ
hom≡ 0 on (π[�](N))−1(disk);

so locally we may write R′Z := RZ + (2πi)�+1δ∂−1TZ
and compute

∇[R′Z]y = (d[R′Z]){1,�} = Ω{1,�}Z .

(ii) follows from irreducibility of the monodromy action on Sym[�]
H

[1]
N

and consequent vanishing of the space of (∇-)flat G∗-symmetric nor-
mal functions Γ

(

Y (N), (Sym�H
[1]
N )⊗C

(Sym�H
[1]
N )⊗Q(�+1)

)

. Explicitly, given any Γ =
∑�

k=0 εkγ̃
[�]
k ({εk} ∈ C), the coefficients of γ̃[�]

j in μi∞(Γ)− Γ =
∑�−1

j=0
(
∑�

k=j+1

(
k
j

)

εkN
k−j

)

γ̃
[�]
j must belong to Q(�+ 1); inductively one has

ε�, ε�−1, . . . , ε1 ∈ Q. To show ε0 ∈ Q, similarly apply μ0 − id. �

Corollary 9.1. Rf(y) depends only on {H[�]
σ (ϕf)} ∈ ΥQ

2 (N) (or on ϕf ∈
ΦQ

2 (N)).
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According to Sections 7.2.4 and 7.2.5, it therefore suffices to compute

Rf for f ∈ Q

[

F(N)×(�+1)
(

p q
−s r

)

]

for “each” (p, q). (In fact, it suffices to do so for

(p, q) = (0, 1) and (1, 0), but it is computationally convenient to consider at
least our choices of

(
p q
−s r

)

for each cusp σ ∈ κ(N).)
For a fixed choice of lift R̃[�]

f (to be discussed), write

(9.2) R̃[�]
f (τ) =:

�
∑

k=0

R
[�]
f,j(τ)

[

η
[�]
�−j
]

.

We then define regulator periods

(9.3) Ψ[�]
f,k(τ) :=

〈

γ
[�]
k , R̃

[�]
f (τ)

〉

(k = 0, . . . , �)

and a higher normal function23

(9.4) V
[�]
f (τ) :=

〈

R̃[�]
f (τ), η[�]

�

〉

= (−1)(
�+1
2 )ν�R[�]

f,�(τ).

These are the objects which we aim (in the next subsection) to compute
with the [50] formula; first we can derive a number of their properties by
“pure thought”.

Holomorphicity: Since∇∂τ̄
R̃f(τ) = 0 ∈ Γ(H,H[�]), V [�]

f and the {Ψ[�]
f,k} belong

to O(H). The {R[�]
f,j} are not holomorphic since the [η[�]

j ] are not (except

for η[�]
� ):

(9.5) ∇η[�]
j = j

[η[�]
j−1]− [η[�]

j ]
ν

⊗ dτ − (�− j)
[η[�]
j+1]− [η[�]

j ]
ν

⊗ dτ̄ .

Picard–Fuchs equations: Let ∇f
PF = ∇�+1

∂τ
+ · · · denote the PF operator for

Ω[�]
f (τ) := (2πi)�+1Ff(τ)[η

[�]
� ] ∈ Γ(H,F �H[�]).Writing ∇̄∂τ

: Fj/Fj+1 → Fj−1/Fj,

(9.5) =⇒ ∇̄∂τ
η

[�]
j = j

ν [η
[�]
j−1] =⇒ ∇̄�

∂τ
η

[�]
� = �!

ν� [η
[�]
0 ], which yields the “stupid

23It would make more sense on Y (N) to take V (τ) =
〈

R̃,Fη�

〉

for some F ∈
M�(Γ(N)); we will essentially do this later.
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Yukawa coupling”

Yτ �(τ) :=
〈

η
[�]
� , ∇

�
∂τ
η

[�]
�

〉

= (−1)(
�

2) �!
ν�

∫

dz1 ∧ dz̄1 ∧ · · · ∧ dz� ∧ dz̄� = (−1)(
�

2)�!.

Moreover, ∇�+1
∂τ

η
[�]
� = 0 as η[�]

� has periods 1, τ, . . . , τ �.

Proposition 9.1. (i) The {Ψ[�]
f,k} satisfy the homogeneous equation (Df

PF

◦ ∂τ )(·) = 0. More precisely, dΨ
[�]
f,k

dτ = (−1)�(2πi)�+1τkFf(τ).

(ii) V [�]
f satisfies, for any lift R̃f, the inhomogenous equation

(9.6) ∂�+1
τ (·) = (−1)(

�+1
2 )(2πi)�+1�!Ff(τ);

i.e., the higher normal function is (const. ×) an Eichler integral of
Ff. The various {V [�]

f } resulting from the different lifts yield a basis of
solutions for (9.6).

Proof. (i) Lemma 9.1(i) says ∇∂τ
R̃[�]

f = (−1)�Ω[�]
f ; the result follows.

(ii) There are two ways to do this, both instructive:

Method I :

∂�+1
τ

〈

R̃f, η�

〉

= ∂�τ

〈

R̃f,∇∂τ
η�

〉

= · · · [using
〈

η�,∇p
∂τ
η�
〉

= 0 ∀p < �] · · ·

= ∂τ

〈

R̃f,∇�
∂τ
η�

〉

= (−1)�(2πi)�+1
〈

Ffη�,∇�
∂τ
η�

〉

+
〈

R̃f,∇�+1
∂τ

η� [= 0]
〉

= (−1)�(2πi)�+1

〈

Ffη
[�]
� ,

�!
ν�
η

[�]
0 + F1

〉

= (−1)�+(�

2)(2πi)�+1�!
Ff

ν�
ν�.

Method II : Note that log(μi∞)γ̃[�]
j = jγ̃

[�]
j−1(= 0 if j = 0). Taking the

privileged extension basis (single-valued on Y (N), in a neighborhood
of [i∞])

γ̂
[�]
j := e−τ log(μi∞)γ̃

[�]
j

∇∂τ�→ −e−τ log(μi∞) log(μi∞)γ̃[�]
j = −jγ̂[�]

j−1,
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we write R̃[�]
f =

∑

ψ̂j γ̂
[�]
j . Applying ∇∂τ

, and using γ̂[�]
� ≡ η

[�]
� , yields

⎛

⎝

�−1
∑

j=0

{

∂ψ̂j
dτ

− (j + 1)ψ̂j+1

}

γ̂
[�]
j +

dψ̂�
dτ

γ̂
[�]
�

⎞

⎠⊗ dτ

= (−1)�Ω[�]
f ⊗ dτ

= (−1)�(2πi)�+1Ffγ̂
[�]
� ⊗ dτ.

So

(9.7)

{

ψ̂� = (−1)�(2πi)�+1
∫

Ffdτ

ψ̂j = (j + 1)
∫

ψ̂j+1dτ (j = 0, . . . , �− 1);

while V
[�]
f =

∑

ψ̂j 〈γ̂j , γ̂�〉 = (−1)(
�

2)ψ̂0. To see the “basis” assertion:
modifying R̃f changes Vf by a polynomial in τ (coefficients ∈ Q(�+ 1))
of degree ≤ �. �

Remark. If we notate R̃[�]
f =

∑

ψj γ̃j , then

⎛

⎜

⎝

ψ�
...
ψ0

⎞

⎟

⎠ = eτ log[μi∞]γ

⎛

⎜

⎝

ψ̂�
...
ψ̂0

⎞

⎟

⎠ and

this may be used to “compute” Ψ[�]
f,k = 〈γ̃k, γ̃�−k〉ψ�−k = (−1)k+(�

2)

(�

k)
ψ�−k.

Monodromy and special values at [i∞]: (This cusp will play a distinguished
role later.) If Ff(τ) → 0 as τ → i∞, then integrating (−1)�(2πi)�Ff(q)γ̂

[�]
� ⊗

dq
q = ∇R̃[�]

f yields on a disk Δ ⊂ Y (N) (containing {y = 0} = [i∞]):

(9.8) (2πi)�+1
�
∑

j=0

(Qj + qPj(τ)) γ̃
[�]
j , Qj ∈ C and Pj ∈ O(Δ)[X].

Since (μi∞ − id)R̃[�]
f is of the form (2πi)�+1

∑�
j=0Q

′
j γ̃

[�]
j , we deduce that the

Qj ∈ Q for j != 0. A change of lift R̃f merely changes the {Qj} (including
Q0) by rational numbers.

Proposition 9.2. Suppose H
[�]
[i∞](ϕf) = 0, and set Ki := limτ→i∞Ψ[�]

f,i(τ).

(i) Ki ∈ Q(�+ 1) for 0 ≤ i < �.

(ii) The value of K� ∈ C/Q(�+ 1) is independent of the lift (i.e., depends
only on the other {H[�]

σ (ϕf)}(σ =i∞)).
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(iii) Lift R̃[�]
f chosen so that {Ki}�−1

i=0 vanish ⇐⇒ K := limτ→i∞ V
[�]
f (τ)

defined. In this case, K = (−1)�K� and

(9.9) V
[�]
f (q) = K + (−1)(

�+1
2 )�!

∫

0
Ff(q)

dq

q
◦ · · · ◦ dq

q
.

Proof. Conditions (i) and (ii) are clear from (9.8). For (iii) (except (9.9)),
plug (9.8) into

〈

·, η[�]
�

〉

. (9.9) follows from (τ → i∞) {Ψ[�]
f,i → 0 for 0 ≤ i < �}

if and only if {ψi → 0 for 0 < i ≤ �} if and only if {ψ̂i → 0 for 0 < i ≤ �} if
and only if every

∫

but the last in (9.7) is taken from τ = i∞. �

Remark 9.1. (a) H
[�]
[i∞](ϕf) = 0 means that (an AJ-trivial modification

of) 〈Zf〉 extends across the Néron N -gon Ê[�]
[i∞](N), and K� is essentially

AJ of its restriction (in H�(Ê[�]
[i∞](N),C/Q(�+ 1))). Even with this

being well-defined, and even if R̃[�]
f is normalized as in (iii) above, it

need not be free of monodromy about y = 0! (Of course, when it is
monodromy-free, the {Rf,k}, Vf, and Ψf,0 all follow suit.) This issue has
to do with π[�](N) (|TZf

|) ⊂ Y (N) and is related to Proposition 4.1.

(b) The lifts used below are chosen for computability rather than vanishing
of {Ki}.

(c) One reason we have to do the AJ computation below is to find K�, if
H

[�]
[i∞](ϕf) = 0 (though we are most interested in the case H

[�]
[i∞]

(ϕf) != 0).

For an arbitrary f, here is the “lift” we use to apply KLM:

• break it up in O∗(U(N))⊗(�+1) into
∑

α fα, with each ϕfα ∈ ΦQ
2 (N)◦(p,q)

for some (p, q) as in Section 7.2.4. This step is not well-defined w.r.t.
the final outcome. Next,

• break each fα into
∑

β fαβ , with each fαβ = (fαβ1 , . . . , fαβ�+1) ∈ F

(N)×(�+1)
(

p q
−s r

) for some (−s, r) as in Section 7.2.5; then

• construct R̃fαβ as in the next section, and apply KLM.

The last two steps will yield a well-defined map

ΦQ
2 (N)◦(p,q) → Γ(H,Sym�H[1]),

as will be clear from the computations.
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Remark. Hσ(ϕfα) (or Hσ(ϕfαβ)) is 0 for those σ ←→ (−s0, r0) ∈ 〈(p, q)〉 ⊂
(Z/NZ)2, but not necessarily for any other σ ∈ κ(N).

9.2. Applying the KLM formula

This will take place on (subsets of) E [�] rather than E [�](N); instead of writing
P∗N constantly to pull functions and cycles back to E (

π� H), we will take
this to be understood.

Fix a choice of p, q ∈ Z such that 〈(p̄, q̄)〉 ∼= Z/NZ ⊂ (Z/NZ)2. Taking
any r, s “completing” this to an element M =

(
p q
−s r

)

∈ SL2(Z), we consider
f = (f1, . . . , f�+1) ∈ F(N)×(�+1)

M , and compute the {R[�]
f,k(τ)} for a particular

choice of lift R̃[�]
f (τ) over (τ ∈)AM , with F(N)M and AM as in Section 7.2.5.

We then use this to compute the Ψ[�]
f,j over AM , analytically continue these

to H, and employ the result to find the (nonholomorphic) {R[�]
f,k(τ)} over

all of H.
The choice of lift over AM must be dealt with in two cases, according

as whether for the Pontryagin product of (p, q)-vertical sets

(9.10) 0 /∈ |Tf1 | ∗ · · · ∗ |Tf�+1 | on π−1(AM ) ⊂ E .

If this is true, then (on all of E) {0} /∈ |(f1)| ∗ · · · ∗ |(f�+1)| and (on E [�]) we
can take Zf := Zariski closure of Zf = G̃∗ι∗{f} (see Section 7.3.4). With this
understood, we have

Lemma 9.2. Equation (9.10) ⇐⇒ |TZf
| = ∅ on E [�]

AM
:= (π[�])−1(AM )

⊂ E [�].

Proof. Since ι (E[�]
τ ) = {u1 + · · ·+ u�+1 = 0} ⊂ E

[�+1]
τ , 0 ∈ |Tf1 | ∗ · · · ∗

|Tf�+1 | ⊂ Eτ ⇐⇒ 0 ≡ u1 + · · ·+ u�+1 for some (u1, . . . , u�+1) ∈ |Tf1 | ∩ · · · ∩
|Tf�+1 | ⊂ E

[�+1]
τ ⇐⇒ ∃(u1, . . . , u�+1) ∈ Tf1 ∩ · · · ∩ Tf�+1 ∩ ι(E

[�]
τ ) ⇐⇒ |Tι∗{f}|

nonempty. �

As a consequence we can take as our lift

R̃[�]
f (τ) := [RZf,τ

] ∈ H�(E[�]
τ ,C) for τ ∈ AM ,

since (on each fiber) dRZf,τ
= (2πi)�+1δTZf,τ

= 0.
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Informal remarks on well-definedness: Given f ∈ F(N)×(�+1)
(

p q
−s r

) , g ∈ F

(N)×(�+1)
(

p q
−s′ r′

) , with ϕf = ϕg ∈ ΦQ
2 (N)◦(p,q) and satisfying (9.10), taking lim-

its along AM resp. AM ′ one finds that limτ→− q

p
R̃[�]

f , limτ→− q

p
R̃[�]

g yield

classes in H�(Ê[�]
− q

p

,C) (the {K(′)
i }�−1

i=0 vanish). Also, by Proposition 9.2(ii)

these classes are equal up to H�(Ê[�]
− q

p

,Q(�+ 1)); hence the lifts differ at
most by Q(�+ 1) 〈p[β] + q[α]〉 on H. That they are in fact equal may be
argued from Lemma 8.4, but the computations below will bear witness to
all of this (including the irrelevancy of (−s, r)).

Now we compute the {R[�]
f,j} for our lift. the diagram (8.1) is replaced for

this purpose by

E�τ
⊂ ι� E�+1

τ
P�� Eτ , τ ∈ AM ,

with resp. coordinates z1, . . . , z�; u1, . . . , u�+1; u, and the π’s by integration.
Write Γ := H1(Eτ ,Z) = Z 〈[α], [β]〉 , γ = m[β] + n[α] = (m,n) ∈ Γ.

Remarks on currents: (i) The fact that Zf = Zf means that if ŪN,ε ⊂
Eτ denotes the complement of ε-disks about the N -torsion points, then
〈

[RZf
], η[�]

j

〉

= limε→0

∫

Ū�
N,ε
RZf

∧ η[�]
j — but we will just view RZf

as an L1-
form on E�τ (rather than write this).

(ii) R{f} =
∑�+1

j=1(2πi)j−1(−1)�(j−1) log fj(uj) d log fj+1(uj+1) ∧ · · · ∧ d
log f�+1(u�+1) · δTf1(u1) · · · · · δTfj−1(uj−1) is a normal current (of intersection
type with respect to ι(E�τ )) on E�+1

τ , so admits pullback ι∗R{f} = Rι∗{f} to E�τ
(see Section 8 of [49]). We also note that the “singularities” of P∗(R{f} ∧ η̃

[�]
j )

are contained in |Tf1 | ∗ · · · ∗ |Tf�+1 | ⊂ Eτ , and so are as in Lemma 8.1(ii).
Write ˆ∑

γ∈Γ for the
∑

k

∑P.V.
j described there (and depending on (p, q)).

Writing

E�+1
τ

π
�̂+1�� E�τ

(u1, . . . , u�, u�+1) �→ (u1, . . . , u�),

let

η̃
[�]
j := (−1)�π∗

�̂+1
η

[�]
j = (−1)�

(

�

j

)−1
∑

|J |=j
J⊆{1,...,�}

du
{J}
1 ∧ · · · ∧ du{J}� ∈ A�−k, k(E�+1

τ ),
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where du{J}i :=

{

dui, i ∈ J
dūi, i /∈ J

. We then have ι∗η̃[�]
j = η

[�]
j , and so:

(−1)(
�+1
2 )(−1)�−jν�
(
�
j

) R
[�]
f,j(τ)

= R
[�]
f,j(τ)

∫

E�
τ

η
[�]
�−j ∧ η

[�]
j

=
〈

R̃[�]
f , η

[�]
j

〉

=
∫

E�
τ

RZf
∧ η[�]

j =
∫

E�
τ

G̃∗Rι∗{f} ∧ G̃∗η
[�]
j

=
∫

E�
τ

Rι∗{f} ∧ η
[�]
j =

∫

ι(E�
τ )
R{f} ∧ η̃

[�]
j =

{

P∗
(

R{f} ∧ η̃
[�]
j

)}

(0)

=
ˆ∑

γ∈Γ

̂
P∗(R{f} ∧ η̃

[�]
j )(γ) = ν−1 ˆ∑

γ∈Γ

∫

Eτ

χγP∗(R{f} ∧ η̃
[�]
j ) ∧ du ∧ dū

= ν−1 ˆ∑

γ∈Γ

∫

E�+1
τ

P ∗χγ ·R{f} ∧ η̃
[�]
j ∧ P ∗(du ∧ dū)

= ν−1

(

�

j

)−1 �+1
∑

j0=1

(2πi)j0−1(−1)�j0
∑

|J |=j
J⊆{1,...,�}

ˆ∑

γ∈Γ

×
∫

E�+1
τ

P ∗χγ ·
(

log fj0d log fj0+1 ∧ · · · ∧ d log f�+1

·δTf1
· · · · · δTfj0−1

)

∧

du
{J}
1 ∧ · · · ∧ du{J}� ∧ (du1 + · · ·+ du�+1) ∧ (dū1 + · · ·+ dū�+1)

= ν−1

(

�

j

)−1 �+1
∑

j0=1

(2πi)j0−1(−1)(�+1)(j0+1)
∑

|J0|=j
J0⊆{1,...,j0−1}

ˆ∑

γ∈Γ

×
∫

E�+1
τ

P ∗χγ
(

log fj0d log fj0+1 ∧ · · · ∧ d log f�+1

·δTf1
· · · · · δTfj0−1

)

∧

du
{J0}
1 ∧ · · · ∧ du{J0}

j0−1 ∧ duj0 ∧ dūj0 ∧ dūj0+1 ∧ · · · ∧ dū�+1

= (−1)(
�

2)ν−1

(

�

j

)−1 �+1
∑

j0=j+1

(2πi)j0−1

×
∑

|J0|=j
J0⊆{1,...,j0−1}

ˆ∑

γ∈Γ

(

j0−1
∏

m=1

∫

Tfm
χγdu

{J}
m

)

(
∫

Eτ
χγ log fj0duj0 ∧ dūj0

)

×
(

�+1
∏

m=j0+1

∫

Eτ
χγd log fm ∧ dūm

)
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======
Lemmas

8.3-4 (−1)(
�

2)ν−1

(

�

j

)−1 �+1
∑

j0=j+1

(2πi)j0−1(−1)�+1−j0
(

j0 − 1
j

)

× ˆ∑

γ∈Γ

′ (pτ + q)j+1(pτ̄ + q)j0−j−1ν�−j0+2
∏�+1
m=1 ϕ̂fm

(γ)
(2πi)j0(mq − np)j0ω(γ)�−j0+2

=
(−1)(

�+1
2 )ν�

2πi
(
�
j

)

�+1
∑

j0=j+1

(−1)j0−1

(

j0 − 1
j

)

(pτ + q)j+1(pτ̄ + q)j0−j−1

νj0−1

× ˆ∑

γ∈Γ

′ ϕ̂f(m,n)
(mτ + n)�−M−j+1(mq − np)M+j+1

,

where the primed sum means to omit terms with mq − np = 0. Taking M =
j0 − j − 1 as summation index, we have therefore

(9.11)

R
[�]
f,j(τ) =

(−1)�

2πi

�−j
∑

M=0

(−1)M
(

M + j

j

)

(pτ + q)j+1(pτ̄ + q)M

νM+j

× ˆ∑

(m,n)∈Z2

′ ϕ̂f(m,n)
(mτ + n)�−M−j+1(mq − np)M+j+1

.

We now treat the second case, where

{0} ∈ |Tf1 | ∗ · · · ∗
∣

∣Tf�+1

∣

∣ over AM

so that |TZf
| != ∅ there. Without loss of generality, the reader can have in

mind the case where each Tfi
(hence |(fi)|) lies in the connected component

of W (p,q)
τ (N) containing {0}. Let (ε1, . . . , ε�+1) ∈ {|x| < ε |x ∈ R}×(�+1) be a

very general point in a small polycylinder; we sketch a deformation argument
which shows a lift of R[�]

f (τ) (τ ∈ AM ) is still given by (9.11).
Begin by replacing each fj by fje

iεj globally on E(N), denoting the
resulting cycles (from Section 7.3.4) by {fε}, Zεf = G̃∗ι∗{fε}; and note that
Z
ε
f is still closed, and now in real good position, on the complement Ū [�](N)

of the N2� N -torsion sections. To obtain Z
ε
f , we must “move and complete”

Z
ε
f ; that is,

Z
ε
f

∣

∣

Ū [�](N)
= Z

ε
f + ∂BWε

f

for someWε
f ∈ Z

�+1
R (Ū [�](N), �+ 2). Since obviously ϕf = ϕfε , we have ΩZ

ε

f
=

ΩZf
(Theorem 8.1) and therefore R[�]

fε ≡ R[�]
f (Corollary 9.1). So it suffices to
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calculate a lift R̃[�]
fε for any ε, or limε→0 R̃fε — which is in fact what we shall

do, working henceforth over a point τ ∈ AM .
Inside E[�]

τ we have the open sets

Ū
[�]
N,ε ⊂ Ū

[�]
N := complement of N2� N -torsion points,

Û
[�]
N,ε ⊂ Û

[�]
N := complement of the {zi = 0, zj ,−zj},

where the ε-subscript denotes removing a closed ε-ball/tube neighborhood.
We want to compute (compatible lift-components)

(−1)(
�

2)+jν�
(
�
j

) R
[�]
fε,j(τ) =

∫

E�
τ

RZ
ε

f
∧ η[�]

j ,

lim
ε→0

∫

Ū
[�]
N,ε

RZ
ε

f
∧ η[�]

j = lim
ε→0

∫

Ū
[�]
N,ε

(

R
Z

ε

f

+ d[RWε

f
] + (2πi)�+1δSε

f

)

∧ η[�]
j

= lim
ε→0

∫

Û
[�]
N,ε

R
Z

ε

f

∧ η[�]
j + lim

ε→0

∫

∂Ū
[�]
N,ε

RWε

f
∧ η[�]

j

+ (2πi)�+1

∫

Sε

f

η
[�]
j ,(9.12)

where Sεf is an �-chain with ∂(Sεf ) = T
Z

ε

f

+N (with |N | ⊂ N -torsion points,
and nonzero only for � = 1). One can show that the middle term of (9.12)
goes to zero (with ε→ 0) at worst like ε logκ ε.

Now take the (previously very general) ε2, . . . , ε�+1 → 0; then |Tι∗{fε}|
limits into {z1 ≡ 0} and so |T

Z
ε

f

| limits into Ŵ [�]
N (while R

Z
ε

f

still makes sense

on the complement). Since Zεf is G̃∗-invariant by construction, everything
else in (9.12) — Wε

f , S
ε
f , etc. — can be taken to be G̃∗-invariant as well. But

if S(ε1,0,...,0)
f is G̃∗-invariant and bounds on Ŵ [�]

N it must in fact be a cycle on
E�τ . This means that in constructing our lift, the third term of (9.12) can
simply be thrown out (which must be done (∀j)). Finally, taking the limit
as ε1 → 0 and using G̃∗-invariance of η[�]

j , the first term of (9.12) becomes
limε→0

∫

Û
[�]
N,ε
Rι∗{f} ∧ η

[�]
j which puts us back at the start of the computation

which led to (9.11).
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9.3. Regulator periods and analytic continuation

The computations using (9.11) that follow may be justified by appealing to
absolute convergence of the series of the form

ˆ∑

(m,n)∈Z2

′
:=

∑

κ∈Z
κ=0

lim
J→∞

J
∑

j=−J

⎧

⎨

⎩

m = jp− κs κ = np−mq
←→

n = jq + κr j = ns+mr

⎫

⎬

⎭

(9.13)

if ±j terms are added first (replacing the “lim
∑

” by
∑

j≥0). Moreover, the
series of this form which occur do not actually depend on the choice of (r, s).

We start by computing the Ψ[�]
f,k(τ) for the lifts R̃[�]

f (τ) (τ ∈ AM ) of the
last section. Recycling “ε”, we let it now denote a formal variable, and work
in C[[ε]]. Referring to (9.1), if we write

γ[�] :=
�
∑

k=0

εk
(

�

k

)

γ
[�]
k ,

then
〈

γ[�], η
[�]
�−j
〉

= (1 + τε)�−j(1 + τ̄ ε)j , so that

�
∑

k=0

Ψ[�]
f,k(τ)

(

�

k

)

εk =
〈

γ[�], R̃[�]
f

〉

=
�
∑

j=0

R
[�]
f,j(1 + τε)�−j(1 + τ̄ ε)j

(9.14)

=
(−1)�

2πi
(1 + τε)�(pτ + q)

ˆ∑
′

m,n

ϕ̂f(m,n)
(mτ + n)�+1(mq − np)

(9.15)

×
�
∑

j=0

�−j
∑

M=0

(

(mτ + n)(pτ̄ + q)
(np−mq)ν

)M+j

×
(

M + j

j

)(

−(1 + τ̄ ε)(pτ + q)
(1 + τε)(pτ̄ + q)

)j

.

Replacing M + j by K and
∑

j

∑

M by
∑�

K=0

∑K
j=0, and using

K
∑

j=0

(

K

j

)(

−(1 + τ̄ ε)(pτ + q)
(1 + τε)(pτ̄ + q)

)j

=
(

1− (1 + τ̄ ε)(pτ + q)
(1 + τε)(pτ̄ + q)

)K

=
(

ν(p− εq)
(1 + τε)(pτ̄ + q)

)K
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the double sum in (9.15) becomes

�
∑

K=0

(

(mτ + n)(p− εq)
(np−mq)(1 + τε)

)K

=
(np−mq)�+1(1 + τε)�+1 − (mτ + n)�+1(p− εq)�+1

(np−mq)�(1 + τε)�[(np−mq)(1 + τε)− (mτ + n)(p− εq)]
.

Simplifying the expression in square brackets to (pτ + q)(nε−m), (9.15)
becomes

(−1)�+1

2πi
ˆ∑

m,n

′ ϕ̂f(m,n)
{

(np−mq)�+1(1 + τε)�+1 − (mτ + n)�+1(p− εq)�+1
}

(np−mq)�+1(mτ + n)�+1(nε−m)

— a “zipped” formula for the {Ψ[�]
f,k} which is obviously holomorphic in τ ,

and hence yields the analytic continuation to H. Since it was substituting
(9.11) in (9.14) which yielded this continuation, (9.11) is the correct lift over
all of H (not just AM ).

To get explicit formulas for the regulator periods, we reverse the last
step to get (9.15) =

(−1)�+1

2πi
ˆ∑

m,n

′
ϕ̂f(m,n)(pτ + q)

�
∑

μ=0

(1 + τε)μ(p− qε)�−μ

(np−mq)�−μ+1(n+mτ)μ+1
,

and take coefficients of {εk}�k=0 (and divide by
(
�
k

)

) to find

Ψ[�]
f,k(τ) =

(−1)�+1

2πi
(pτ + q)

ˆ∑

m,n

′
ϕ̂f(m,n)

�
∑

μ=0

min{k,�−μ}
∑

a=max{0,k−μ}

{(−1)a
(
�−μ
a

)(
μ
k−a

)

×
(
�
k

)−1
p�−μ−aqaτk−a}

{(np−mq)�−μ+1

×(mτ + n)μ+1}

.

(9.16)

One can check that this is compatible with Proposition 9.1(i).
Now if we write

F(N)(p,q) :=
⋃

(r, s) :
(

p q
−s r

)

∈ SL2(Z)

F(N)( p q
−s r

) ,
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then (9.11) and (9.16) extend linearly in an obvious way to sums of “mono-
mials” ∈ F(N)×(�+1)

(p,q) (we did this for f �→ ϕf in Section 8.1.2).

Theorem 9.1. Formulas (9.11) and (9.16) yield an abelian group homo-
morphism R̃[�]

(p,q) inducing AJ on “(p, q)-vertical Eisenstein symbols”, as
described in the diagram

ΦQ
2 (N)◦(p,q)

(9.11)

##.
..

..
..

..
..

..
..

..
..

..
..

(9.16)

��//
//
//
//
//
//
//
//
//
//
//
/

Q

[

F(N)×(�+1)
(p,q)

]

f�→〈Zf〉

��

��00
000

000
000

00

�����
���

���
���

�
R̃[�]

(p,q)

��

f�→ϕf

��

(OH)�+1

����

Γ
(

H,Sym�H[1]
)∼=

ev{γ
[�]
k }∗

�� � �

ev{η
[�]
�−j}

��

��

(OH∞)�+1

����
(OH)�+1

L
Γ
(

H, Sym�H[1]

(Sym�H[1])Q(�+1)

)∼=�� � � �� (OH∞ )�+1

L∞

Γ
(

H, CH
(

E [�]/H, �+ 1
))

AJ

��

where “ev” means to write a vector with respect to the given basis, { }∗

is the dual basis, while L = Q(�+ 1)

〈

⎛

⎜

⎜

⎜

⎝

1
0
...
0

⎞

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
1
0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, . . . ,

⎛

⎜

⎜

⎜

⎝

0
...
0
1

⎞

⎟

⎟

⎟

⎠

〉

and

L∞ ====
(7.1)

Q(�+ 1)

〈

⎛

⎜

⎝

P
[�]
00
...

P
[�]
�0

⎞

⎟

⎠ , . . . ,

⎛

⎜

⎝

P
[�]
0�
...

P
[�]
��

⎞

⎟

⎠

〉

.

The two “extreme” periods are of special interest. For the α�-period,
(9.16) yields

(9.17)

Ψ[�]
f,0(τ) = (−1)�(2πi)�+1(τ + q

p)H
[�]
[i∞](ϕf)

+ (−1)�+1

2πi
ˆ∑

′

m,n
m != 0

ϕ̂f(m,n) (mτ+n)�+1p�+1−(np−mq)�+1

m(mτ+n)�+1(np−mq)�+1
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if p != 0, and

(9.18) Ψ[�]
f,0(τ) =

(−1)�

2πi
ˆ∑

′

m,n

ϕ̂f(m,n)
m(mτ + n)�+1

if p = 0 (q = 1). For the β�-period, we have

Ψ[�]
f,� = (−1)�+1(2πi)�+1( 1

τ + p
q )H

[�]
[0](ϕf)

+ (−1)�+1

2πi
ˆ∑

′

m,n
n != 0

ϕ̂f(m,n) (np−mq)�+1τ �+1+(−1)�(mτ+n)�+1q�+1

n(mτ+n)�+1(np−mq)�+1

(9.19)

if q != 0 and

(9.20) Ψ[�]
f,�(τ) =

(−1)�+1

2πi
τ �+1 ˆ∑

′

m,n

ϕ̂f(m,n)
n(mτ + n)�+1

if q = 0 (p = 1). We also record the higher normal function for convenience:
using (9.4) and (9.11), this is

(9.21) V
[�]
f (τ) =

(−1)(
�

2)

2πi
(pτ + q)�+1 ˆ∑

′

(m,n)∈Z2

ϕ̂f(m,n)
(mτ + n)(mq − np)�+1

.

By the monodromy argument (Lemma 9.1(ii)) together with Section 8.1.2,
AJ factors through ΥQ

2 (N). That is, for any f∈O∗(U(N))⊗(�+1)

(9.22) Ψ[�]
f,k(τ) =

∑

σ∈κ(N)

H[�]
σ (ϕf)Ψ̃

[�]
σ,k(τ) mod Q(�+ 1),

where (using our chosen
(

p q
−s r

)

∈ SL2(Z) for each σ = [ rs ]) Ψ̃[�]
σ,k = Ψ[�]

fσ,k

for some fσ ∈ Q

[

F(N)×(�+1)
(

p q
−s r

)

]

satisfying H
[�]
σ′ (ϕfσ

) = δσσ′ . We take ϕfσ
=

1
N π
∗
σϕ

[�]
N , so that (9.16) yields

Ψ̃[�]
σ,k(τ) :=

(−1)�+1

�+ 1
(2πi)�+1(pτ + q)

ˆ∑

α, β ∈ Z
2

gcd(1 +Nα,Nβ) = 1

�
∑

μ=0

(9.23)

×
∑min{k,�−μ}

a=max{0,k−μ}(−1)a
(
�−μ
a

)(
μ
k−a

)(
�
k

)−1
p�−μ−aqaτk−a

(1 +Nα)�−μ+1{(1 +Nα)(r − sτ) +Nβ(q + pτ)}μ+1
.
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Here the choice of (p, q) in (9.16) is different for each σ, we have computed as
in Section 8.1.3 with (m,n) =: z(m0, n0), (m0, n0) =: (r +N(βq + αr),−s+
N(βp− αr)) and where ˆ∑ means to sum ±β first. A similar result holds for
V

[�]
f (τ), only modulo polynomials (of degree ≤ � with Q(�+ 1) coefficients).

Also as in Section 8.1.3 one can do the Fourier expansions in some cases
(and we need these for the examples below). For instance, for (p, q) = (1, 0)
and k = 0, (9.16) becomes

(−1)�(2πi)�+1τH
[�]
[i∞](ϕf) +

(−1)�+1

2πi
ˆ∑

′

m,n
m != 0

ϕ̂f(m,n)
(mτ + n)�+1 − n�+1

m(mτ + n)�+1n�+1
,

(9.24)

where ˆ∑′
m,n means

∑

n ∈ Z

n �= 0

limM→∞
∑M

m=−M . Assuming additionally that

ϕf(m,n) = ϕf(m,−n) [⇐⇒ ϕ̂f(m,n) = ϕ̂f(−m,n)], the ˆ∑
′
m, n

m �= 0

ϕ̂f(m,n)
mn�+1 = 0 and

the second term of (9.24) becomes

(9.25)
(−1)�

2πi

∑

(m,n)∈(Z\0)2

ϕ̂f(m,n)
m(mτ + n)�+1

.

Proposition 9.3. If ϕf = 1
N π
∗
[i∞]ϕ (ϕ ∈ ΦQ(N)◦) then ϕ̂f = ι[i∞]∗ϕ̂ and we

have

Ψ[�]
f,0(τ) =

(2πi)�(�+ 1)N
(�+ 2)!

(

N−1
∑

b=0

ϕ(b)B�+2

(

b

N

)
)

log q0(9.26)

− (2πi)�

�!N �+1

∑

M≥1

(
∑

r|M r�+1 ·� ϕ(r)
)

M
qMN
0 ,

where �ϕ(r) = ϕ(r) + (−1)�ϕ(−r).

Proof. Let ξ ∈ {1, 2, . . . , N − 1}, and m0 ∈ N. Using the product expansion
of sin(π(α+ z)) from [1, Section 2.3, Example 2], we have

d�+1

dτ �+1
log

{

sin
(

πξ

N
+ πm0τ

)}

(9.27)
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=
d�+1

dτ �+1

{

πm0τ cot
(

πξ

N

)

+
∑

n0∈Z

[

log
(

1 +
Nm0τ

Nn0 + ξ

)

− Nn0τ

Nn0 + ξ

]
}

= − d�

dτ �

{

∑

n0∈Z

N2m2
0τ

(Nm0 + ξ)(Nn0 + ξ +Nm0τ)

}

= (−1)��!N �+1m�+1
0

∑

n0∈Z

1
(Nn0 + ξ +Nm0τ)�+1

.

On the other hand using the Taylor expansion for log, (9.27) becomes

d�+1

dτ �+1
log

{

1
2i

(

e
πi
N

(ξ+m0Nτ) − e−
πi
N

(ξ+m0Nτ)
)
}

=
d�+1

dτ �+1
log

(

1− e2πim0τe
2πi
N
ξ
)

= − d�+1

dτ �+1

∑

r≥1

1
r
e

2πirξ

N e2πim0rτ

= −(2πi)�+1m�+1
0

∑

r≥1

r�e
2πirξ

N qrm0N
0 ;

hence we have (for m0 > 0) α(ξ,m0) :=

∑

n0∈Z

1
(Nn0 + ξ +Nm0τ)�+1

=
(−1)�+1(2πi)�+1

�!N �+1

∑

r≥1

r�e
2πiξr

N qrm0N
0 .

Substituting ϕ̂f = ι[i∞]∗ϕ̂ in (9.25) therefore yields

(−1)�

2πi

∑

(n,m0)∈(Z\{0})2

ϕ̂(n)
Nm0(n+Nm0τ)�+1

=
(−1)�

2πiN

N−1
∑

ξ=1

ϕ̂(ξ)
∑

m′
0≥1

1
m′0

{

α(ξ,m′0) + (−1)�α(−ξ,m′0)
}

=
−(2πi)�

�!N �+2

∑

M≥1

qMN
0

∑

r|M

r�+1

M

∑

ξ∈Z/NZ

ϕ̂(ξ)
{

e
2πiξr

N + (−1)�e−
2πiξr

N

}

=
−(2πi)�

�!N �+1

∑

M≥1

qMN
0

∑

r|M

r�+1

M
�ϕ(r),

where we have reindexed M = m′0r. The first term of (9.26) is much easier.
�
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We turn briefly to the higher normal function. In analogy to (9.24), for
(p, q) = (1, 0) Equation (9.21) becomes

V
[�]
f (τ) =

(−1)(
�+1
2 )(2πi)�+1

�+ 1
τ �+1H

[�]
[i∞](ϕf)(9.28)

− (−1)(
�+1
2 )

2πi
τ �+1 ˆ∑

′

m, n
m �= 0

ϕ̂f(m,n)
(mτ + n)n�+1

,

and if ϕf = 1
N π
∗
[i∞]ϕ we can calculate its q0-expansion as follows. Using

τ �+1

(Nm0τ + n)n�+1
=

�
∑

j=1

(−1)j−1τ �−j+1

(Nm0)jm�−j+2
+

(−1)�τ
(Nm0τ + n)(Nm0)�n

,

the second term of (9.28) becomes

(−1)(
�+1
2 )

2πi

( �

2)
∑

J=1

τ �−2J+1

N2J

∑

(m0,n)∈(Z\{0})2

ϕ̂(n)
m2J

0 n�−2J+2

− (−1)(
�

2)

2πiN �+2

N−1
∑

ξ=1

ϕ̂(ξ)
∑

m0∈Z

′ 1
m�+1

0

∑

n0∈Z

N2m0τ

(ξ +Nn0)(ξ +Nn0 +Nm0τ)
.

For m0 > 0 the
∑

n0∈Z is

π

(

i + cot
(

πξ

N

))

+ 2πi
∑

r≥1

e
2πirξ

N qm0Nr
0

by an argument like that in the above proof. Writing

Θ�(ϕ) :=

{

− i
N

∑

ξ∈Z/NZ
ϕ̂(ξ) cot

(

πξ
N

)

, � odd,
ϕ(0), � even

and noting ζ(2J) = −(2πi)2J

2(2J)! B2J , we eventually arrive at this expression for
the higher normal function (associated to our lift):

(−1)(
�
2)N�+1

(�+2)!

⎧

⎨

⎩

(
∑N−1

a=0 ϕ(a)B�+2

(
a
N

)
)

log�+1 q0 +
∑( �

2)
J=1

(−2πi)2J

N4J

(
�+2
2J

)

×B2J

(
∑N−1

a=0 ϕ(a)B�−2J+2

(
a
N

)
)

log�−2J+1 q0

⎫

⎬

⎭

− (−1)(
�
2)

N�+1

{

ζ(�+ 1)Θ�(ϕ) +
∑

M≥1 q
MN
0

(∑

r|M r�+1·�ϕ(r)

M�+1

)}

.

(9.29)
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The first big braced expression in (9.29) is a polynomial in τ with
Q(�+ 1)-coefficients. Both (9.29) and (9.26) check against Proposition 9.1
and Corollary 8.4, as the reader may verify.

Finally, one can evaluate the regulator periods at cusps where ΩZf
has

no residue. We demonstrate this for the α×�-period.

Proposition 9.4. Assume that H
[�]
[ r

s
](ϕf)

[

= −(�+1)
(2πi)�+2 L̃(ϕ̂f, �+ 2)

]

= 0; then

lim
τ→ r

s

Ψ[�]
f,0(τ) ≡

−s�
2N

L̃−(π[ r

s
]∗ϕ̂f, �+ 1) mod Q(�+ 1),

where L̃−(φ, �+ 1) :=
∑

m∈Z\{0}
φ(m)· |m|

m

m�+1 .

Proof. Will proceed by first showing that

(9.30) lim
τ→i∞

Ψ[�]
f,�(τ) ≡

−1
2N

L̃−(π[i∞]∗ϕ̂f, �+ 1)

when H
[�]
[i∞](ϕf) = 0. We can write ϕf = ϕf′ + ϕf′′ where ϕf′ ∈ π∗[0]ΦQ(N)◦ ⊂

ΦQ
2 (N)◦(0,1) and ϕf′′ ∈ ΦQ

2 (N)◦(1,0), then apply (9.19) [with (p, q) = (0, 1)] resp.
(9.20) to conclude

lim
τ→i∞

Ψ[�]
f,�(τ) ≡ lim

τ→i∞
(−1)�+1

2πi

∑

(m,n)∈(Z\0)2

ϕ̂f(m,n)
n(m+ n

τ )�+1
mod Q(�+ 1)

(9.31)

after “reassembling” the results. (In (9.19) the sum becomes

1
N

ˆ∑
′

m, n0
n0 �= 0

(

ϕ̂f(m, 0)
n0(m+ Nn0

τ )�+1
− ϕ̂f(m, 0)
n0m�+1

)

,

where the ˆ∑ means to sum ±n0 first, so that one can delete the second term
inside the sum. Then one can remove the “ ̂ ”, in both (9.19) and (9.20),24

since the double-sum is now absolutely convergent.) The r.h.s. of (9.31) is

24Where it means to sum ±m first.
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now (summing ±n first)

lim
τ→i∞

(−1)�+1

2πi

N−1
∑

ξ=0

∑

m∈Z

′
ϕ̂f(m, ξ)

×
∑

n≥1

⎛

⎜

⎝

1

(n0N − ξ)
(

M + n0N−ξ
τ

)�+1
− 1

(n0N − ξ)
(

m− n0N−ξ
τ

)�+1

⎞

⎟

⎠ ,

where we have made the (unnecessary) assumption that ϕ̂f(m,−n) =
ϕ̂f(m,n) to simplify the exposition. This becomes (writing τ = it)

2(−1)�+1i�+1

2πiN

∑

m∈Z

′
N−1
∑

ξ=0

ϕ̂f(m, ξ)

×
�
∑

k=0

(−1)k

⎧

⎪
⎨

⎪
⎩

lim
t→∞

∑

n0≥1

N/t
(

n0N−ξ
t + im

)�−k+1 (
n0N−ξ

t − im
)k+1

⎫

⎪
⎬

⎪
⎭

,

where the limit in braces is the Riemann sum for
∫ ∞

0

dX

(X + im)�−k+1(X − im)k+1
=

1
2
(2πi)(−1)�+k

|m|
m

(

�

k

)

1
(2mi)�+1

(using residues), and so we get

−
∑�

k=0

(
�
k

)

2�+1N

∑

m∈Z

′ |m|
m�+2

N−1
∑

ξ=0

ϕ̂f(m, ξ)

which is just the r.h.s. of (9.30).
Now let f be as in the statement of the proposition:

lim
τ→ r

s

Ψ[�]
f,0(τ) =

〈

[α×�], lim
τ→ r

s

R[�]
f (τ)

〉

=

〈

[α×�],
(

p q
−s r

)∗R[�]
(

r −q
s p

)∗
f
(τ)

〉

.

By (9.30) this is

− (−1)(
�+1
2 )

2N
L̃−

(

π[i∞]∗

(

r −q
s p

)∗
ϕ̂f, �+ 1

)
〈

[α×�],
(

p q
−s r

)∗ [α×�]
〉
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= −(−1)(
�+1
2 )

2N
L̃−

(

π[ r

s
]∗ϕ̂f, �+ 1

)〈

[α×�], [(rα− sβ)×�]
〉

which yields the result. �

Remark. In fact, Proposition 9.3 leads to a more general result when com-
bined with results from previous sections:

Corollary 9.2. For any f ∈ O∗(U(N))⊗(�+1),

Ψ[�]
f,0(τ)

Q(�+1)
≡ (−2πi)�H[�]

[i∞](ϕf)N log q0

− (2πi)�

N �+1�!

∑

M≥1

qM0
M

⎧

⎨

⎩

∑

r|M
r�+1

⎛

⎝

∑

n0∈Z/NZ

e
2πin0r

N · �ϕ̂f

(

M

r
, n0

)

⎞

⎠

⎫

⎬

⎭

.

Proof. Split ϕf = ϕf′ + ϕf′′ with ϕf′ ∈ π∗[i∞](Φ
Q(N)◦), and ϕf′′ (0, 1)-vertical

so that H
[�]
[i∞](ϕf′′) = 0. By Proposition 9.2(i), limτ→i∞Ψ[�]

f′′,0(τ) = 0 while the

constant and divergent terms (as τ → i∞) for Ψ[�]
f′,0 (hence Ψ[�]

f,0) are given by
Proposition 9.3. Using this together with Propositions 8.2 and 9.1(i) (which
says that Ψ[�]

f,0 = (−1)�(2πi)�+1
∫

Eϕf
(τ)dτ) gives the result. �

10. Toric versus Eisenstein: comparing constructions

In this final section we consider the possible coincidence of (push-forwards
of) Beilinson’s Eisenstein symbol over genus zero modular curves, and the
toric symbol on suitably “modular” hypersurface pencils. This will be done
on the level of regulator periods and cycle classes, and the general result in
Section 10.3 is followed by many examples. To whet the reader’s appetite we
include two motivating examples in Section 10.1, which come from extending
the computations of regulator periods and their special values to the cycles
considered in Section 8.2.

10.1. Regulator periods for other congruence subgroups

It is worth mentioning a subtlety that enters into computations for the

“push-forward cycles” of Section 8.2.1 Zf,1(′) := 1
N

(

P [�]
Γ(N)/Γ(′)

1 (N)

)

∗
Zf ∈ CH�+1

(

E [�]

Γ
(′)
1 (N)

, �+ 1
)

(equivalently one can consider Z̃f,1(′) :=
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(

P [�]
Γ(N)/Γ(′)

1 (N)

)∗
Zf,1(′) on E [�](N)). Letting Ψ[�]

f,1(′);k
denote the period over

γ
[�]
k (= α�−kβk) for an appropriate lift of the fiberwise AJ of Zf,1(′) over
Y

(′)
1 (N), we have obviously

(10.1) Ψ[�]
f,1;0(τ) =

1
N

N−1
∑

j=0

Ψ[�]
f,0(τ + j)

but also

Ψ[�]
f,1;�(τ) =

1
N

N−1
∑

j=0

�
∑

k=0

(

�

k

)

(−j)�−kΨ[�]
f,k(τ + j)(10.2)

Ψ[1]
f,1′;0(τ) =

1
N

N−1
∑

j=0

{

Ψ[1]
f,0

(

τ

jτ + 1

)

− jΨ[1]
f,1

(

τ

jτ + 1

)}

(10.3)

since (see Section 8.2.1) Jj∗β = β − jα (resp. J ′
j ∗α = α− jβ). Likewise,

for the “K3(K3)” cycles Zf,+N := −1
4N (p2)∗(p1)∗(P+N )∗(J

[2]
N )∗Zf,1 ∈

CH3(X [2]
1 (N)+N , 3) (resp. ′Zf,+N ) of Section 8.2.2, we find

(10.4) (′)Ψ[2]
f,+N ;0(τ) =

1
2

{

Ψ[2]
f,1;0(τ)

+
(−)NΨ[2]

f,1;2

(

−1
Nτ

)}

for the periods of AJ
(
〈

(′)Zf,+N

〉

[τ ]∈Y1(N)+N

)

against (P+N )∗(J
[2]
N )∗(α× α).

(The latter, it turns out, is divisible by 2N in the integral homology of the
K3 fibers.) To obtain limiting values of (10.1)–(10.4) at a cusp, one could
apply the proof of Proposition 9.4 to each term.

An easier approach is to consider the effect of Zf �→ Z̃f,1(′) (or ′Z̃f,+N ) on
the residues of the cycle-class, transform ϕ̂f accordingly (cf. (8.2)), and plug
the result into Proposition 9.4. We carry this out in two examples related
to toric constructions in this paper.

Example 10.1 (� = 1, N = 4, Γ = Γ
′
1(4)). Begin with f so that ϕf =

−1
4π
∗
[i∞]ϕ

[1]
4 (see Proposition 7.3) and consider Zf,1′ ; the corresponding divi-

sor ϕf,1′ has ϕ̂f,1′ = 1
4ρ

′
∗ϕ̂f = −1

4ρ
′
∗ι[i∞]∗

̂

ϕ
[1]
4 = −1

4π
∗
[0]

̂

ϕ
[1]
4 where

̂

ϕ
[1]
4 = 0,
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26i, 0,−26i. We have π[0]∗ϕ̂f,1′ = −̂ϕ[1]
4 and so

lim
τ→0

Ψ[1]
f,1′;0(τ) ≡

1
8
L̃−

(

̂

ϕ
[1]
4 , 2

)

= −16iG mod Q(2);

this corresponds exactly to the D5 example of Section 6.3.

Example 10.2 (� = 2, N = 6, Γ = Γ1(6)+6). Start with ϕf = −4π∗[i∞]ϕ
[2]
6 ,

and consider ′Z̃f,+6: from (8.6) (and Remark 8.3) we know that if Hσ(ϕf) =

−24δσ,[i∞] then H[i∞](′ϕf,+6) = −12 and H[j](′ϕf,+6) = 1
3 (∀j ∈ Z). As

̂

ϕ
[2]
6 =

0,−64

5 , 0, 0, 0,−
64

5 , this leads to

(10.5) ′ϕ̂f,+6(m,n) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

2·65

5 , (m,n)
(6)
≡ ±(0, 1),

−2·63

5 , m
(6)
≡ ±1,

0 otherwise,

and π[−1
2

]∗
′ϕ̂f,+6 = −8·63

5 · {0, 1,−9, 1,−9, 1; . . .} so that

lim
τ→− 1

2

′Ψ[2]
f,+6;0(τ)

Q(3)
≡ − 4

12
· −8 · 63

5
· 2L({0, 1,−9, 1,−9, 1; . . .}, 3)

=
25 · 62

5
ζ(3) ·

(

1− 10
23

+
9
63

)

= −48ζ(3).

This means that the AJ class of
〈

′Z̃f,+6

〉

τ
limits to 12ζ(3)

[

(α+ 2β)×2
]

,

which is the pullback from the K3 family of 2ζ(3) times a vanishing cycle
at [−1

2 ] ∈ Y 1(6)+6. This suggests a link to the Apéry–Beukers higher normal
function from the introduction; the precise relation will be established in
Section 10.5 below.

10.2. Uniformizing the genus zero case

Let Γ ⊂ SL2(Z) be a congruence subgroup in the sense of Section 7.1.1
({−id} /∈ Γ, Γ ⊃ Γ(N) for some N ≥ 3), and assume Y Γ

∼= P
1. To fix a uni-

formizing parameter, note first that Y Γ has local coordinate q0 := q
1

NΓ =
e

2πiτ
NΓ in a neighborhood of [i∞], e.g., NΓ = N for Γ = Γ(N) or Γ′1(N), while

NΓ = 1 for Γ = Γ1(N) (or Γ1(N)+N , though we do not treat this yet). Then
letH ∈ M̌0(Γ) be the (unique) Hauptmodul with Fourier expansionH(q0) =
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const. · q0 + h.o.t. We will assume H is normalized so that this constant is
a root of unity. Given an “Eisenstein symbol” Z ∈ CH�+1(E [�]

Γ , �+ 1) (with
(P [�]

Γ(N)/Γ)
∗Z ≡ Zf ∈ CH�+1(E [�](N), �+ 1)), writing the data {ΩZf

,Ψ[�]
f,0, V

[�]
f ,

PF-equations, etc.} in terms of t := H(τ) yields expressions resembling those
of Sections 3 and 4 arising from the “toric symbols”.

While there are intersections between the two constructions (systemat-
ically developed in Sections 10.3–10.6), neither one includes the other. Let
ωΓ

E/Y
:= KE [�]

Γ
⊗ π−1(θ1

Y Γ
) denote the relative dualizing sheaf; if deg(πΓ∗ω

Γ
E/Y

)
(always ≥1) is >1, then EΓ cannot be birational to a Fano n (= �+ 1)-fold
PΔ. Conversely, the construction of Theorem 3.1 need not yield a modular
family — e.g., the E7 and E8 families of elliptic curves (cf. Section 6.3) have
marked nontorsion points (which are used in the construction of the toric
symbol); other examples will be given in Sections 10.4–10.6.

To begin “uniformizing” the data, let {σj} ⊂ κΓ be the cusps other than
[i∞] where Z has nonvanishing residue, and differentiate the AJ class over
P

1 to get

ωf := ∇δt
R̃[�]

f ∈ Γ
(

Y Γ, ω
Γ
E/Y

⊗OY Γ

(∑

σj

))

.

Pulling this back to (E [�] →)H yields

(−2πi)�Af(τ)η
[�]
� , Af(τ) ∈ M̌�(Γ),

here Af may have “poles” (as an automorphic form) at elliptic points,
nonunipotent cusps, and the {σj}. Similarly, writing H ′ := dH

dq0
, dtt pulls back

to 2πiBf(τ)dτ , where

Bf(τ) :=
d log t
d log q

=
q0
NΓ

· H
′

H
∈MQ

2 (Γ).

Pulling back the cycle class ΩZf
= (−1)�∇δt

R̃[�]
f ∧ dt

t , we see that

Ff(τ) = Af(τ) ·Bf(τ) (∈MQ
�+2(Γ)).

Now we can write down a power-series expansion for the period of ωf over
the (locally defined) family of topological cycles α×� ∈ H�(E

[�]
Γ,t,Z) vanishing

at t = 0. Using Proposition 8.2 and inverting the Fourier expansion of H,
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one has
∫

α×�

ωf(t) = (−2πi)�
(

Ff

Bf
◦H−1

)

(t) = (−2πi)�NΓ
t(H−1)′(t)
H−1(t)

· Ff(H−1(t))

=: (2πi)�
∑

m≥0

amt
m,

where (H−1)′ = dq0
dt . Moreover a0 = (−1)�NΓ · H[�]

[i∞](ϕf), and

ΨΓ
f (t) :=

∫

α×�

R(

Z|
E

[�]
Γ,t

)

Q(�+1)
≡ Ψ[�]

f,0(H
−1(t)) = (2πi)�

⎧

⎨

⎩

a0 log t+
∑

m≥1

am
m
tm

⎫

⎬

⎭

(compare Theorem 4.1).
A key observation is that Af(τ)η

[�]
� descends to EΓ, whereas the relative

differentials (η[�]
� or Ff(τ)η

[�]
� ) used in previous sections did not. This leads

to a higher normal function and PF equations which make sense over YΓ.
Recalling ∇f

PF = ∇�+1
∂τ

+ l.o.t. from Section 9.1,

∇ω
PF :=

1
(2πiBf(τ))�+2

◦ ∇f
PF ◦ (2πiBf(τ)) = ∇�+1

δt
+ l.o.t.

descends to P
1, yielding the homogeneous equation

(Dω
PF ◦ δt)ΨΓ

f = 0.

Writing

νf(τ) :=
〈

R̃[�]
f , ωf

〉

= (−2πi)�V [�]
f (τ) ·Af(τ),

we have the inhomogeneous equation

Dω
PFνf =

〈

∇δt
R̃[�]

f ,∇
�
δt
ωf

〉

=
〈

ωf,∇�
δt
ωf

〉

=: Y [�]
f (t),

where the Yukawa coupling

Y [�]
f (H(τ)) = (−2πi)2�A2

f (τ)
〈

η
[�]
� ,

1
(2πiBf)�

∇�
∂τ
η

[�]
�

〉

= (2πi)�
A2

f

B�
f

Yτ �(τ)

= (−1)(
�

2)�!
(

2πi
Bf(τ)

)�

(Af(τ))2.

Obviously the weights cancel so that Y [�]
f ◦H ∈ M̌0(Γ), i.e., Y [�]

f yields a
rational function on P

1.
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Suppose H
[�]
[i∞](ϕf) != 0 and |κ[�]

Γ | > 1, so that one can choose g ∈ ΦQ
2 (N)◦

(such that Zg also descends to E [�]
Γ ) with H

[�]
[i∞](ϕg) = 0 but H

[�]
σ (ϕg) != 0

(for some σ != [i∞]). Then one can consider Af · V [�]
g = 1

(−2πi)�

〈

R̃[�]
g , ωf

〉

,

where R̃[�]
g is a lift with all Kg,i = 0 (0 ≤ i < �); cf. Proposition 9.2: in this

case Kg := limτ→i∞ V
[�]
g (τ) = (−1)� limτ→i∞ V

[�]
g (τ). This is the more general

type of higher normal function implicit in the Apéry–Beukers irrationality
proofs (cf. Introduction). (The general idea is this: one must show the radius
of convergence of its t-series expansion to be “much larger” than that for
either Af or Af · (V [�]

g − Kg), while the latter expansions must satisfy cer-
tain integrality properties.) The story will be related from a less “modular”
perspective in [48].

10.3. Identifying pullbacks of toric symbols

If (in oversimplified terms) the idea of Section 10.2 was to pull back the
Eisenstein construction along H−1 (when it exists), here we pull back a
given toric symbol (if possible) along some H, and try to recognize the
result as an Eisenstein symbol. This leads to motivic proofs of several of the
Mahler measure computations in [9, 10,77].

We begin with an “anticanonical pencil” X̃ = {1− tφ(x) = 0} ⊂ P
1 ×

PΔ̃ satisfying the assumptions of Theorem 3.1, with its attendant cycle Ξ̃ ∈
Hn
M(X̃−,Q(n)) for n = 2, 3, 4. We also require φ to have root-of-1 vertex

coefficients so that Theorem 4.1 holds. Set � := n− 1, and restrict/refine
this family in several steps:

• (1) � = 3: assume that PΔ̃ is smooth (so that t = 0 is a point of maximal
unipotent monodromy).

• (2) If φ is regular, define25 X ( π→ P
1) to be the (smooth) proper trans-

form of X̃ under successive blow-up of the components of the base
locus P

1 × (X̃η ∩ D̃) ⊂ P
1 × PΔ̃, where Xη denotes a very general fiber.

This accomplishes semistable reduction at t = 0. When φ is not regu-
lar this must be combined with the desingularization of X̃− from the
proof of Theorem 3.1 (to produce X ). Denote that pulled-back cycle
by Ξ ∈ CH�+1(X\X0, �+ 1).

25Preferring inconsistent notation to writing everywhere ˜X̃ . We retain this con-
vention for the rest of the paper.
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(In what follows, one could also replace X by a [desingularized] quotient —
if one exists — over a t �→ tκ quotient of the base preserving unipotency at
t = 0, and Ξ by the push-forward cycle.)

• (3) � = 2 : assume rk(Pic(Xη)) = 19,
� = 3 : assume h2,1(Xη) = 1, and that

the VHS has no “instanton
corrections” (cf. [32])

Then H�(Xt) (or H2
tr(Xt) for � = 2) is the symmetric �th power of a

weight 1 (rank 2) VHS; likewise for the PF equation of the section of
ωX/P

1 := KX ⊗ π−1θ1
P1 given by ω := ∇δt

Rt (cf. Sections 4.2 and 4.3).

In fact, ω is (up to scaling) the unique section of ωX/P
1 ⊗OP1(−[∞]) ∼= OP1 .

Now let U ⊂ P
1 be a small neighborhood of t = 0. Working over U∗,

denote by W• the weight monodromy filtration on H�(Xt,Q) (H2
tr if � = 2)

and set WZ• := W• ∩H�
(tr)(Xt,Z). There are unique generating sections ϕ0 ∈

Γ(U,WZ
0 ), −ϕ1 ∈ Γ(U∗,WZ

2 /W
Z
0 ) positively oriented as topological cycles;

the latter lifts to a multivalued section of WZ
2 with monodromy ϕ1 �→ ϕ1 +

NXϕ0. The mirror map

(10.6) (q =)M(t) = exp

{

2πi

∫

ϕ1(t)
ωt

∫

ϕ0(t)
ωt

}

is well-defined on U∗; its logarithm μ = logM
2πi extends to a multivalued map

P
1 � H∗. Recall A(t) :=

∫

ϕ0(t)
ωt, Ψ(t) :=

∫

ϕ0(t)
Rt (with ∂tΨ = A).

• (4) Assume the mirror map is “modular”: that is, ∃ Ñ ≥ 3 such that
μ−1 =: H̃(τ) is a well-defined automorphic function for Γ(Ñ) (H ∈
M̌0(Γ(Ñ))); for odd �, we also demand that {−id} /∈monodromy group
of R�π∗Z. (Obviously, this implies NX |Ñ and H̃(τ) = C · q̃0 + h.o.t.
where q̃0 = q

1
NX .) Then

A(H̃(τ)) ∈ M̌�(Γ(Ñ)),

where the “poles” come from non-unipotent singular fibers and are
canceled by H̃∗ dtt to yield

F(t) :=
(−1)�

(2πi)�+1
∂τΨ(H̃(τ)) = (−1)�

d log H̃
dτ

· A(H̃(τ))
(2πi)�+1

∈M�+2(Γ(Ñ)).
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Now we want to force F to be an Eisenstein series; the following stronger
assumption (which for � = 1 follows from the previous) does the job after a
slight adjustment to H̃ (and Ñ).

• (5) Assume X is “modular”: That is in addition to assumptions (1)–(3),

∃N ≥ 3, H ∈ M̌0(Γ(N)), and a (surjective) rational map θ : E [�]

(N) ��� X over H : Y (N) � P
1
t (which can include e.g., a fiberwise

Kummer- or Borcea–Voisin-type construction). While there are plenty
of examples for � = 1, 2, we will see that for � = 3 there are no mod-
ular anticanonical families of this form; the problem already arises
in hypothesis (3). However, there are relaxations of the hypotheses
that are likely to produce examples. See Section 10.6. Define θ∗Ξ ∈
CH�+1(E [�](N), �+ 1) by pulling back (to an appropriate blow-up of
E [�](N)) and pushing forward. Then

(10.7) Ωθ∗Ξ = (2πi)�+1Fθ∗Ξ(τ)η[�]
� ∧ dτ ∈ F �+1 ∩H�+1(E [�](N),Q(�+ 1)),

where Fθ∗Ξ ∈MQ
�+2(Γ(N)). If we know the divisor

(10.8) θ∗(X0) =: (−1)�
∑

σ∈κ(N)

rσ(Ξ) · π−1
Γ(N)(σ),

then taking f ∈ O∗(U(N))⊗(�+1) with H
[�]
σ (ϕf) = rσ(Ξ) (∀σ ∈ κ(N)),

ΩZf
and Ωθ∗Ξ have the same residues. By Section 7.1.5 they are equal

(i.e., Fθ∗Ξ = Ff) hence (by Lemma 9.1(ii)) so are the fiberwise AJ
classes.

To compute further we need precise information about θ: consider the posi-
tive integersMθ := deg(θ),m0 := θ∗(α�)

ϕ0
,m1 := θ∗(G∗(α�−1β))

ϕ1
(see Section 9.1),

mθ := m0
m1

, and (in suggestive notation) NΓ := NX
mθ

. For � = 1 we just have
m0 = m1 = mθ = 1 ( =⇒ NΓ = NX ), Mθ = κ. One easily checks that
H(τ) = H̃(mθτ) = C0 · q0 + h.o.t., when q0 := q

1
NΓ (by abuse of notation we

will write this H(q0), and H ′(q0) := dH
dq0

). We then have

θ∗ω = m0A(H(q0))η
[�]
� ∈ Γ(Y (N), ωΓ(N)

E/Y
),

H∗
dt

t
=

2πi
NΓ

q0
H(q0)

H ′(q0)dτ ∈ Ω1(Y (N))
〈

log(H−1(0) ∪H−1(∞))
〉

,
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θ∗ΩΞ = θ∗
(

dt

t
∧∇δt

Rt

)

= (−1)�θ∗ω ∧H∗dt
t

= (−1)�
2πim0

NΓ

q0
H(q0)

H ′(q0)A(H(q0))η
[�]
� ∧ dτ

∈ Ω�+1(E [�](N)) 〈log θ∗(X0)〉 .

Under pullback the regulator period becomes (for f as above)

Ψ(H(τ)) =
∫

ϕ0(H(τ))
R̃H(τ) =

1
m0

∫

α�(τ)
R̃θ∗Ξ(τ)(10.9)

=
1
m0

∫

α�

R̃[�]
f (τ) =

1
m0

Ψ[�]
f,0(τ),

so that (by Proposition 9.1(i))

∂τΨ(H(τ)) = (−1)�(2πi)�+1m−1
0 Fθ∗Ξ(τ).

That

Ψ(H(τ)) is of the form (9.17)

is of fundamental importance; if one divides by (2πi)� and takes the real
parts it essentially says the real regulator period (or Mahler measure, in the
region described in Corollary 4.4) pulls back to an Eisenstein–Kronecker–
Lerch series (noticed in examples of [9, 10, 69]). Furthermore, this allows us
to use Proposition 9.4 to compute its special values at H{unipotent cusps},
which therefore must be a sum (with coefficients ∈ Q(e

2πi
N )) of (�+ 1)th

special values of Dirichlet L-functions. This is similar to the case in Section 6
of L/Q abelian (which however does not imply modularity).

Our last object of interest is the Yukawa coupling Y (t) =
〈

ωt,∇�
δt
ωt
〉

,
which becomes

Y (H(q0)) = M−1
θ

〈

θ∗ω, θ∗∇�
δt
ω
〉

(10.10)

=
N �

Γ

(2πi)�Mθ
· 1
{H ′(q0)}�

〈

θ∗ω,∇�
∂τ
θ∗ω

〉

=
N �

Γm
2
0

(2πi)�Mθ
· {A(H(q0))}2

{H ′(q0)}�
〈

η
[�]
� ,∇

�
∂τ
η

[�]
�

〉

=
(−1)(

�

2)�!N �
Γm

2
0

(2πi)�Mθ
· {A(H(q0))}2

{H ′(q0)}�
,
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a rational function on Y (N). Noting A(0) = (2πi)� and using (10.7) and
Proposition 9.4 gives

Theorem 10.1. Assuming modularity of a family of CY �-folds X arising
(as described) from the toric construction, we have

(−1)�m0

(2πi)�NΓ
δq0Ψ(H(q0)) =

(−1)�m0

(2πi)�NΓ

q0
H(q0)

H ′(q0)A(H(q0))(10.11)

= Fθ∗Ξ(q0) =
∑

σ∈κ(N)

rσ(Ξ)Ẽ[�]
σ (q0)

for the pulled-back cycle class of the toric symbol, and also

(10.12)
Y (0)
(2πi)�

=
(−1)(

�

2)�!N �
Γm

2
0

MθC
�
0

∈ Q(C0).

Finally, if Xt0 =0 is a maximally unipotent singular fiber, then26 μ(t0) ≡
[ r0s0 ] ∈ κ(N) and

lim
t→t0

Ψ(t)
Q(�+1)
≡ (−1)�+1

2N

∑

[ rs ] ∈ κ(N)
[ rs ] /≡ [ r0s0 ]

s�r[ r

s
](Ξ)L̃−

(

π[
r0
s0

]∗ι[ r

s
]∗
̂

ϕ
[�]
N , �+ 1

)

.

(10.13)

By comparing values at [i∞] (i.e., q0 = 0) in (10.11), we have the inter-
esting

Corollary 10.1. r[i∞](Ξ) = (−1)� m0
NΓ

.

Remark. If the rσ(Ξ) are known but the series expansion t = H(q0) =
C0q0 + · · · for the mirror map is not, one can in principle determine the
latter from

Ψ(H(τ)) =
1
m0

Ψ[�]
f,0(τ)

(cf. (10.9)), by using (4.5) for the l.h.s. and Corollary 9.2 for the r.h.s. (In
the computations below, we have preferred to take H from other sources,
in order to partially vet our formulas.) Since the “log + constant” terms of
both sides must agree (mod Q(n)), an immediate consequence is

26The specific choice of representative r0
s0

of the cusp μ(t0) depends on the path
along which Ψ(t) has been continued prior to taking limt→t0 .



Algebraic K-theory of toric hypersurfaces 581

Corollary 10.2. C0 (hence Y (0)
(2πi)� ) is a root of unity.

Clearly one can normalize φ (retaining the assumption on vertex coeffi-
cients) so that Y (0) ∈ Q(�).

10.4. The elliptic curve case

Start with a reflexive tempered Laurent polynomial φ ∈ Q̄[x±1, y±1] defin-
ing a family of (generically smooth) elliptic curves, X̃ ⊂ P

1
t × P

˜Δφ
. Possi-

bly after a finite (t �→ tκ) quotient, again preserving unipotency at t = 0,
we desingularize this and blow down all (−1)-curves contained in fibers.
The resulting elliptic surface is denoted X , and is relatively minimal in the
sense that ωX/P

1
∼= π∗π∗ωX/P

1 ; the singular fibers are therefore of the types
described by Kodaira [51]. Clearly χ(X ) = 12 deg(π∗ωX/P

1) is 12, either by
looking at zeroes of ω = ∇δt

Rt ∈ Γ(π∗ωX/P
1) or the fact that X is birational

to PΔφ
hence to P

2. This constrains the possible combinations of singular
fibers in light of the table:

Sing. fiber type Contrib. to χ(X ) Ord. of monodromy No. of components

In≥1

I∗
n≥0

n

n + 6

∞
∞

n

n + 5

II

IV∗
2

8

6

3

1

7

III

III∗
3

9

4

4

2

8

IV

II∗
4

10

3

6

3

9

where we have paired those types related by a quadratic transformation
(“adding a ∗”). We identify families by the set of fiber types, e.g. I4

1/I
∗
4

means 4 I1’s and 1 I∗4 .
Now referring to (10.6), we make a precise

Definition 10.1. M is weakly modular if and only if μ−1(=: H) is a Haupt-
modul for Γ ⊂ SL2(Z) of finite index. We say M is modular if in addition
{−id} /∈ Γ and Γ ⊃ Γ(N) for some N ≥ 3.

Obviously if M is modular then one has a canonical quotient E [1]
Γ(N)

θ���
E [1]

Γ
∼= X and X is modular in the sense of Section 10.3.
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Lemma 10.1 [32, Proposition 2]. M is weakly modular if and only if
the J-invariant J(μ(t)) ramifies only over J = 0 (to order 1 or 3), J = 1
(to order 1 or 2), and J = ∞ (to any order).

The point is that μ−1 cannot possibly be single-valued if J ◦ μ has
“excess ramification” (which explains why we wanted to allow order-κ quo-
tients of the base in constructing X ). It follows (cf. [32]) that fiber types
II∗ and IV are not permitted (so no I2

1/II
∗), and neither are certain other

combinations (e.g. I6
1/I6); in [33, Theorem 4.12] the remaining possibilities

are listed (up to “transfer of ∗”). Disallowing those fiber types left which
contain −id in their local monodromy group (II, III, III∗), and checking for
−id also in global monodromy, one arrives at the list below.

Proposition 10.1. Suppose the singular fiber configuration of X is one
of those shown in the table, with fiber InX at t = 0. (This gives an addi-
tional degree of freedom.) Then M is modular, X ∼= EΓ (for Γ ⊃ Γ(N) as
displayed), and27

(10.14) − 1
nX

∑

σ∈|H−1(0)|⊂κ(N)

Ẽ[1]
σ (q0) = Fθ∗Ξ(q0),

where |H−1(0)| is not counted with multiplicity. Finally, all the configura-
tions below occur in the toric construction.

Configuration Γ N

I4
3 Γ(3) 3

I1/I3/IV ∗ Γ(′)(3) 3

I1/I∗
1/I4 Γ

(′)
1 (4) 4

I2
2/I2

4

〈

Γ(4),
(

1 2
0 1

)〉

4

I2
2/I∗

2
˜Γ(2) :=

〈(

1 2
0 1

)

,
(

1 0
2 1

)〉

4

I2
1/I2

5 Γ
(′)
1 (5) 5

I1/I2/I3/I6 Γ
(′)
1 (6) 6

I2
1/I2/I8

〈

Γ
′
1(8),

(

−3 −8
−1 −3

)〉

8

I2
1/I∗

4

〈

Γ
′
1(8),

(

−3 −8
−1 −3

)

,
(

−1 −4
0 −1

)〉

8

I3
1/I9

〈

Γ
′
1(9),

(

−4 −9
1 2

)〉

9

27Here q0 = q
1

nX .
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For computations it is desirable to replace − 1
nX

∑

Ẽ
[1]
σ by Ff with ϕf

chosen to have Hσ(ϕf) =
{−1
nX
, σ ∈ |H−1(0)|

0, otherwise
. Note that by (10.9), for τ ∈ H

(10.15) Ψ(H(τ)) ≡ Ψ[1]
f,0(τ) mod Q(2).

The two “E6” examples below both correspond to the second row of the
table, and their difference illustrates a technical subtlety. The first compu-
tation is essentially that in [77, Example 3]; Examples 4,5,6 in [77] also fall
under Proposition 10.1’s aegis, and correspond to lines 3,6,7 (resp.) in the
table.

Example 10.3. φ = x2y−1 + x−1y2 + x−1y−1, κ = 3 (quotient).
This yields X with fibers Xt

∼= {1− t
1
3φ = 0} ⊂ P

2, Γ = Γ1(3), and
nX = 1. (This is just the Hesse pencil, which appears as Example 1 in [69]
and Example 3 in [77].) The singular fibers occur at t = 0 (I1), 1

33 (I3),
∞ (IV ∗); whereas if we had not taken the quotient (κ = 1), there would
be 4 I3’s (at t = 0, 1

3 ,
ζ3
3 ,

ζ23
3 ) with Γ = Γ(3).

From [77],

H(q) = HΓ1(3)(q) :=
(

27 +
η(q)12

η(q3)12

)−1

= q(1− 15q + 171q2 − 1679q3 + · · · ),

where of course η(q) = q
1
24
∏

n≥1(1− qn), and we have

A(t) = 2πi
∑

m≥0

(3m)!
(m!)3

tm = 2πi(1 + 6t+ 90t2 + 1680t3 + · · · ).

Since |H−1(0)| = {[i∞]}, we put ϕf := −1
3π
∗
[i∞]ϕ

[1]
3 ; by Example 8.1

Ff(q) = −1 + 9
∑

K≥1

qK
∑

r|K
r2χ−3(r) = −1 + 9q − 27q2 + 9q3 + · · · .

The proposition says this equals

−q
H(q)

H ′(q)
A(H(q))

2πi
= −(1 + 15q + 54q2 − 76q3 + · · · )(1− 30q + 513q2 − 6716q3 + · · · )
× (1 + 6q + 6q3 + · · · ),
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which is clearly plausible from the first three terms of the series. From (9.26)
we have

Ψ[1]
f,0(q) = 2πi

⎧

⎨

⎩

log q − 9
∑

K≥1

(∑

r|K r
2χ−3(r)

K

)

qK

⎫

⎬

⎭

while Ψ(t) = 2πi
{

log t+
∑

m≥1
(3m)!
(m!)3 t

m
}

; computation again suggests that

Ψ(H(q)) = Ψ[1]
f,0(q), which is (mod Q(2)) exactly what (10.15) asserts.

Example 10.4. φ = x+ y + x−1y−1, κ = 3.
This gives X with Γ = Γ

′
1(3), nX = 3, and singular fibers at t = 0 (I3),

1
33 (I1), ∞ (IV ∗); before the quotient these are t= 0 (I9) and t= 1

3 ,
ζ3
3 ,

ζ23
3 (I1).

Put g(u) = 1−
(

1−3u
1+6u

)3
; by considering locations of singular fibers one

deduces

H(q0) = HΓ′
1(3)

(q0) =
1
33

g
(

HΓ(3)(q0)
)

=
1
33

g
[
(

HΓ1(3)(q
3
0)
) 1

3

]

= q0(1− 15q0 + 171q20 − 5q30 + · · · ).

This is so similar to the previous example that the A(t)’s are the same, and

−1
3

q0
H(q0)

H ′(q0)
A(H(q0))

2πi
= −1

3
+ 3q0 − 9q20 + · · · .

We want ϕ̂f = − 1
3ρ
′∗(ι[i∞]∗

̂

ϕ
[1]
3 ) = − 1

3π
∗
[0]

̂

ϕ
[1]
3 ( =⇒ ϕf = 1

3 ι[0]∗ϕ
[1]
3 ) since

|H−1(0)| = {[i∞], [1], [12 ]}. Using Proposition 8.3

Ff(q0) = −1
3

+ 3
∑

K≥1

qK0
∑

r|K
r2χ−3(r),

in agreement with the above.

It is interesting to explain why the “E8” family [69, Example 3; 77,
Example 3]

φ = xy−1 + x−1y2 + x−1y−1, κ = 6, I2
1/II

∗

and “E7” family

φ = xy−1 + x−1y3 + x−1y−1, κ = 4, I1/I2/III∗
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fail to yield Eisenstein series (despite nontriviality of Ξ ∈ CH2(X\X0, 2)).
More to the point,

(10.16)
q

μ−1(q)
(μ−1)′(q)

A(μ−1(q))
2πi

=:
∑

m≥0

αmq
m

does not even yield a modular form (of any level) since lim supM→∞
M
√

|αM | =: γ > 1. (At least one infers this from the data {bn} in [77].) It
is insufficient to say that the divisors of {x|Xt

, y|Xt
} are not supported on

torsion (perhaps this could be fixed by an AJ-equivalence), although this is
probably required for instances where Proposition 10.1 fails.

In the E8 case, J(μ(t)) vanishes to order 2 at t = ∞ (the II∗ fiber), so
that μ−1 is multivalued at τ = e

2πi
6 . As a result (10.16) both is multivalued

and blows up there.
According to Lemma 10.7, for the E7 family μ−1 is a Hauptmodul. How-

ever, the fact that Γ = Γ1(2) " {−id} manifests itself in (±) multivaluedness
of A ◦H about τ = 1+i

2 (where J = 1 and t = ∞).
In neither case does one have θ : E [1]

Γ(N) ��� X along which to pull back Ξ.
Perhaps this suggests a study of “generalized Eisenstein symbols” on families
over finite covers of H, with additional (nontorsion) marked structure; the
elliptic Bloch groups of Wildeshaus [83] seem quite suitable for this purpose.

10.5. Examples in the K3 case

Up to unimodular transformation, there are 4319 reflexive polytopes in
R

3 [52]; according to Corollary 3.1ff we immediately get (at least) 358 exam-
ples for � = 2 where the toric symbol completes by taking φ = characteristic
polynomial of vertices. (Putting “random” roots of unity instead of “1”
on each vertex renders all 1071 polytopes from Remark 3.4 usable.) For
each X/Ξ to be a candidate for modularity/Eisenstein-ness, we must have
rk(Pic(Xη)) = 19, in which case Xη has the Shioda–Inose structure [60] (and
one can then ask whether the underlying family of elliptic curves is suitably
modular). Such candidates are nontrivial to produce, but “non-candidates”
seem much more elusive.

Problem. Does Theorem 3.1 produce any families of K3’s with generic
Picard rank ≤ 18? Or does the tempered condition indirectly furnish enough
additional divisors to preclude this possibility?



586 Charles F. Doran and Matt Kerr

Here are eight Laurent polynomials which satisfy Theorem 3.1 and
produce (after desingularization; see Section 10.3 for the definition of X )
one-parameter K3 families X provably of generic Picard rank 19 (together
with the method of proof).

family φ(x, y, z)
A(t)

(2πi)2
method

1 Fermat quartic 1+x4+y4+z4

xyz

∑

m≥0
(4m)!

(m!)4
t4m symmetry

G∼= (Z/4Z)2

2 quartic mirror x+ y + z + 1
xyz

same restrict from PΔ̃

3 WP(1, 1, 1, 3) 1+x6+y6+z2

xyz

∑

m≥0
(6m)!

(m!)3(3m)!
t6m symmetry

“Fermat” G∼= Z/6Z× Z/2Z

4 WP(1, 1, 1, 3) x+ y + z + 1
xyz3 same restrict from PΔ̃

mirror

5 “box”
(x−1)2(y−1)2(z−1)2

xyz

∑

m≥0

(2m
m

)3
tm Shioda

6 Fermi [68] x+ 1
x

+ y + 1
y

+ z + 1
z

{
∑

m≥0 t
2m

(2m
m

)

“double cover”

of Apery

× ∑m
k=0

(m
k

)2(2k
k

)
}

7 Apéry

{(x− 1)(y − 1)(z − 1)
×[(x− 1)(y − 1)− xyz]}

xyz

{
∑

m≥0 t
m Shioda

× ∑m
k=0

(m
k

)2(m+k
k

)2
}

8 Verrill [81]

{(1 + x+ xy + xyz)
×(1 + z + zy + zyx)}

xyz

{

∑

m≥0 t
m intersection

× ∑

p+q+r+s=m

(

m!
p!q!r!s!

)2
}

form

(The “Apéry” family is birational to the one studied in [15,16,67].) Families
#1–4 and 6 are instances of Example 3.1 (with Remark 3.4 for #1 and #3).
The other three φ’s are not regular and need Theorem 3.1 with K = Q (for
#5 and #7) or Remark 3.3(iv) (for #8) applied to the equivalent symbol
{xy, y, z}.

We quickly summarize the “methods” in the r.h. column; a study (includ-
ing most of these examples) can be found in [82]. If X̃η is nonsingular (= Xη)
then [70]

rk(Pic(Xη)) ≥ rk{im(Pic(PΔ̃) → Pic(Xη))} = �(Δ◦)−
∑

σ∈Δ◦(1)

�∗(σ)− 4,

which = 19 for families #2 and #4 and = 1 for #1 and #3. For the latter
cases, the action on Xη by a finite subgroup G ⊂ (C∗)3 augments the Picard
rank by

rk
[
(

H2(Xη,Z)G
)⊥]
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[64, 82], which turns out to be 18. For #5 (resp #7), Xη is obtained from

X̃η (remember Xη is really ˜X̃η) by blowing up the 12 (resp. 7) A1 singu-
larities. The elliptic fibration Xη → P

1
z has singular fibers (I∗1 )2/I8/I2

1 (resp.
I∗1/I5/I8/I4

1 ). By Shioda [74]

rk(Pic(Xη)) = 2 + r +
∑

(Mi − 1),

where r = rank of group of sections = 0 (resp. 1; the existence of a nontor-
sion section is demonstrated in [16]) and Mi = # of fiber components in each
singular fiber; this yields 19. This result is transferred to the Fermi family
by observing that its pullback {1− 1

u+u−1φFermi = 0} has a 2 : 1 rational
map (over u �→ u2 = t) onto the Apéry family {1− tφApery = 0} (see [68]).
Finally, to deal with #8, [81] adds some lines to the components of D ⊂ Xt

and shows the rank of the resulting intersection form is 19.
The Fermi, Apéry and Verrill pencils (which are modular) yield an

instructive set of examples for Theorem 10.1: N = 6 in all three cases but
the {rσ(Ξ)}, hence {Fθ∗Ξ}, are all different.

Example 10.5. By Peters [67], the Apéry pencil’s Z-PVHS is equivalent
to that coming from the construction of Remark 8.3 for N = 6 (and we will
assume the 2 X ’s birational). This gives28 (with Γ = Γ1(6)+6)

m0 = −12,m1 = 1, NΓ = 1,Mθ = 24 =⇒ Y (0)
(2πi)2

= −12;

moreover, ϕ̂f should be a constant multiple of (10.5). Since (by
Corollary 10.1) r[i∞](Ξ) = −12, we take

ϕ̂f := (10.5)

= −2 · 63

5
{ϕ̂{1,1} − ϕ̂{2,1} − ϕ̂{3,1} + ϕ̂{6,1}}

+
2 · 65

5
{ϕ̂{6,1} − ϕ̂{6,2} − ϕ̂{6,3} + ϕ̂{6,6}}

where ϕ̂{a,b}(m,n) :=
{

1, a|m and b|n
0 otherwise

. (See figure 12 for a depiction

of 5
2·65 ϕ̂f; any places where it takes the value 0 are simply left blank.) By

28See below for C0. Singularities: monodromy is maximally unipotent about
0, ∞(= t), finite (order 2) about (

√
2 + 1)4, (

√
2− 1)4.



588 Charles F. Doran and Matt Kerr

Figure 12: Eisenstein coefficients for toric symbol on Apery pencil.

Proposition 8.2,

E[2]
ϕ{a,b}(q) =

−3
(2πi)4

L̃
(

ι∗[i∞]ϕ̂{a,b}, 4
)

− 1
64

∑

M≥1

q
M

6

⎧

⎨

⎩

∑

r|M
r3

⎛

⎝

∑

n0∈Z/6Z

e
2πin0r

6 ϕ̂{a,b}

(

M

r
, n0

)

⎞

⎠

⎫

⎬

⎭

=
−1

240b4
− 1
b4

∑

K≥1

q
a

b
K

⎧

⎨

⎩

∑

r|K
r3

⎫

⎬

⎭

=
−1

240b4
E4(q

a

b ),

using substitutions M = 6abK and r = 6
b r. So we have, with E4(q) = 1 +

240(q + 9q2 + 28q3 + 73q4 + · · · ),

E[2]
ϕf

(q) = −12
240·5{(1− 62)E4(q) + (62 − 24)E4(q2) + (62 − 34)E4(q3)

+ (64 − 62)E4(q6)}
= 7

20E4(q)− 1
5E4(q2) + 9

20E4(q3)− 63
5 E4(q6)

= −12 + 84q + 708q2 + 2460q3 + · · · .

On the other hand, from [10] u = η(τ)6η(6τ)6

η(2τ)6η(3τ)6 implies that

H(q) = u2 = q(1− 12q + 66q2 − 220q3 + · · · ),
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while from the table

A(t) = (2πi)2(1 + 5t+ 73t2 + 1445t3 + · · · );

therefore (from Theorem 10.1)

Fθ∗Ξ =
m0

(2πi)2NΓ

q

H(q)
H ′(q)A(H(q)) = −12 + 84q + 708q2 + 2460q3 + · · · .

So here we were able to correctly predict the Eisenstein series; in the
remaining examples (where obviously Theorem 10.1 predicts (10.11) is an
Eisenstein series) we have found ϕf essentially by solving for the correct
combination of ϕ{a,b}’s.

Example 10.6. (Compare [10, Example 1].) For the Fermi family, one
deduces from Apéry (and the relationship between the two) that

m0 = −12, m1 = 1, C0 = 1, NΓ = 2, Mθ = 24

=⇒ r[i∞](Ξ) = −6,
Y (0)
(2πi)2

= −48;

so q0 = q
1
2 and

H(q0) =
1

u+ 1
u

= q0(1− 7q2o + 34q40 − 204q60 + · · · ).

(The family has order 2 monodromy about t = ±1
2 ,±

1
6 and maximally

unipotent monodromy about t = 0.) From the table A(t) = (2πi)2(1 + 6t2 +
90t4 + 1860t6 + · · · ), and by Theorem 10.1

Fθ∗Ξ(q0) = −6
q0

H(q0)
H ′(q0)

A(H(q0))
(2πi)2

= −6 + 48q20 + 240q40 + 1776q60 + · · · .

An educated guess for ϕ̂f(m,n) is 65

5 times figure 13

=
(

ϕ̂{6,1} − ϕ̂{6,2} − ϕ̂{6,3} + ϕ̂{6,6}
)

− 1
36

(

ϕ̂{1,1} − ϕ̂{2,1} − ϕ̂{3,1} + ϕ̂{6,1}
)

+ 1
9

(

ϕ̂{2,1} − ϕ̂{2,2} − ϕ̂{6,1} + ϕ̂{6,2}
)

− 1
4

(

ϕ̂{3,1} − ϕ̂{3,3}
−ϕ̂{6,1} + ϕ̂{6,3}

)

,

which yields

E[2]
ϕf

(q) = 1
5E4(q)− 4

5E4(q2) + 9
5E4(q3)− 36

5 E4(q6)

= −6 + 48q + 240q2 + 1776q3 + · · ·
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Figure 13: Eisenstein coefficients for toric symbol on Fermi pencil.

in agreement with the above.

Example 10.7. Verrill’s pencil has order 2 monodromy at t = 1
16 ,

1
4 and

maximal unipotent monodromy at 0, ∞; it is modular with Γ = Γ1(6)+3, and
presumably a construction analogous to that in Remark 8.3 (with ι3 replac-
ing ι6) yields the total space (up to birational equivalence). This implies

m0 = −6, m1 = 1, NΓ = 1, Mθ = 12 =⇒ r[i∞] = −6,
Y (0)
(2πi)2

= −6.

Verrill’s Λ = − η(τ)6η(3τ)6

η(2τ)6η(6τ)6 − 4 which implies that our t =

H(q) =
1

Λ + 4
= −η(2τ)

6η(6τ)6

η(τ)6η(3τ)6
= −9(1 + 6q + 21q2 + 68q3 + 198q4 + · · · );

together with A(t)
(2πi)2 = 1 + 4t+ 28t2 + 256t3 = · · · , this gives

Fθ∗Ξ = −6
q

H(q)
H ′(q)

A(H(q))
(2πi)2

= −6− 12q + 84q2 − 228q3 + · · · .

Put ϕ̂f := 65

5 times figure 14

=
(

ϕ̂{6,1} − ϕ̂{6,2} − ϕ̂{6,3} + ϕ̂{6,6}
)

− 1
9

(

ϕ̂{2,1} − ϕ̂{2,2} − ϕ̂{6,1} + ϕ̂{6,2}
)

;
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Figure 14: Eisenstein coefficients for toric symbol on Verrill pencil.

then indeed

E[2]
ϕf

(q) = − 1
20E4(q) + 4

5E4(q2) + 9
20E4(q3)− 36

5 E4(q6)

= −6− 12q + 84q2 − 228q3 + · · · .

10.6. Remarks on the CY three-fold case

In this subsection we present no further examples of Theorem 10.1, because
there are not any (Proposition 10.3). To illustrate what the problem is, we
begin by describing a local modularity criterion for π : X → P

1 in terms
of the associated limit mixed Hodge structure at t = 0. This is a necessary
condition for applying that result, and it fails dramatically for the celebrated
quintic mirror family (as we shall see).

Let (HZ,H,F•) be a weight 3 rank 4 polarized Z-VHS over a punctured
disk U = D∗ε (0) with maximal unipotent monodromy T ∈ Aut(HZ) about
t = 0. The weight monodromy filtration W• can be defined on HZ, with
adapted symplectic Z-basis {ϕi}3

i=0:

GrWϕi ∈ Γ
(

U,
W2i

W2i−2
HZ

)

, [〈ϕi, ϕj〉] =
(

1
1

−1
−1

)

.

Moreover, there is a unique (OU -) basis {ωi}3
i=0 for H adapted to the Hodge

filtration (ωi ∈ Γ(U,F i)) and satisfying

GrWωi = GrWϕi ∈ Γ
(

U,
W2i

W2i−2
H
)

.
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Replacing t by q := exp
(

2πi 〈ϕ1,ω3〉
〈ϕ0,ω3〉

)

, an “integral” basis for the LMHS

(H lim
Z ,W•,Hlim,Flim) is {ei := ϕ̃i(0)}, where ϕ̃i(q) := exp

(

− log q
2πi log T

)

ϕi(q).
The period matrix Ω of Hlim is given by writing the ωi(0) ∈ F i

lim as vec-
tors w.r.t. the basis {ei}. If H = Sym3H[1] as in the beginning of Section 9.1,
then since β̃ = β − log q

2πi α and [β̃(0)] = limq→0[dz] ∈ H[1]
lim, Ω = Sym3Ω[1] =

identity (up to unimodular transformations preserving W•). This leads to
(ii) in the following

Proposition 10.2. (i) [41] In the above situation,

Ω =

⎛

⎜

⎜

⎝

1 0 f
2a ξ

1 e
a

f
2a

1 0
1

⎞

⎟

⎟

⎠
with a, e, f ∈ Z (but ξ ∈ C).

(ii) If H = R3π∗C⊗OU comes from a modular family π : X → P
1 of

CY three-folds (in the sense of Section 10.3), then ξ ∈ Q.

In the language of [32], ξ ∈ C/Q detects the presence of instanton cor-
rections: in fact ξ is nothing but −1

2F (0) where F is the prepotential. This
is considered in [20] for the quintic mirror, which in our setup is

φ = x+ y + z + w +
1

xyzw
.

(Obviously this satisfies Corollary 3.1 for n = 4.) Indeed, for this most fun-
damental example (by Green et al. [41])

Ω =

⎛

⎜

⎜

⎜

⎝

1 0 25
12 −200ζ(3)

(2πi)3

1 −11
2

25
12

1 0
1

⎞

⎟

⎟

⎟

⎠

tells us that X is not modular.
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Now consider the five Laurent polynomials

φ(x) Corresponding CY family {X̃t}
x1 + x2 + x3 + x4 + 1

x1x2x3x4
Quintic mirror

x1 + x2 + x3 + x4 + 1
x2

1x2x3x4
Sextic mirror

x1 + x2 + x3 + x4 + 1
x4

1x2x3x4
Octic mirror

x1 + x2 + x3 + x4 + 1
x5

1x
2
2x3x4

Dectic mirror
x1 + x2 + x3 + x1x

2
2x

3
3x

5
4 + 1

x2
1x

3
2x

4
3x

5
4

Quintic twin mirror

all of which fall under the aegis of Corollary 3.1 (n = 4). These are the
only families of smooth h2,1 = 1 Calabi–Yau anticanonical hypersurfaces in
Gorenstein toric Fano fourfolds, and their Picard–Fuchs equations are all
classical generalized hypergeometric equations [34]. In particular, the cor-
responding polytopes Δ have only six integral points, so the anticanonical
hypersurfaces in PΔ̃ have one modulus and modifying the monomial coef-
ficients yields isomorphic families. Moreover, none of these is a symmetric
cube of a second-order ODE whose projective normal form is the uniformiz-
ing differential equation for a modular curve [32]. We conclude:

Proposition 10.3. There are no anticanonical toric modular families of
CY three-folds in the precise sense of (5) from Section 10.3.

There are a couple of ways to relax the toric hypotheses that would
likely lead to modular examples. What does not work is relaxing the rank
4 (h2,1 = 1) hypothesis on H3(Xt) (e.g., to H3 having a rank 4 level 3 sub-
Hodge-structure), since the geometric information of θ : E [�](N) ��� X is
crucial and birational (smooth) CY’s have equal Hodge numbers [4].

One possibility is to consider a toric four-fold PΔ̃ whose anticanonical
hypersurfaces have multiple moduli, and choose our one-parameter family
(1− tφ = 0) to have (fiberwise) crepant singularities on its generic member.
Resolving the singularities would then yield a family of CY’s with hp,q’s
distinct from those of the generic (smooth) anticanonical hypersurface. This
approach will require a generalization of Theorem 3.1 to treat such singu-
larities. Alternately, one could try to extend the construction of motivic
cohomology classes from Section 3 to families of complete intersections in
toric ≥5-folds. The generation of such families by way of nef-partitions of
polytopes [6] yields an as-yet unknown number of h2,1 = 1 examples.
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