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This paper establishes a correspondence relating two specific classes of complex alge-

braic K3 surfaces. The first class consists of K3 surfaces polarized by the rank-16 lattice

H ⊕ E7 ⊕ E7. The second class consists of K3 surfaces obtained as minimal resolutions

of double covers of the projective plane branched over a configuration of six lines. The

correspondence underlies a geometric 2-isogeny of K3 surfaces.

1 Geometric 2-isogenies on K3 Surfaces

Let X be an algebraic K3 surface defined over the field of complex numbers. A Nikulin

(or symplectic) involution on X is an analytic automorphism of order 2 Φ : X→ X such

that Φ∗(ω)=ω for any holomorphic 2-form ω on X. This type of involution has many

interesting properties (see [20, 21]), amongst which the most important are: (a) the fixed

locus of Φ consists of precisely eight distinct points, and (b) the surface Y obtained

as the minimal resolution of the quotient X/Φ is a K3 surface. Equivalently, one can

construct Y as follows. Blow up the eight fixed points on X obtaining a new surface X̃.

The Nikulin involution Φ extends to an involution Φ̃ on X̃ which has as fixed locus the
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3658 A. Clingher and C. F. Doran

disjoint union of the eight resulting exceptional curves. The quotient X̃/Φ̃ is smooth and

recovers the surface Y from above.

In the context of the above construction, one has a degree-2 rational map

pΦ : X ��� Y with a branch locus given by eight disjoint rational curves (the even eight

configuration in the sense of Mehran [19]). In addition, there is a push-forward mor-

phism (see [14, 20])

(pΦ)∗ : H2(X, Z)→ HY (1)

mapping into the orthogonal complement in H2(Y, Z) of the even eight curves. The

metamorphosis of the surface X into Y is referred to in the literature as the Nikulin

construction.

The most well-known class of Nikulin involutions is given by the Shioda–Inose

structures [14, 20, 21]. These consist of Nikulin involutions that satisfy two additional

requirements. The first condition asks for the surface Y to be Kummer. The second

requirement asserts that the morphism (1) induces a Hodge isometry between the lat-

tices of transcendental cocycles TX(2) and TY. An effective criterion for a particular K3

surface X to admit a Shioda–Inose structure was given by Morrison [20].

In this paper, we shall work with another class of Nikulin involutions: fiber-

wise translations by a section of order 2 in a Jacobian elliptic fibration. This class of

involutions was discussed by Van Geemen and Sarti [11]. Let us be precise:

Definition 1.1. A Van Geemen–Sarti involution is an automorphism ΦX : X→ X for

which there exists a triple (ϕX, S1, S2) such that:

(a) ϕX : X→ P
1 is an elliptic fibration on X.

(b) S1 and S2 are disjoint sections of ϕX.

(c) S2 is an element of order two in the Mordell–Weil group MW(ϕX, S1).

(d) ΦX is the involution obtained by extending the fiber-wise translations by S2

in the smooth fibers of ϕX using the group structure with a neutral element

given by S1.

Under the above conditions, one says that the triple (ϕX, S1, S2) is compatible with the

involution ΦX. �

Any given Van Geemen–Sarti involution is, in particular, a Nikulin involution.

One can naturally regard a Van Geemen–Sarti involution ΦX as a fiber-wise 2-isogeny

between the original K3 surface X and the newly constructed K3 surface Y. Since ΦX
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Note on a Geometric Isogeny of K3 Surfaces 3659

acts as a translation by an element of order 2 in each of the smooth fibers of ϕX, there

is a canonically induced elliptic fibration ϕY : Y→ P
1. The new fibration ϕY carries two

special sections, S′1 and S′2, as follows. The section S′1 is the image under the map pΦX

of the two sections S1 and S2 of ϕ. The section S′2 is the image under pΦX of the divisor

on X obtained by compactifying the curve obtained by taking the union of remaining

two order-2 points in the smooth fibers of ϕX. The two sections S′1 and S′2 are disjoint

and S′2 represents an element of order two in the Mordell–Weil group MW(ϕY, S′1). Then,

by standard results [24], the fiber-wise translations by the order-2 section S′2 extend to

determine an involution ΦY : Y→Y which is a Van Geemen–Sarti involution on Y.

The same procedure applied initially to the involution ΦY recovers the K3 sur-

face X together with the triple (ϕX, S1, S2) and the involution ΦX. One has therefore the

following commutative diagram:

YΦY

��

ϕY ���
��

��
��

�
pΦY

��� � � � � � 	 X ΦX

��

ϕX��












pΦX

�� ������	

P
1

(2)

The rational maps pΦX and pΦY are of degree 2. Hence, (pΦX , pΦY ) can be seen as forming

a pair of dual 2-isogenies between the surfaces X and Y. (The rational maps pΦX and pΦY

are not isogenies in the traditional sense (finite and etale morphism). Clingher thanks

Mohan Kumar for pointing out this fact.)

Note that, by standard results [4, 15, 22, 24] on elliptic fibrations on K3 surfaces,

once a K3 surface X is endowed with an elliptic fibration ϕX : X→ P
1 with two disjoint

sections S1 and S2, the condition for the triple (ϕX, S1, S2) to define a Van Geemen–Sarti

involution can be formulated entirely in terms of cohomology. One first considers the

cohomology class F of the fiber of ϕX as well as the class of S1. These classes span a

primitive lattice embedding H ↪→NS(X). In fact, the Neron–Severi lattice factors into an

orthogonal direct product

NS(X)= H ⊕W, (3)

where W is a negative definite lattice of rank pX − 2, where pX is the Picard rank of X

(also the rank of the Neron–Severi group NS(X)). In the context of (3), denote by Wroot the

sub-lattice spanned by the roots of W. This sub-lattice is actually spanned by the irre-

ducible components of the singular fibers of ϕX not meeting S1. As proved by Shioda [24],
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3660 A. Clingher and C. F. Doran

one has then an isomorphism of abelian groups:

MW(ϕ, S1)�W/Wroot. (4)

Let Sw
2 ∈W be the image of the class S2 under the projection NS(X)→W associated with

the factorization (3). Note that Sw
2 = S2 − S1 − 2F and Sw

2 has self-intersection −4. One

obtains the following criterion:

Proposition 1.2. The triple (ϕX, S1, S2) defines a Van Geemen–Sarti involution Φ : X→ X

if and only if 2Sw
2 ∈Wroot. �

We also note that a Van Geemen–Sarti involution on a K3 surface X is equiva-

lent to a pseudo-ample polarization by the rank-10 lattice H ⊕ N where N is the rank-8

Nikulin lattice as defined by [20]. The Nikulin construction defines a natural involution

on the 10-dimensional moduli space of H ⊕ N-polarized K3 surfaces.

2 Outline of the Paper

In this work, we construct Van Geemen–Sarti involutions on two specific classes of alge-

braic K3 surfaces. The first class consists of algebraic K3 surfaces X endowed with a

pseudo-ample lattice polarization:

i : H ⊕ E7 ⊕ E7 ↪→NS(X).

This polarization structure is equivalent geometrically to a Jacobian elliptic fibration

on X that has two singular fibers of Kodaira type III∗ or higher. For details regarding

the concept of lattice polarization, we refer the reader to Dolgachev’s paper [9] or the

previous work of Clingher and Doran [4]. For the purposes of this paper, an additional

genericity condition is introduced (Definition 4.4 of Section 4).

The second class of K3 surfaces consists of a special collection of double sextic

surfaces—we consider surfaces Z obtained as minimal resolutions of double covers of

the projective plane P
2 branched over a configuration L of six distinct lines. The lines are

assumed to be so located that no three of them pass through the same common point.

We also introduce an explicit condition for genericity of L, as given by Definition 3.4 of

Section 3.
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Note on a Geometric Isogeny of K3 Surfaces 3661

The main results of this paper are as follows:

Theorem 2.1. The K3 surfaces Z and X introduced above carry canonically defined

Van Geemen–Sarti involutions, denoted ΦZ or ΦX, respectively. �

Theorem 2.2. If genericity is assumed on both sides, then one has a bijective

correspondence:

(Z ,L)←→ (X, i) (5)

between the two classes of surfaces, with the two K3 surfaces involved being related by

a pair of dual geometric 2-isogenies

ZΦZ

��

pΦZ

��� � � � �  � X ΦX

��
pΦX

		 ������ (6)

as described in Section 1. �

Theorem 2.2 remains true if the genericity conditions are removed. However, in

that case, in order to account for all possible H ⊕ E7 ⊕ E7-polarized K3 surfaces (X, i),

one has to allow for surfaces Z to degenerate to situations when at least three of the

six lines in the configuration L are meeting at a point. The proofs associated with these

degenerate cases will be included in a subsequent paper.

The present work builds on ideas from paper [5], where the authors have shown

that dual pairs of geometric 2-isogenies as in Section 1 relate K3 surfaces X polarized

by the rank-18 lattice H ⊕ E8 ⊕ E8 to Kummer surfaces Z associated to a cartesian prod-

uct of two elliptic curves. In this situation, the Van Geemen–Sarti involution ΦX is a

Shioda–Inose structure. This case was also considered by Shioda in [25]. In an earlier

work motivated by arithmetic considerations, Van Geemen and Top [12] have presented

a particular variant of the H ⊕ E8 ⊕ E8 case—an isogeny between a one-dimensional

family of K3 surfaces polarized by H ⊕ E8 ⊕ E8 ⊕ A1(2) and Kummer surfaces associated

to a cartesian product a pair of 2-isogeneous elliptic curves.

In the appendix to paper [10] by Galluzzi and Lombardo, Dolgachev argued that

any K3 surface Z with the Neron–Severi lattice NS(X) isomorphic to H ⊕ E8 ⊕ E7 carries

a canonical Shioda–Inose structure and the associated Nikulin construction leads to a

Kummer surface associated with the Jacobian Jac(C ) of a genus-2 curve. This situation

appears here as a particular case of Theorem 2.2. Polarized K3 surfaces (X, i) for which
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3662 A. Clingher and C. F. Doran

the lattice polarization extends to H ⊕ E8 ⊕ E7 correspond, under (5), to configurations L
in which the six lines are tangent to a common conic. An explicit formula for determining

the H ⊕ E8 ⊕ E7-polarized K3 surface X has been given by Kumar [17].

We shall also note that the geometric setting of Theorems 2.1 and 2.2 is ideal

for performing explicit Kuga–Satake-type constructions [16] without relying on period

computations. In the companion paper, Clingher and Doran [6] use the results of this

work in order to give a full classification of the K3 surfaces polarized by the lattice

H ⊕ E8 ⊕ E7 in terms of Siegel modular forms.

3 Double Covers of the Projective Plane

Let L= {L1, L2, . . . , L6} be a configuration of six distinct lines in P
2. We shall assume that

no three of the six lines are concurrent. Denote by qij, with 1≤ i < j ≤ 6, the 15 resulting

intersection points. Let ρ : R→ P
2 be the blow-up of the projective plane at the points qij

and denote by L ′1, L ′2, . . . , L ′6 the rational curves in R obtained as the proper transforms

of the six lines L1, L2, . . . , L6. Since

1

2

6∑
i=1

L ′i ∈NS(R),

one has that there exists a double cover π : Z→ R branched over L ′1, L ′2, . . . , L ′6. The sur-

face Z is a smooth algebraic K3 surface of Picard rank 16 or higher. In this section,

we prove that the K3 surface Z so defined carries a canonical Van Geemen–Sarti invo-

lution denoted ΦZ . Moreover, the K3 surface W resulting from the Nikulin construction

associated to the involution ΦZ is endowed with a canonical H ⊕ E7 ⊕ E7 polarization.

In order to define the involution ΦZ , we follow the guidelines of Section 1. We

first introduce an underlying elliptic fibration ϕZ : Z→ P
1 with two sections. We then

show that fiber-wise translation by the second section determines a Van Geemen–Sarti

involution.

3.1 A special elliptic fibration on Z

By construction, the surface Z comes endowed with a nonsymplectic involution σ : Z→
Z . The fixed locus of σ is given by six rational curves Δ1,Δ2, . . . , Δ6, representing the

ramification locus of the double cover map π : Z→ R. We denote by Eij the 15 exceptional

curves on the surface R and by Gij their respective strict transforms on Z . Set also

T = (π ◦ ρ)∗H where H is a hyperplane divisor on P
2.
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The following divisor on R will prove to be instrumental:

D = 5ρ∗(H)− 3E13 − 2(E14 + E25 + E26)− (E24 + E35 + E36 + E56). (7)

The linear system |D| corresponds to curves of degree five in P
2 passing through the

four points q24, q35, q36, and q56, having double points at q14, q25, and q26 and a triple

point at q13.

Proposition 3.1. The linear system |D| is a pencil. Moreover, |D| is base-point free and

its generic member is a smooth rational curve. The induced morphism

ϕ|D| : R→ P
1 (8)

is a ruling. �

Proof. Note that it suffices to prove the above statement assuming that R is the blow-

up of P
2 at the eight points q13, q14, q24, q25, q26, q35, q36, and q56. The eight points in

question are in almost general position (as defined in [8, Definition 1]), that is, no four of

the eight points lie on a line and no seven of them belong to a common irreducible conic.

Then, as proved in [7, 8], the rational surface R is a generalized Del Pezzo surface with

the anticanonical line bundle −KR having the big and nef properties.

Since D2 = 0 and D · KR=−2, one obtains, via the Riemann–Roch formula:

h0(R, D)− h1(R, D)+ h2(R, D)= 2.

But h2(R, D)= h0(R, KR− D)= 0. In particular, h0(R, D)≥ 2.

Let C be the unique conic in P
2 passing through the five points q13, q14, q25, q26,

and q56. The conic C is smooth. Denote by C ′ the rational curve on R obtained as the

proper transform of C . Then:

L ′1 + L ′2 + L ′3 + C ′ (9)

is a special member of |D|. As D · L ′1 = D · L ′2 = D · L ′3 = D · C ′ = 0, if |D|were to have base

points, then the entire divisor (9) would be part of the base locus. This would imply

h0(R, D)= 1, contradicting the above estimation. The pencil |D| has therefore no base

points. By Bertini’s Theorem, the generic member of |D| is smooth and irreducible, and
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3664 A. Clingher and C. F. Doran

by the degree-genus formula we obtain that the generic member is a smooth rational

curve.

It remains to be shown that h1(R, D)= 0. One has h1(R, D)= h1(R, KR− D). But

(D − KR)2 = 5 and since both D and −KR are nef, one has that D − KR is nef. By

Ramanujam’s Vanishing Theorem [23], one obtains h1(R, KR− D)= 0. �

Note that the lines L ′5 and L ′6 are disjoint sections of the ruling (8), while L ′4 is a

bi-section. The entire construction lifts then to the level of the K3 surface Z where one

obtains the following.

Lemma 3.2. The pull-back under the double cover ρ : Z→ R of the linear system asso-

ciated to (7), that is,

|5T − 3G13 − 2(G14 + G25 + G26)− (G24 + G35 + G36 + G56)|

determines an elliptic fibration ϕZ : Z→ P
1 with the smooth rational curves Δ5 and Δ6

as distinct sections. �

The smooth fibers of ϕZ appear as double covers of the smooth rational curves

of the ruling (8), with the branch locus given by the four points of intersection with L ′4,

L ′5, and L ′6.

Let us discuss the basic properties of the elliptic fibration ϕZ . We shall differen-

tiate between the following two possibilities:

(a) the six lines of the configuration L are tangent to a common smooth conic

in P
2,

(b) there is no smooth conic tangent to all the six lines of the configuration L.

In situation (a) the surface Z is a Kummer surface associated to the Jacobian of a genus-2

curve. We shall refer to such a six-line configuration as special or Kummer. If the six-line

configuration L is in situation (b), we shall refer to it as nonspecial or non-Kummer.

Proposition 3.3. If the six-line configuration L is non-Kummer, then the elliptic fibra-

tion ϕZ : Z→ P
1 has a singular fiber of type I ∗4 . This special fiber becomes of type I ∗5 in

the Kummer case. �
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Proof. Let C and C ′ be the curves defined within the proof of Proposition 3.1. Note

that, as a consequence of the classical theorems of Pascal and Brianchon, the six-line

configuration L is Kummer if and only if the conic curve C passes through q34.

If the configuration L is non-Kummer, then under the double cover map π : Z→
R, one has π∗C ′ = Γ where Γ is smooth rational curve. The involution σ maps the curve

Γ to itself, with two fixed points located at the points of intersection with Δ3 and Δ4,

respectively.

However, if the six-line configuration L is Kummer, then one has:

π∗C ′ = Γ1 + Γ2,

where Γ1 and Γ2 are two disjoint smooth rational curves. The two curves Γ1 and Γ2 are

mapped one onto the other by the involution σ .

One obtains in this way a special configuration of rational curves on the K3 sur-

face Z . If L is not Kummer, we have the following dual diagram:

G34•

��
��

G15•








Δ5•

Δ4•

��
��

�






Δ3•










G23• Δ2• G12• Δ1•

��
��

Γ• G16• Δ6•

(10)

The special divisor:

G34 + Γ + 2(Δ3 + G23 +Δ2 + G12 +Δ1)+ G15 + G16

is the pull-back on Z of the special quintic curve (9) and is a singular fiber of Kodaira

type I ∗4 for the elliptic fibration ϕZ . The diagram above also includes the two sections Δ5

and Δ6 as well as the bi-section Δ4.
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If the configuration L is Kummer, then the dual diagram of rational curves gets

modified as follows:

Γ1•

��
��

G15•








Δ5•

Δ4• G34•










Δ3• G23• Δ2• G12• Δ1•

��
��

Γ2• G16• Δ6•

(11)

The pull-back to Z of the quintic curve (9) is now the divisor:

Γ1 + Γ2 + 2(G34 +Δ3 + G23 +Δ2 + G12 +Δ1)+ G15 + G16

which forms a singular fiber of type I ∗5 for the elliptic fibration ϕZ . �

We note that, in addition to the special singular fiber of Proposition 3.3, the

elliptic fibration ϕZ carries additional singular fibers. In the generic situation, one has

six additional I2 fibers plus two singular fibers of type I1 in the non-Kummer case, or a

single fiber of type I1 in the Kummer case, respectively. The condition for genericity can

be made precise. Consider the following divisors on the surface R:

Λ1 = 5ρ∗(H)− 3E13 − 2(E14 + E25 + E26)− (E24 + E35 + E36 + E45 + E56),

Λ2 = 4ρ∗(H)− 2(E13 + E14 + E25)− (E24 + E26 + E35 + E36 + E56),

Λ3 = 3ρ∗(H)− 2E13 − (E14 + E24 + E25 + E26 + E35 + E56),

Λ4 = 2ρ∗(H)− (E13 + E14 + E25 + E26 + E35),

Λ5 = ρ∗(H)− (E13 + E25),

Λ6 = E46.

The following intersection numbers hold:

Λ2
i =Λi · KR= (D −Λi)

2 = (D −Λi) · KR=−1.
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In addition, one has:

h0(R,Λi)= h0(R, D −Λi)= 1

for all indices i with 1≤ i ≤ 6.

The I1 type fibers appear from irreducible projective quintic curves for which the

extra intersection with the line L4 (additional q24 and the double point at q14) is a double

point. In particular, the node of an I1 fiber lies on the bi-section Δ4. We also note that,

in the non-Kummer case, the condition that no three of the six lines L1, L2, . . . , L6 are

concurrent implies that the elliptic fibration ϕZ has two distinct I1 fibers (the I1 fibers

cannot collide).

Definition 3.4. The six-line configuration L is called generic if, for all 1≤ i ≤ 6, the

linear systems |Λi| and |D −Λi| each consist of a single smooth rational curve. �

Assuming then a generic six-line configuration, one obtains that, for each 1≤
i ≤ 6, the pull-back under the double-cover map π : Z→ R of the two rational curves

associated with Λi and D −Λi provides a pair of rational curves on the K3 surface Z

that form an I2 singular fiber for the elliptic fibration ϕZ .

Remark 3.5. Let us provide one example of nongeneric situation. Consider the case

when there exists an irreducible quintic curve in P
2 with a triple point at q13, three

double points at q14, q25, and q26 and passing through q24, q35, q36, q45, q46, and q56. Then,

the linear system

|5ρ∗(H)− 3E13 − 2(E14 + E25 + E26)− (E24 + E35 + E36 + E45 + E46 + E56)|

contains a single rational curve M. The curve M does not meet L ′i for any 1≤ i ≤ 6

and π∗M=Ξ1 +Ξ2 where Ξ1 and Ξ2 are disjoint rational curves on the K3 surface Z .

The divisor:

Ξ1 + G45 +Ξ2 + G46
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is then a fiber of type I4 in the elliptic fibration ϕZ .

G45•

��
��

Δ5•

Δ4•

�����������������

����
����

����
����

� Ξ1•







��
��

Ξ2•








G46• Δ6• �

Theorem 3.6. Let Z be a K3 surface associated with a generic six-line configuration

L. The section Δ6, interpreted as an element of the Mordell–Weil group MW(ϕZ ,Δ5),

has order 2. Fiber-wise translations by Δ6 in the smooth fibers of ϕZ extend to form a

Van Geemen–Sarti involution ΦZ : Z→ Z . �

Proof. In order to prove the above statement, one needs to verify the condition of Propo-

sition 1.2. We shall perform this verification here for the case of a non-Kummer line

configuration L. One can check that similar computation holds in the case of a Kummer

configuration.

Assume therefore that the six-line configuration L is non-Kummer. Let F be the

cohomology class of the fiber in ϕZ , that is,

F = 5T − 3G13 − 2(G14 + G25 + G26)− (G24 + G35 + G36 + G56).

One has then the orthogonal direct product

NS(Z)= 〈F,Δ5〉 ⊕W.

The root sub-lattice Wroot ⊂W is spanned by the cohomology classes associated with the

irreducible components of the singular fibers of ϕZ not meeting Δ5. The factorization of

Wroot includes then the following:

〈Υ1〉 ⊕ 〈Υ2〉 ⊕ 〈Υ3〉 ⊕ · · · ⊕ 〈Υ6〉 ⊕ 〈Υ7, Υ8, Δ3, G23, Δ2, G12, Δ1, G16〉,

where Υi = π∗Λi, for 1≤ i ≤ 6, and

Υ7 =G34 Υ8 = Γ = 2T − (G13 + G14 + G25 + G26 + G56).
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The six classes Υ1, Υ2, . . . , Υ6 represent the rational curves in the I2 singular fibers which

do not meet Δ5. In this context, one has:

Δw
6 =Δ6 −Δ5 − 2F =−(Δ3 + G23 +Δ2 + G12 +Δ1 + G16)− 1

2 (Υ1 + Υ2 + · · · + Υ7 + Υ8).

Hence 2Δw
6 ∈Wroot. �

The above theorem remains true if one removes the genericity condition. Proofs

for the nongeneric cases will, however, not be included here.

Remark 3.7. Note that, on each of the smooth fibers of the elliptic fibration ϕZ , one has

four distinct points given by the intersections with Δ5, Δ6, and Δ4. Consider the elliptic

curve group law with center at Δ5. The intersection with Δ6 provides a special point of

order 2. The remaining two points of order 2 are located at the intersections with Δ4. �

3.2 Properties of the involution ΦZ

Let us discuss the Nikulin construction associated with the Van Geemen–Sarti involution

ΦZ . Note that, by construction, the involution ΦZ commutes with the nonsymplectic

involution σ . A second important feature is given by the fixed locus {p1, p2, . . . , p8} of ΦZ .

For simplicity of exposition, we shall assume that the six-line configuration is generic.

Consider the case of a non-Kummer configuration L. The rational curves Δ4, Δ3,

G23, Δ2, G12, and Δ1 get mapped to themselves under ΦZ and each of these six curves

contains two of the fixed points. We denote by p2, p3, p4, and p5 the following four inter-

section points:

Δ1 ∩ G12, Δ2 ∩ G21, Δ2 ∩ G23, Δ3 ∩ G23.

There are two additional fixed points p1 and p6 on Δ1 and Δ3, respectively. The last two

points p7 and p8 are given by the singularities of the I1 fibers. Note that p7 and p8 lie

on Δ4.

If the six-line configuration L is Kummer, then the above set-up of the fixed locus

{p1, p2, . . . , p8} gets modified slightly. One obtains p6 as the intersection Δ3 ∩ G34, the

point p7 lies on G34, and p8 is the singularity of the single I1 fiber. It is still the case that

p7 and p8 lie on Δ4.

Denote by W the K3 surface obtained from the Nikulin construction associated

to the involution ΦZ . By the general framework presented in Section 1, the surface W

inherits a Jacobian elliptic fibration ϕW. The singular fiber types of the fibration ϕW
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are: I ∗8 + 2× I2 + 6× I1 in the non-Kummer case and I ∗10 + I2 + 6× I1 in the Kummer case,

respectively. In order to be precise, consider the case of a non-Kummer configuration.

In such a situation, the six rational curves

Δ1, Δ2, Δ3, Δ4, G12, G23 (12)

are mapped to themselves by the involution ϕZ . The three pairs of disjoint curves

(Δ5,Δ6), (G15, G16), (G34, Γ ) (13)

are exchanged by ϕZ . We denote by

Δ̃1, Δ̃2, Δ̃3, Δ̃4, G̃12, G̃23, Δ̃5, G̃15, Γ̃

the nine rational curves on the surface W that arise as push-forward of the curves in

(12) and (13). Let also

Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ψ6, Ψ7, Ψ8 (14)

be the eight exceptional curves associated with the fixed locus. Two additional rational

curves J̃7 and J̃8 appear from resolving the quotients of singular curves of the I1 fibers

of ϕZ with singularities at p7 and p8. One obtains therefore 19 rational curves on W that

intersect according to the following dual diagram.

Ψ7• J̃7•

Δ̃4•

��
��
��
��
�

��������

G̃34• Δ̃3• Ψ5• G̃23• Ψ4• Δ̃2• Ψ3• G̃12• Ψ2• Δ̃1• G̃15• Δ̃5•

��
��
��
��
�

�������

Ψ6• Ψ1•

Ψ8• J̃8•

(15)

The I ∗8 singular fiber of ϕW is given by

G̃34 + Ψ6 + 2(Δ̃3 + Ψ5 + G̃23 + Ψ4 + Δ̃2 + Ψ3 + G̃12 + Ψ2 + Δ̃1)+ Ψ1 + G̃15,
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whereas Ψ j + J̃j with j = 7, 8 are fibers of type I2. The rational curves Δ̃4 and Δ̃5 are

sections in ϕW.

If the six-line configuration is Kummer, then, using a notation along the same

lines as before, the 19 rational curves intersect in a slightly different manner.

Δ̃4• Γ̃• G̃34• Ψ6• Δ̃3• Ψ5• G̃23• Ψ4• Δ̃2• Ψ3• G̃12• Ψ2• Δ̃1• G̃15• Δ̃5•

Ψ7• Ψ1•

Ψ8• J̃8•

(16)

In diagram (16), Γ̃ represents the push-forward of the rational curves Γ1 and Γ2. The I ∗10

singular fiber of ϕW is given by:

Γ̃ + Ψ7 + 2(G̃34 + Ψ6 + Δ̃3 + Ψ5 + G̃23 + Ψ4 + Δ̃2 + Ψ3 + G̃12 + Ψ2 + Δ̃1)+ Ψ1 + G̃15,

with Ψ8 + J̃8 being a fiber of type I2. The rational curves Δ̃4 and Δ̃5 are still sections

in ϕW.

Theorem 3.8. The K3 surface W associated to the involution ΦZ by the Nikulin con-

struction carries a canonical pseudo-ample lattice polarization

i : H ⊕ E7 ⊕ E7 ↪→NS(W). (17)

If the six-line configuration L is Kummer, the lattice polarization (17) extends canoni-

cally to a polarization by the rank-17 lattice H ⊕ E8 ⊕ E7. �

Proof. We use the notation from diagrams (15) and (16). In the case of a Kummer six-line

configuration, the primitive embedding of the orthogonal direct product H ⊕ E7 ⊕ E7 in

NS(W) is given by:

H = 〈Δ̃2, Ψ7 + 2Δ̃4 + 3G̃34 + 4Δ̃3 + 2Ψ6 + 3Ψ5 + 2G̃23 + Ψ4〉,

E7 = 〈Ψ7, Δ̃4, G̃34, Δ̃3, Ψ6, Ψ5, G̃23〉,

E7 = 〈 J̃8, Δ̃5, G̃15, Δ̃1, Ψ1, Ψ2, G̃12〉.
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In the special case, one has a copy H ⊕ E8 ⊕ E7 naturally embedded in NS(W) as

H = 〈Δ̃2, 2Δ̃4 + 4Γ̃ + 6G̃34 + 3Ψ7 + 5Ψ6 + 4Δ̃3 + 3Ψ5 + 2G̃23 + Ψ4〉,

E8 = 〈Δ̃4, Γ̃ , G̃34, Ψ7, Ψ6, Δ̃3, Ψ5, G̃23〉,

E7 = 〈 J̃8, Δ̃5, G̃15, Δ̃1, Ψ1, Ψ2, G̃12〉. �

The results of this section show that every K3 surface Z , obtained as the minimal

resolution of a double cover of the projective plane P
2 branched over a six-line config-

uration L, is part of a geometric 2-isogeny, in the sense of Section 1. The geometric

counterpart of Z under this isogeny is a K3 surface W carrying a canonical polarization

by the rank-16 lattice H ⊕ E7 ⊕ E7. However, these results do not imply that all K3 sur-

faces endowed with H ⊕ E7 ⊕ E7-polarizations can be realized in this manner. This is

clarified by the following section.

4 K3 Surfaces Polarized by the Lattice H ⊕ E7 ⊕ E7

In this section X is an algebraic K3 surface endowed with a pseudo-ample lattice

polarization

i : H ⊕ E7 ⊕ E7 ↪→NS(X). (18)

We shall also assume that the lattice polarization (18) cannot be extended to a polar-

ization by the rank-18 lattice H ⊕ E8 ⊕ E8. It is known that a geometric 2-isogeny as in

Section 1 links any given K3 surface polarized by H ⊕ E8 ⊕ E8 with the Kummer sur-

face of a product of two elliptic curves and that the correspondence is bijective. This

case was treated with full details in earlier works by Clingher and Doran [5] as well as

Inose[13] and Shioda [25].

In a manner similar to the presentation in the previous section, we shall distin-

guish between the following two possibilities:

(a) the lattice polarization i can be extended to a polarization by the rank-17

lattice H ⊕ E8 ⊕ E7;

(b) the polarization i cannot be extended to a polarization by the lattice H ⊕
E8 ⊕ E7.

We shall refer to a polarized K3 surface (X, i) in situation (a) as special. A polarized K3

surface (X, i) satisfying condition (b) will be referred to as nonspecial.
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4.1 Elliptic fibrations on X

By standard results on elliptic fibrations on K3 surfaces (see discussion in [4] or related

works [15, 22]), Jacobian elliptic fibrations on X are in one-to-one correspondence with

isomorphism classes of primitive lattice embeddings of the rank-two hyperbolic lattice

H into the Neron–Severi lattice NS(X). There are at least four nonisomorphic primitive

embeddings H ↪→ H ⊕ E7 ⊕ E7, each of these embeddings leading via the polarization

i to a specific Jacobian elliptic fibration on X. Two of these embeddings/fibrations are

particularly important for the discussion here.

Theorem 4.1. Let (X, i) be a K3 surface endowed with a pseudo-ample lattice polar-

ization of type H ⊕ E7 ⊕ E7. Then X carries two canonically defined Jacobian elliptic

fibrations

ϕs
X, ϕa

X : X→ P
1,

which we shall refer as standard and alternate. The standard fibration carries a section

Ss. The alternate fibration carries two disjoint sections Sa
1 and Sa

2 .

If the polarized pair (X, i) is nonspecial, then the standard fibration has two

singular fibers of type I I I ∗. In such a case the alternate fibration ϕa
X has a singular fiber

of type I ∗8
If (X, i) is special, then the standard fibration has a singular fiber of type I I ∗

and another fiber of type I I I ∗. The alternate fibration ϕa
X carries a fiber of type I ∗10 in

this case. �

Proof. The first primitive lattice embedding of H is obvious—the first factor in the

orthogonal decomposition of H ⊕ E7 ⊕ E7. This embedding induces then the canonical

standard elliptic fibration ϕs
X : X→ P

1 with a section Ss and two special fibers of Kodaira

type I I I ∗ or higher. The pair (ϕs
X, Ss) is uniquely defined, up to an automorphism of X.

If (X, i) is nonspecial then ϕs
X has two singular fibers of type I I I ∗ and one obtains a

configuration of 17 smooth rational curves as in the following dual diagram.

a1• a2• a3• a4• a6• a7• a8• Ss
• b8• b7• b6• b4• b3• b2• b1•

a5• b5•

(19)
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The standard embedding of H is spanned by {F s, Ss} where

F s = a1 + 2a2 + 3a3 + 4a4 + 2a5 + 3a6 + 2a7 + a8

= b1 + 2b2 + 3b3 + 4b4 + 2b5 + 3b6 + 2b7 + b8, (20)

and the two E7 sub-lattices are spanned by {a1, a2, . . . , a7} and {b1, b2, . . . , b7},
respectively.

In the case where (X, i) is special, the standard fibration ϕs
X has two singular

fibers of types I I ∗ and I I I ∗, respectively. An extra rational curve appears on the dual

diagram.

a1• a2• a3• a5• a6• a7• a8• a9• Ss
• b8• b7• b6• b4• b3• b2• b1•

a4• b5•

(21)

In both diagrams (19) and (21) one sees a singular fiber of D-type. This fact leads one to

a second primitive lattice embedding of H into NS(X). The image of this embedding is

spanned by {F a, Sa
1} with these classes given, if (X, i) is nonspecial situation, by

Sa
1 = a2, F a= a3 + a5 + 2(a4 + a6 + a7 + a8 + Ss + b8 + b7 + b6 + b4)+ b3 + b5. (22)

In the special case one rather has

Sa
1 = a1, F a= a2 + a4 + 2(a3 + a5 + a6 + a7 + a8 + a9 + Ss + b8 + b7 + b6 + b4)+ b3 + b5.

This new embedding determines an alternate Jacobian elliptic fibration ϕa
X : X→ P

1. This

fibration has two disjoint sections Sa
1 and Sa

2 obtained as Sa
1 = a2, Sa

2 = b2, in the nonspe-

cial case, and as Sa
1 = a1, Sa

2 = b2 in the special case. �

The alternate fibration ϕa
X : X→ P

1 plays a central role in the next results. In

addition to the singular fiber of type I ∗8 (or I ∗10 if the polarization is special), the fibration

ϕa
X carries additional singular fibers. Generally, the singular fiber types of ϕa

X are I ∗8 +
2× I2 + 6× I1 in the case of a nonspecial polarized pair (X, i), and I ∗10 + I2 + 6× I1 for

a special (X, i), respectively. In such a general situation, the dual diagrams (19) and

(21) get augmented (with two or one rational curves, respectively) to 19-curve diagrams
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as follows.

a1• d•

a2•

��
��
��
��
��
��

����������
a3• a4• a6• a7• a8• S• b8• b7• b6• b4• b3• b2•

��
��
��
��
��
�

����������

a5• b5•

c• b1•

(23)

a1• a2• a3• a5• a6• a7• a8• a9• Ss
• b8• b7• b6• b4• b3• b2•

a4• b5•

c• b1•

(24)

Note the similarity with diagrams (15) and (16).

Remark 4.2. In the context of diagram (23), one can also clearly see the additional two

nonisomorphic primitive embeddings of H into H ⊕ E7 ⊕ E7 as mentioned in the opening

paragraph of Section 4.1. The first such embedding is spanned by

a7, a1 + c+ 2(a2 + a3 + a4)+ a5 + a6. (25)

The second primitive embedding is spanned by

b2, a1 + c+ 2(a2 + a3 + a4 + a6 + a7 + a8 + S+ b8 + b7 + b6 + b4)+ b3 + b5. (26)

In turn, these embeddings determine elliptic fibrations with section on the K3 surface

X. The fibration associated to (25) has singular fibers of types I ∗2 and I I ∗, whereas the

elliptic fibration associated to (26) carries a singular fiber of types I ∗10. �
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Theorem 4.3. The section Sa
2 , interpreted as an element of the Mordell–Weil group

MW(ϕa
X, Sa

1), has order 2. Fiber-wise translations by Sa
2 extend to a Van Geemen–Sarti

involution ΦX : X→ X. �

Proof. One needs to verify the criterion of Proposition 1.2. We shall do this check

assuming a nonspecial polarization (X, i). Similar arguments hold for the special polar-

izations.

Assume that (X, i) is a nonspecial polarization and take the orthogonal decom-

position

NS(X)= 〈F a, a2〉 ⊕W.

This provides the negative-definite lattice W which has rank pX − 2. The root sublattice

Wroot contains as orthogonal factors:

〈a4, a5, a6, a7, a8, Ss, b8, b7, b6, b5, b4, b3〉 ⊕ 〈b1, . . .〉 ⊕ 〈d1, d2, . . .〉. (27)

The second factor above is spanned by the classes of the irreducible components of

the singular fiber in ϕa
X containing b1 and not meeting Sa

1 . The third factor 〈d1, d2, . . .〉
is spanned by the irreducible components of the singular fiber containing a1 and not

meeting Sa
1 . For a generic nonspecial (X, i), one has 〈b1, . . .〉 = 〈b1〉 and 〈d1, d2, . . .〉 = 〈d〉

where d is the rational curve of diagram (23).

One needs to check that 2b2 − 2a2 − 4F a ∈Wroot. By taking into account (20) one

obtains:

2b2 − F s =−(b8 + 2b7 + 3b6 + 4b4 + 2b5 + 3b3 + b1) ∈Wroot, (28)

F s − (a1 + 2a2 + 3a3)= (4a4 + 2a5 + 3a6 + 2a7 + a8) ∈Wroot. (29)

Taking the sum of (28) and (29), we have:

(2b2 − 2a2)− (a1 + 3a3) ∈Wroot. (30)

Note also that, by comparing with (22), we also have:

F a− a3 = a5 + 2(a4 + a6 + a7 + a8 + Ss + b8 + b7 + b6 + b4)+ b3 + b5 ∈Wroot, (31)

F a− a1 ∈ 〈d1, d2, . . .〉 ⊂Wroot. (32)
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One obtains therefore that:

4F a− (a1 + 3a3) ∈Wroot. (33)

By subtracting (33) from (30), we obtain 2b2 − 2a2 − 4F a ∈Wroot. �

4.2 Properties of the involution ΦX

We first assume that the polarized K3 surface (X, i) is such that, in both cases (nonspe-

cial or special), the alternate elliptic fibration ϕa
X has singular fiber types I ∗8 + 2× I2 +

6× I1 or I ∗10 + I2 + 6× I1, respectively. We shall therefore make use of the diagrams of

rational curves (23) and (24).

The fixed locus {n1, n2, n3, . . . , n8} of the Van Geemen–Sarti involution ΦX appears

as follows. The first six points n1, n2, n3, . . . , n6 are the singularities of the six I1 fibers

of the alternate fibration. The remaining n7 and n8 are distinct points lying on the ratio-

nal curve Ss, if the polarization (X, i) is nonspecial, and on the curve a9 if (X, i) is

special.

Two additional effective reduced divisors on X play a role in the construction.

The first divisor, denoted Q is obtained from compactifying the set of order-2 points

in the smooth fibers of ϕa
X that do not lie on Sa

1 or Sa
2 . The divisor Q is a bi-section of

the alternate fibration. It contains n1, n2, n3, n4, n5, and n6 but not n1 and n2. Generally,

Q is a smooth genus-2 curve and the restriction of the alternate fibration provides a

double cover Q→ P
1 ramified at the six points n1, n2, n3, n4, n5, and n6. The second divi-

sor, denoted K is obtained from compactifying the points x in the smooth fibers of ϕa
X

that, with respect to the elliptic group law with neutral element at Sa
1 , satisfy 2x= Sa

2 .

The divisor K is a 4-section of the alternate fibration. It contains all eight points of

the fixed locus of ΦX. Generally, K is a smooth curve of genus 3 in the nonspecial

case and of genus 2 in the special case, respectively. The restriction of the alternate

fibration gives a four-sheeted cover K→ P
1 branched at the base-points correspond-

ing to singular fibers in the alternate fibration (nine points in the nonspecial case and

eight points in the special case, respectively). Both divisors Q and K are mapped to

themselves by the involution ΦX. Their intersections with the curves of the big singu-

lar fiber of the alternate fibration are presented in the diagrams below. The first dia-

gram corresponds to the case of a nonspecial (X, i). The second is associated with the

special case.
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a2• a3• a4• a6• a7• a8• S• b8• b7• b6• b4• b3• b2•

a5•

����
����

����
����

����
� K• b5•

����
����

����
����

����
�

Q•

(34)

a1• a2• a3• a5• a6• a7• a8• a9• Ss
• b8• b7• b6• b4• b3• b2•

a4•

�����
�����

�����
�����

�����
K• b5•

�����
�����

�����
�����

�����

Q•

(35)

The intersections of Q and K with the I2 fiber curves are as follows. In the nonspecial

case, one has

Q · a1 = Q · d= Q · c= Q · a1 = 1, K · a1 = K · d= K · c= K · a1 = 2.

In the special case:

Q · c= Q · b1 = 1, K · c= K · b1 = 2.

Definition 4.4. A K3 surface (X, i) polarized by the lattice H ⊕ E7 ⊕ E7 is called generic

if the following two conditions are satisfied:

(a) The alternate fibration ϕa
X : X→ P

1 has singular fiber types I ∗8 + 2× I2 + 6×
I1 or I ∗10 + I2 + 6× I1 depending on whether (X, i) is nonspecial, or special,

respectively.

(b) The effective divisor K introduced above is irreducible. �

We note that for K3 surfaces Z associated to generic six-line configura-

tions L (in the sense of Definition 3.4), the H ⊕ E7 ⊕ E7-polarized K3 surfaces W,

given by the Nikulin construction of Section 3, are all generic in the sense of

Definition 4.4.
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We are then in position to prove the following result, inverse in nature to

Theorem 3.8:

Theorem 4.5. Let (X, i) be a generic K3 surface polarized by the lattice H ⊕ E7 ⊕ E7.

Denote by Y the K3 surface obtained by the Nikulin construction associated to the Van

Geemen–Sarti involution ΦX. Then, the surface Y is isomorphic to the minimal resolution

of a double cover of the projective plane P
2 branched at a six-line configuration L. No

three of the six lines are concurrent and the configuration L is generic in the sense of

Definition 3.4. If the polarization (X, i) is nonspecial then the six-line configuration L is

non-Kummer. For special polarizations (X, i), the configuration L is Kummer. �

Proof. We present a detailed proof for the case when (X, i) is a nonspecial generic

polarization. The same set of ideas together with a slight modification of the arguments

provide the proof in the generic special case.

This proof uses the notation of diagrams (23) and (34). Note that the Van Geemen–

Sarti involution ΦX maps the three curves S, Q, and K to themselves and interchanges

the following nine pairs of rational curves:

(a8, b8), (a7, b7), (a6, b6), (a5, b5), (a4, b4), (a3, b3), (a2, b2), (a1, d), (c, b1). (36)

Under the push-forward by the rational degree-2 map X ��� Y of the Nikulin construc-

tion, the three curves S, Q, and K, as well as the curves in the first seven pairs of (36)

determine 10 smooth rational curves. We shall denote these curves by

S̃, Q̃, K̃, ã8, ã7, ã6, ã5, ã4, ã3, ã2. (37)

The last two pairs in (36) determine rational curves with a single ordinary node. These

form two I1 fibers in the elliptic fibration ϕa
Y : Y→ P

1 induced from the alternate fibration

on X.

Denote by Ui, 1≤ i ≤ 8, the rational curves on Y appearing as exceptional curves

associated to the fixed points pi. Let us also consider Vi, 1≤ i ≤ 6, as the resolutions of

the I1 fibers (of the alternate fibration) with singularities at pi. One obtains 24 smooth

rational curves on Y the intersection pattern of which is summarized by the following

dual diagram.
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U7•
��

�

ã3•

��
�

ã2• Vi• ã2•

K̃•
��

�

���
S̃•

��
�

ã8• ã7• ã6• ã4•
��

�
K̃•

���

��
�

1≤i≤6

U8• ã5• Q̃• Ui• Q̃•

(38)

The elliptic fibration ϕa
Y : Y→ P

1 has the singular fiber type

I ∗4 + 6× I2 + 2× I1.

The two curves ã2 and Q̃ form sections in ϕa
Y while K̃ is a bi-section. As explained in

Section 1, fiber-wise translations by the section Q̃ determine the dual Van Geemen–Sarti

involution ΦY.

Let σ : Y→Y be the nonsymplectic involution obtained by extending the fiber-

wise inversions associated with the group law with origin at ã2 on the smooth fibers of

ϕa
Y. (In the context of an appropriate Weierstrass form y2 = x3 + g2x+ g3 for the elliptic

fibration ϕa
Y, the involution σ acts as y �→−y.) The fixed locus of the involution σ is given

(see, for instance, the work of Alexeev and Nikulin [1]) by the six disjoint rational curves:

K̃, S̃, ã7, ã4, ã2, Q̃. (39)

In addition, the rational curves

ã8, ã6, ã5, ã3, Ui with 1≤ i ≤ 8, Vi with 1≤ i ≤ 6 (40)

are mapped onto themselves under σ .

The quotient of the K3 surface Y by the involution σ is a rational ruled surface

R with a ruling

ϕR : R→ P
1 (41)

induced from the elliptic fibration ϕa
Y. We shall use the superscript ˆ to denote the

rational curves on R obtained as push-forward under the quotient map of the curves in
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(39) and (40). A dual diagram similar to (38) appears.

Û7(−1)•

��
��

â3(−1)•

  
  

â2(−4)•

K̂(−4)•

��
��

    

Ŝ(−4)•

!!
!!

â8(−1)• â7(−4)• â6(−1)• â4(−4)•

��
��

Û8(−1)• â5(−1)• Q̂(−4)•

(42)

V̂i (−1)• â2(−4)•

K̂(−4)•

    

��
��

1≤i≤6

Ûi (−1)• Q̂(−4)•

The self-intersection numbers are included.

The ruling (41), as well as the rational curves of (42), will be used to prove that

the rational surface R is isomorphic to the blow-up of P
2 at a configuration of 15 dis-

tinct points corresponding to the intersection of six distinct lines. The considerations

of Section 3 bring some insight into the construction, allowing us to write explicitly the

cohomology classes associated to the 15 would-be exceptional curves.

E12 = â2,

E13 = 12F a+ 3â2 − 3â4 − 3â5 − 8â6 − 5â7 − 12â8

− 7Ŝ− Û2 − Û3 − 3Û4 − 2Û5 − 2Û6 − 7Û7 − 8Û8,

E14 = 8F a+ 2â2 − 2â4 − 2â5 − 5â6 − 3â7 − 7â8

− 4Ŝ− Û3 − 2Û4 − Û5 − 2Û6 − 4Û7 − 5Û8,

E15 = F a− â4 − â5 − 2â6 − â7 − 2â8 − Ŝ− Û7 − Û8,

E16 = â5,
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E23 = â8,

E24 = 4F a+ â2 − â4 − â5 − 3â6 − 2â7 − 4â8 − 2Ŝ− Û4 − Û5 − Û6 − 2Û7 − 2Û8,

E25 = 9F a+ 2â2 − 2â4 − 2â5 − 6â6 − 4â7 − 9â8 − 5Ŝ

− Û2 − Û3 − 2Û4 − Û5 − 2Û6 − 5Û7 − 6Û8,

E26 = 8F a+ 2â2 − 2â4 − 2â5 − 6â6 − 4â7 − 9â8 − 5Ŝ− Û3 − 2Û4 − Û5 − Û6 − 5Û7 − 6Û8,

E34 = Û7,

E35 = 5F a+ â2 − â4 − â5 − 3â6 − 2â7 − 5â8 − 3Ŝ− Û3 − Û4 − Û5 − Û6 − 3Û7 − 3Û8,

E36 = 4F a+ â2 − â4 − â5 − 3â6 − 2â7 − 5â8 − 3Ŝ− Û4 − Û6 − 3Û7 − 3Û8,

E45 = F a− Û4 = V̂4,

E46 = Û1,

E56 = 5F a+ â2 − â4 − â5 − 3â6 − 2â7 − 5â8 − 3Ŝ− Û4 − Û5 − Û6 − 3Û7 − 4Û8.

We shall show that the classes

E13, E14, E15, E24, E25, E26, E35, E36, E56 (43)

are effective and their associated linear system consists of a single smooth rational

curve. In order to accomplish this goal, we start a blow-down process

R= R15→ R14→ R13→· · ·→ R3→ R2→ R̃1 (44)

by collapsing a sequence of exceptional rational curves in the fibers of the ruling ϕR. The

sequence of 14 exceptional curves is as follows:

Ê15 = Û1, Ê14 = Û2, Ê13 = Û3, Ê12 = V̂4, Ê11 = V̂5, Ê10 = V̂6, Ê9 = Û7, Ê8 = Û8,

Ê7 = â8, Ê6 = â6, Ê5 = Ŝ, Ê4 = â7, Ê3 = â5,
ˆ̂E2 = â3.

By a slight abuse, we keep the notation for the various rational curves involved, as they

get pushed-forward under blow-downs. The resulting surface R̃1 is smooth, rational

and minimally ruled. Hence, by standard results on ruled surfaces (see, for instance,
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[2, Chapter III]), the surface R̃1 is isomorphic to one of the Hirzebruch surfaces Fn, n≥ 0.

The cohomology group H2(R̃1, Z) has rank 2 and is spanned by the classes of two rulings,

one induced from ϕR and having â2 and Q̂ as fibers, and a second ruling with â4 as fiber.

â2(0)•

â4(0)•

""""

##
##

Q̂(0)•

It follows then that R̃1 is isomorphic to F0 = P
1 × P

1. Moreover, if we remove the last

blow-down in (44) and instead we collapse the exceptional curves

Ê2 = â2 and Ê1 = â4,

R2→ R1→ R0,

the resulting surface R0 is a copy of the projective plane P
2.

The blow-down construction determines the following configuration in R0. First,

there are x1 and x2—the two distinct points of R0 where the last two exceptional curves

â4 and â2 collapse. The push-forward of â2 is the line l joining x1 and x2. One has seven

other distinct lines

l ′, l1, l2, l3, l4, l5, l6

obtained as push-forward of

Q̃, V̂1, V̂2, V̂3, Û4, Û5, Û6.

The line l ′ passes through x1 but not x2. The six lines l1, l2, . . . , l6 meet at x2 but do not

pass through x1. Denote by yi with 1≤ i ≤ 6, the six points of intersection between the

lines l ′ and li, respectively. Going backwards through the blow-down process (44), one

recovers the rational surface R as the blow-up of the projective plane R0 at a sequence

of 15 points:

p1, p2, p3, . . . , p15,
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where p1 = x1 and p2 = x2, the points p3, p4, . . . , p9 are infinitely near x1 with p3 repre-

senting the tangent direction of l ′, the points p10, p11, and p12 are infinitely near x2 and

represent the tangent directions of l6, l5, and l4, and p13 = y3, p14 = y2, and p15 = y1.

Let Ĥ be the class of a hyperplane section in R0 and denote by Ê1, Ê2, . . . , Ê15 the

strict transforms of the 15 exceptional curves associated to the blow-up R→ R0. The 16

classes Ĥ , Ê1, Ê2, . . . , Ê15 form a basis over the integers for H2(R, Z) and, with respect

to this basis, the classes of (43) are as follows:

E13 = 5Ĥ − 3Ê1 − 2(Ê2 + Ê4 + Ê5)− (Ê8 + Ê10 + Ê11 + Ê13 + Ê14),

E14 = 3Ĥ − 2Ê1 − (Ê2 + Ê4 + Ê5 + Ê8 + Ê11 + Ê13),

E15 = Ĥ − Ê1 − Ê2,

E24 = Ĥ − Ê1 − Ê4,

E25 = 4Ĥ − 2(Ê1 + Ê2 + Ê4)− (Ê5 + Ê8 + Ê11 + Ê13 + Ê14),

E26 = 4Ĥ − 2(Ê1 + Ê2 + Ê4)− (Ê5 + Ê8 + Ê10 + Ê11 + Ê13),

E35 = 2Ĥ − (Ê1 + Ê2 + Ê4 + Ê5 + Ê13),

E36 = 2Ĥ − (Ê1 + Ê2 + Ê4 + Ê5 + Ê11),

E56 = 2Ĥ − (Ê1 + Ê2 + Ê4 + Ê5 + Ê8).

Moreover, the class of the fiber of the ruling ϕR is

F a= Ĥ − Ê2.

One verifies then that the nine points p1, p2, p4, p5, p8, p10, p11, p13, and p14 are in a gen-

eral enough position that all the above classes are effective and each is represented by

a unique smooth rational curve. Abusing the notation, we denote these rational curves

of R by same symbol as their cohomology class.

We have obtained 15 disjoint rational curves on R, denoted Eij with 1≤ i < j ≤ 6.

All curves Eij have self-intersection −1. By blowing down Eij, one obtains another copy

of the projective plane P
2. Denote by qij the 15 distinct points obtained by collapsing the

exceptional curves. The push-forwards of the six curves:

â4, â7, Ŝ, K̂, â2, Q̂
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form a configuration L= {L1, L2, . . . , L6} of six lines in this projective plane, meeting

at the 15 points qij. The push-forward of Û7 is a conic passing through the five points

q13, q14, q25, q26, and q56 but this conic does not contain q34. Therefore, the six-line con-

figuration L is non-Kummer.

A slight modification of the above arguments gives a proof for the case of a

generic special polarized pair (X, i). One obtains the 15 disjoint rational curves Eij in

the same manner as above. Then one checks that the conic through q13, q14, q25, q26, and

q56 also contains q34. This fact, in turn, implies the existence of a rational curve E∅ tan-

gent to all the six lines of the configuration L. �

We close the paper with a few concluding remarks regarding extensions of the

above results and directions to future work. The results presented here establish a

geometric 2-isogeny between K3 surfaces Z obtained as double covers of P
2 branched

over a six-line configuration L and K3 surfaces X polarized by the rank-16 lattice

H ⊕ E7 ⊕ E7. For the sake of clarity of the exposition and brevity of the manuscript,

we have presented proofs only in the generic cases of the two sides. However, the geo-

metric 2-isogenies remain in place even when one removes the genericity conditions. All

H ⊕ E7 ⊕ E7-polarized K3 surfaces can be matched through geometric 2-isogenies with

double covers of the projective plane branched over six lines, but in special cases one

has to allow for the six-line configuration to degenerate to situations when (at least)

three of the six lines meet at one common point. These nongeneric cases are presented

with details in the subsequent work [3], where the geometric correspondence between

the two kinds of K3 surfaces is also made explicit, that is, explicit coordinates for the six

lines in projective plane are matched with explicit equations (normal forms) describing

H ⊕ E7 ⊕ E7-polarized K3 surfaces.

Second, let us note that the construction set-up for the pair of dual 2-isogenies

in Sections 3 and 4, relies, in both cases, on a choice of level-structure (labeling). In

the first case, we attach numbers to the six lines of the configuration L. In the case of

H ⊕ E7 ⊕ E7-polarized K3 surfaces, the proof of Theorem 4.5 makes use of a labeling of

the six I1 type fibers of the alternate fibration ϕa
X. These issues raise a natural question

for one to ask—to what extent does the choice of level-structure affect the geometric

2-isogeny correspondence? Interestingly enough, although a change in labeling deter-

mines a modification of the construction, the outcome of the Nikulin construction, in the

form of either a H ⊕ E7 ⊕ E7-polarized K3 surface or a K3 surface realized as a double

cover branched over a six-line configuration, is the same up isomorphism. This claim

can be justified by Hodge theoretic arguments via the appropriate versions of Torelli
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Theorems that are available for the two classes of K3 surfaces in question [9, 18]. As

such techniques would, however, not fit into the purely geometric theme of the paper,

the authors refer the interested reader for details to the aforementioned work [3].
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