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1. Introduction

The N-extended supersymmetry on the worldline and without central charges is
defined by

{QI?QJ}:25]JH7 [Han]:()? I7J:17"'7N7
@N'=Qr, (H)'=H,

where H is the worldline Hamiltonian, identifiable with k0., and @ is the Ith
supercharge. Physical interest in this algebra stems from three separate and logically
independent applications:

(1.1)

(i) Dimensional reduction of any supersymmetric theory in “actual” space-time:
supersymmetric Yang—Mills gauge theories, the supersymmetric Standard
Model of particle physics, etc.;

(ii) The underlying description or dimensional reduction thereof, in theories of
extended objects, such as the worldsheet description of superstring theory, or
the matrix version of M-theory;

(iii) Induced supersymmetry in the Hilbert space of a supersymmetric theory, in
the Schrédinger picture; H, Q are expressed in terms of particle state creation
and annihilation operators.

While not limited in principle, N < 32 seems to suffice in all known fundamental
physics.

Although Egs. (1.1) are covariant with respect to an O(N) symmetry, under
which the @ span the vector representation, we assume no part of any symmetry,
other than N-extended supersymmetry itself. On occasion, such as in (3.13) or
(4.4), the full O(N) will indeed turn out to be a symmetry; in other cases, such as
in (4.2), this symmetry will be explicitly broken to a subgroup: in (4.2), O(6) —
0(2)®3. As usual, insisting on the least amount of symmetry provides for the most
generality; imposing symmetries will narrow down our results.

The classification of off-shell supermultiplets of the algebra (1.1) has remained
an open problem for over three decades. Focusing on the worldline “shadow”
of supersymmetric theories in higher-dimensional space—time avoids all techni-
cal and notational difficulties related to the Lorentz symmetry in actual, higher-
dimensional space—times. Lorentz and other symmetry considerations can be
treated as “internal,” unrelated to space—time, and can be included subsequently
in the reverse of the dimensional reduction, the oxidization of Ref. 1. In this vein,
Refs. 1-7 and then Refs. 814 forged a novel approach, employing graph theory
and error-correcting codes, which resulted in a combinatorially growing number of
Adinkras — graphs that represent each supermultiplet. Application of these tech-
niques to concrete and previously unsolved problems in supersymmetric physics
was demonstrated in Refs. 15-19. Reference 9 also begun a rigorous translation
between these novel, adinkraic results into the much more standard methods of

superspace.?0-25
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The purpose of this paper is to complete the translation of the results of this
912-14 into superspace, begun in Ref. 9. To that end,
Sec. 2 briefly reviews these results, the so-obtained classification scheme, and the
part of the translation known this far. In particular, Ref. 9 ends with a conjecture
that we are now able to prove, in Sec. 3, owing in part to the subsequent develop-
ments.'>13 Section 4 collects a couple of clarifying examples and a few concluding
comments.

adinkraic classification scheme

2. Adinkraic Results and Translation into Superspace

The adinkraic classification scheme of Refs. 9, 12 and 13 focuses on adinkraic super-
multiplets. These consist of bosons ¢;(7) and fermions 1;(7), and supersymmetry
acts amongst these so that for any fixed Q; and ¢;(7),

Qroi(1) = £0Mbi(7), A=0,1, (2.1)
for some definite fermionic component field, and conversely
Qrn(r) = £i0r (7). (2.2)

The structure of an adinkraic supermultiplet may be faithfully depicted by an
Adinkra: (1) Assign a node to every component field: white for bosons and black
for fermions. (2) Draw an edge in the Ith color from node v; to node ve precisely
if the component field F5 of vs is the @ -image of the component field F; of v; and
[Fp] = [F1] + 4, where [F] is the engineering unit of F. (3) An edge is drawn solid
for the choice of “+” in Eqgs. (2.1), (2.2), and dashed for the “—” choice. See Table 1
for a dictionary. For clarity, we dispense with the arrows on the edges, but position
the nodes so that all edges are oriented upward, and each node is placed at a height
that is proportional to the engineering unit of the corresponding component field.”

Table 1. The correspondences between the Adinkra compo-
nents and supersymmetry transformation formulae (2.1), (2.2):
vertices «> component fields; vertex color <« fermion/boson;
edge color/index <« Qr; edge dashed < “—” in (2.1); and
orientation <« placement of . They apply to all ¢ 4,% 5 within
a supermultiplet and all @Q-transformations amongst them.

Adinkra Q-action Adinkra Q-action
¢ v [ids o v [ i
IT Qr P el Il Qr S el A
O i Vi OZ i Vi
Q: &i ¥ QZ &i —;
I Qr| | =]. I Qr| | = .
'Y Vi ip; ‘i V3 —i;

The edges are here labeled by the variable index I; for any fixed
I, each corresponding edge is drawn in the Ith color instead.
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The connectivity between component fields provides a notion of topology to ev-
ery supermultiplet; since edges corresponding to distinct Q;’s are drawn in distinct
colors and dashed for “—” in (2.1), the topology including this information is called
the dash-chromotopology of the Adinkra and of the corresponding supermultiplet.

Reference 9 then partitions the representations of N-extended worldline super-
symmetry without central charges into “families” of Adinkras, wherein all members
have the same dash-chromotopology, but differ in “hanging.” For example,

(2.3)

are some of the N = 3 Adinkras; they all have the same dash-chromotopology, equal
to the 3-cube with the indicated edges dashed.* Each Adinkra in the sequence (2.3)
is obtained from the one on the left by raising one of the nodes. Theorems 5.1
and 5.3 of Ref. 9 and their respective corollaries rigorously prove that all Adinkras
of the same dash-chromotopology may be obtained one from another in this fashion,
and that each such family contains: (1) at least one Valise, where all bosons and
all fermions are on two adjacent levels, as in the right-most Adinkra in (2.3),
(2) at least one maximally extended Adinkra (“top Adinkra” in Ref. 8) that appears
to hang freely, hanged from a single highest node, such as the left-most Adinkra
in (2.3), and (3) at least one maximally extended Adinkra that appears to float
freely upward from a single lowest, anchoring node, such as is also the left-most
Adinkra in (2.3). Theorem 7.6 of Ref. 9 then proves that for every given family
(dash-chromotopology) of Adinkras — if any one of its members has a superfield
representation — all others can be constructed from it, following the provided
algorithm.

References 12 and 13 prove that (1) the chromotopology of every Adinkra is
[0,1]Y /%, where € is a doubly-even linear binary block code encoding a (Zy)*-
action on [0, 1]V, and that (2) every such quotient, [0,1]" /%, defines an Adinkra
chromotopology. For a telegraphic review of this isomorphism, let ¥’ be generated
by the binary codewords b, = (ba1, ..., ban), each of which defines an operator:

by = (bat, . ban) = Q% == Q4" - Q%N a=1,... k. (2.4)

% being a doubly-even binary linear block code means that b,; € {0, 1}, the number
of 1’s in each b, is divisible by four, and the bitwise product of any two codewords

aDistinct choices of edge-dashing may well be equivalent by a sign-redefinition on some of the
component fields, and so form equivalence classes. The classification of these equivalence classes
and a homology computation that identifies to which particular equivalence class does a given
Adinkra belong is specified in Ref. 14.
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has an even number of 1’s:
N
wt(by,) =0 (mod 4); wt(b,) := Zb‘“ is the Hamming weight . (2.5)
I=1
These in turn imply that Q% contains every Q; at most once, (Q%)? = +H"t(ba)
for every a, and [QP, Qb/] =0, for any two b, b’ € €, not just the generators.
Within any adinkraic supermultiplet M = (¢1,..., ¢m|t1, ..., ¥m), such oper-
ators act:

Qb (¢;) = c(dX*¢;), (no summation!) A := wt(by) + [0:] — [6;],  (2.6)

for some definite ¢; € M on the right-hand side, some coefficient ¢, and where
[@;] denotes the engineering unit of ¢;. Analogous formulae for fermions define
Aaij = wt(ba) + [¥5] =[]

If Aij = %wt(ba) = Aaij for all @-generators b, and all ¢;, ¥; € M, then

[¢;] = [#;] for each pair of bosonic component fields associated by the relation
(2.6); the analogous also holds for all fermionic pairs so connected. In that case,

. R 1

75 (i) = +cp; and 7E(¢;) = :I:E bi (2.7)

defines for each generator, b, € ¥ an engineering unit-preserving Zq-reflection sym-
metry within the supermultiplet. Corresponding to each generator b,, the projec-
tion ¢; — (@i +saco;) “halves” the supermultiplet; iterating this for each generator
produces

Mlgz, S=(s1,--,5), Sa==%1, a=1,...,k, (2.8)

a collection of 2* quotient supermultiplets, each with 1/2* component fields of the
original M. A simple example of this is the ¥ = d, case with a single generator

corresponding to QQ1Q2Q3Q4:

where the Adinkra on the left-hand side has the chromotopology of a 4-cube and
the Zo symmetry (2.6) is a left-right reflection; the two Adinkras on the right-hand
side are the ¢ = +1 and ¢ = —1 projections with respect to this symmetry. That the
equality Q1Q2Q3Q4 = £H? holds throughout the supermultiplet corresponds to
the fact that in the projected Adinkras on the right-hand side of (2.9), all 4-color
quadrilaterals are closed, and moreover, the product of signs (dashedness) along
each quadrilateral either equals the sign of the permutation of the colors along the
quadrilateral (in M|q, +), or is opposite (in Mg, —).
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Doubly-even binary linear block codes for N < 32 have not all been listed so far,
and Ref. 12 started a distributed supercomputing program, which has completed
the IV < 28 listing and is expected to compute some trillions of N < 32 codes. Each
such code corresponds to a family of Adinkras, one member of a family differing
from another in how its nodes are hanged — such as those in the sequence (2.3). The
number of distinct hanging arrangements for the Adinkras evidently grows combi-
natorially with their size and so with N. Among these, certain pairs correspond to
isomorphic supermultiplets,'® but the total number of inequivalent supermultiplets
for N < 32 is still well beyond trillions: the complete list of Adinkras is beyond
journal publication already for N = 5; see Ref. 13 for more information, as well as
for an algorithm for listing only the nonisomorphic supermultiplets.

By virtue of being an expansion over the exterior algebra generated by the 6,
the familiar, unconstrained, real Salam—Strathdee superfield is the supermultiplet
with the so-called “top” Adinkra,® with the chromotopology of the N-cube.?"!?
These are (1 ’ (J;[) ’ (J;[) | e \(lel) ’ 1)—dimensional representations of N-extended su-
persymmetry without central charges, unique up to the choice of the spin-statistics
of the lowest component:

(2.10)

Besides these, Ref. 9 also identified the dash-chromotopology of the chiral and the
twisted-chiral N = 4 representations. These dash-chromotopologies differ only in
the choice of edge-dashing and are equivalent to the two on the right-hand side
of (2.9). The chiral and twisted-chiral multiplets themselves are represented by
Adinkras obtained from the two Adinkras on the right-hand side of (2.9) by raising
one of the lowest scalar nodes to the top level in each.

However, Ref. 9 left open Conjecture 7.7: that a superfield of every dash-
chromotopology can be somehow found, for Theorem 7.6 to construct from it super-
field representations of all other supermultiplets of the same dash-chromotopology.

We prove in the next section that a superfield of every dash-chromotopology
indeed exists, and provide an explicit construction for it.

3. Trillions of Superfields

Theorem 3.1. For every N and every Adinkra dash-chromotopology, there exists
a super-differentially constrained superfield describing an adinkraic supermultiplet
with that chromotopology.
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Proof. In superspace, the supersymmetry algebra (1.1) is augmented by introduc-
ing the super-differential operators Dj, which satisfy

{D;,D;}=26;;H, [H,D;/]=0={Q;,D;}, I,J=1,...,N. (3.1)

Acting on superfields, i.e. functions over superspace (7]6!), these operators admit
a differential operator representation:

D[ = 8[ + id;ﬂ"& , Q[ - ’i(?] + 51J9J87 5 where 8] = % . (32)
Consequently,
D] = —iQ[ + 2i5]J9J87 , and Q[ - ’iD] + 25]J9J87 . (33)

Given a real, a priori unconstrained Salam—Strathdee superfield, F, its components
are obtained by covariant projection:”

¢Z: F|, ’(/)] = —iD]F|, F[[J] = ’LD[[DJ]F|,
(3.4)

‘7:[11'“Ir] = (_i)(T;l)D[Il T DIT]F‘7 Tty
where the right-delimiting “|” denotes setting / — 0. Since the Q;’s and the D;’s
anticommute (3.1), the projections (3.4) — and indeed any relationship written
in terms of superfields and their D-derivatives — are covariant with respect to
supersymmetry, generated by the Q’s.
For & generated by the binary words b, = (ba1,...,ban), and F an a priori
unconstrained Salam—Strathdee superfield, define

b, €€ + Dir...Dbr. (3.5)

Owing to the anticommutivity of the distinct D;’s, the monomials (3.5) are in fact
fully antisymmetric products.
To each code € with a chosen set of k generator codewords, there correspond
k super-differential monomials of the form (3.5). For doubly-even binary linear
block codes, these super-differential monomials provide statistics-preserving maps
between component fields, square to +H"¢(%«)  and commute amongst each other.
The imposition of each one of the k super-differential constraints

by € C — [H%W“”a>+gaDl;a1---D§’§1]1F:0, a=1,....k (3.6)

halves the number of unrelated component fields in F. Owing to the mutual com-
mutativity of the Dl{‘“ e D?{;l monomials, these “halvings” may be applied jointly,
resulting in a superfield where only 1/2* of the initial components of the superfield
F remain unrelated. The relative signs ¢, in (3.6) are the same ones from (2.8).
However, the constraint system (3.6) is not strict: the mappings provided by the
operators [H% wt(ba) +§aDl17“1 e Dl]’\‘,“] are not a strict homomorphisms,'3 they leave

bBrackets grouping indices denote weighted antisymmetrization: A[IBJ] = %(AIBJ — AyByg),
etc. The factors of —i ensure reality of the components.
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behind certain “orphan” constants as remnants of almost completely eliminated
component fields.

Example 1. To illustrate this, consider the simplest, N = 4 case with ¥ = d4.
The super-differential constraint

[H? + D1DyD3D,JF =0, for the choice ¢ = +1, (3.7)
identifies, via Eqs. (3.4):
Frosa=—0, Yk =cx™r, Fry= aflJKLF[KL] : (3.8)

These can be used to express almost all of Fi234, ¥ 7x and Fiy, Foy, F34 in terms of
o, Yy, Fio, Fi3, Fb3, except for the constant term in W;;x’s and the constant and
7-linear terms in Fy4, Fb4, F34. The result is that the super-differential constraint
system (3.7) defines:

Fls.7) = (o(7) 01 (7)|Fi2(7), Fi3(7). Fas(7), f1a(7). f14(7). f1a(7)[¥ (1,511 (0)]0)
(3.9a)

where  fir4(7) := fi74(0) + f[/14](0)7', for I =1,2,3. (3.9b)

The result (3.9) cannot be regarded an off-shell supermultiplet since the component
fields fi74)(7) and Wi;;k(0) satisfy 7-differential equations:
2 fira) = 0= 0V (1 1(0). (3.10)
To remedy this, note that the last group of identifications (3.8) is suggestive:
one really needs
. 1 . 1
Fiin= EEIJKLF[KL] — Firg = EEIJKLF[KL]y (3.11)

which is obtained, using the component projections (3.4), as
. 1 .
’LD[[D]]F| = §€]JKLZD[KDL]F| . (312)

This then suggests replacing the super-differential condition (3.7) with either of the
two systems:
[DlDQ F D3D4]Fi = 0,
1 .
DDy F EWKLD[KDL] F* =0,ie. [D1D3 + Dy DyJFE =0,  (3.13)
[D1D4 F D2D3]]F:t =0.

Not surprisingly, this insures the full component field (3.11), and with both signs

F[?J] = :l:%eUKLF[j}E{L], rather than the weaker conditions (3.8) insured by the
single constraint (3.7). Next, applying D; on the system (3.13) and evaluating at
67 — 0 results in \If[il JK] = +eg JKLLZJf, which again is precisely what is needed

to fully eliminate W7 ;) in terms of Y7, instead of the weaker identification (3.8).
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Finally, applying D{; D ; on the system (3.13) and evaluating at 67 — 0 reproduces
the final F5,, = Fo+.

This then leaves (¢F|vF|F5, Fi, F350000) C (¢lr|Frs|Wrx|Fizsa), de-
picted as

/
Z A ‘
Fla,,+ = \ (3.14)

spanning the two d4-projected off-shell supermultiplets. The distinction between
them is easily spotted: the product of signs along every four-colored quadrilateral
equals the sign of the permutation of the colors in that quadrilateral in F|g, + and
is opposite in F|q, —. Also, both superfields are evidently subsuperfields of the a
priori unconstrained F, depicted by the fourth Adinkra in the sequence (2.10).

It is thus the super-differential constraint (3.13) rather than the naive (3.7)
that properly “halves” the N = 4 real, a priori unconstrained superfield F. In turn,
Eq. (3.7) may be regarded as the integrability condition for the system (3.13).

The foregoing generalizes straightforwardly to all N and all codes:

Construction 3.15.

(1) Let F be a real, a priori unconstrained Salam-Strathdee superfield.
(2) For every generator b, of a code €, we define:

T(ba):={I=1,....N|bay=1}. (3.15a)
For example, Z(110011) = {1,2,5,6} and Z(101101) = {1, 3,4, 6}.

(3) Associate to b, the system of %(217:’;) (anti-)self-duality super-differential con-
straints:

Sa
{[D[h Dy, _w_algh“'fwah JvaDpy o Dy, |F=0, In,..., Ju, EI(ba)}7
(3.15b)

where w, = %Wt(ba) and ¢, = %1, for all a.
(4) For every code generated by codewords {by,...,b;}, we impose a constraint
system of the form (3.15b):

Sa
Fle,z := {Fi {D[h o Dry) = e he Stea Dy, -~~DJwaJ}F =0,

for all Iy, ..., Jy, € Z(b,), for each generator b, € (5} . (3.15¢)
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Each super-differential constraint system (3.15b) has an integrability condition
precisely of the form (3.6), where

1
5 [H% wi(ba) 4 ¢ pDlat ... D?;N] (3.16)
are a quasiprojection operators: for both ¢, = =£1, they square to a Hzwiba)_

1w
multiple of itself, and the two choices add up to Hzwilba) 92 t(ba), They are

also in 1-1 correspondence with the code-generator projection operators of Refs. 12
and 13, which relates the two operators.

Finally, note that each super-differential constraint system (3.15b) correspond-
ing to each generator codeword of ¥ has precisely one relative sign, ¢, = +1,
stemming from (2.8). For ¢ being generated by k codewords, the definition (3.15¢)
churns out 2 distinct superfields. Many of these may well be isomorphic, via a
sign-redefinition on component fields. However, they do include all the inequivalent
choices of edge-dashing in Adinkras, and so reproduce all the inequivalent dash-
chromotopologies for Adinkras. Reference 14 specifies a cohomology computation
which tells if two given distinctly edge-dashed Adinkras are equivalent or not. O

4. Examples and Conclusions

To illustrate the foregoing construction, we close with a few examples.

Example 2. Consider the next-simplest case of ¥ = dg, generated by by =
(111100) and by = (001111). The super-differential constraint system (3.15¢) is
now:

i ) .

DDy —« 551JKLD[KDL] F=0,
1,J,K,L € T(111100) = {1,2,3,4} ,

]F|d6;(§1>§2) : (41)

1
DDy =« 551JKLD[KDL] F=0,

I,J,K,L €Z(001111) = {3,4,5,6}.

Written out in full detail, this system becomes:

DD — ¢, D3 Dy]F
D1D3 + 1Dy Dy]F =0, p for by = (111100),
D1Dy — ¢ DsDs]F

D3Dy — ¢oD5Dg|F
D3Ds + 2Dy Dg|F
D3Dg — ¢oD4D5|F

, 5 for by = (001111).

[

[

Flag, (c1,52) ° |
de,(s1,52) *

[

[

[
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Each of the two indicated groups of constraints independently halves the superfield
F, so that jointly, they quarter it, from the initial (1|6|15|20|15/6|1)-dimensional rep-
resentation to the minimal (1|6/7]2)-dimensional superfield, depicted by the Adinkra

The four different choices of signs, parametrized by ¢ = (£1,41), turn out to all
yield choices of edge-dashing that are equivalent by field redefinition,'* whence we
show only one of them.

Example 3. Consider ¥ = hg, generated by (11111111), and define the N = 8
superfield:

1
Flhgc = {IF : [DUDJDKDL] — gEEUKLMNPQD[MDNDpDQ]]IF = o} . (4.4)
The constraint system consists of a total of 35 equations; their single common
integrability equation is [H* — ¢D; --- Dg]F = 0. Jointly, they halve the original,
(118]28]56/70]56/28|8|1)-dimensional representation to a (1|8|28]|56|35)-dimensional
superfield, representable by the Adinkra

(4.5)

In this case, the two choices of the sign, ¢ = 41, correspond to two inequivalent
choices of edge-dashing,'* but we omit the other Adinkra since their size and com-
plexity obscures an easy spotting of the differences. Since hg is not maximal, this
is not a minimal N = 8 superfield.

Example 4. Finally, ¥ = eg is generated by {(11110000), (00111100), (00001111),
(01010101)}, and defines the N = 8 superfield:

[DiDy —aDgDL|F=0, I,J,K,LecZ(11110000) = {1,2,3,4},

.« [D;Dy — @DgDLJF=0, I,JK,LeZ(00111100)= {3,4,5,6}, (46)
“*" ) [DiDy —DgDLJF =0, I,J,K,LecZ(00001111)= {5,6,7,8},
[D;Dy — DgDLJF =0, I,J,K,LeZ(01010101)={2,4,6,8}.

This system consists of a total of 12 constraints; the integrability equation of each of
the four indicated groups is of the form [H2 —¢,D;D ;D D |F = 0, with I, J, K, L
ranging over the corresponding four subsets Z(b,), as specified in Egs. (4.6). As a
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result, the (1]8]28]56|70|56|28|8|1)-dimensional a priori unconstrained superfield is
chiseled down to a (1/8]7)-dimensional superfield, such as

which turns out to be closely related to the “ultramultiplet” of Ref. 1. The super-
fields (4.6) are minimal. Noting that (11110000) + (00001111) = (11111111), it
follows that hs C es, whereby F|.,.z C F|p,. It is the combinatorial complexity of
such embedding chains for N > 4 that may be seen correlated with the surprising
number of inequivalent supermultiplets.?3

To summarize, we have presented a “Construction 3.15,” that, given:

(1) a real, a priori unconstrained Salam—Strathdee N-extended worldline super-
field IF,

(2) a doubly-even binary linear block code & of length N and with k£ generators,
and

(3) a k-tuplet of signs <,

custom-fashions a constrained subsuperfield F|¢ ¢ C F with the [0, 1]V /%" chromo-
topology and the edge-dashing determined by <. The collection of supermultiplets
with all ¢-choices include all inequivalent edge-dashings and we defer to Ref. 14
for the details of a cohomological computation that tells if two given ¢-choices are
equivalent or not, and how may inequivalent choices there exist.

Once we have the superfield F|¢ ¢ resulting from Construction 3.15, the con-
struction in Theorem 7.6 of Ref. 9 produces from F|¢ = every supermultiplet with
the same dash-chromotopology. Counting all such superfields as different — after
all, the supermultiplets they represent are conventionally considered different —
the total count of so-obtained superfields (one for every Adinkra) is well beyond
trillions.'?'3 In another sense, for a given N and a given chromotopology, Theo-
rem 7.6 does effectively relate all superfields representing the differently “hanged”
supermultiplets to one, such as the one obtained by Construction 3.15. In this sense,
they are all related, whence the name “family” for their collection.

This situation is not quite as outlandish as it may seem: for example, it is well
known that in four-dimensional A/ = 1 supersymmetric space—time, every chiral
supermultiplet, ®, equals the superderivative D?U of an a priori unconstrained,
complex superfield U. Nevertheless, ® and U are regarded as different superfields for
all practical purposes, and certainly provide inequivalent representations of super-
symmetry.

In the same sense, the trillions or more of superfields defined by the use of Con-
struction 3.15 herein, Theorem 7.6 of Ref. 9, the doubly-even binary linear block
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12,13 and the cohomology computation of Ref. 14 are all just as dif-
ferent. Indeed, a comparison of the last two examples shows that Fl., z C Flp, CF
generalizes the relation ® C U within four-dimensional /' = 1 supersymmetry. The
combinatorial complexity of embedding chains for N > 4 such as Fl., z C F|p, CF
may thus be seen as surprisingly large number of inequivalent supermultiplets.'?!3
To this end, note also that a F|,, generates, by way of Theorem 7.6, an entire family
of supermultiplets and corresponding superfields, depicted by Adinkras that may be
obtained from (4.4) by hanging it from various subsets of nodes. The combinatorial
complexity of this task — whence the enormous size of this resulting family — is

code classification

evident, we trust.

The myriads of superfields obtainable by Construction 3.15 are in many ways
the higher-N, real analogues of ®, obtained with no symmetry assumed. Imposing
symmetry relationships among the nodes evidently reduces the number of ways in
which individual nodes can he raised or lowered. This then necessarily reduces the
number of inequivalent Adinkras, superfields and supermultiplets: the bigger the
additional symmetry requirements, the smaller the total number of inequivalent
equivariant representations.

Of special interest are maximally projected, minimal supermultiplets, and all
maximal codes usable to that end have been found.'? It turns out that for N < 10,
such maximal codes and thus also the minimal supermultiplets are unique — but
not so for N > 10. For illustration, here are the two inequivalent minimal N = 10
Adinkras:

Cg:dlol

and Construction 3.15 produces a super-differentially constrained superfield for
each. Already the count of component fields per engineering unit-level proves that
they cannot be isomorphic. However, the superfields corresponding to the valise
Adinkras of the respective chromotopologies — which Theorem 7.6 of Ref. 9 repre-
sents in terms of super-derivatives of the superfields (4.8), (4.9) — turn out to be
isomorphic.'® In general, for N > 10 there exist multiple minimal supermultiplets
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resulting from Construction 3.15 and superfields — 170 for N = 32 — but there
will exist super-differential relations amongst them. We note in passing that the
N = 16 case also has two inequivalent minimal supermultiplets obtained by Con-
struction 3.15, and which correspond to the codes es@eg and eqg,'? and which are in
1-1 correspondence with the 16-dimensional lattices Fgx Fg and Dqg, respectively,
and also the so-named Lie algebras.

Finally, this collection (trillions or so, for N < 32) of superfields does not, by
far, exhaust the listing of representations of N-extended worldline supersymmetry
without central charges! Indefinitely more can be constructed by the usual methods
of tensoring, (anti)symmetrizing and contracting — just as is the case with Lie
algebras.

... a brilliant diversity spread like stars,
like a thousand points of light in a broad and peaceful sky.
— William H. Bush
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