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Four years ago, in Ref. 1, graphical devices for representing supermultiplets were
introduced. We have used these tools frequently since that time, as we find
these distinctly useful for organizing various open questions about supersymmetry.
Moreover, these graphs illuminate intriguing emergent mathematical features of
supersymmetry not manifest in the context of more traditional methods, such
as superspace. Accordingly, we have been incrementally adding mathematical
sophistication to this technology.2–5 For reasons explained in Ref. 1, we refer
to our graphical representations of supermultiplets as Adinkras. In the case of
one-dimensional supersymmetry we have developed a means, reminiscent of Feyn-
man rules, which allows unambiguous translation of supersymmetry transforma-
tions from these graphs. In four dimensions the technology is less-developed, and
the graphs serve more as helpful visual aids. However, there is an especially use-
ful feature exhibited by four-dimensional Adinkras concerning how the graphical
structures may be manipulated to expose and render obvious when and how the
multiplet admits projection to submultiplets. The primary goal of this paper is to
explain this.

We should point out that the analysis of the reduction of N = 1 supermultiplets
described in this paper is an old and well-known story, described in many places,
e.g. Refs. 9 and 10. But the methodology which we bring to bear on this problem is
new and interesting. We believe that practitioners of supersymmetry will appreciate
the fresh look that this perspective brings to this matter, especially as regards its
potential for resolving related issues in higher-N supersymmetry, where superspace
methods become increasingly cumbersome.

The basic idea behind Adinkras is a deceptively simple one: to construct graphs
by representing fields as vertices which are interconnected pairwise by edges when
the corresponding fields are related by supersymmetry transformations. No doubt
practitioners have done this sort of thing ever since supersymmetry was first con-
ceived in the early 1970’s. However, it has become increasingly evident that such
diagrams encode a wealth of information which may be extracted beneficially to
complement or even replace some traditional methods for organizing and classify-
ing supermultiplets and supersymmetric actions. As a notable example, the one-
dimensional Adinkras obtained by dimensional reduction of supermultiplets in any
number of dimensions admit topological classification in terms of doubly-even linear
binary codes.5

One of our prime motivations has been to better understand the nexus of ways in
which higher-N theories may be realized off-shell. One preliminary result obtained
using our methods was the discovery of a way to couple what we call quadruplet
matter to N = 2 hypermultiplets, using a finite number of off-shell degrees of free-
dom. This was explained in Ref. 6. That work exposed deeper questions, which we
hope to resolve, concerning the possibility of removing the quadruplet matter to
expose an interesting new off-shell realization of a pure hypermultiplet. Our scrutiny
of this question impelled us investigate structures in Ref. 6 using the simpler setting
of N = 1 supersymmetry; the results of this letter derived from that investigation.
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All of this has a deeper motivation related to our desire to develop either an off-shell
realization of N = 4 super-Yang–Mills theory involving a finite number of compo-
nent fields, or to prove that such constructions are precluded within the ordinary
framework of supersymmetric quantum field theory. The latter is a commonly-held
belief which we have not found demonstrably substantiated in the literature.

As explained above, an Adinkra consists of a set of vertices, one for each compo-
nent field in a given supermultiplet. These vertices are connected pairwise by edges
when the corresponding component fields are connected by a supersymmetry trans-
formation. We color boson vertices white, and we color fermion vertices black. In
four-dimensions, multiplet component fields comprise irreducible representations of
spin(3, 1); we use a single vertex for each such field and decorate this with a numeral
to indicate the number of off-shell degrees of freedom described by that field. For
example, a complex scalar boson would be represented by a white vertex decorated
with the numeral 2. Next, we organize the vertices vertically in a manner which
faithfully respects the engineering dimension of the fields, with lower-dimension
fields at the bottom of the diagram and higher-dimension fields placed at succes-
sively higher “levels.”

As a simple example, the chiral multiplet consists of a complex scalar φ, a right-
handed Weyl spinor ψR, and a higher-weight complex scalar F . This multiplet has
the following supersymmetry transformation rules,

δQφ = iε̄LψR ,

δQψR = ∂/ φεL + FεR ,

δQF = iε̄R∂/ψR ,

(1)

where εL is a left-handed Weyl spinor supersymmetry parameter and εR is its
Majorana conjugate. We represent this multiplet by the following Adinkra:

2

4

2

F

φ

ψ
R . (2)

Under (1) the complex scalar φ transforms into the spinor ψR, and the spinor ψR

transforms into the derivative of the scalar; for these reasons the φ vertex and the
ψR vertex are connected by a black edge in the diagram (2). Similarly, the spinor ψR

transforms into the complex scalar F while this field transforms into the derivative
of the spinor; for these reasons the ψR node is connected by a black edge to the F
node.

In the chiral Adinkra (2) each edge represents two terms in the transformation
rules (1): one “upward-directed” under which a lower-weight field transforms into

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

00
9.

24
:2

66
5-

26
76

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/1
2/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 21, 2009 14:47 WSPC/139-IJMPA 04464

2668 C. F. Doran et al.

a higher-weight field, and one “downward directed” in which a higher-weight field
transforms into the derivative of the lower-weight field. Conventionally, the black-
coloration of an edge denotes this bidirectional quality. As it turns out, it is possible
to structure some transformation rules so that a given upward-directed term does
not have a downward-directed counterpart; we give explicit examples of this below.
In such a circumstance, we denote an upward-directed term which does not have a
downward-directed counterpart using a gray, rather than a black, edge.

Consider next a real scalar multiplet V as described by the following component
supersymmetry transformation rules:

δQb = 1
2 iε̄χ ,

δQχ = ∂/ bε+ 1
2 iAaγ

aγ5ε+ 1
2 fε− 1

2 igγ5ε ,

δQf = 1
2 iε̄∂/ χ+ 1

2 iε̄λ ,

δQg = 1
2 ε̄γ5∂/ χ+ 1

2 ε̄γ5λ ,

δQAa = 1
2 ε̄γ5∂/ γaχ− 1

2 ε̄γaγ5λ ,

δQλ = 1
2 ∂/ fε− 1

2 i∂/ gγ5ε+ 1
2 iγ

a∂/Aaγ5ε+Dε ,

δQD = 1
2 iε̄∂/ λ ,

(3)

where the scalar component field b is assigned even parity. The parity of all other
components then follows from the requirement that a parity flip commute with
supersymmetry; for example χ and λ each have even parity, g is a pseudoscalar,
and Aa is an axial vector.

Consider also a real pseudoscalar multiplet Ṽ as described by the following
component supersymmetry transformation rules:

δQb̃ = 1
2 ε̄γ5χ̃ ,

δQχ̃ = iγ5∂/ b̃ε− 1
2 Vaγ

aε+ 1
2 f̃ ε− 1

2 ig̃γ5ε ,

δQf̃ = 1
2 iε̄∂/ χ̃+ 1

2 iε̄λ̃ ,

δQg̃ = 1
2 ε̄γ5∂/ χ̃+ 1

2 ε̄γ5λ̃ ,

δQVa = 1
2 iε̄∂/ γaχ̃+ 1

2 iε̄γaλ̃ ,

δQλ̃ = 1
2∂/ f̃ε+ 1

2 iγ5∂/ g̃ε− 1
2γ

a∂/Vaε− iD̃γ5ε ,

δQD̃ = 1
2 ε̄γ5∂/ λ̃ .

(4)

The distinction between this multiplet and (3) pertains to the parity of the low-
est component scalar fields; in this case the component b̃ is assigned odd parity.

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

00
9.

24
:2

66
5-

26
76

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/1
2/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



May 21, 2009 14:47 WSPC/139-IJMPA 04464

Frames for Supersymmetry 2669

2 4

4

4

1

1

Aa

λ

D

f,g

b

χ

2 4

4

4

1

1

Va

λ

D

f,g

χ

~

~

b
~

~~

~

Fig. 1. The real and imaginary parts of a complex scalar multiplet correspond to a real scalar
multiplet (3) and a real pseudoscalar multiplet (4), respectively. These are represented above using
a disconnected Adinkra.

It follows that χ̃ and λ̃ each have even parity, the fields g̃ and D̃ are each pseu-
doscalars, while the vector Va has even parity.a

Taken together, the transformation rules (3) and (4) are represented diagram-
matically as in Fig. 1, where a single combined vertex represents f and g together,
and another combined vertex represents f̃ and g̃. The fact that Fig. 1 has two dis-
connected parts reflects the fact that the fields in the multiplet V do not transform
into the fields in Ṽ , and vice versa. This pair admits an obvious complex structure
allowing us to define V := V + iṼ . The reducibility of the combined multiplet is
manifest using the diagram in Fig. 1, since one can constrain all of the fields in either
disconnected piece to vanish, an operation which is consistent with supersymmetry
owing to the disconnected feature of the diagram.

The transformation rules (3) and (4) describe together the component version
of the transformations generated by the supercharge Q acting on an unconstrained
N = 1 superfield corresponding to V. From the point of view of superspace, the
restriction to the submultiplet described by the connected diagram on the left-
side of Fig. 1, effected by constraining the connected diagram on the right-side
to vanish, is equivalent to the superfield constraint V = V

†, where the complex
structure described above has been implied. Similarly, the restriction to the other
connected submultiplet is equivalent to the superspace constraint V = −V

†.
Since we have assigned positive parity to V and negative parity to Ṽ , so that b

and b̃ describe a respective scalar and a pseudoscalar, it follows that we can sensibly

aAs far as supersymmetry is concerned, the real scalar multiplet (3) and the real pseudoscalar
multiplet (4) describe the same representation. This can be readily shown by redefining the spinor
components in the former by a cosmetic multiplication by iγ5 and by making other minor cosmetic
changes. The conventional difference ensures that all Majorana spinors in both multiplets have
even parity.
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reorganize the component fields using the following definitions:

B := b− ib̃ ,

ξL := 1
2 (χL + χ̃L) ,

ρR := 1
2 (χR − χ̃R) ,

Pa := − 1
4 (Va − iAa) + 1

2∂a(b − ib̃) ,

H := − 1
2 (f̃ − ig̃) ,

βL := 1
4 (λL − ∂/χR) + 1

4 (λ̃− ∂/ χ̃R) ,

φ := 1
2 (f + f̃) + 1

2 i(g + g̃) ,

ψR := 1
2 (λR + ∂/ χL) + 1

2 (λ̃R + ∂/ χ̃L) ,

F := 1
2 (D + ∂aVa − �b) − 1

2 i(D̃ + ∂aAa − �b̃) .

(5)

By replacing the fields (b, χ, f, g, Aa, λ,D) and (b̃, χ̃, f̃ , g̃, Va, λ̃, D̃) with the equiv-
alent set of fields defined by (B, ρ,H, ξ, Pa, β, φ, ψ, F ) we have “changed frames”
in the space defined by these fields; in either guise the same 16+16 local off-shell
degrees of freedom are expressed, albeit in terms of different linear combinations.b

When reexpressed in terms of the redefined fields, the transformation rules (3)
become

δQB = iε̄LρR + iε̄RξL ,

δQξL = Paγ
aεR + 1

2φεL ,

δQρR = ∂/BεL − Paγ
aεL +HεR ,

δQPa = − 1
2 iε̄R∂/ γaξL + 1

2 iε̄LγaβL − 1
4 iε̄γaψ ,

δQH = iε̄R∂/ ρR + iε̄RβL ,

δQβL = −γa∂/PaεL + 1
2FεL ,

δQφ = iε̄LψR ,

δQψR = ∂/ φεL + FεR ,

δQF = iε̄R∂/ψR .

(6)

bIf a parity operation should act canonically, as P : ξL ↔ ξR, then the parity of V and Ṽ must
be opposite. Thus, if b is a scalar then b̃ must be a pseudoscalar. This justifies the assignments
imposed above.
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2 8

4 4

4

2

2

4

2

F

B

ψ

φPa

Lβ

R
ρ

R

Lξ

H

Fig. 2. The complex scalar multiplet may be expressed in a special “frame” in which the Adinkra
has the manifest structure of a chiral multiplet linked to a variant vector multiplet in-turn linked
to a higher-weight chiral multiplet, where the linking are codified by “one-way” gray edges, as
explained in the text.

Note that the transformation rules (3) and (6) are completely equivalent; these
represent the same multiplet in two different “frames.” The second guise for the
transformation rules, (6), is represented diagrammatically as in Fig. 2. In Fig. 2,
the gray edges describe upward-directed terms in (6) which do not have downward-
directed counterparts. For example the gray edge connecting the B vertex to the
ξL vertex represents the term iε̄RξL appearing in δQB. The fact that this edge is
gray, rather than black, indicates the interesting fact that there is no term propor-
tional to B which appears in δQξL; thus, the upward-directed term does not have
a downward-directed counterpart. Similar comments apply to all six of the gray
edges in Fig. 2.

The ostensibly distinct Adinkras in Figs. 1 and 2 describe precisely the same
multiplet expressed in two different frames; these frames are related by the field re-
definition (5). In the second frame, the graph shown in Fig. 2 exhibits an interesting
structure: the fields B, ρR, and H transform into each other via two bi-directional
term pairs represented by the two black edges which interconnect the corresponding
vertices, but none of the remaining fields transform into B, ρR, or H . Instead, the
three upward-directed terms in (6) represented by the three gray edges connecting
B with ξL, ρR with Pa, and H with βL, have no downward-directed counterparts.
Thus, the subset of fields (B, ρR, H) connects to (ξL, Pa, βL) only via gray edges.
In a similar way, the subset (ξL, Pa, βL) connects to (φ, ψR, F ) only by gray edges.

The subset of fields (B, ρR, H) have transformation rules identical to that of a
chiral multiplet augmented by the addition of three “one-way” terms corresponding
to gray edges. As a suggestive mnemonic, we refer to this situation by calling
(B, ρR, H) a chiral multiplet “flying” the fields (ξL, Pa, βL), as a kite. Similarly, the
subset of fields (ξL, Pa, βL) have transformation rules identical to a variant vector
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multiplet7 augmented by the addition of three “one-way” terms corresponding to
the remaining three gray edges.c Thus, from this point of view, when expressed
in this frame, the complex scalar multiplet is a chiral multiplet “flying” a variant
vector multiplet which, in turn, is “flying” another chiral multiplet.

This structuring of the multiplet renders manifest the following constraint which
restricts (6) to a proper submultiplet: the fields (φ, ψR, F ) can be eliminated by
constraining φ = 0, ψ = 0, and F = 0. Since none of these three fields transform
into any of the other fields in Fig. 2, as clearly indicated by the gray lines, this
constraint is plainly consistent with supersymmetry. In this way, the structure of
Fig. 2 allows us to “read-off” the Adinkra describing the constrained multiplet as

2 8 Pa

B

4 4

4
Lβ

R
ρ

Lξ

H

2

. (7)

To pass from Fig. 2 to (7) we have “switched off” the “uppermost kite,” by con-
straining φ, ψR, and F , each to vanish. The transformation rules corresponding to
(7) describe a complex linear multiplet,8 obtained equivalently in superspace by im-
posing the constraint D̄RDLV = 0 and then redefining component fields according
to the frame shift indicated by (5).

The structure of the complex linear Adinkra (7) renders manifest a second
constraint that can further reduce the system to a smaller proper submultiplet:
the fields (ξL, Pa, βL) can be eliminated by constraining ξL = 0, Pa = 0, and
βL = 0. This second constraint is also manifestly consistent with supersymmetry as
indicated by the gray lines, since the newly constrained fields do not transform into
any of the unconstrained fields. It is then easy to “read off” the Adinkra describing
the further constrained multiplet as

2

B

4

R
ρ

H

2

. (8)

cThe variant vector multiplet may be viewed as a pair of chiral multiplets, with swapped statistics,
spanning a Weyl spinor representation of spin(3, 1).
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To pass from (7) to (8) we have “switched off” the “middle kite,” by constraining ξL,
Pa, and βL, each to vanish. The transformation rules corresponding to (7) describe
a chiral multiplet, as could also be inferred since (8) is similar to (1). It is simple to
check that the transformation rules in (6) for B, ρR, and H correspond to a chiral
multiplet when all of the other fields are constrained to vanish. This same chiral
multiplet is obtained equivalently in superspace by imposing the very well-known
constraint DLV = 0 and then redefining component fields according to the frame
shift indicated by (5).

From the point of view of superspace, if one starts with an unconstrained com-
plex superfield V, this can be reduced to a 12+12 complex linear multiplet by
imposing D̄RDLV = 0, and can be further constrained to a chiral multiplet by im-
posing the more restrictive constraint DLV = 0. These constraints may be resolved
in terms of components, theta-level by theta-level in a superfield component expan-
sion. Alternatively, these may be imposed in the basis defined by (5), in which case
the restriction corresponds to the diagrams in Fig. 2, in (7), and in (8). Thus, the
essence of our discussion pertains to the elucidation of natural frames for discussing
multiplet reduction in terms of components, how different frames can be used for
reduction to different submultiplets, and how the naturalness of the frames are
clarified by rendering the transformation rules diagrammatically.

In the context of N = 1 supersymmetry, the 16 + 16 complex scalar multiplet,
described above, provides the simplest example of multiplet reducibility, and pro-
vides an archetype for other examples. It is well known that the 8 + 8 real scalar
multiplet, which corresponds to either of the disconnected sub-Adinkras in Fig. 1,
is also reducible; for example, the 4 + 4 gauge vector multiplet may be obtained by
a suitable restriction of the component fields in this case. However, this reduction,
which coincides with the well-known restriction to a Wess–Zumino gauge, is more
subtle than either the reduction from the complex scalar multiplet to a complex
linear multiplet or the further reduction to a chiral multiplet. The reason for the
extra subtlety has to do with the presence of a gauge equivalence associated with
the vector multiplet. To see this, consider the real pseudoscalar multiplet, obtained
from Eq. (3) or Fig. 1 by setting all fields in V to vanish. In this way we restrict
to the disconnected diagram comprising the right half of Fig. 1. A natural frame
for further reduction is then obtained by redefining fields as λ̃ → λ̃ + ∂/ χ̃ and
D̃ → D̃ − �b̃. In terms of the redefined fields, the transformation rules become

δQb̃ = 1
2 ε̄γ5χ̃ ,

δQχ̃ = iγ5∂/ b̃ε− 1
2Vaγ

aε+ 1
2 f̃ ε− 1

2 ig̃γ5ε ,

δQf̃ = iε̄∂/ χ̃+ 1
2 iε̄λ̃ ,

δQg̃ = ε̄γ5∂/ χ̃+ 1
2 ε̄γ5λ̃ ,

δQVa = 1
2 iε̄γaλ̃+ ∂a(−iε̄χ̃) ,

δQλ̃ = 1
2γ

abFabε− iD̃γ5ε ,

δQD̃ = 1
2 ε̄γ5∂/ λ̃ ,

(9)
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where Fab = 2∂[aVb] is the field strength tensor. Notice that in this frame the fields
f̃ and g̃ do not appear in the transformation rule δQλ̃. Thus, the corresponding
Adinkra edge would be gray. Notice also that in this frame the field χ̃ appears in
the transformation rule δQVa only within a total derivative. Thus, if Va is interpreted
as a gauge potential, subject to an equivalence under Va → Va + ∂aα, where α is
a gauge parameter, then χ̃ only contributes to δQVa as a gauge transformation.
With these features in mind, we can represent the rules (9) using the following
Adinkra:

D

χ

2 31 Va

b

4

4 λ

f,g

1

1

~

~

~~

~

~

, (10)

where we have represented the vector potential Va using two separate vertices: a
singlet vertex codifying the gauge freedom, i.e. that part of Va which can be written
as a total derivative, and another vertex codifying the gauge equivalence class. Since
only the gauge part of Va “talks back” to the lower half of the diagram (10), it is
manifest on the diagram that the gauge-invariant field strength Fab := 2∂[aVb]

resides in a submultiplet which does not involve any of the fields “below” the gray
lines. In particular, the gauge invariant Adinkra can be read off of (10), and has
the following form:

D 3 Fab

4

λ

1

~

~

. (11)

The way this is done diagrammatically is by severing the gray edges in (10), in-
dicating that the Wess–Zumino fields are set to zero, and then “swiveling” the Va

node upward two levels, pivoting on the λ node, since such a maneuver codifies
differentiation. The Fab vertex describes three local degrees of freedom because this
satisfies the Bianchi identity ∂[aFbc] = 0. The gauge vector transformation rules,
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which can be readily determined from (9), are

δQλ̃ = 1
2γ

abFabε− iD̃γ5ε ,

δQD̃ = 1
2 ε̄γ5∂/ λ̃ ,

δQFab = −iε̄γ[a∂b]λ̃ .

(12)

It is these rules which are represented by the Adinkra (11).
Another way to reduce the real scalar multiplet is by imposing the constraint

that the “kite” fields in (10) each vanish. This is done in two steps; first by writing
Va = Ṽa+Sa, where Sa satisfies ∂[aSb] = 0 and is the part of Va which can be written
as a total derivative, and then by imposing D̃ = 0, λ̃ = 0, and Ṽa = 0. This process
“switches off” the kite fields in (10), leaving behind the following gauge-invariant
Adinkra:

χ

2 1

b

4

f,g

1

Sa
~~

~

~

, (13)

where the singlet vertex Sa describes a closed one-form. This Adinkra describes the
usual gauge superfield parameter in a supersymmetric spin-1 gauge theory, and may
be written in terms of superfields as the sum of a chiral multiplet and its Hermitian
conjugate.

Although the reduction of the complex scalar multiplet, equivalent to an uncon-
strained N = 1 superfield, to its variety of submultiplets is very well known, both in
terms of superspace and in terms of components, the perspective on this reduction
described here is somewhat novel, we believe, both in terms of the judicious choices
of frame redefinitions and in terms of how this matter plays out in terms of pictures.
Importantly, the discussion in this paper has allowed us to present the concept of
gray Adinkra edges. These indicate the appearance, in certain frames, of “one-way”
terms in supersymmetry transformation rules: “upward-directed” terms which exist
without the presence of “downward-directed” counterparts. Such a feature played
a role in our previous work in the context of N = 2 supersymmetry,6 and plays a
role in related ongoing work, some of which which will appear in the near future.
One purpose of this paper is to supply some independent elementary context and
definitions to which we may refer in the future. We also find the elucidation of the
frame exhibited by (5) and (6), and its diagrammatic equivalent, shown in Fig. 2,
adequately noteworthy.
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4. C. Doran, M. Faux, S. J. Gates, Jr., T. Hübsch, K. Iga, G. Landweber and R. L. Miller,

Topology types of Adinkras and the corresponding representations of N-extended
supersymmetry, arXiv:0806.0050.

5. C. Doran, M. Faux, S. J. Gates, Jr., T. Hübsch, K. Iga, G. Landweber and R. L. Miller,
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