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Abstract 
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to obtain an N = 1 super Yang-Mills theory in four dimensions, using 
anomaly matching to determine the gauge and representation struc- 
ture. The model described in this paper is the simplest four dimen- 
sional model which one can construct from M-theory compactified on 
an abelian orbifold without freely-acting involutions. The gauge group 
is 50(12) x SU{8) x SU(2) x SU(2) x {7(1). 
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0    Introduction 

Despite the fact that a fundamental description of M-theory has so far re- 
mained elusive, it is nevertheless possible to describe interesting and pre- 
dictive aspects of its effective phenomenology. This is possible because, 
whatever M-theory turns out to be, it should relate at low energy to eleven- 
dimensional supergravity. This statement is actually quite powerful, espe- 
cially when eleven-dimensional spacetime has a topology involving a compact 
orbifold factor, owing to rigorous constraints derivable from requirements 
imposed by field theory gauge and gravitational anomaly cancellation. 

There has been quite a lot of recent interest in M-theory on G2 holonomy 
seven-manifolds for the construction of N = 1 supersymmetric theories in 
four dimensions [1, 2]. In this paper we describe, in microscopic detail, 
a particular N = 1 model associated with a particularly interesting M- 
theory orbifold 1. Although our model involves compactification on a seven- 
manifold, it has the structure of a T6/(Z2 x Z2) orbifold (admitting a Calabi- 
Yau resolution, [3]) times a closed interval Sl/Z2. Such an "orbifold with 
boundary" falls outside of the class of Gf2-resolvable orbifolds of T7 studied by 
Joyce [3] 2. Nevertheless, by compactification on this orbifold we do obtain 
a four-dimensional, N = 1 super Yang-Mills theory from eleven-dimensional 
supergravity via explicit cancellation of anomalies. 

In our analysis, we impose strict anomaly cancelation at each point in 
the eleven-dimensional spacetime. This is a substantially more restrictive 
criterion than that implied by anomaly cancellation on smaller spaces ob- 
tained when compact dimensions shrink to zero size. The latter circumstance 
accesses only what we call the collective anomaly, whereas our approach in- 
volves a more "microscopic" picture of the localized states. Admittedly, in 
our approach we are able to compute only those chiral states needed to can- 
cel anomalies. Any additional localized states which can be added without 
introducing additional anomalies are invisible to our analytic probe. Typ- 
ically, this redundancy is of very limited scope, however. In this paper we 
describe a consistent microscopic description of the localized states in one 
particular orbifold. Furthermore, as explained in [6], one expects a hierachy 
of consistent solutions for the gauge group and representation content as- 
sociated with a given orbifold compactification of M-theory. Typically, sets 
of such consistent solutions are linked by phase transitions, often mediated 
by fivebranes and small instanton transformations. In this paper we discuss 

1Some authors refer to our quoteint space as an "orientifold" because the finite group 
action includes a parity flip. We prefer a more broad use of the term "orbifold", since 
"orientifold" has a slightly different connotation in string theory. 

2We refer particularly to Definition 6.5.1 and all of Chapter 11 in Joyce's book [3]. 
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only one particular solution; we fully expect that this solution describes only 
one corner of a more robust and interesting moduli space. Having said this, 
we remark that the particular M-theory orbifold analyzed in this paper had 
been previously mentioned in [4] as an interesting N=l model, where it ap- 
peared as Model (C',C')- However, in that paper no attempt was made to 
describe the associated spectrum from a microscopic point of view. The fact 
that the gauge group described in that paper differs from ours is not partic- 
ulaly troubling either, since we are describing a different corner of moduli 
space. It would be an interesting exercise to provide a microscopic descrip- 
tion of the models described in [4]. To the best of our knowledge this current 
paper is the only extant microscopic description ofajD = 4iV=l model 
derived from M-theory. 

The reason why anomaly cancellation is important in the context of M- 
theory orbifolds is that the the lift of the action of the orbifold quotient 
group to the gravitino field generically serves to project that field chirally 
onto even-dimensional fixed-point loci. On fixed-planes of dimensionality 
ten or six this projection induces gravitational anomalies, owing to the chi- 
ral coupling of the gravitino to currents which are classically conserved due 
to classical reparameterization invariance of the fixed-planes. However, since 
all local anomalies must cancel, the presence of gravitino-induced fixed-plane 
anomalies allows one to infer additional structure, such as Yang-Mills super- 
multiplets living on the fixed-planes, or specialized electric and magnetic 
sources of G flux 3, since these supply necessary contributions to the overall 
anomaly, either quantum mechanically or as "inflow", so as to render the 
theory consistent. 

In generic situations orbifold fixed-point loci can be complicated, involv- 
ing fixed-planes of various dimensionalities which can intersect. As a result 
there are additional concerns owing to gauge anomalies and mixed anomalies 
induced by chiral projection of the gaugino fields in the Yang-Mills super- 
multiplets onto fixed-plane intersections. Because of this, the cancellation of 
all anomalies typically involves an elaborate conspiracy of quantum contri- 
butions and inflow contributions. In a previous series of papers [5, 6, 7, 8], 
much of the technology needed for implementing anomaly matching in orb- 
ifolds with intersecting fixed-planes was developed. Complementary aspects 
and several physical observations about these orbifolds were also addresed 
by other authors, [9] and [10] in particular. This work extended the ideas 
and technology implemented in simpler orbifolds involving only isolated (i.e. 
non-intersecting) fixed-planes described by Hofava and Witten [11, 12] and 
by Dasgupta and Mukhi [13]. Until now, the only orbifolds with intersecting 

3Using standard notation, G is the four-form field strength living in the bulk super- 
gravity multiplet. 
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fixed-planes which have been analyzed are those corresponding to topologies 
M6 x S1/Z2 x K3 in which the K3 factor degenerates to a global orbifold 
K3 -> TA

/ZM, for the four possible cases M = 2,3,4 and 6. The effective 
theory in these previously studied cases, obtained in the limit that the radii of 
the compact dimensions becomes very small, are uniformly six-dimensional. 

In this paper we describe a new example of an M-theory orbifold which 
has a four-dimensional effective description, and also has four dimensional 
fixed-planes. This model exhibits a pretty feature in that each four-dimensional 
fixed-plane lies at the mutual intersection of three orthogonal six-dimensional 
fixed-planes, each of which is a sub-manifold of a ten-dimensional fixed-plane. 
What is nice about this feature is that the constraints imposed by ten- and 
six-dimensional gravitational anomaly cancellation impinge directly on the 
structure of the effective field theory in four dimensions, despite the fact that 
there are no gravitational anomalies specifically in four dimensions. This is 
possible because the four-planes in question are very special sub-manifolds 
of the fixed ten-planes and also of the fixed six-planes. This introduces grav- 
itational anomalies into four dimensional physics in a novel manner. Thus, 
despite the fact that the model which we present is not of immediate phe- 
nomenological interest, it does indroduce a powerful formalism for deriving 
four-dimensional physics from M-theory. 

In our model, eleven-dimensional spacetime has topology R4 x 51/Z2 x 
T6/(Z2)2. This orbifold is of the Hofava-Witten variety, since it includes 
S1/Z2 as a factor, and has quotient group (Z2)3. Since the orbifold is of 
the Hofava-Witten variety, in order to cancel the ten-dimensional anomaly, 
the fixed ten-planes, of which there are two, each support Eg Yang-Mills 
supermultiplets. In this case, however, there are additional gravitational 
anomalies induced on the six-planes. In order to cancel these, it is necessary 
to introduce hypermultiplets living on these six-planes. Furthermore, it is 
necessary that the ten-dimensional Eg gauge group is broken to a subgroup 
Eg -^ Ga C Eg on the six-dimensional fixed-plane corresponding to the 
element a of (Z2)3. This symmetry breakdown is codified by the action of 
the quotient group on the Eg root lattice and is, in effect, a description of a 
small Eg gauge instanton which is localized on the fixed-plane. 

In our model, the cancellation of anomalies on the ten-dimensional fixed- 
planes and also on the six-dimensional fixed-planes proceeds exactly as de- 
scribed in [7] for the case of the S1/Z2 x T4/Z2 compactification. This is 
because these planes are locally identical to the analogs in that simpler con- 
struction. The novel feature of the (Z2)3 model, however, derives from the 
fact that the six-planes intersect each other at four-planes. As a result of 
this, there are important consistency requirements which control the ulti- 
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mate breakdown patterns of Es as one approaches first a six-plane and then 
moves along that six plane and lands on the four plane intersection. In 
this paper, we present an explicit consistency analysis which enables us to 
compute the complete set of twisted states and the gauge group localized 
on the four-dimensional fixed-planes. We do not review the Hofava-Witten 
analysis [12] which explains the ten-dimensional anomaly cancellation nor do 
we review the cancellation of the six-dimensional anomalies. The interested 
reader is referred to [5, 6, 7, 8] for a comprehensive description of these cases. 

Section 2 addresses the global geometric aspects of our model, describing 
the explicit action of (Z2)3 which gives rise to our orbifold of T7. In the next 
section, the analysis of the local anomaly for the {Z2)2 orbifold in [6, 7] 
is extended to this case. Although the story for the ten-planes is quite 
analogous, the six-planes require more subtle methods. For this reason we 
introduce "branching tables" and "embedding diagrams" for determining 
which projections in the Eg root lattice are compatible with the orbifold 
quotient group action. In Sections 4 and 5 we use this data to determine 
the spectrum seen by the four-dimensional intersection which arises from 
the ten-dimensional i^ fields, and discuss further twisted states which we 
need to introduce to cancel the six-dimensional anomalies. Finally, following 
a synopsis, we indicate why the four-dimensional gauge anomaly does not 
arise for our orbifold, and summarize the representation content of the chiral 
multiplets in our model ("Model 1") in Table 7. Further models with D = 4 
and N = I SUSY, based on both abelian and non-abelian orbifolds, will be 
discussed in forthcoming work. 

1    Global Geometric Aspects 

Consider a spacetime with topology E4 x T7, where the compact T7 factor 
is described by the quotient IR7/A with lattice A. Parameterize the compact 
dimensions using three complex coordinates {^1, ^2? ^3} and one real coordi- 
nate x11. The orbifold which defines our model is obtained from this torus 
by making additional identifications described by parity flips as shown in 
Table 1. The sole condition on the lattice A in C3 © R is that these parity 
flips induce lattice automorphisms. A minus sign in that table implies a 
relative overall sign change of the indicated coordinate (the column header) 
by the indicated element (the row header). Each row in Table 1 describes a 
generator of the full quotient group, which is (Z2)3. 

The quotient group (Z2)3 has order eight, with elements {l,a,/3,7,a/5, 
/?7, cry, a/?7}. The corresponding fixed-planes have real dimensionalities 
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z\ Z2 23 Z11 

a — + — — 

(3 — — + — 

7 + — — - 

Table 1: The action of the quotient group (Z2)3 on the compact coordinates 
{zi,Z2,Z3)X11} corresponding to the model described in the text. 

{11,6,6,6,7,7,7,10}, respectively, where we have included the four non- 
compact dimensions in this accounting. The a/?7-invariant ten-planes have 
multiplicity two, and correspond to hypersurfaces x11 = 0 and x11 = TT. We 
refer to these ten-planes as M/0 and M20, respectively. 

The a-invariant six-planes, the /3-invariant six-planes and the 7-invariant 
six-planes each have multiplicity 32, sixteen of which are submanifolds of 
M-j10 and sixteen of which are sub-manifolds of M^0. Within a given ten- 
plane M/0 there are 64 parallel four-planes which are each invariant under 
a, /?, and 7, each describing a mutually transversal intersection of one em- 
plane, one /?-plane and one 7-plane. The global geometry of the six-planes 
within a given ten-plane are conveniently depicted in Figure 1, where we 
have suppressed the x11 dependance of the non-compact coordinates. 

The a/3-invariant seven-planes have multiplicity sixteen. Each of these 
interpolates between one 7-invariant six-plane (a submanifold of M^0 ) and 
another 7-invariant six-plane (a submanifold of Mj0), with the interpolation 
parameterized by x11. Similarly, sixteen /?7-planes interpolate between em- 
planes and sixteen more cry-planes interpolate between /?-planes. The seven- 
planes triply intersect at 64 five-planes which are each invariant under a/3, 
/37, and cry. Each five-plane interpolates between two of the four planes 
described above. 

The global geometry is conveniently displayed as shown in Figure 2, 
which depicts the geometry near one of the five-planes as it interpolates be- 
tween two of the four-planes. Figure 2 includes representations of every sort 
of fixed-plane, and every sort of intersection which occurs in this orbifold. 
Since the collection of planes as drawn in Figure 2 resemble a sort of water- 
wheel, we refer to such a diagram as a waterwheel diagram. These figures 
are especially useful for maintaining perspective during the ensuing analysis. 



C.F. Doran, M. Faux, and B.A. Ovrut 335 

/ 

/I/ /!/ / 

1 ..{/I-? /-/ f 7 
"7 

A     '//I     '/y 
7 n 7 i / / / 1     rM 

/      |     ^ 

1 / /f, 

J7     .1   ' f • 

i—r} 
7- 

7 

J ~ T — 

V- -' 

/__. 7 
/ 

/ 

) 
U/  / 

/ 
/ / / 

/ 
V 

a 

Figure 1: A depiction of the orbifold described in the text with the eleventh 
dimension suppressed. This picture is entirely within one of the two a/Sj 
ten-planes, and illustrates the sixteen a six-planes, the sixteen /? six-planes 
and the sixteen 7 six-planes within that af3j ten-plane. 

Figure 2: A local depiction showing one of the sixty-four five-planes, includ- 
ing the eleventh dimension, and showing three of the seven planes, one each 
of a/3, ^7 and cry. 
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2    Local Anomaly Cancellation 

As mentioned in the introduction, the geometry of the ten-planes and of 
the six-planes for the orbifold described in the previous section are locally 
identical to analogous fixed-planes in the simpler (Z2)2 orbifold described in 
[6, 7]. As a result, we can apply certain results from the analyses described 
in those papers. In particular, the ten-planes must each support a ten- 
dimensional Eg Yang-Mills multiplet. The situation regarding the six-planes 
is more complicated, however. We start by reviewing the situation in the 
simpler (Z2)2 orbifold, and then describe extra constraints which pertain to 
the (Z2)3 case. For simplicity, in this paper we consider only the possibility 
that there are no M-fivebranes in the bulk of the orbifold. 

For the case of the 51/Z2 x T4/Z2 orbifold [6, 7], we can locally cancel 
the six-dimensional anomalies in either of two distinct ways. In the first case 
a given six-plane has magnetic charge —1/4, while lattice reflections describe 
a breakdown Eg -> E7 x SU(2) as the six plane is approached. In the second 
case, the six-plane has magnetic charge +1/4 and lattice reflections describe 
a different breakdown Eg —> 50(16). The ambiguity is resolved, however, 
by global constraints derived by integrating the dG Bianchi identity. These 
require that the E7 x SU(2) solution and the 50(16) solutions be paired, 
with one occurring on six-planes within Mj10, and the other occurring in 
complementary six-planes inside Mj0. 

For the case of the (Z2)3 orbifold, we have three types of six-planes which 
respectively correspond to the elements a, /? and 7 described above. On a 
given six-plane the gravitational anomaly can be cancelled locally via the 
same two choices described in the previous paragraph. But we need to re- 
think the global constraints in this context, owing to the relative complexity 
of the global fixed-plane network. To be concrete, we focus on the neighbor- 
hood of one of the four-dimensional intersection vertices, such as the one dis- 
tinguished in Figure 1 as the intersection of the three highlighted six-planes. 
This same four-plane is also depicted as the upper point in Figure 2 where all 
of the depicted planes converge. On each of the three six-planes which mu- 
tually intersect at the given four-plane, there are two possible choices for the 
local gauge subgroup ft. Here ft corresponds to ft*, Qp or fty depending on 
which six plane is being considered. In each case, the two possible choices are 
related to the two possible choices of magnetic charges, since these correlate 
with the associated #8 lattice reflection, under which Eg -> ft C Eg. 

The three six-planes being considered are all submanifolds of a partic- 
ular ten-plane fixed under the triple product a/37. Thus, the three six- 
dimensional gauge groups ft*, Qp and C/7 are each subgroups of the same Eg. 



C.F. Doran, M. Faux, and B.A. Ovrut 337 

These subgroups are separately fixed under the respective actions of a, /?, 
and 7 on the E$ root lattice. An important observation is that the entire E$ 
lattice must remain fixed under the triple product a(3j. Otherwise the Eg 
group would be broken at generic points on the ten-manifold, which would 
irreparably spoil the ten-dimensional anomaly. As a result of this, given the 
action of a and /3 on the Es lattice, the action of 7 is fixed. Specifically 
7 must act on the Es lattice precisely as the product /3~1a~1 = a/3. (The 
equality follows because a and /? each generate Z2, and are therefore self- 
inverses, and because the quotient group is abelian.) This uniquely ensures 
that a/37 acts trivially on the Eg lattice. 

Subject to the constraint described in the previous paragraph, we need 
to determine how (3 and 7 act on (/a, (i.e. how these elements are realized as 
reflections on the sublattice of Eg corresponding to the root lattice of (/a), 
and similarly how a and 7 act on Qp and how a and (3 act on (/7. Since 
there is a unique subgroup W C Eg which remains invariant under a, /?, and 
7, it follows that the three groups Qa^ Qp and Q1 must each break down to 
the same group Qi -» % under the lattice projections described above. The 
state of affairs is illustrated by Figures 3 and 4. 

In Figure 3 we see a depiction of the three six-planes mutually intersect- 
ing at the four-plane under discussion. The four-plane is illustrated by the 
heavy dark spot. This figure shows the physical geometry of the fixed-plane 
intersection. The gauge groups corresponding to the various fixed-planes are 
also included in this figure, as are the dimensionalities of the planes 4. In 
Figure 4 we see a depiction of the group theoretic branchings from Eg to the 
subgroup if, in which the consistency of the actions of the six elements of 
(Z2)3 other than the identity and the triple product a/37 is apparent. 

We want to determine which sets of three subgroups C/Q, Qp and £/7 of 
Eg can consistently overlap to satisfy the situation illustrated in Figures 3 
and 4. To do this, we first isolate the candidate subgroups of Eg associated 
with each of the six-planes a, (3 and 7. For the case at hand, the candidate 
subgroups are either E7 x 5/7(2) or S'0(16). Thus, in this case, £/a, Gp and 
Q1 are each selected from between these two choices. But this must be done 
subject to the constraint that a/37 leaves the entire Eg group invariant. This 
places a restriction on which combinations of selections are permitted. 

There is a systematics which resolves the consistent breakdown pattern. 
Given a pair of subgroups Qot and Qp, we compare maximal subgroups of 

4Note that we have also drawn, using a dotted line, the five-plane described previously, 
and have indicated that this, too, can potentially support its own Yang-Mills multiplet, 
with gauge group G. 
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Figure 3: One of the four-dimensional intersection vertices 
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Figure 4: The overlapping breakdown pattern E$ —> H 
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these to see if we can find any matches. If there is a match, then this is a 
candidate for the group H. If there aren't any matches, then we refine the 
search by including subgroups at the next depth, i.e. include the maximal 
subgroups of maximal subgroups. For example: if we select Qa = Ej x SU2 
and Qp = SOie, then there is a unique depth-one candidate for H, namely 
SOn x SU2 x SU2. 

We define a preliminary breaking pattern as a set { Qa , Qp] H} meeting 
the above criteria. The qualifier "preliminary" reminds us that we have 
to verify the consistency of such an ansatz, as we explain below. Given a 
preliminary breaking pattern, we determine the branching pattern for the 
248 representation of E$ according to E$ -> Qa —> H and E$ -> Qp —► H. 
For illustration, we choose {Ga , Gp \ H } = {E7 x SU2 , SOie I SOn x SU2 x 
SU2 }. In this case, the a plane involves the following branching 

a : Es   ->   E7 x SU2 

-►   SOn x SU2 x SU2 

248    ->    (133,1)©(1,3)0(56,2) (1) 

-^    [ (66,1,1) 0 (1,3,1) 0 (32, 2,1) 0 (1,1,3) ] 0 (32', 1, 2) 0 (12, 2, 2). 

In this tabulation we have obtained the branching rules from [14] and/or 
[15]. (In the final line we have kept square brackets around the terms in the 
decomposition corresponding to the adjoint representation of E7 x SU2, for 
reasons to become apparent.) Similarly, the /? plane involves the following 
branching 

P:Eg    -+ SOu 

-> SOu x SU2 x SU2 

248    -> 120 0128 (2) 

-> [ (66,1,1) © (1,3,1) © (1,1,3) © (12,2,2) ] © (32,2,1) © (32', 1,2), 

where we have employed the same systematics as described above for the 
a-plane branching. 

We would like to express the group theoretic branching described above 
in terms of the orbifold quotient group acting on the Es root lattice. For 
the case at hand this is a relatively simple exercise, since all of the elements 
of (Z2)3 independently square to the identity. As a consequence, we can 
realize the relevant group actions as reflections on some subset of the Es root 
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vectors. For example, to realize a branching Es —> Ej x SU(2) it suffices 
to leave invariant 136 root vectors corresponding to roots of an E? x SU(2) 
subgroup of Eg, and to invert the remaining 112 root vectors. Similarly 
to realize a branching Es -> 50(16) we leave invariant 120 root vectors 
corresponding to an 50(16) subgroup and invert the remaining 128. Some 
of the consistency issues discussed above translate into issues pertaining to 
the permissible consistent choices of sublattices which can be acted upon by 
group elements a, /? and 7 in particular ways. 

2.1    Branching Tables 

A useful tool for collecting relevant data in order to study consistent lat- 
tice projections is a special table, which we will call a "branching table". 
In such a table we partition the Es lattice vectors, row-wise, according to 
representations of the subgroup H. We then construct three columns, one 
corresponding to the element a, one to /? and one to 7. We fill out the table 
by placing in each slot either a plus sign or a minus sign. A plus sign indi- 
cates that the group element corresponding to the column leaves invariant 
those root vectors corresponding to the row. A minus sign indicates that 
the indicated group element reflects the associated vectors across the origin 
of the root space. 

Given the branching patterns described in (1) and (2) we construct the 
branching table, according to the above prescription, as shown in Table 2. 
The entries in the first row of Table 2 describes the way that the generator 
a acts on the Es root vectors, which are partitioned into representations 
of H = SO(12) x 5*7(2) x SU(2). There are a total of 136 invariant root 
vectors in the first row (i.e. those with plus signs). These describe the root 
system of a particular E? x SU{2) subgroup of E%. This can be verified from 
the branching rules describing £7 -> 50(12) x SU(2). The second column 
of Table 2 corresponds to the element (3. Statements analogous to those 
made about the first column verify that the 120 invariant vectors listed in 
this column describe the root system of a particular 50(16) subgroup of JSg. 

The third column of Table 2 describes the element 7. ^From the dis- 
cussion above, we know that this element does not act in an indepen- 
dent manner on the E% lattice. Instead, 7 acts in the same way as the 
product a/?. Thus, the third row of a given branching table, is obtained 
by multiplying the first column with the second column. The fact that 
{JSV* SU{2), 50(16) I 50(12) x SU{2) x SU{2)} is consistent is then veri- 
fied by the fact that the action of 7 which appears in Table 2 does, in fact, 
reconcile as the root system of another E7 x SU(2) subgoup of E%. Consis- 
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248 E7 x SU2 so16 E7 x SU2 

(66,1,1) + + + 

(1,3,1) + + + 

(1,1,3) + + + 
(12,2,2) — + — 

(32',1,2) — — + 

(32,2,1) + — — 

Table 2: Branching table describing Es -> SOu x SU2 x SU2- 

248 SOxe E7 x SU2 SOio 

63o + + + 

lo + + + 

TOo — + — 

i+2 eI-2 — + — 

28i© 28_i + — — 

28_i© 28+i — — + 

Table 3: Branching table describing Es ->• SUs x Ui. 
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tency is ensured because E? x SU(2) is one of the two consistent choices of 
E$ subgroups. (Consistent here means that the associated six-dimensional 
anomalies can be cancelled.) 

In this paper we are describing a relatively simple example in which the 
group actions on the lattice are never more complicated than mere reflec- 
tions. In future papers, however, we will describe more interesting scenarios 
in which the quotient group is realized relatively nontrivially on the lattices. 
The branching tables which we are introducing in this paper have a natural 
generalization in those cases. 

For the consistent triple branching illustrated in Table 2, a, (3 and 7 
collectively involve two branchings to E? x SU(2) and one branching to 
50(16). Owing to global considerations discussed above, there must exist 
a consistent complimentary scenario, involving two instances of 50(16) and 
one instance of E7 x SU(2). Since the former posibility is defined by the 
choice H = 50(12) x SU(2) x 311(2), there must exist an alternate choice 
for H. Since 50(12) x 5/7(2) x SU(2) was the unique common depth-one 
subgroup of both E? x 5^7(2) and 50(16), we need to go to greater depth in 
order to find an alternate preliminary breaking pattern. At the next depth 
there is again a unique choice, namely {50(16), E7 x 5*7(2) | SU(8) x 17(1)}, 
so that H = SU(8) x ?7(1). This second case can be analyzed precisely as 
above, with results summarized as in Table 3. (Note that it is not possible to 
describe a consistent triple branching involving three instances of £7 x SU(2) 
or three instances of 50(16), as can be easily verified by trying to construct 
corresponding branching tables.) 

We assume that branching decribed by Table 2 corresponds to a four- 
plane intersection inside of M^0, which we will call the "upstairs" region, 
and that the branching described by Table 3 corresponds to a four-plane 
intersection inside of M20, which we will call the "downstairs" region. 

2.2    Embedding Diagrams 

In the "upstairs" embedding, the group Ga = E? x 5i72 is not the same 
subgroup of £?8 described by £7 = E7 x SU(2). Similarly, in the "down- 
stairs" embedding, the group Qa = 50(16) is not the same subgroup of Eg 
described by </7 = 50(16). The various embeddings are usefully depicted by 
a specialized diagram, which we will call an "embedding diagram". These 
illustrate how the various groups Ga, Gp, G^ and H are embedded inside of 
#8, and comprise two-dimensional "maps" of Eg in which regions denoted by 
closed curves correspond to specified subgroups. For instance, the "upstairs" 
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case described by Table 2 has the embedding diagram shown in Figure 5, 
which we have drawn in two incarnations, side by side, with different useful 
aspects of data entered in each incarnation. 

In Figure 5, the subgroup Qa is represented by the region surrounded by a 
green boundary, the group Qp is with a red boundary, and the group £/7 with 
a blue boundary. The region with a particularly colored boundary we call a 
bubble. Thus, the green bubble includes the 133+3=136 generators of one of 
the Ej x SU2 subgroups. In the left-hand diagram the dimensionalities of the 
subgroups are indicated and in the right-hand diagram the identity of the 
subgroups are indicated. Thus, the numbers in the left-hand diagram count 
the £^8 generators. The fact that a/37 — 1 implies restrictions which can be 
interpreted directly on these embedding diagrams. For instance, since each 
column in Table 2 must have entries whose product is plus one, it follows that 
there can be either three plusses and no minuses or one plus and two minuses 
in any column. There is no other possibility. As a result, the embedding 
diagram will include regions which are enclosed by all three bubbles or by 
only one. Furthermore, every one of the 248 generators of E^ are enclosed 
in at least one bubble. These topological restrictions on the embedding 
diagram encapsulate the consistency requirement imposed by a/?7 = 1. The 
"downstairs" branching, described by Table 3, is likewise described by the 
embedding diagram shown in Figure 6. The set of generators enclosed in all 
three bubbles corresponds to the group H. Thus, we can read from figure 5 
the complete embedding of all four subgroups Ga C Es, Qp C E$, Q^ C Es 
and H C 2£8. 

3    The Four-Dimensional Spectrum 

From the information included in the branching table and the embedding 
diagram, it is straightforward to determine the spectrum seen by the four- 
dimensional intersection which arises from the ten-dimensional E$ fields. 
(We will call these the 10 -» 4 fields because of useful comparisons to be 
made later on.) We decompose the ten-dimensional vector fields into four- 
dimensional fields as A^ = {A^, $f, $§, $§ }, where A^ are four dimen- 
sional vectors and $^ are three sets of complex scalars. A given $^ combines 
with the four-dimensional vector to form a six-dimensional vector. Thus, $f 
describes a four-dimensional scalar, but corresponds to vector degrees of 
freedom on the six-dimensional a-plane (but as scalars on the (3 and 7 six- 
planes). Similarly, $2 ls associated with the /3-plane and $3 is associated 
with the 7 plane. The three generators a, (3 and 7 act on the tensor com- 
ponents (i.e.   the lower index) of A^ via multiplication by signs as listed 
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su2 su2 

E7 64 3 66 3 64 

E7 

48 

so16 

Sl/^ S012 SUj F" 

SOie 

Figure 5: Embedding diagram depicting the branching E$ -» 50i2 x SU? x 
5C/2. 

SU. sir2" 

so 16 

2 

56 

1 

56 
63 

70 

so 16 SOi6 

Ui 

SUg 
SOi6 

E'7" 

Figure 6: Embedding diagram depicting the branching E$ —> SUs x C/i 
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a P 7 

Aa + + + 
$« — — + 

*2 + - — 

n — + — 

Table 4: The tensorial action of the three elements a, (3 and 7 on the 
components of a ten-dimensional vector field. Note: we have not included 
the action on the group index a (i.e. the lattice action) in this table; these 
are described in Table 2 or 3. 

in Table 4.   (This describes the tensorial transformation derived from the 
quotient group action shown in Table 1.) 

The full action of the quotient group (Z2)3 on the Sg-valued fields A^ 
includes not only the tensorial action (the lower index), but also the action 
on the Eg root lattice (codified by the upper index). The components of A^ 
partition into vector and scalar fields, but also into different representations 
of if, as tabulated in the rows of Table 2 and Table 3. Each partition 
transforms according to the product of the relevant entry in Table 4 with the 
corresponding entry in the appropriate branching table, either Table 2 or 
Table 3 depending on whether the four-plane is "upstairs" of "downstairs" 
respectively. On the four-plane the surviving components are those which 
transform trivially under each generator a, /3 and 7; those transforming non- 
trivially under any one of these are projected out. Thus, surviving fields 
transform with an overall plus sign under each of the generating elements a, 
P and 7, taking both the tensorial action and the E& lattice action together. 
Therefore, we resolve the 10 -> 4 spectrum by comparing Table 2 with Table 
4, and matching the rows. Surviving vectors transform in representations 
of H indicated by (+ + +), while surviving complex scalars transform in 
representations indicated by ( h), (H ) or (— + —). Surviving vectors 
live in iV = 1 vector supermultiplets and surviving scalars live in chiral 
multiplets. 

The 10 —> 4 spectrum seen by an upstairs four-plane (i.e. one whose 
branching is described by Table 2 or by Figure 5) involves 66+3+3=72 
vector multiplets transforming as the adjoint of SOu x SU2 x SU2 and 
64+48+64=176 chiral multiplets transforming as 

(32', 1,2) 0 (12,2,2) 0 (32,2,1). (3) 



346 Four-Dimensional N = 1 Super Yang-Mills from an M-Theory Orbifold 

The respective terms in this decomposition correspond to 6D scalars on the 
a, (3 and 7 fixed-planes. Note that the respective multipicities can also be 
read off of the embedding diagram from the bubbled regions outside of the 
total intersection. 

The 10 -> 4 spectrum seen by an downstairs four-plane (i.e. one whose 
branching is described by Table 3 or by Figure 6) involves 63+1=64 vector 
multiplets transforming as the adjoint ofSU(8)xU(l) and 56+56+70+2=184 
chiral multiplets transforming as 

28_i 0 28+i © 28i 0 28_i 0 70o 0 1+2 © 1-2 • (4) 

Note again that the respective multipicities can also be read off of the em- 
bedding diagram from the bubbled regions outside of the total intersection. 

4    Remaining Twisted Sectors 

There are two more sources of twisted matter for the orbifold which we are 
discusing. The first are six-dimensional fields added to some of the six-planes 
in order to cancel purely six-dimensional anomalies. The second are seven- 
dimensional fields added to the seven-planes, because these too are needed 
to cancel the six-dimensional anomalies. This last statement is a subtle one, 
which was described in [5, 6, 7] and summarized in [8]. In this section we 
discuss all of the remaining twisted states in this orbifold. 

4.1    Six-Dimensional Fields 

As described in [6, 7] the six dimensional anomaly is cancelled without six- 
dimensional twisted fields for the case of Es —> E7 x SU(2) breakdown. For 
Eg -> 50(16) breakdown, however, it is necessary to add six-dimensional 
hypermultiplets. These transform as ^(16,2) under 50(16) x 5/7(2) where 
the SU(2) factor is associated with the adjacent seven-plane. (The extra 
SU(2) is a subgroup of the "other" Es factor, as we recall in the next sub- 
section.) The six-dimensional twisted fields reduce to chiral multiplets in 
four dimensions. We refer to these fields as the 6 -► 4 spectrum 

For the "upstairs" four planes, only the ^-invariant six-planes support 
the branching Eg —» 50(16). Because of this, we add hypermultiplets trans- 
forming as i(16,2) to the upstairs /3-planes. The four-plane intersections 
see these fields as N = 1 chiral multiplets 5. The representation branches to 

The I on the hypermultiplet representation serves to reduce the four scalaxs in the 
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H x 577(2) according to 

S0uXSU2    -4    SOu x SU2 x SU2 x SU2 

(16,2)    -+    (12,1,1, 2) ©(1,2,2,2); (5) 

the "upstairs" 6 -> 4 spectrum includes chiral multiplets transforming under 
50(12) x 517(2) x 5f7(2) according to the right hand side of (5). 

For the "downstairs" four planes, the a-planes and the 7-planes support 
E$ -» 50(16) branchings. Because of this, we add hypermultiplets to the 
downstairs a-planes and the downstairs 7-planes. In either case, the associ- 
ated twisted matter branches to the four-dimensional gauge group HxSU(2) 
according to 

50i6 x 5C/2   ->   SU{8) x 17(1) x 5*7(2) 

(16,2)    ->   (8,2)o 0(8,2)o; (6) 

the "downstairs" 6 —>> 4 spectrum includes chiral multiplets transforming 
under SU(8) x 517(2) x U(l) according to the right hand side of (5). (A 
more precise accounting of which SU(2) factors are being referred to in each 
case is tabulated below in Table 6, in a manner which will be explained.) 

4.2    Seven-Dimensional Fields 

The seven-planes corresponding to the group elements a/3, /?7 and cry each 
carry vector multiplets. For the (Z2)3 orbifold, these each support SU(2) 
vector multiplets. These are chirally projected on the intersecting six-planes 
corresponding to a, (3 and 7 onto six-dimensional hyper or vector multiplets 
in a way dictated by the cancellation of six-dimensional anomalies. The 
choice of projection onto the vectors or hypers is resolved in [6, 7] for each 
global abelian 51 /Z2 x K3 orbifold. Since the cases under discusion include 
these simpler cases as sub-orbifolds, this issue is already resolved. The ap- 
propriate choices are indicated by arrows in diagrams such as Figure 7, with 
"V" or UH" labels describing the appropriate local projection. To determine 
the four-dimensinal spectrum from these fields, we have to further project 
from six-dimensions down to four. The result is that the seven-dimensional 
vectors undergo a projection 7 -> 6 -» 4 of one of three sorts, V -> H -> ff, 
V->V->VOYV-±V-+H. Further details are explained in [6, 7]. 
This determines the so-called 7 -» 4 fields.   Rather than list these here, 

hypermultiplet into the two real scalars which combine to the one complex scalar in the 
four-dimensional chiral multiplet. 
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we include these in the all-encompassing tables presented in the next sec- 
tion which summarize the various sectors of the effective four-dimensional 
spectrum. 

5    Synopsis 

By including Eg Yang-Mills multiplets on the fixed ten-planes we cancel the 
ten dimensional anomalies. By properly accounting for the action of the 
(Z2)3 quotient group on the E& root lattice we can describe a consistent 
breakdown of these E$ factors to appropriate subgroups on the various fixed 
six-planes. These are generically either E? x SU(2) subgroups or 50(16) 
subgroups. For the cases where the six-dimensional gauge group is S'0(16) 
we must include additional hypermultiplets on these six-planes. In order 
to cancel the six-dimensional anomalies we also include seven-dimensional 
SU(2) Yang-Mills multiplets on the fixed seven-planes. At the same time 
we assign magnetic G charges to the six-planes to enable the appropriate 
inflow anomalies. (This last part of the story has been largely suppressed 
in this paper because the relevant discussion found in [6, 7] is unchanged in 
this context, save for one global result related to this issue: that the upstairs 
and downstairs breaking need be complementary in sense described above.) 
The state of affairs is largely summarized by Figure 7. 

Figure 7 summarizes the juxtaposition of all of the various gauge group 
factors and the associated projections. This figure is a streamlined version 
of the waterwheel diagram shown in Figure 2, with a few lines removed 
and with extra data drawn in. The two purple dots in this diagram depict 
one "upstairs" four-plane and one "downstairs" four plane, as well as lines 
representing each of the six-planes which intersect at these points. The 
groups Qa, Qp and <y7 are indicated to the immediate right of the relevant 
six-planes, and the group H is indicated to the far right for each of the 
cases, upstairs and downstairs. The orbifold consists of an aggregation of 32 
regions such as the one shown in this figure. 

Having reconciled all of the twisted states, be they ten, six or seven 
dimensional, into the four dimensional projections seen by a particular four 
plane, the one remaining issue is to study an additional four-dimensional 
anomaly which might arise due to these fields. In four dimensions, the only 
type of anomaly is a gauge anomaly. Generally, such will arise due to chiral 
coupling of the ten, six, or seven dimensional fields to the four dimensional 
gauge currents. If there is a four-dimensional gauge anomaly, this must be 
resolvable by the addition of purely four-dimensional twisted fields. 



C.F. Doran, M. Faux, and B.A. Ovrut 349 

E^XSU^ 
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EV'XSUi" 

Figure 7: Synopsis 



350 Four-Dimensional N = 1 Super Yang-Mills from an M-Theory Orbifold 

In order to determine the remaining anomaly we can use index theo- 
rems. However, this requires special care, since the index theorem results 
usually employed for anomaly calculations decribe anomalies due to the chi- 
ral coupling of fields with certain dimensionality to currents of that same 
dimensionality. As emphasized in [12] and used extensively in [5, 6, 7, 8], 
this is not necessarily the state of affairs in orbifolds, where the index theory 
results must be modified by certain divisors which are corellated with the 
multiplicities of fixed-planes. We have summarized the effective spectrum 
of twisted fields as seen by particular four-dimensional intersections, for the 
(Z2)3 orbifold, in Tables 5 and 6, where we have also included the relevant 
multiplicity divisor for the indicated representations. The fractions which 
appear in these tables, therefore, indicate the number of four-planes over 
which a given higher dimensional twisted state is distributed. In order to 
compute the effective low energy theory obtained by letting all 64 four-planes 
coelesce, these fractions usefully account for the appropriate multiplicities 
in the spectrum. 

6    The Four-Dimensional Anomaly 

It remains to study the gauge anomaly seen locally at the four dimensional 
intersection. In typical orbifolds, there will be a localized four-dimensional 
gauge anomaly. Further four-dimensional twisted states would need be 
added to cancel this. But in the relatively simple (Z^)3 orbifold described in 
this paper, there is no four-dimensional anomaly which needs to be cured in 
this way. This is because a four dimensional gauge anomaly is only gener- 
ated by chiral fields transforming in complex representations. Otherwise the 
third index of the representation vanishes, so that trF3 = 0. Since gauge 
anomalies in four dimensions are proportional to precisely this trace, there 
is no gauge anomaly induced by fields transforming in real representations. 
Since all of the representations which appear in Tables 5 and 6 are real, we 
have completed the anomaly cancellation program by adding in the ten, six 
and seven dimensional fields sumarized in these tables. 

In the limit that the compact dimensions become very small, the effective 
four-dimensional spectrum is obtained by adding up the contributions from 
all 64 fixed four-planes. For the (Z2)3 orbifold the results are sumarized in 
Table 7. 
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7    Conclusions 

In this paper, we have shown explicitly how a four dimensional N = 1 
Yang-Mills theory can be determined from anomaly matching on the fixed- 
planes of an M-theory orbifold. One interesting aspect of this analysis is the 
manner in which constraints from gravitational anomalies impinge on the 
four dimensional spectrum, despite the fact that there are no gravitational 
anomalies in purely four dimensional field theories. 

In our on-going work we are developing a systematic scan of all possible 
orbifolds obtained as quotients (R7/A)/G for each possible lattice A and 
for each possible choice of quotient group G C Aut(A). For a given orbifold 
constructed in this way we select those which have supercharges preserved on 
the fixed-planes, and then ascertain the fixed-plane twisted spectra needed 
to cancel all local anomalies. The more interesting cases involve non-abelian 
quotients. The orbifold described in this paper is the abelian orbifold of 
smallest possible group order yielding N = 1 SUSY in four dimensions. One 
purpose of this paper has been to present a context for some of the rudiments 
of the larger algorithm which we are implementing on larger class of orbifolds, 
in the hopes of finding a phenomenologically compelling effective field theory 
limit of M-theory. 
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10D 6D 7D 

Chiral £(32,2,1,1) 

£(12,2,2,1) 

efc(32', 1,2,1) 

1(12,1,1,2) 

£(1,2,2,2) 

1(1,3,1,1) 

1(1,1,3,1) 

Vector £(66,1,1,1) 

£(1,3,1,1) 

£(1,1,3,1) 

1(1,1,1,3) 

Table 5: The untwisted spectrum, in terms of four-dimensional chiral mul- 
tiplets and vector multiplets at one of the "upstairs" orbifold four-planes 
expressed in terms of representations of 5012 x SU2 x SU% x SU^. 
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10D 6D 7D 

Chiral £(28,1,1)+1 |(8,2,1)0 i(l,l,l)o 
^(28,1,1)-! ^(8,2,1)0 |(l,l,l)+2 

&(70,l,l)o £(8,1,2),, |(M,l)-2 

^(l,l,l)-2 |(8,l,2)o 

^(l,l,l)+2 

gi(28,l,l)-i 

^(28,l,l)+i 

Vector ^(63,1,1)0 M3,l,l)o 

^(1,1, l)o Hl.3,l)o 

Table 6: The untwisted spectrum, in terms of four-dimensional chiral mul- 
tiplets and vector multiplets at one of the "downstairs" orbifold four-planes 
expressed in terms of representations of SU$ x SU2 x SUtj x Ui. 
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(32,l,2,l)o 16(12,1,1,1)+! 

(12,l,2,2)o 16(12,l,l,l)_i 

(32', 1,1,2)o 16(1,1,2,2)+! 

16(l,l,2,2)_i 

(1,28,1,1)+1 16(l,8,2,l)o 

(1,28,!,!)_! 16(l,8,2,l)o 

(l,70,l,l)o 16(l,8,l,2)o 

(l,l,l,l)-2 16(l,8,l,2)o 

(l,l,l,l)+2 

(l,28,l,l)_i 

(1,28,1,1)+! 

Table 7: The representation content of D=4, N=l chiral multiplets in Model 
1, in terms of the gauge group £012 x £#8 x SU2 x SU2 x Ui. The fields 
above the bar arise from the upstairs sector. The fields below the bar arise 
from the downstairs sector. Fields with a multiplicity of 16 arise as twisted 
6D fields. Note that all 7D fields cancel in the limit that all fixed-planes 
coalesce. 




