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Abstract: Arithmetic properties of mirror symmetry (type IIA-11B string duality) are
studied. We give criteria for the mirror mapseries of certain families of Calabi—Yau
manifolds to be automorphic functions. For families of elliptic curves and lattice polar-
ized K3 surfaces with surjective period mappings, global Torelli theorems allow one to
present these criteria in terms of the ramification behavior of natural algebraic invariants
— the functional and generalized functional invariants respectively. In particular, when
applied to one parameter families of rank 19 lattice polarized K3 surfaces, our crite-
rion demystifies the Mirror-Moonshine phenomenon of Lian and Yau and highlights its
non-monstrous nature. The lack of global Torelli theorems and presence of instanton
corrections makes Calabi—Yau threefold families more complicated. Via the constraints
of special geometry, the Picard—Fuchs equations for one parameter families of Calabi—
Yau threefolds imply a differential equation criterion for automorphicity of the mirror
map in terms of the Yukawa coupling. In the absence of instanton corrections, the pro-
jective periods map to a twisted cubic space curve. A hierarchy of “algebraic” instanton
corrections correlated with the differential Galois group of the Picard—Fuchs equation
is proposed.

1. Introduction

Numerous remarkable properties of the type IIA-11B string duality better known as mir-
ror symmetry have been revealed since its discovery a decade ago. Mathematically this
symmetry entails a correspondence between complex moduli in one family of Calabi—
Yau manifolds and Kahler moduli of a mirror family. In the neighborhood of a large
complex structure/large radius limit point mirror symmetry is described by the mirror
mapg-series. The mirror map is alocally holomorphic function determined by the behav-
ior of fundamental solutions to the Picard—Fuchs equation for periods of a Calabi—Yau
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family about a point of maximal unipotent monodromy. For a family of Calabi—Yau
threefolds the mirror map-series and the Yukawa couplings determine a generating
function for the Gromov—Witten invariants. These invariants (conjecturally) count the
number of rational curves on a generic member of the family. In fact, the original predic-
tions of Candelas [2] for the one parameter family of Fermat-type quintic Calabi-Yau
hypersurfaces have now been proven mathematically [22].

In a series of papers, Lian and Yau [23-26] investigate arithmetic properties of the
mirror maps of several “torically defined” families of elliptic curves, K3 surfaces, and
Calabi—Yau threefolds constructed in their work with Hosono, Klemm, Roan and Theisen
[14,15,19,16,18]. Each of the one parameter families of elliptic curves and K3 surfaces
they study has a globally defined mirror map, automorphic with respect to the global
monodromy group of the family. The mirror maps of these elliptic curve families are clas-
sical modular functions for finite index subgroups of R3LZ), while the mirror maps
of the K3 surface families are, up to an additive integer correction, always reciprocals of
some McKay—Thompson series associated to the monster in the “Monstrous Moonsine”
lists of Conway and Norton [4]. In particular, the mirror maps of their examples are
always automorphic functions for genus zero subgroups o BR), a phenomenon
Lian and Yau dub “Mirror-Moonshine”.

When such modularity properties are possessed by a mirror map, other properties
of potential physical interest can be derived: e.g., integrality of the mirror map and
prepotential, congruences satisfied by the mirror map coefficients, the effect on instanton
corrections, etc. Thus a question of mathematical interest and physical relevance is:

Question 1When is the mirror map an automorphic function?

Unlike other questions regarding the mirror map studied in the literature, this is an
inherently global question. We are asking for which families of Calabi—Yau manifolds
does the mirror map admit an extension to a map from the whole period domain to the
entire base of the family.

Our question is related to the classical problem of characterizing modular relations
between automorphic functions and the elliptic modular function. In fact, for families
of elliptic curves we will see in Sect. 2.1 that this is all that is involved: we recover the
classical criterion for just such modular relations from [11,1,41]. In [7,8] we answer
our question for families ovét!. For elliptic curve families we use Kodairdisnctional
invariant J to pull back the uniformizing differential equation for the elliptic modular
function from the coarse moduli space of elliptic curves (fhiine). The existence of
the functional invariang can be interpreted as a consequence of the (trivial) classical
analogue of the global Torellitheorem. In the case of lattice polarized K3 surface families,
we apply the global Torellitheorem of Nikulin (see the lists of related works in Dolgachev
[6]) to define ageneralized functional invariamhapping again from the base of a family
to the associated coarse moduli space. We use this generalized functional invariant to
explain the Mirror-Moonshine phenomenon for families of K3 surfacesBtetith third
order Picard—Fuchs differential equations — the setting in which the Mirror-Moonshine
Conjecture of Lian and Yau was originally formuated.

The basic idea behind our approach to answering the modularity question for one pa-
rameter families is quite simple: The mirror map of a family of elliptic curves (resp. rank
19 lattice polarized K3 surfaces) is classically modular (resp. automorphic) if and only
if the Picard—Fuchs differential equation is a classical uniformizing differential equation
(resp. the symmetric square of one). We call fiisard—Fuchs uniformizatian

Inthis paper, instead of deriving the modularity criterion “from scratch” from the local
behavior of uniformizing differential equations @, we use the theory of branched
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covers of orbifolds as described by Namba [31]. This approach gives us directly the
modularity criterion in the neatest possible form, and applies to both

1. one parameter families of elliptic curves (Sect. 2.1) and rank 19 lattice polarized K3
surfaces (Sect. 3.1) over a base curve of arbitrary genus, and

2. multiparameter families of lattice polarized K3 surfaces with surjective period map-
ping (Sect. 3.2).

We replace the uniformizing differential equations for the elliptic curve and lattice polar-
ized K3 surface families with holomorphic projective connections and holomorphic con-
formal connections respectively. Picard—Fuchs uniformization occurs when the Gauss-
Manin connection of such a family of elliptic curves (resp. lattice polarized K3 surfaces)
is a holomorphic projective (resp. holomorphic conformal) connection.

The lack of a global Torelli theorem for Calabi—Yau threefolds (in particular no pre-
sentation of the coarse moduli space as a locally symmetric space) prevents one from
algebraically defining generalized functional invariants or mimicing the previous argu-
ments for elliptic curves and K3 surfaces. Instead of an algebraic criterion for modularity
of the mirror map, we must settle for a differential algebraic one in general.

The Picard—Fuchs equation for a one parameter family of Calabi- Yau manifolds
with #21 = 1 has order four. Moreover the constraints imposed by special geometry
imply that about a point of maximal unipotent monodromy there is a set of fundamental
solutions of the form ) )

u,u-t,u-F,u-tF —2F),
whereu(z) is the fundamental solution locally holomorphic at the point of maximal
unipotent monodromy;(z) is the mirror map, and'(z) is the prepotential (the derivative
F is taken with respect to the mirror map coordingteFollowing Lian and Yau, one
can derive a “quantum Schwarzian equation” relating the second order coefficient of the
Picard—Fuchs equation, the mirror map, and the Yukawa couplings (Sect. 4.1).

Inthe absence of instanton corrections, this quantum Schwarzian reducesto a classical
one, and the Picard—Fuchs equation takes the special form of a symmetric cube of a
second order equation. We give first a criterion for modularity of such mirror maps in
the beginning of Sect. 4.2.

Suppose on the other hand that there are instanton corrections, so the quantum
Schwarzian is not classical. If we assume that the mirror map is an automorphic func-
tion, it will satisfy another classical Schwarzian equation. By subtracting the two to
eliminate the Schwarzian derivative terms, and applying a reduction of order argument
to the original Picard—Fuchs equation, we obtain a nonlinear differential equation in the
Yukawa coupling and coefficients of the Picard—Fuchs and classical Schwarzian equa-
tions (the “modularity equation” in Theorem 9). The mirror map does not appear in this
expression, yet the equation will hold if and only if the mirror map is automorphic. This
is our general criterion for modularity of the mirror map for Calabi—Yau threefolds.

The absence of instanton corrections in a one parameter family of Calabi—Yau three-
folds corresponds to the existence of a homogeneous third order relation among the four
periods, i.e., the image of the period mapping lies on a twisted cubic space curve. Itis
natural to ask what other homogeneous algebraic relations can occur between periods
of one parameter families of Calabi—Yau threefolds. We call these “algebraic” instanton
corrections. In Sect. 4.3 we apply a century old theorem of Fano to give a rough clas-
sification, paralleling the structure of the differential Galois group of the Picard—Fuchs
equation.

Most of the results on the mirror map for Calabi—Yau manifolds which appear in
the literature depend on the hypothesis that the families of Calabi—Yau threefolds arise
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“torically”, i.e., as particular parametrized families of hypersurfaces or complete inter-

sections in Fano toric varieties. By working in the setting of transcendental algebraic
geometry, we obtain general results about whole classes of families of Calabi—Yau man-
ifolds. There has been a major effort in the literature to produce examples, first of mirror
maps in general [19,14-16] and then to test the (generalized) Mirror-Moonshine phe-
nomenon in particular [23-26,42]. Since the point of this paper is to explain general

tools and results, we refer the reader interested in examples to the papers cited above.

2. Elliptic Curve Families

In this section we derive the modularity criterion for mirror maps of one parameter
families of elliptic curves with section (Theorem 2), and make some comments on the
case of multiparameter families of elliptic curves (Sect. 2.2). It does not really make
sense to ask our question in this latter case, but we will use it to motivate some aspects
of the problem for multiparameter families of K3 surfaces.

2.1. One parameter families of elliptic curves with sectitmthe early 1960’s Kodaira
developed a general theory of elliptic surfaces, i.e., compact complex surfaces fibered
over curves, with generic fiber an elliptic curve. In particular he showed that every elliptic
surface with section is determined by a pair of natural invariants. The first of these, the
functional invariant is a meromorphic function on the base of the family which keeps
track of theJ-value of each elliptic curve fiber. The second, tteenological invariant
is nothing more than the monodromy representation associated with the second order
Fuchsian ordinary differential equation satisfied by the periods, i.e., the monodromy of
the Picard—Fuchs equation.

The elliptic surfaces with a section, thasic elliptic surfacesplay a distinguished
role in Kodaira’s theory. There is@nonical formfor such a family of elliptic curves
7 : X — C with section, exhibitingX as a divisor in &2-bundle over the base curve
C:

Theorem 1 ([29], Theorem (2.1)). Let £ denote the given sectionsfi.e., X = s(C),
a divisor onX which is taken isomorphically ont6 by 7. LetL = 7,[Ox (2)/Ox].
Suppose that the general fiberois smooth. Thei is invertible andX is isomorphic
to the closed subschemelt= P(L®2 @ LB @ Oy) defined by

2

vz = ax® — goxz? — g3z®,

where
g2 e T(C,LO™) , ggeI(C,L%7F),

and[x, y, z] is the global coordinate systemBfelative to(L®2, L®3, O¢). Moreover
the pair (g2, g3) is unique up to isomorphism, and thiscriminant

& —27g5 e T(C, L%71?
vanishes at a point € C precisely when the fibeX; is singular. O

For a family of elliptic curves in Weierstrass form, the functional invariant takes the
form

J=g3/A:C— PL @)
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The fact that the functional invariant takes the special form of Eq. (1) is evidence of
the coarseness of thg* line” moduli space of elliptic curves. By contrast, if we were
to mark the two torsion on each elliptic curve, i.e., use the Legendre fayfily=
x(x — D (x — A(s)) “A-line” moduli space, theanyrational function on the base curve
C would be a ‘A-functional invariant” for a family of elliptic curves with level two
structure overC.

Kodaira has classified the singular fiber types which can arise in Weierstrass fibered
elliptic surfaces. The singular fibers which appear in a smooth minimal elliptic surface
fall into “types”:

L, (n > 0), 11,11, IV, 1* (n > 0), IV, 1II*, and I,

Denote a smooth elliptic fiber by.I The fiber of type1 is a rational curve with a single
node. More generally, fibers of typg tonsist of am-cycle of intersecting rational
curves forn > 1. A fiber of type Il is just a rational curve with a single cusp. Type llI
fibers consist of two rational curves with a single point of tangency. Fibers of type IV
consist of three rational components intersecting at a single point. There are also fibers
oftypes |, n > 0, IV*, lll*, and IF, whose dual intersection graphs, minus in each case
a multiplicity one component, correspond to those graphs of Dynkin tipes, Es,
E7, andEg respectively.

We now recall how the Kodaira fiber types correlate with the ramification behavior
of theJ-map.

Lemmal ([30], LemmalV.4.1). Let F = X, be the fiber ofr overs € C, and letv, (J)
be the multiplicity of the functional invariant at

1. If F has typdl, IV, IV*, or II*, thenJ(s) = 0. Conversely, suppose théts) = 0.
Then
— F has typdo or | if and only ifvg(J) = 0 mod 3
— F hastypdl or IV* if and only ifvg(J) = 1 mod 3
— F hastypdV or II* if and only ifvg(J) = 2 mod 3
2. If F has typdll or Il *, thenJ(s) = 1. Conversely, suppose th@ds) = 1. Then
— F has typdo or | if and only ifvg(J) = 0 mod 2
— F has typdll or llI* if and only ifvs(J) = 1 mod 2
3. F has typd, or I withn > 1if and only ifJ has a pole at of ordern. O

Following [35, p. 304], one can apply the Griffiths-Dwork approach to computing
the Picard—Fuchs equation of a Weierstrass elliptic surface as a Fuchsian system:

4 (m\_ Tdloga 3% n
dz \ 2 22 Ldaloga |[\n2)"

where
A = g5 —27g5, § = 3g3g2 — 29283
and
dx xdx
niL = — ., 2= _—.
y Y y Y

From this, for a one parameter family of elliptic curves in Weierstrass form it is not
difficult to write down the Picard—Fuchs second order ordinary differential equation
satisfied by the periods of the holomorphic one fasre= dx/y over the one cycles on



630 C. F. Doran

the fibers. Picking a basis of one cyclesi = 0, 1, we denote byf; = fyi o the basis
of solutions to the Picard—Fuchs equation.

We can now reinterpret Kodaira’s functional invarighas the composition of the
projective period morphism := f1/fo : C — H c P! and the morphisnd : H — P!
extending the classical modular function, i®= J o w1/wo:

E24>8

H
7

- S * ~ pl
c 5o PSU2. Z)\H* = )

Recall that a regular singular point of a Fuchsian ordinary differential equation of
orderk
dkf dk—lf
a5k T T
is called apoint of maximal unipotent monodrorifithe local monodromy matrix is
such thaG — I is nilpotent with exact ordek. In a neighborhood of a point of maximal
unipotent monodromy, Frobenius’ method tells us that there is a basis of solutions such
that the first is holomorphic at the point, the second has logarithmic behavior, the next
behaves like log . .., up to lof .
An easy consequence of Lemma 1 is

Corallary 1. The points of maximal unipotent monodromy in the base care¢ an
elliptic surface€ are the points € C over which there is a singular fiber of typgor
I*,n > 1(i.e., the support of the semistable elliptic fibersh

Moreover, the presence of a point of maximal unipotent monodromy has global effects:

Coroallary 2. The Picard—Fuchs differential equation of an elliptic surface has a point
of maximal unipotent monodromy if and only if the global monodromy group has infinite
order if and only if the family of elliptic curves is not isotrivialo

Consider more generally a one parameter family of Calabi—Yau manifold§ —
C, whose Picard—Fuchs equation has a point of maximal unipotent monodromy. In a
neighborhood of such a point consider the multivalued truncated period vector consisting
only of the holomorphic solution and the logarithmic solution

[Phoi(s) © Plog(s)] : C = PL.

If the image lies in the upper half plari@ c P2, then, possibly after composition
with projective linear transformations so that the singular point lies at B! and
maps tarco € H* c P!, we can consider theg-series for the local inverse mapping

2ig(@): H->C | qr) = 2T

+...+ P(s)f =0, P(s) e Cs), (2)

Thisg-series:(¢) is called themirror mapof the familyz : X — P! about the point
of maximal unipotent monodromy:

H

T%

Pl< "
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Example 1 Consider the family ; of elliptic curves oveiP! defined by the equation

27s 27s

s — 1x s—1

The periods of the formix /y may be given in terms of the hypergeometric functigh

(see [39, pp. 232-233] for explicit expressions). The Picard—Fuchs equation is
d’f 1df (31/144s —1/36
— 4+ - f=0.
ds? s ds s2(s — 1)2

There is a basis of solutions with local monodromigs G1, G~ about the regular

singular pointq0, 1, co} respectively, where

11 0-1 11
w0-(40) - ei=(19) o~ (o1)

The unique point of maximal unipotent monodromy lies at oo € P1. The mirror

map about this point is quite familiar. Since the maximal unipotent monodromy point
is atoo, we change variables first to= 1/s so the mirror mag-series will be locally
holomorphic. The single-valued local inverse to the period mapping is then the reciprocal
of theg-series for the elliptic modular functiah(q),

&y y2=4x3—

1
J(q) = = + 744+ 196884 + 2149376Q°% + 0(¢>) ,
q

1
2(g) = T =1 74447 + 356652° — 140361153* + 0(¢°).
q

The period mapping is defined as a map to projective space. If one is interested in the
mirror map it is often preferable to consider the Picard—Fuchs differential equation only
up to “projective equivalence”. Therojective normal fornof a Fuchsian ordinary dif-
ferential equation (e.qg., thatin Eq. (2) above) is the unique Fuchsian ordinary differential
equation without ak — 1)St order derivative

k k—2
d*g d"~“g
R 5+ + Rio)g =0, Ri9) € C()

whose fundamental solutions define the same projective period map as that of Eq. (2). It
is always possible to pass to the projective normal form differential equation by rescaling
each fundamental solution of the original equation bykHeoot of the Wronskian.

Example 2Suppose now thdt = 2, i.e., the initial differential equation is

d*f

ds e

then the projective normal form of this differential equation takes the particularly simple
form

+ P1(S)—f + P2s)f =0,

2
ZTﬁ - <P2(S) - %le - %Pl(S)Z) g=0.
Let Ay denote the projective normal form of the Picard—Fuchs equation of the family
&y from Example 1,
d? 3652 — 415 + 32

D a2 T TIasis — 12
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As the process of taking the projective normal form does not alter the position or type
of a maximal unipotent monodromy point, and as the projective solution determines the
mirror map there, we see that

the mirror mapz(¢) of a family of Calabi—Yau manifolds about a point of max-
imal unipotent monodromy of the Picard—Fuchs equation is determined by the
projective normal form of this differential equation

Since the projective normalized Picard—Fuchs equation determines the mirror map, it is
natural to ask if there is a simpler expression for this differential equation. In fact, by
direct computation one can check that

Proposition 1. The projective normalized Picard—Fuchs equation of a one parameter
family of elliptic curves with section equals the projective normal form of the pullback
J*(Ay) of Ay from ]P% to C by the functional invariant. O

Thus the mirror map of a one parameter family of elliptic curves is determined by the
functional invariany. This suggests that the answer to our modularity question should
be expressed purely in terms of properties of the functional invariant itself.

We now discuss three approaches to characterize modular mirror maps, each yielding
the same criterion stated in terms of properties of the functional invariant. The three
methods amount to the characterization of modular functions on the upper halfplane
in terms of

1. modular relations between modular hauptmoduls and the elliptic modular fudction

2. uniformizing differential equations (gengs= 0) and holomorphic projective con-
nections ¢ > 1) on modular curves, and

3. branched covers of theline elliptic modular orbifold, respectively.

The first of these is the most classical, implicit in fact in the early works of Fricke and
Klein[11]. Theyintroduce the notion of a single valued local uniformizengamptmodul
H(t) for a genus zero modular curve. They compute several classical examples of
modular relationsbetween hauptmoduld (r) and the elliptic modular functiod (),
i.e., rational functionf(z) € C(z) with the property thaR(H (t)) = J(1). In[1] Atkin
and Swinnerton-Dyer state the following characterization of modular relations:

Proposition 2. A function f(t) is a hauptmodul for a finite index subgroup of the
classical elliptic modular grougPSL(2, Z) if and only if there is a rational function
R(z) € C(z) such that

LR(f(r) = J(1),
2. R(z) ramifies only ovef0, 1, oo} C P, and
3. the orders of ramification are- 1 or 3over0, and= 1or2overl. O

They comment further that this divisibility criterion extends to automorphic functions
for subgroups of PS2, Z) of arbitrary genus. Their proof was extended by Venkov [41]

to genus zero Fuchsian groups of the first kind more general than the classical elliptic
modular group. The mirror map of a one parameter family of elliptic curves is modular
when the functional invariant satisfies the three conditions of the proposition.

The second approach, the one used to characterize modular mirror maps for families
of elliptic curves overP! in [8], focuses on the local properties of Fuchsian second
order ordinary differential equations in projective normal form which charactaerize
formizing differential equationd he uniformization theory for Riemann surfaces can be
reformulated after Gunning [13] in terms leblomorphic projective connectioas the
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Riemann surface. On a local chart, or over a genus zero Riemann surface, this projective
connection takes the form of a second order Fuchsian ordinary differential equation in
projective normal form, i.e.,
d’f
a2 + 0@ f =0. 3)

A fundamental set of solutiorisfy, f2} to a uniformizing differential equation (3) has
the property thatD (z) is the Schwarzian derivative of the projective solutioa) =
f1(z)/f2(2) withrespectta, i.e.,Q(z) = {r(z); z}. The local behavior of the Schwarzian
at poles then characterizes the clas®df) corresponding to uniformizing differential
equations. Our criterion for modularity of the mirror map becomes a constraint on the
functional invariang so that the projective normalization of the pullback of the projective
normalizedA ; (uniformizing differential equation for thé-line) is again a uniformiz-
ing differential equation. The “no excess ramification” condition (i.e., no ramification
except ovef0, 1, oo} C ]Pﬁ) means that the projective normal form of the Picard—Fuchs
equation must be free of apparent singularities. For a detailed discussion see [8, §3,4].

The third method, characterizing branched covers of orbifolds, is the most easily
generalized of these three, and hence is our method of choice. We sketch here the theory
of branched covers of orbifolds due to Kato, following Yoshida [44, §5.1]. X dte a
compact Riemann surface of gengisequipped withn > 1 marked “orbifold points”
a; € X and associated “orbifold weight#’; € Z (2 < b; < c0). Suppose thag = 0
andm > 3. Fix the following dataXo := X \ {a1, ... , am}; Xo the universal covering
of Xo; H the fundamental group aXp, which we also view as the transformation
group of Xo; wu; the element off represented by a simple loop abaeut H[u’] the

smallest normal subgroup &f containingu};’ (j = 1,...,m) (determined uniquely
independent of choice @f ; or basepoint forf). Let K be an arbitrary subgroup af
containingH [u’1, X, the covering ofXg corresponding t&, and X’ the completion
of Xy, i.e., the space obtained by addingXg all points over thez; with finite b;.
Then we have a sort of “galois correspondence” of branched covers: TheXpisce
branched cover ok branching at:; with a ramification index dividing ;; we say that
X’ is branched at most over the divis@r = Z;f;l b; - (aj) € Pic(X). Conversely, to

such a branched covering &fthere corresponds a subgrokip H[”]1 ¢ K ¢ H.The
coveringM corresponding t& = H[u"] is called theuniversal branched coverinof
X. In other words we have the following diagram of correspondences:

Xo< 1

\: |

1 < M > My H[u"
| ool |
K/H[u’1 < X' D> Xy < K
| Vool |

H/H[u’l1< X D Xo< H
In this language we can most cleanly state our modularity criterion for the mirror
map:

Theorem 2. The mirror map of a one parameter family of elliptic curves with section
7w : &€ — C is an automorphic function for a finite index subgrouP&L(2, Z) if and
only if the functional invariang(z) is branched at most ové&- (0) +2- (1) € Pic(]P%).
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Proof. Apply the galois correspondence above to théine orbifold. The Riemann
SurfaceX'\“IP%(gel’IUSg—O)m—3a1=0a2=1a3=oo b1 =3,by = 2,
b3=00,D=3-0)+2-(1) € PIC(P ). There is a correspondence between Riemann

surfaces uniformized by subgroups@f H[;.”] = PSL(2, Z) and covers of thd -line
branched at most ové? = 3- (0) + 2- (1). The mirror map is an automorphic function
for a subgroup of PS2, Z) if and only if the base of the family is so uniformized.
But the branched covering — ]P% is given byJ. Hence the modularity criterion is just
that the natural cover of thé-line defined by the functional invariant branch at most
overD. O

This is not the end of the story in the elliptic curve case. By Lemma 1 we know the
correspondence between local ramification behavior of the functional invariant and the
type of Kodaira singular fiber to appear in the elliptic surface. In particular, if the mirror
map of a basic elliptic surface is modular, then there are no singular fibers of types
IV or Il *. Moreover, if one restricts to the case of rational elliptic surfaces where all
combinations of singular fiber types are known, one can list all rational elliptic modular
surfaces with section. See [8, Theorem 4.11].

2.2. Multi-parameter families of elliptic curve§he definition of Weierstrass fibrations

in the one parameter case extends naturally to multiparameter families of elliptic curves
with section. It is natural to ask if the modularity characterization extends in any way
to familiesw : & — § of elliptic curves with section where diff) > 2. This isn’t
possible, but the obstruction is of interest in itself, and suggests an important hypothesis
to make in the case of multiparameter families of K3 surfaces (Sect. 3.2).

To begin with, the Gauss-Manin system for a multiparameter family of elliptic curves
consists of a rank two system of linear partial differential equations. With a slight modi-
fication, we can construct a family of varieties for which the Gauss—Manin system takes
a recognizable projective normal form. Replace:grarameter family of elliptic curves
fiberwise with theimth power. The resulting Gauss-Manin system (essentially:the
symmetric power of the original) is a rank-1 system of linear partial differential equa-
tions inn independent variables. A (projective) normal form exists for such differential
equations [28]:

32w 10w
aziazf:kl'ljak”LPow (G, j=1,....n).

In the one parameter setting & 1) these equations reduce to projective normalized
second order Fuchsian ordinary differential equations. Local conditions coming from
the Schwarzian derivative define a natural subclass consisting of uniformizing differen-
tial equations for Riemann surfaces with respect to subgroups of2°B) (projective
connections ifg > 1). In the multivariable case, the analogous subclass consists of the
multiparameteholomorphic projective connectiofsonnections modelled after projec-
tive space) much studied by Kobayashi [20] in a program established by Cartan. Holo-
morphic projective connections generalize the Schwarzian derivative, and uniformize
quotients of the:-ball

By ={lz0:...: 221 €P" | |z0* — |z2]2 — ... — |z4]? > O}

by a discrete subgroup of the analytic automorphisms.
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The difficulty we encounter in generalizing our modularity criterion for the mirror
map to multiparameter families of elliptic curves is fundamental. The image of the
projective period morphism, even considering the symmetric power family, only lies
on a one dimensional submanifold of the period donf&aihA necessary condition for
the Picard—Fuchs equation to uniformize the bss# our family & is for the period
mappingS = B, to be surjective. In fact, as the local inverse to the period mapping,
the mirror map itself cannot be defined unless the period mapping is surjective and the
dimension ofS equals that of the period domain.

This suggests two ingredients which will be needed for the multiparameter K3 surface
generalization in Sect. 3.2:

1. a notion of uniformizing differential equation well adapted for Picard—Fuchs equa-
tions of K3 surface families, and
2. consideration only of families with surjective period mappings.

3. K3 Surface Families

The results of Sect.2 are extended here to families of lattice polarized K3 surfaces with
surjective period mappings, first in the one parameter case (Sect. 3.1) and then for
multiparameter families (Sect. 3.2). By applying the resulting criterion for automorphic
mirror maps to one parameter families of rank 19 lattice polarized K3 surfaces, we
explain the Mirror-Moonshine phenomenon of Lian and Yau.

3.1. One parameter families of K3 surfacds. their first systematic investigations of
mirror symmetry for one parameter families of Calabi—Yau manifolds constructed via
the “orbifold construction” [24], Lian and Yau discovered that the reciprocal of the mirror
maps for the K3 surfaces they were studying agreed, up to an additive constant, with
some of theMcKay—Thompson normalizedseriesin the lists of Conway—Norton [4].

The evidence was sufficiently strong that they formulated

Conjecture 1 (Mirror-Moonshine, [24, 23]}t z(¢) is the mirror map for a one parameter
family of algebraic K3 surfaces from an orbifold construction which has a third order
Picard—Fuchs equation, then, for some Z, theg-series

! +
—_— Cc
z(q)

is a McKay—Thompson seriel§ (¢) for some elemeng in the Monster.

In[25, 26], Lian and Yau compute many more toric examples (including over a dozen
complete intersection examples), and note that the correspondence to monstrous groups
persists. This suggested that the hypothesis regarding the “orbifold construction” should
perhaps be weakened to the hypothesis “torically constructed”.

As noted in the proof of Theorem 5, for a family of lattice polarized K3 surfaces
the condition of having a third order Picard—Fuchs equation is equivalent to the generic
member possessing a polarization by a lattice of rank 19.

Furthermore, a McKay—Thompson series is in particular a hauptmodul for some
“monstrous” genus zero arithmetic grolipand the various equivalent hauptmoduls are
well-defined as generators of the function field of the rational cliryél* only up to
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action ofl". We see that in Conjecture 1 an equivalent conclusion is that the mirror map
is itself a hauptmodul (unnormalized!) for some monstrbus

Before Conjecture 1 was even formulated, Beukers, Peters, and Stienstra had com-
puted the Picard—Fuchs equation of a particular family of rank 19 lattice polarized K3
surfaces [33]. The mirror map was determined by Verrill and Yui [42]. Although it is
a hauptmodul, thig-series does not satisfy the conclusion of the Mirror-Moonshine
Conjecture. Thus it provides a counterexample to a “monstrous” generalization of the
Mirror-Moonshine Conjecture for torically constructed families.

This suggests that we characterize the families of rank 19 lattice polarized K3 surfaces
whose mirror maps are hauptmoduls for genus zero greagspecial case of our question
from the introduction.

The condition that a one parameter family of K3 surfaces have a third order Picard—
Fuchs equation is actually quite natural. The periods obtained by integration of the
holomorphic two formw = w2 o) over algebraic two cycles all vanish. For a K3 surface
X, the intersection form defines difp (X, Z) the structure of a lattice, isomorphic to the
even unimodular lattice

L=U1U1U1l—-Egl —Eg,

whereU is the standard hyperbolic plane. The sublattice of algebraic cycles(ixi, 7)

is naturally identified with the Picard group PX) of divisor classes oK. Thus the
rank p of the Picard group determines the order of the Picard—Fuchs equation: order of
Picard—Fuchs= 22 — p. In particular, the families considered by Lian and Yau all have
Picard rank 19.

Let M be a lattice. Am/-polarized K3 surfacés a pair(X, j) of a K3 surfaceX and
a primitive lattice embedding : M — Pic(X). The examples studied by Lian and Yau
relating to Mirror-Moonshine are families of rank 19 lattice polarized K3 surfaces.

A moduli space for lattice polarized K3 surfaces is constructed in [6, 83]. Each
isomorphism class afX, j) is represented by a point of this coarse moduli sfage
Moreover the global Torelli theorem for lattice polarized K3 surfaces implies, as with
the J-line in the case of elliptic curve moduli, th&ty, has the structure of an arithmetic
quotient of a symmetric homogeneous spBge (a bounded symmetric domain of type
IV) by an arithmetic groug™,. Here

Dy = 0(2,20— p)/(SO(2) x 0(20— p))

and
'y =ker(O(N) — Aut(N*/N)) ,

whereN := Mf. In particular, if the rank o/ is 19 thenD,, = H.

The generalized functional invariart(y, : S — Ky, of a familyzr : X — § of
M-polarized K3 surfaces may now be defined, by analogy with the elliptic curve case,
as the composition of the multivalued period morphiSme Dj, and the arithmetic
quotientDy; — Kyy.

Since we are particularly interested in the case 19, the Picard—Fuchs equations
of such one parameter families must be studied. We begin by examining some prelim-
inary generalities on symmetric powers of second order Fuchsian ordinary differential
equations.

Assume thatwe have a second order Fuchsian ordinary differential eqliatfoa 0,
where

d? d
=3 + P1(s)— + Pa(s).

S S

L _
2 d
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The second order equatidn f = 0 is equivalent to the system of first order differential
equations
/ — g
g =—Pof — Pig
with { f, g} as fundamental solutions. Observe that
WA ey R T &

forms a set of fundamental solutions for th® symmetric powerl. = L?”. The
following result describes a system of first order differential equations feith these
fundamental solutions.

Theorem 3 ([21], Theorem 2). If { f, g} satisfy a first orde® x 2 differential system

i ()= () (2)

then{f", f"1g, ..., fg" 1, g"} satisfy the(n + 1) x (n + 1) system

fn fn
J fn—lg fn—lg
7 : =A : ;
fgn—l fgn—l
g" g"

whereA = (a;;) is an(n + 1) x (n 4+ 1) matrix such that

ark=A—k)P1, 1<k<n+1,
akk+1=n+1—k, 1<k<n,
g1k = —k P2, 1<k<n,

ai.j =0, i>j+1lorj>i+1 O

Example 31In particular, whem = 2, the case for a symmetric square, one may rewrite
the system in terms of a single third order operator

d3 d2 2 l d /

Symf(Ly) = —— +3P1—— + 2P1* + 4Py + Py)— + (4PLP2 + 2PY).
ds ds ds
Our next task is to show that the Picard—Fuchs equation of a one parameter family of

rank 19 lattice polarized K3 surfaces is a symmetric square of a second order equation,
and to reduce the modularity question for the mirror map to the second order setting.

Theorem 4 ([38], Lemma 3.1.(b)). Let L1(y) and L2(y) be homogeneous linear dif-
ferential polynomials with coefficients @ (r). Then there exists a homogeneous linear
differential equation.3(y) = 0 with coefficients irC(¢) and solution space th€-span
of

{viva| L1(v1)) =0 and Lz(v2) =0}. O

We call the operatof.3(y) constructed above treymmetric produodf L, andL,, and
denote it byL1®L>. In fact, the operation is associative, and we may further define
LO®"forn > 1 by LO! = L andL®" = LO"-1g)L. We call Syni(L) = LO" then™
symmetric poweof L; converselyL is then™ root of LO".
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Lemma 2 ([38], Lemma 4, p. 129). Let L(y) be a homogeneous linear differential
polynomial with coefficients i€€(z). ThenL(y) = L?"(y) for some second order
homogeneous linear differential polynomiad(y) with coefficients irC(z) if and only

if there exists a fundamental set of solutigms, .. . , y,+1} of L(y) = 0 such that

yj)’i+2—yi2+1=0, i=1...,n—1 O

Corollary 3. Let L(y) = 0 be a third order homogeneous linear equation with coeffi-
cients inC(z). If there exists a nondegenerate homogeneous polyndmidildegree?
with constant coefficients and a fundamental set of solutiensy», y3} of L(y) = 0
such thatP (y1, y2, y3) = 0, thenL(y) is the second symmetric power of a second order
homogeneous linear differential equation with coefficient8 (.

Proof. This follows easily from Lemma 2. By assumption, the fundamental set of solu-
tions satisfies a nondegenerate quadratic relation. Since all such quadtfc€inare
projectively equivalent to

yiyzs—y4=0
the criterion of the lemma applies afdy) is a symmetric square.o

In this form, using the expression for the projective normal form of a second order
Fuchsian differential equation given in Example 2, it is easy to check that:

Proposition 3. Let L, be as above a second order Fuchsian ordinary differential oper-
ator, and letL = Syn?(L,) be its symmetric square. Then the projective normal form
of L is the symmetric square of the projective normal formhaof O

In fact, it is possible to provide an explicit description of the relationship between the
monodromy matrices of the second order “square root” equation and those of the third
order symmetric square equation. This is provided by the faithful representation of
SL(2, C) in SL(3, C) via the symmetric square representation [38].

Finally, we see the relevance of all of this for Picard—Fuchs equations of our rank 19
lattice polarized K3 surface families:

Theorem 5. The Picard—Fuchs equation of a family of rank 19 lattice polarized K3 sur-
faces is the symmetric square of a second order homogeneous linear Fuchsian ordinary
differential equation.

Proof. To begin with, the order of the Picard—Fuchs equation is equal to the rank of
the transcendental lattice, i.e., 2219 = 3. By Nikulin’s Torelli theorem for lattice
polarized K3 surfaces the period domain lies on a nondegenerate quaddc[é.
Thus, Corollary 3 implies that the third order Picard—Fuchs differential equation is in
fact a symmetric square.o

There is another approach to proving this result in the special case of K3 surfaces
polarized by a lattice of the form

M,:=ULlULl—Egl —Egl (—2n),

which takes advantage of their presentatiorSagda-Inose surfacesoming from a
product of two elliptic curves linked by arrisogeny. See [32] for more details. Such a
simple geometric description is lacking in case of a general rank 19 lattice polarization.
Nevertheless, our approach via symmetric square(root) Picard—Fuchs equations still
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applies! This is what allows our transcendental methods to extend beyond,the
polarized case to general rank 19 lattice polarized K3 surface families.

We have effectively reduced the question of automorphicity of the mirror map to the
case of uniformization of orbifold Riemann surfaces by second order Fuchsian equations
already addressed in Sect. 2.1. Our result is

Theorem 6. The mirror map of a one parameter family of rank 19 lattice polarized K3
surfacesr : X — C is an automorphic function for a finite index subgroupgf if and
only if the generalized functional invariafit,; (z) is branched at most over the orbifold
divisor D € Pic(Ky).

Proof. By Theorem 5 the Picard—Fuchs equation of such a family of K3 surfaces is a
symmetric square. The mirror map of a one parameter family of rank 19 lattice polarized
K3 surfaces about a point of maximal unipotent monodromy is identical to that of the
projective normalized square root of its Picard—Fuchs equation about the corresponding
point: If { f, g} is a fundamental set of solutions to the square root equationf shg
locally holomorphic solution, thetif?, fg, g%} is a fundamental set of solutions to
the symmetric square, witfi2 locally holomorphic. The (truncated) projective period
mapping for the K3 surface family, is given bfg/f? = g/f, which is exactly the
projective period ratio of the square root equation. Thus the mirror map for the K3
surface family is modular if and only if the projective normalized square root of Picard—
Fuchs is a uniformizing differential equation f6r We can now apply the same galois
correspondence for branched covers of orbifolds we used in Theorem 2XNewiK ;,

thea; andb; are determined by the positions and orders of the fixed points of the action
of I'yy on Dy, = H, and the total orbifold divisor dK,, is againD = Z’/.":l bj-(aj) e
PicKy). O '

Using the theorem of Fano reproduced in Sect. 4.3, we can even characterize near
modularity properties of one parameter families of rank 18 lattice polarized K3 surfaces.
By the nondegenerate quadric structure of the period domain and case 3 of Theorem 9
we know that the fourth order projective normalized Picard—Fuchs equation is a ten-
sor product of two second order Fuchsian equations in projective normal form. If the
fundamental solutions, ifhol., log.} pairs, for these factor equations are

{a, b} and{c, d},
then the fundamental solutions to the product equation take the form
{ac, bc, ad, bd}

so the truncated projective period mapping consists of the{pair, d/c}, i.e., the pair

of projective solutions to the factor equations. Although it is not natural to describe the
mirror map when the dimension of the family is unequal to that of the associated period
domain, there is a good notion of “bimodularity”, i.e., when each factor equation is a
uniformizing differential equation (necessarily distinct else the lattice polarization rank
jumps to 19 and the equation is a symmetric square).

3.2. Multi-parameter families of K3 surfacefor the multiparameter definition of

points of maximal unipotent monodromy and the mirror map we refer the reader to
the unified presentation in [5] (85.2.2 and §6.3.1 respectively). The details of the local
description of the mirror map are in fact irrelevant for what follows as we address the
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global question of modularity. In any case, the existence of a point of maximal unipotent
monodromy is again guaranteed by the (related) hypotheses:

1. the family is not isotrivial, and
2. the period mapping is surjective.

We define the generalized functional invari&tif; : S — Ky, for a familyz : X — §
of M-polarized K3 surfaces as in Sect. 3.1 as the composition of the multivalued period
morphismS = Dy and the quotient map to the coarse moduli spBge — Ky,
coming from the global Torelli theorem.

Under our hypotheses, the Gauss—Manin system far parameter family of rank
20— n lattice polarized K3 surfaces is a system of linear partial differential equations of
rankn + 2 inn independent variables. Any such system has a (projective) normal form
(37]

_— I/l l n
92,0z = 8 82 azn T 3zk /=
where
gij=gji, A =A%, AL =4% g1, =1, Af, =47, =0
(forn > 3), or [36]

(forn = 2).

The global Torelli theorem of Nikulin again implies that the periods map to a quadric
projective hypersurface. The natural subclass of uniformizing differential equations
adapted to the Picard—Fuchs equations of lattice polarized K3 surfaces with surjective pe-
riod mappings are thieolomorphic conformal connectioisonnections modelled after
hyperquadrics) introduced by Kobayashi [20]. Once again the question of automorphic-
ity of the inverse to the projective period mapping reduces to the uniformizability of the
baseS of our family as a branched cover of the modular orbif&lgj.

Fortunately, the galois correspondence for branched covers of orbifold Riemann
surfaces has been generalized by Namba [31] to the case of orbifold complex manifolds
of higher dimension. We refer to [31, Theorem 1.2.7] for the details, but the only essential
difference is that we must add a higher dimensional analogue of the topological condition
excluding ¢ = 0,m = 1 or 2" in the Riemann surface case. This topological condition,
[31, Condition 1.2.4], says: i,&';.’ € Hu’, thend; | d (forall j, 1 < j < m). By
applying the galois correspondence as before to our families we find

Theorem 7. The mirror map of am parameter family of ranR0 — » lattice polarized
K3 surfacest : X — S is an automorphic function for a finite index subgroupgaf

(M := the polarizing lattice) if and only if the generalized functional invarigt; is

branched at most over the orbifold divisorl§f,. O
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4, Calabi—Yau Threefold Families

We have seen that the presence of a global Torelli theorem is a great help in establishing
modularity criteria for the mirror map, expressed in terms of natural algebraic invariants
of our families of Calabi—Yau manifolds. It is known that in general moduli spaces
of polarized Calabi-Yau threefolds lack the structure of a locally symmetric space.
Nevertheless, it is possible that a differential algebraic criterion for automorphicity of
the mirror map may be obtainable for Calabi—Yau threefold families by making use of the
“special geometry" of Calabi—Yau threefold moduli. In fact, one can use the constraints
imposed by special geometry on the Picard—Fuchs equation of a one parameter family
of Calabi- Yau threefolds witk%1 = 1 to derive an auxiliary differential equation
(involving the Yukawa couplings, the coefficients of Picard—Fuchs, and the rational
function defining the putative uniformizing differential equation) which holds if and
only if the mirror map is an automorphic function (Theorem 9 in Sect. 4.2).

4.1. Picard—Fuchs equations of Calabi—Yau threefolds and special geongtecial
geometry arises in globaV = 2 supersymmetry in four dimensions as a structure
on the manifold spanned by the scalars in the vectormultiplets. The moduli space of
(2,2) superconformal field theories, and thus the moduli space of Calabi—Yau threefolds,
satisfies the same constraint equation for the natural K&hler metric on moduli space.
In the case of one parameter families of Calabi—Yau threefoldsifith= 1 much
is known about the implications of special geometry. In particular, the effect of special
geometry on the fourth order Picard—Fuchs ordinary differential equations is well known
[19,3]. We review these results in this section, using notation largely compatible with
thatin [19, 27]. We will always use primes (e.g'(z)) to denote derivatives with respect
to the base parameter and dots (e.g.F (¢)) to denote derivatives with respect to the
truncated period mapping parameter
Suppose given the Picard—Fuchs equation for a familj%f = 1 Calabi-Yau
threefolds

Lf(z)=0: f"(2)+b3)f"(2) +b2(2) f"(z) + b1(2) f(z) + bo(2) f(z) =0
with fundamental solutions

(80, &1, £0F (£1/&0), £0((E1/80) F (§1/80) — 2F (£1/€0))).

Thent(z) := &1/&p is the truncated period mapping.
By rescaling the solutiong(z) := f(z)/A(z), where

AlR) = exp<—%/b3(z)dz) ,

we obtain the projective normalized Picard—Fuchs equation
Lg(z) =0: g"(x) +a2(2)g"(2) + a1()¢'(z) + ao(z)g(z) = 0

with fundamental solutions/H (z) times the previous ones. In faak,(z) = a5(z) (see
[19]). Letu(z) = &/A. The quantum Yukawa coupling is related to the holomorphic
solutionu(z) about the point of maximal unipotent monodromy:

K = F® = constA?/£2 = const/u?.
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By reduction of order applied to the<> ¢ variables exchanged equatidg = 0,
we derive a third order variant of the Picard—Fuchs equationsatisfied by (),

PERu@)y=0: ia®@) + 3ea)ic(t) + 3éa(u) =0,
ie., 1
PFOu = Z (i(u ) —t- (iu)) .

We recognizeP Ft(s) as the symmetric square of the second order “square root” equation
PEPv(t)=0: () + teat)v() =0

satisfied by () = u(t).
By plugging in the two remaining fundamental solutions, one finds that the resulting
system of equations reads

c2(t) = ra(t) , co(t) = ro(t),
where

15 /5\2 0 _
calt) = @@’ -3 (g) +517 = ax(2)(2)% + 5{z(1), 1},

2

@ = zk 5(K
=k T2\k)
and the lengthy expressions faj(r) andrg(z) are found in [19], where they are used
to derive nonlinear ordinary differential equations of high order for the mirror map and
Yukawa coupling. Thep = rg equation provides no simplification of our approach to
modularity in Sect. 4.2, sep andro may be safely ignored.

By reduction of order applied thg = 0, we find a third order Picard—Fuchs type

equation irg for 7'(z) = ¢'(z), PFT(z) = 0::

" & " ’4”(2)
T7(2) +4u(z) T (z) + (6 s,

u”(z) W@ _
“(2) + ZﬂZ(Z)E + az(Z)) T(z)= 0.

+ az(z)) T'(2) + (4

Itis important that the dependence of the coefficients anonly through the ratios
u/(Z) u//(z) u///(z)
u(z) u(z)’ u(z)

— this is why the constant relating andu never enters into the equation even if we
rewrite it in terms ofK . With this in mind, letr := d logu, andLu(z) = 0 becomes

"+ 4rr” + 30 + 6r%r + 1) + ax(r' + r?) + abr +ag = 0. 4

For Calabi—Yau threefold families (assuming special coordinates) Lian and Yau show
that the mirror map satisfies a “quantum corrected” version of Schwarz’s equation (the
c2 = rp equation above):

20D +1{z,1) = 25 — &),

wherey () = l0g(K (¢)), Q(z) = a2(z)/10. For reference note as well that

1
co(t) = 25 — §<y>2.
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4.2. Characterization of modular mirror map§Ve will start with the case with no
instanton corrections:
The quantum corrections vanish if and onlyd{¢) = 0, i.e., when

=2

wherexr = y/4. LettingX = x, thisbecomeX = X2, with solutionsX (t) = —(c—1)~1
for constant. So

K (1) = exp(y(1)) = exp(4x (1)) = exp(4(log(c — 1) + d)) = const(c — 1)*.

Wheneverk (1) does not take this particular form, we know that the mirror m@pis
not an automorphic function for the projective monodromy group of the second order
ordinary differential equation in projective normal form with coefficightz). Con-
versely, if K (r) satisfies Eq. (4.2) an@(z) satisfies the local conditions coming from
the Schwarzian derivative for orbifold uniformization (i.e., characteristic exponent differ-
ences are proper unit fractions or zero), then the mirror pagwill be an automorphic
function. A two parameter family of Calabi—Yau threefolds (a subfamily of the 101 pa-
rameter family of Calabi—Yau quintic hypersurface®f) without instanton corrections
is described in [3].

Assume for the remainder of Sect. 4.2 that there are instanton corrections present.
Suppose that there is a rational functi®¢) (necessarily unequal 19(z)) with respect
to which the mirror map(¢) satisfies the classical Schwarz equation

2R(z)(2)%>+{z,1} =0 (5)

i.e., with respect to which the mirror map is an automorphic function. There is only one
such candidate rational functia®(z). This is the rational function which defines the
uniformizing differential equation with regular singular points with compatible charac-
teristic exponent differences exactly at those of the projective normal form Picard—Fuchs
equation. The only subtlety that arises is one of computational effectivity: If there are
more than three regular singular points, then the coefficients in the numeratdz)of
are difficult to determine in general from the denominator data — this is the famous
“accessory parameter problem” in Riemann—Hilbert theory.

By subtracting the two expressions (4.1) and (5) we have the equation

_ N2 g _ i . 2

2(0(2) —R@)()° = AT (6)

SetP(z) =5(Q(z) — R(z)) andS(z) = (1/4) P(z). Then Eq. (6) can be rewritten as
S(2)()? =X — X%, (7)

whereX = x andx = y/4 as before. Now apply a Ricatti transformation

d
X)) = —= = — logw(r)

w(t)
w(t) dt

yielding the linear ordinary differential equationsin

W(t) + Sz(1)(2)?w(t) = 0.
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Now change the independent variable fronto z and we get a second order linear
equation ing

T'(2)

w'(z) + S(2)w(z) =0, (8)
T(z)

//( )_

whereT (z) = ' (2).
This implies an equation fo% in terms of{w, S}, or {K, P}, or {u, ap, P}, or
{r, az, P} (recallr = dlogu). The equation in terms af a2, P reads

One can of course substituteiz(z)/2) — 5R(z)) for P(z) and obtain the expresion in
terms of{r, as, R} as well.

Now apply this to reducé’Fz(?’) to an expression of the forffi(z)¢(z) = 0. Since
T (z) is notidentically zero by assumption (the mirror map is locally invertilgl€)) = 0.
This is the modularity condition.

If we use the expression fdrlog T in terms ofu, we can arrange to never have more

than au" appear (usePFZ(“)u = 0). Similarly we can arrange to never have more than
aw” oraK’” or ar” appear. In the variant in Theorem 9 below we use Eg. (4). Of
course this results in an additional term involving(there was only:; dependence in
the higher order equation).

Theorem 8. Here is the equation characterizing modularity of the mirror map in terms
ofr, ag, a, R:

0= —a3 — 16apr? — 6a2r? — 12apr* + 8/ 4+ 30a3R
+ 80azr?R + 200-*R — 30Qu2R? — 200r°R? + 1000R3
+ Sagral, — 6r3al — 50r Ra) + Tasr'
+ 8agr?r’ — 643 4+ 116-* — 14QuaRr’
— 80r2Rr’ + 700R%r — 12rabr’ — 16a2(r")?
— 482(")2 + 160R (') + 16(r")2 — 50aor R + 60r3R’
+500-RR’ + 1207’ R' — 4r2al — 16aprr”
+80r%” + 160-Rr” + 32r+'r" 4 40r°R".

In particular, this modularity equation is a second order nonlinear ordinary differential
equation with rational function coefficients which the logarithmic derivative of the holo-
morphic solution to the Picard—Fuchs equation (4.1) satisfies if and only if the mirror
map is an automorphic function.

Special geometry is a phenomenon present in multidimensional families of Calabi—
Yau manifolds as well [40]. A multiparameter criterion for automorphicity of the mirror
map would of course be desirable. Perhaps the recent mathematical reformulation of
special geometry by Freed [10] is a natural starting point.
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4.3. Algebraic instanton correctionsn case of families of lattice polarized K3 surfaces,

by global Torelli there is a homogeneous quadratic relation among the periods, and
no instanton corrections. For Calabi-Yau threefold families we can also interpret the
absence of instanton corrections asimposing a particular homogeneous algebraic relation
among the periods. In Sect. 4.2 we saw a condition for vanishing of instanton corrections
was thatca(r) = 0. Equivalently, as described in [3, §2.1] for example, this can be
interpreted as the vanishing of the fouih-algebra generatap, in the presence of

the vanishing of the thirdufs = 0 being a consequence of special geometry). This
implies in particular that the projective normalized Picard—Fuchs equation have a set
of fundamental solution§u3, u?uy, uiu3, u3}, whereus anduy are the fundamental
solutions to the cube root equation

u"(2) + Q(@u(z) = 0.

In particular the projective periods map to a twisted cubic space curve.

What about other homogeneous algebraic relations among the periods? We call in-
stanton corrections for which the Picard—Fuchs equation still admits homogeneous alge-
braic relations among the periodiebraic instanton correctiong\ century ago Fano
classified fourth order Fuchsian ordinary differential equations whose fundamental so-
lutions satisfy homogeneous algebraic relations [9, pp. 496—497]. To paraphrase in more
modern language

Theorem 9. The projective solution to a fourth order Fuchsian ordinary diferential
equation falls into one of the following classes:

1. The projective solution lies on an algebraic (twisted cubic) cun3nThese equa-
tions are symmetric cubes of second order Fuchsian ordinary differential equations.

2. There is a homogeneous quartic relation among the fundamental solutions. Such
equations can be transformed by a differential algebraic change of varigbles
ah + B’ + yh” to a member of the previous class.

3. A quadratic relation with nonvanishing discriminant exists among the fundamental
solutions. These equations are the tensor product of two distinct second order Fuch-
sian ordinary differential equations, ® LY.

4. A quadratic relation with vanishing discriminant exists. These equations are formed
by operator composition of a first order and a third order equation Ls.

5. No homogeneous algebraic relations exist among the fundamental solutions. This is
the generic case.

We can of course reinterpret Fano’s result as providing a rough classification of algebraic
instanton corrections.

In the first and last cases at least, we know Fano’s classification parallels the classifi-
cation by differential Galois group of the Picard—Fuchs equation. Since the Picard—Fuchs
differential equation is a Fuchsian ordinary differential equation, the differential Galois
group equals the Zariski closure of the global monodromy group. In the first case this
corresponds to the symmetric cube monodromy representation(@f SLin Sp(4). In
the last case, the monodromy representation is irreducible and the differential Galois
group is all of Sp4). It should be possible to fill in the other three entries as well.

In fact we can say more about the absence of algebraic relations among the periods in
the last case. By special geometry there are no homogeneous algebraic relations among

(uyu-tu-F,u-@tF —2F)}
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which implies there are no algebraic relations whatsoever among
{t, F, tF — 2F)}.

Hence there are no algebraic relations ampng’, F}, and thus no algebraic relations
between(z, F}.

Moreover the modularity equation from Theorem 9 takes a particularly simple form
in each of the nongeneric cases (e.g., it characterizes “bimodularity” in class 3. above).
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