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We describe a notion of lattice polarization for rational elliptic
surfaces and weak del Pezzo surfaces, and describe the complex
moduli of the former and the Kähler cone of the latter. We then
propose a version of mirror symmetry relating these two objects,
which should be thought of as a form of Fano-LG correspondence.
Finally, we relate this notion to other forms of mirror symmetry,
including Dolgachev-Nikulin-Pinkham mirror symmetry for lattice
polarized K3 surfaces and the Gross-Siebert program.
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1. Introduction

The aim of this paper is to describe a form of mirror symmetry relating
weak del Pezzo surfaces to rational elliptic surfaces.

Weak del Pezzo surfaces are 2-dimensional weak Fano varieties, i.e.
smooth varieties with nef and big anticanonical divisors. In physics, Eguchi,
Hori, and Xiong [12] postulated that such varieties are mirror to Landau-
Ginzburg models, which in the 2-dimensional setting take the form of elliptic
fibrations over C. This version of mirror symmetry is known as the Fano-LG
correspondence, and has been widely studied in the mathematical literature.
In the surface case, such a study has been performed by Auroux, Katzarkov,
and Orlov [2], who find that the Landau-Ginzburg model of a weak del Pezzo
surface can be realized as an open set in a certain rational elliptic surface.

In [11], Doran, Harder, and Thompson conjecture a relationship between
the Fano-LG correspondence and classical mirror symmetry for Calabi-Yau
varieties, based on earlier ideas of Tyurin [35]. Stated briefly, their conjec-
ture claims that if one degenerates a Calabi-Yau variety to a union of two
(quasi-)Fano varieties, glued along a smooth anticanonical divisor, then the
mirror Calabi-Yau variety can be constructed by gluing together the Landau-
Ginzburg models associated to the (quasi-)Fanos. This conjecture has been
proved by Kanazawa in the cases of elliptic curves [21] and Abelian surfaces
[22], using SYZ mirror symmetry, but the conjecture remains open for K3
surfaces and higher dimensional Calabi-Yau varieties. Despite this, however,
there have been some attempts to use the Doran-Harder-Thompson conjec-
ture to construct new mirrors: Lee [23] has used a version of it to construct
new candidate mirror pairs of Calabi-Yau threefolds, using techniques from
toric geometry, and Kanazawa [22] has discussed the possibility of using it
to construct new Landau-Ginzburg models.

The motivation for this paper comes from thinking about the 2-dimen-
sional version of the Doran-Harder-Thompson conjecture. Classical mirror
symmetry for 2-dimensional Calabi-Yau varieties is given by Dolgachev’s,
Nikulin’s, and Pinkham’s [8, 9, 27, 30] notion of mirror symmetry for lat-
tice polarized K3 surfaces. This is discussed in [11, Section 4], where it is
postulated that there should be a corresponding notion of lattice polarized
mirror symmetry for quasi-Fano surfaces and their Landau-Ginzburg mod-
els, that is compatible under the Doran-Harder-Thompson conjecture with
mirror symmetry for lattice polarized K3 surfaces.

This paper aims to put this idea on a more rigorous footing. We describe
a notion of lattice polarization for weak del Pezzo surfaces and a certain class
of elliptic fibrations over C (those which admit compactifications to rational
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elliptic surfaces with a certain fibre type at infinity), then state a mirror
conjecture relating these objects. The remainder of the paper is concerned
with providing a series of justifications for this conjecture. In particular, we
compare it with Dolgachev-Nikulin-Pinkham mirror symmetry for lattice
polarized K3 surfaces and prove a number of compatibility results between
the two, although unfortunately these do not extend as far as a full proof of
the Doran-Harder-Thompson conjecture in this case (Conjecture 6.9).

We conclude this portion of the introduction by discussing the relation-
ship between our construction and previous work in this area. As mentioned
above, mirror symmetry for weak del Pezzo surfaces (without lattice po-
larization) has previously been studied in the setting of homological mirror
symmetry by Auroux, Katzarkov, and Orlov [2], albeit in the opposite di-
rection: they are primarily concerned with comparing the complex structure
of weak del Pezzo surfaces to the symplectic structure of their Landau-
Ginzburg models, whereas we mostly work the other way. [2] postulates
that the mirror of a weak del Pezzo surface of degree d should be an elliptic
fibration over C with (12− d) singular fibres, all of which have Kodaira type
I1. This agrees with our conjecture up to deformation: in our setting, dif-
ferent choices of lattice polarization on the weak del Pezzo surface will lead
to different configurations of singular fibres on its Landau-Ginzburg model,
but all configurations may be deformed to the mirror as described by [2].
A more detailed comparison between our conjecture and the work of [2] is
given in Remark 5.5.

1.1. Structure of the paper

We begin by reviewing some necessary lattice theory and notation in Sec-
tion 2. Following that, in Section 3 we embark upon a study of rational
elliptic surfaces. We describe a number of special classes of rational elliptic
surfaces, which we call rational elliptic surfaces of type d, and describe how
to endow them with lattice polarizations. Finally, we embark on a detailed
study of the complex moduli of our lattice polarized rational elliptic surfaces.

In Section 4, we switch to the other side of the mirror and study weak
del Pezzo surfaces. We once again describe how to endow such surfaces with
a lattice polarization, and prove some results about the structure of the
Kähler cone.

Section 5 contains the main conjecture of the paper (Conjecture 5.1),
which postulates a mirror correspondence between the lattice polarized weak
del Pezzo surfaces defined in Section 4 and Landau-Ginzburg models derived
from the lattice polarized rational elliptic surfaces described in Section 3.
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We then proceed to justify this correspondence by comparing the structure
of the Kähler cones of the weak del Pezzos to the structure of the complex
moduli spaces of the rational elliptic surfaces.

The final two sections of the paper are concerned with the relation be-
tween our mirror symmetry conjecture and other forms of mirror symmetry
extant in the literature. We begin in Section 6 by proving a number of com-
patibility results between our mirror symmetry conjecture and Dolgachev-
Nikulin-Pinkham mirror symmetry for lattice polarized K3 surfaces. Our
hope is that these results may form a starting point for an attack on the full
Doran-Harder-Thompson conjecture in the 2-dimensional setting.

Finally, Section 7 discusses the compatibility between our conjecture and
the Gross-Siebert program. We perform explicit Gross-Siebert computations
for weak del Pezzo surfaces of high degree (close to the maximum value of
9), and compare the output with the predictions made by our conjecture.
These computations lead us to a final conjecture (Conjecture 7.5), which
describes how we expect our ideas to fit with the Gross-Siebert program.

1.2. Acknowledgements

The authors would like to thank Mark Gross for several helpful discussions
about the Gross-Siebert program and Andrew Harder for numerous insight-
ful comments on various drafts of this paper.

2. Some lattice theory

We begin with a review of some necessary lattice theory. For n ≥ 0, the
lattice I1,n is the unique odd indefinite unimodular lattice of signature (1, n).
It is generated by classes l, e1, . . . , en with intersection numbers l2 = 1, e2

i =
−1 and l.ei = ei.ej = 0 for all i 6= j. We will let f9−n denote the special
class f9−n := 3l −

∑n
i=1 ei; note that f9−n has self-intersection f2

9−n = 9− n
(hence the name) and f9−n.ei = 1 for all i.

The lattice II1,1 is the unique even indefinite unimodular lattice of signa-
ture (1, 1) (the hyperbolic plane). It is generated by classes a, b with intersec-
tion numbers a2 = b2 = 0 and a.b = 1. We denote the special class 2a+ 2b
by f8′ ; note that f2

8′ = 8.
Next, let L denote any lattice. A root in L is a class α ∈ L with α2 = −2.

A negative definite lattice that is generated by its roots is called a root lattice.
If R is a root lattice, a set of positive roots in R is a subset Φ+ of the set of
all roots in R, chosen such that
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• for any root α ∈ R, exactly one of α, −α is in Φ+, and

• for any two distinct roots α, β ∈ Φ+ such that α+ β is a root, α+ β ∈
Φ+.

Note that there may be many different ways to choose a set of positive roots
in R.

Given a set of positive roots in R, a simple root is a root α ∈ Φ+ that
cannot be written as a sum of two other roots in Φ+. Standard results say
that the set of simple roots forms a basis for R, and that all elements of
Φ+ are linear combinations of simple roots with positive coefficients. Note
that the set of simple roots in R is dependent upon the choice of positive
roots Φ+.

There is a well-known classification of root lattices in terms of their asso-
ciated Coxeter diagrams, defined as follows: vertices in the Coxeter diagram
correspond to simple roots αi, two vertices are joined by an edge if αi.αj > 0,
and edges are labelled by integers nij defined such that 2 cos( π

nij
) = αi.αj .

With this definition, the classification states that the Coxeter diagram cor-
responding to any root lattice is a union of simply-laced Dynkin diagrams.
We will often identify a root lattice by the label (An, Dn, En) given to its
corresponding Dynkin diagram.

By the same procedure, one may also define affine root lattices to be
lattices associated to affine (extended) Dynkin diagrams. Affine root lattices
are degenerate, so the above discussion does not apply, but they do share
many important properties with root lattices. We will usually identify affine
root lattices by the labels (Ãn, D̃n, Ẽn) given to their corresponding affine
Dynkin diagrams.

Finally, we will also need to know a little about the roots in I1,9. In this
lattice, there is a linearly independent set of nine roots

αi = ei − ei+1 for 1 ≤ i ≤ 8,

α0 = l − e1 − e2 − e3.

These roots have the important property that αi.f0 = 0 for all i. The Coxeter
diagram associated to this set of roots has type Ẽ8.

3. Lattice polarized rational elliptic surfaces

We begin this section by recalling the theory of the moduli of rational elliptic
surfaces. We treat such surfaces as Looijenga pairs (Y,D), where Y is a
rational surface and D ∈ | −KY | is a cycle of rational curves. The study of
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such pairs was intiated by Looijenga in [24], who performed a detailed study
in the setting where the cycle D has ≤ 5 components. Looijenga’s results
were extended to arbitrary numbers of components by Gross, Hacking, and
Keel [17], whose exposition we follow below.

Let Y denote a rational elliptic surface (in other words, Y is a rational
surface equipped with a morphism Y → P1, whose general fibre is an elliptic
curve). Recall that the Picard lattice Pic(Y ) is isomorphic to I1,9. Following
[17, Definition 1.7], let C+

Y denote the connected component of the cone {β ∈
Pic(Y )⊗ R | β2 > 0} which contains the ample classes. Define E ⊂ Pic(Y )
to be the collection of classes E with E2 = KY .E = −1 and E.H > 0 for a
given ample H; by [17, Lemma 2.13], this is independent of the choice of H.
Then let C++

Y ⊂ C+
Y be the subcone consisting of those β ∈ C+

Y satisfying the
inequalities β.E ≥ 0 for all E ∈ E .

We next define a special type of rational elliptic surface.

Definition 3.1. Let 1 ≤ d ≤ 9 be an integer. A rational elliptic surface of
type d is a pair (Y,D) consisting of a rational elliptic surface Y and a fibre
D ⊂ Y of Kodaira type Id.

Remark 3.2. Persson [29] has classified the possible configurations of Ko-
daira fibres on a rational elliptic surface. A consequence of his classification
is that there are two distinct deformation types of rational elliptic surfaces
containing a fibre of type I8. These correspond to the two different ways
of embedding an I8 fibre into the Picard lattice I1,9 or, equivalently, to the
two different embeddings of the A7 root lattice into the affine root lattice
Ẽ8 ⊂ I1,9. We call these two possibilities rational elliptic surfaces of type
8, which correspond to the embedding A7 ⊂ Ẽ8 given by {α2, α3, . . . , α8},
and rational elliptic surfaces of type 8′, which correspond to the embedding
A7 ⊂ Ẽ8 given by {α0, α3, . . . , α8}. One may also distinguish these possi-
bilities by examining the torsion subgroup of the Mordell-Weil group: this
subgroup is trivial for rational elliptic surfaces of type 8, but nontrivial for
rational elliptic surfaces of type 8′.

Note that if (Y,D) is a rational elliptic surface of type d, then D ∈
| −KY | is a cycle of rational curves, so (Y,D) is an example of a Looijenga
pair. Denote the components of D by D1, D2, . . . , Dd, cyclically ordered.
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Definition 3.3. A marking of a rational elliptic surface (Y,D) of type d,
for 1 ≤ d ≤ 9, is a choice of isometry µ : Pic(Y )→ I1,9 satisfying

µ(Di) = δi :=

{
α9−i for 1 ≤ i ≤ d− 1

f0 − α8 − α7 − · · · − α10−d for i = d,

with the additional compatibility condition that if (Y0, D0, µ0) is a (fixed)
generic marked rational elliptic surface of type d, then µ(C++

Y ) = µ0(C++
Y0

).

Denote the cone µ0(C++
Y0

) by C++
d ⊂ I1,9.

If d = 1, by convention we have µ(D1) = δ1 := f0.

However, this is not quite the complete picture; we also need to define
a marking on a rational elliptic surface of type 8′.

Definition 3.4. A marking of a rational elliptic surface (Y,D) of type 8′

is a choice of isometry µ : Pic(Y )→ I1,9 satisfying

µ(Di) = δi :=


α9−i for 1 ≤ i ≤ 6

α0 for i = 7

f0 − α0 − α8 − α7 − · · · − α3 for i = 8,

with the additional compatibility condition that if (Y0, D0, µ0) is a (fixed)
generic marked rational elliptic surface of type 8′, then µ(C++

Y ) = µ0(C++
Y0

).

Denote the cone µ0(C++
Y0

) by C++
8′ ⊂ I1,9.

Definition 3.5. Let Fd (resp. F8′) denote the sublattice of I1,9 generated
by the classes δi from Definition 3.3 (resp. Definition 3.4).

In general, when no confusion is likely to result, we will simply refer to
markings of rational surfaces of type d, lattices Fd, and cones C++

d , with the
understanding that this includes the case d = 8′ unless otherwise specified.
The orthogonal complement of Fd in I1,9 will be denoted F⊥d ; the lattices
F⊥d have rank 10− d, with intersection form given by Table 3.1.

It follows from the results of [17] that there is a period map from the
moduli space of marked rational elliptic surfaces of type d to Hom(F⊥d ,Gm),
which is injective in a neighbourhood of a generic point (a more precise
statement will be made in the next section, see Theorem 3.11). Indeed, to
a marked rational elliptic surface (Y,D, µ) of type d, we may associate the
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d F⊥d F⊥d /〈f0〉
1 Ẽ8 E8

2 Ẽ7 E7

3 Ẽ6 E6

4 D̃5 D5

5 Ã4 A4

6 Ã2 +A1 A2 +A1

7

 −2 1 1
1 −4 3
1 3 −4

 (
−2 1
1 −4

)
8

(
−8 8
8 −8

)
(−8)

8′ Ã1 A1

9 (0) {0}

Table 3.1: Lattices F⊥d .

period point φ ∈ Hom(F⊥d ,Gm) defined by

φ : F⊥d −→ Pic0(D) ∼= Gm

α 7−→ µ−1(α)|D.

Note that f0 ∈ F⊥d for all d and µ−1(f0) ∈ Pic(Y ) is the class of a fibre,
so µ−1(f0)|D ∼= OD. Thus the period point φ of any rational elliptic surface
must satisfy φ(f0) = 1, so φ is completely determined by its action on the
quotient F⊥d /〈f0〉. The quotient F⊥d /〈f0〉 is a negative definite lattice of rank
9− d, with intersection form given by Table 3.1.

3.1. Lattice polarizations and moduli

Next we add the concept of a lattice polarization. Let L ⊂ F⊥d be a negative
definite primitive sublattice and let RL denote the sublattice of L generated
by the roots in L. Since L is negative definite, RL is a root lattice and L is
isomorphic to its image in F⊥d /〈f0〉.

Definition 3.6. An L-polarization on a rational elliptic surface (Y,D) of
type d is a primitive embedding ν : L ↪→ Pic(Y ) such that

• ν(β).Di = 0 for all β ∈ L and all 1 ≤ i ≤ d, and
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• there exists a set of positive roots Φ+ in RL so that ν(Φ+) is contained
in the effective cone in Pic(Y ).

Remark 3.7. Note that the important part of this definition really only de-
pends upon the root lattice RL, not on the full lattice L. For most purposes,
it suffices to take L ⊂ F⊥d to be a root lattice, so that L = RL. However, the
greater generality in the definition above works better with mirror symme-
try; this will be explored later in this paper.

This definition is all well and good, but to make statements about moduli
we need something stronger. For the remainder of this section, assume that
we have fixed a primitive embedding L ↪→ F⊥d of a negative definite lattice
L into F⊥d and chosen a set of positive roots Φ+

L ⊂ RL.

Definition 3.8. A marked L-polarization on a rational elliptic surface
(Y,D) of type d is a choice of marking µ : Pic(Y )→ I1,9 such that the preim-
age µ−1(Φ+

L ) is contained in the effective cone in Pic(Y ) (i.e. so that µ−1|L
is an L-polarization).

We will describe moduli spaces for marked L-polarized rational elliptic
surfaces of type d by extending the results of [17, Section 6]. This extension
is largely fairly straightforward; we provide enough details to make precise
statements of the main results and leave the remainder to the reader.

Let Md,L denote the moduli stack of families of marked L-polarized
rational elliptic surfaces of type d (here we work over the analytic category,
so Md,L is a stack over the category of analytic spaces). More precisely, for
an analytic space S, the objects of the category Md,L(S) are morphisms

π : (Y,D = D1 + · · ·+Dd) −→ S

together with an isomorphism

µ : R2π∗Z
∼−→ I1,9 × S

so that the following conditions hold

1) the morphism Y → S is a flat family of surfaces;

2) the analytic space Di is a divisor on Y/S for each 1 ≤ i ≤ d; and

3) each closed fibre (Ys,Ds, µs) is a marked L-polarized rational elliptic
surface of type d.
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The morphisms in the category from (Y,D)/S to (Y ′,D′)/S′ over a mor-
phism S → S′ are isomorphisms

(Y,D)
∼−→ (Y ′,D′)×S′ S

over S compatible with the markings.
For a generic L-polarized rational elliptic surface (Y,D) of type d, let

Kd,L denote the subgroup of the automorphism group of Y that acts trivially
on Pic(Y ). Then every object (Y,D)/S inMd,L(S) has a canonical subgroup
Kd,L × S of its automorphism group, consisting of automorphisms which
act trivially on the Picard groups of the fibres of Y. Let M̃d,L denote the
rigidification of Md,L along Kd,L, in the sense of [1, Section 5]; the objects
ofMd,L and M̃d,L coincide locally, but the automorphism group in M̃d,L is
the quotient of the automorphism group in Md,L by Kd,L.

The moduli stackMd,0 is precisely the moduli stack of marked rational
elliptic surfaces of type d and M̃d,0 is its rigidification. Results in [17] show
that the period map Md,0 → Hom(F⊥d ,Gm) is well-defined and descends
to a period map M̃d,0 → Hom(F⊥d ,Gm). By the discussion above, these
maps restrict to maps Md,0 → Pd,0 and M̃d,0 → Pd,0 respectively, where
Pd,0 := Hom(F⊥d /〈f0〉,Gm).

Next we define the period map and period domain for more general
marked L-polarized rational elliptic surfaces of type d. To do this, we first
need a small lemma.

Lemma 3.9. Let φ : F⊥d −→ Pic0(D) ∼= Gm denote the period point of a
marked L-polarized rational elliptic surface (Y,D, µ) of type d. Then φ(α) =
1 for any positive root α ∈ Φ+

L .
Conversely, if α ∈ F⊥d is any class with α2 = −2 and φ(α) = 1, then

either µ−1(α) or µ−1(−α) is contained in the effective cone in Pic(Y ).

Proof. Suppose that α ∈ Φ+
L is a positive root. By definition, µ−1(α) =

OY (C), for some effective divisor C ⊂ Y with C.D = 0. But thenOY (C)|D ∼=
OD, so we have φ(α) = 1.

For the converse statement, suppose that α ∈ F⊥d is any class with α2 =
−2 and φ(α) = 1. Then µ−1(α) =: L is a line bundle on Y with L2 = −2
and L|D ∼= OD. It follows immediately from [17, Lemma 3.3] that either L
or L−1 is effective. �

From this lemma, we see that that the period point of a marked L-
polarized rational elliptic surface (Y,D, µ) of type d is completely determined
by the action of φ on the quotient F⊥d /〈RL, f0〉.
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Definition 3.10. The period domain for marked L-polarized rational el-
liptic surfaces of type d is the space

Pd,L := Hom(F⊥d /〈RL, f0〉,Gm).

There are natural period maps Md,L → Pd,L and M̃d,L → Pd,L, given by
restriction of the usual (unpolarized) period map.

Let C++
d,L ⊂ I1,9 denote the subcone of C++

d consisting of those β ∈ C++
d

satisfying

1) β.δi ≥ 0 for the classes δi from Definitions 3.3 and 3.4; and

2) β.α ≥ 0 for all positive roots α ∈ Φ+
L .

Let Ψd,L ⊂ F⊥d denote the set of roots α ∈ F⊥d \RL such that there exists
a marked L-polarized rational elliptic surface (Y,D, µ) of type d with µ−1(α)
effective. Ψd,L should be thought of as the possible ways to “enhance” L: it
is the set of roots which could be added to L and still give a valid polarizing
lattice.

Now let Σ denote the set of connected components of the complement

C++
d,L

∖ ⋃
α∈Ψd,L

α⊥,

and let Q = Pd,L × Σ. Define an étale equivalence relation on Q as follows:
(φ, σ) ∼ (φ, σ′) if and only if σ and σ′ are contained in the same connected
component of C++

d,L \
⋃
α∈Ψφ

α⊥, where

Ψφ := {α ∈ Ψd,L |φ(α) = 1} .

By Lemma 3.9, we see that Ψφ is precisely the set of enhancements of L
that occur at the period point φ; in other words, if (Y,D, µ) is a marked
L-polarized rational elliptic surface of type d with period point φ, then Ψφ

encodes the set of effective (−2)-classes in Pic(Y ) which do not intersect any
component of D and do not lie in µ−1(L).

Finally, let P̃d,L := Q/ ∼ denote the quotient of Q by this equivalence
relation. Note that we have a natural map P̃d,L → Pd,L given by projection,
which is an isomorphism over the analytic open set Ud,L := {φ ∈ Pd,L | Ψφ =
∅}.

Then we have the following theorem, which should be thought of as an
analogue of [17, Theorem 6.1].
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Theorem 3.11. There is an isomorphism M̃d,L
∼= P̃d,L which is compatible

with the period map.

Proof. The result follows from exactly the same argument used to prove [17,
Theorem 6.1]. �

In particular, we see that the period map M̃d,L → Pd,L is an isomor-
phism over the open set Ud,L. This open set corresponds to the set of marked
L-polarized rational elliptic surfaces of type d that do not admit polariza-
tions by any overlattice L′ ⊃ L with RL′ strictly larger than RL.

Now let L′ ⊂ F⊥d be another negative definite lattice, with root lat-
tice RL′ and set of positive roots Φ+

L′ ⊂ RL′ . Suppose that L ⊂ L′ and
Φ+
L ⊂ Φ+

L′ ⊂ Φ+
L ∪Ψd,L. Define ΨL′/L := L′ ∩Ψd,L = Φ+

L′ \ Φ+
L . Then there

is a natural embedding of period domains Pd,L′ ↪→ Pd,L, whose image is the
set {φ ∈ Pd,L | ΨL′/L ⊂ Ψφ}.

From this and the discussion above, it is easy to see that the period
domain Pd,L admits a stratification

(3.1) Pd,L =
∐
L⊂L′

Ud,L′ ,

where the disjoint union is taken over all negative definite overlattices L ⊂
L′ ⊂ F⊥d which may be obtained from L by adjoining roots from Ψd,L. The
strata may be identified with (open sets inside) moduli spaces of marked
L′-polarized rational elliptic surfaces of type d, as above.

4. Lattice polarized weak del Pezzo surfaces

Next we perform a similar analysis for weak del Pezzo surfaces. We begin
by recalling the following definition.

Definition 4.1. A weak del Pezzo surface is a smooth rational surface X
which has nef and big anticanonical divisor −KX .

Results of Demazure [7] and Coray and Tsfasman [6, Proposition 0.4]
show that any weak del Pezzo surface is isomorphic to either P1 × P1, the
Hirzebruch surface F2, or a blow-up of P2 at 0 ≤ n ≤ 8 points in almost
general position (a set of points is in almost general position if no stage of
the blowing-up involves blowing up a point which lies on a (−2)-curve; in
particular, infinitely near points are allowed as long as this condition is not
violated).
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In light of this, define a weak del Pezzo pair of degree d, for 1 ≤ d ≤ 9,
to be a pair (X,C) consisting of a weak del Pezzo surface X obtained as
a blow-up of P2 in (9− d) points in almost general position, along with a
smooth anticanonical divisor C ∈ | −KX |. Note that C2 = d.

However, this does not quite encompass all possible cases: we also need
to account for P1 × P1 and F2. Define a weak del Pezzo pair of degree 8′ to
be a pair (X,C), where X = P1 × P1 or F2 and C ∈ | −KX | is a smooth
anticanonical divisor. In both of these cases C2 = 8.

Note that the Picard lattice Pic(X) for a weak del Pezzo pair (X,C) of
degree d is isometric to I1,9−d (for 1 ≤ d ≤ 9) and II1,1 when d = 8′. Denote
the lattice I1,9−d (resp. II1,1) by Λd (resp. Λ8′). Recall from Section 2 that
the lattices Λd contain a distinguished class fd.

In the remainder of this paper, when no confusion is likely to result, we
will simply refer to weak del Pezzo pairs of degree d, distinguished classes
fd, and lattices Λd, with the understanding that this includes the case d = 8′

unless otherwise specified.
As in the previous section, we can define a marking on a weak del Pezzo

surface of degree d.

Definition 4.2. A marking on a weak del Pezzo pair (X,C) of degree d is
a choice of isometry µ : Pic(X)→ Λd satisfying µ(C) = fd.

Remark 4.3. To make reasonable statements about the moduli spaces of
marked weak del Pezzo pairs, we suspect that this definition should also
contain a condition analogous to the condition on C++

d in Definition 3.3.
This is needed to kill any automorphisms of Λd that are not realized by
deformations of (X,C).

4.1. Lattice polarizations and the Kähler cone

We next define the concept of a lattice polarization. Let f⊥d denote the or-
thogonal complement of fd in Λd. Note that f⊥d is negative definite of rank
9− d, with intersection form given by Table 4.1. Comparing this table to
Table 3.1, we discover that f⊥d

∼= F⊥d /〈f0〉 for all d; this is the first manifes-
tation of mirror symmetry in this setting

Let L ⊂ f⊥d denote a primitive sublattice and let RL denote the sublat-
tice of L generated by roots α ∈ L. Both L and RL are negative definite so,
in particular, RL is a root lattice.

Definition 4.4. An L-polarization of a weak del Pezzo pair (X,C) of type
d is a primitive embedding ν : L ↪→ Pic(X) such that
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d 1 2 3 4 5 6 7 8 8′ 9

f⊥d E8 E7 E6 D5 A4 A2 +A1

(−2 1
1 −4

)
(−8) A1 {0}

Table 4.1: Lattices f⊥d .

• ν(β).C = 0 for all β ∈ L, and

• there exists a set of positive roots Φ+ in RL so that ν(Φ+) is contained
in the effective cone in Pic(X).

Remark 4.5. As in the previous section (see Remark 3.7), we see that the
essential part of this definition really only depends upon the root lattice RL.
Indeed, we would not really lose anything by always taking L to be a root
sublattice of f⊥d . However, as before, the definition above has better mirror
symmetric properties.

As before, we may also define the notion of a marked L-polarization.
For the remainder of this section, assume that we have fixed a primitive
embedding L ↪→ f⊥d ⊂ Λd and chosen a set of positive roots Φ+

L ⊂ RL.

Definition 4.6. A marked L-polarization on a weak del Pezzo pair (X,C)
of type d is a choice of marking µ : Pic(X)→ Λd such that the preimage
µ−1(Φ+

L ) is contained in the effective cone in Pic(X) (i.e. so that µ−1|L is
an L-polarization).

Next we look at the Kähler cone of a lattice polarized weak del Pezzo
pair of degree d. Let (X,C, µ) denote a marked L-polarized weak del Pezzo
pair of degree d. The Kähler cone of X is equal to its ample cone, since the
Néron-Severi lattice NS(X) is equal to H2(X,Z), and its closure is the nef
cone Nef(X). The nef cone Nef(X) is dual to the cone of effective curves
on X which, by [4, Proposition 6.2], is rational polyhedral and generated
by a finite set of rays. We would like to see what information the lattice
polarization gives us about the structure of these cones.

Proposition 4.7. Let (X,C, µ) be a marked L-polarized weak del Pezzo
pair of degree d. If α ∈ Φ+

L is a simple root, then (µ−1(α))⊥ is a codimension
1 face of Nef(X) which contains the ray generated by [C] = [−KX ].

Proof. Let α ∈ Φ+
L be a simple root. Adjunction shows that µ−1(α) is the

class of an irreducible rational (−2)-curve inX. It then follows from the proof
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of [4, Proposition 6.2] that µ−1(α) is an extremal ray in the intersection of
the effective cone of X with the hyperplane [−KX ]⊥. Since Nef(X) is the
dual of the effective cone of X, we see that (µ−1(α))⊥ is a codimension 1
face of Nef(X) which contains the ray generated by [−KX ]. �

With an additional assumption, this enables us to completely describe
the structure of Nef(X) in a neighbourhood of the ray generated by [C] =
[−KX ]. We say that a marked L-polarized weak del Pezzo pair (X,C, µ) is
generic if µ−1(Φ+

L ) contains the classes of all irreducible rational (−2)-curves
on X.

Proposition 4.8. Let (X,C, µ) be a generic marked L-polarized weak del
Pezzo pair of degree d. Then in a neighbourhood of the ray generated by [C] =
[−KX ], the codimension 1 faces of Nef(X) are given by the hyperplanes
(µ−1(α))⊥, where α ∈ Φ+

L is a simple root.

Proof. It remains to show that every codimension 1 face in a neighbourhood
of the ray generated by [−KX ] arises from a simple root in Φ+

L . The proof
of [4, Proposition 6.2] shows that such faces are orthogonal to the classes of
irreducible rational (−2)-curves in NS(X) and, by genericity, all such classes
are contained in µ−1(Φ+

L ). Irreducibility implies that such classes must come
from simple roots. �

5. Mirror symmetry for lattice polarized weak
del Pezzo pairs

Now we come to the main section of this paper. We claim that mirror sym-
metry for del Pezzo surfaces can be extended to the lattice polarized setting.

First we review classical mirror symmetry for del Pezzo surfaces, as
given by the Fano-LG correspondence. Using techniques of homological mir-
ror symmetry, Auroux, Katzarkov, and Orlov [2] have proposed that the
mirror to a weak del Pezzo pair of degree d should be given by an elliptic
fibration over C with 12− d singular fibres, each of type I1, which admits a
compactification to a rational elliptic surface of type d. In our framework,
this should be thought of as analogous to the statement “the topological
mirror to a K3 surface is a K3 surface”. As in the K3 case, we claim that
we can gain a significantly richer understanding by studying the effect of
mirror symmetry on lattice polarizations.

The mirror construction for lattice polarized weak del Pezzo pairs pro-
ceeds as follows. Let (X,C) be a weak del Pezzo pair of degree d that is
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polarized by a lattice L ⊂ f⊥d . Let Ľ := (L)⊥
f⊥d

denote the orthogonal com-

plement of L in f⊥d
∼= F⊥d /〈f0〉; note that Ľ is negative definite.

Now, note that the lattice F⊥d (as given in Table 3.1) contains the lattice
f⊥d (as given in Table 4.1) as a sublattice. So we may choose an embedding
f⊥d ↪→ F⊥d , thereby identifying Ľ with a negative definite sublattice of F⊥d .
Then we have the following mirror conjecture.

Conjecture 5.1. The mirror to an L-polarized weak del Pezzo pair (X,C)
of degree d is given by the open set Y \D in an Ľ-polarized rational elliptic
surface (Y,D) of type d.

Remark 5.2. The choice of the embedding f⊥d ↪→ F⊥d in the formulation
of this conjecture should be thought of as analogous to the choice of a
maximally unipotent monodromy point in the usual formulation of mirror
symmetry; see Remark 6.4.

Remark 5.3. At this point, we briefly remark on what we would expect to
happen if we had defined our weak del Pezzo pairs (X,C) to have C singular,
rather than smooth. In this case, the philosophy of mirror symmetry suggests
that for each nodal singularity appearing in C, one should remove a section
from the mirror rational elliptic surface (Y,D), making it into a fibration by
punctured elliptic curves. For instance, in the degree 9 case the pair (X,C)
consists of a smooth cubic in P2, which may degenerate to contain one,
two, or three nodes. On the mirror side, these degenerations correspond to
removing one, two, or three sections, respectively, from a rational elliptic
surface of type 9; note that such a rational elliptic surface has Mordell-Weil
group Z/3Z [28]. This idea will reappear in Section 7, where we will use it
to simplify the computation of Gross-Siebert mirrors.

5.1. Complex and Kähler Moduli

As a first piece of evidence for this conjecture, we discuss the correspondence
between the complex moduli of a lattice polarized rational elliptic surface of
type d, as discussed in Section 3.1, and the Kähler cone of a lattice polarized
weak del Pezzo pair, as discussed in Section 4.1.

Begin by letting (X,C) be a weak del Pezzo pair of degree d. Since
b2(X) = 10− d, the Kähler cone of X must have dimension 10− d. Thus,
in order to have any hope of making a mirror symmetric statement relating
the boundary components of the Kähler cone of X to the strata in the
period domain of its mirror, we will need to choose our polarizing lattice L
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so that the period domain for Ľ-polarized rational elliptic surfaces of type
d has dimension 9− d. This happens if and only if the root sublattice RĽ is
trivial.

To ensure this is that case, choose L to equal the lattice f⊥d from Ta-
ble 4.1 and assume that (X,C) is a generic marked L-polarized weak del
Pezzo pair of degree d. In this setting we have a description of the boundary
of the nef cone of X (which, we recall, is the closure of the Kähler cone
of X) in a neighbourhood of the ray generated by [C] = [−KX ], given by
Proposition 4.8; recall that codimension 1 faces correspond to simple roots
in Φ+

L ⊂ L.
Now we proceed to the mirror. We have Ľ = 0, as required, and from

Equation (3.1) we obtain a stratification of the period domain Pd,0. We may
describe some of the strata in this stratification as follows. Recall that in
the process of defining a mirror, we chose an embedding f⊥d ↪→ F⊥d . This
embedding allows us to identify L as a corank 1 sublattice of F⊥d , which
gives rise to a 1-dimensional stratum Ud,L in Pd,0. In a neighbourhood of this
stratum, the strata in Pd,0 are given by lattices L′ ⊂ L which are generated
by roots in Φ+

L ⊂ L.
We thus obtain a correspondence between

• boundary components of the nef cone of X in a neighbourhood of the
ray generated by [C] = [−KX ], and

• strata of Pd,0 in a neighbourhood of the 1-dimensional stratum Ud,L,
corresponding to sublattices L′ ⊂ L which are generated by simple
roots in Φ+

L ⊂ L.

This should be thought of as a mirror correspondence; we will make some
attempt to formalize it in Section 7.3 using the Gross-Siebert program.

It is interesting to consider whether there is a similar correspondence
relating the nef cone of a rational elliptic surface of type d to a moduli space
for weak del Pezzo pairs of degree d. This question is significantly more
difficult, for several reasons.

The nef cone of a rational elliptic surface Y has been widely studied.
Borcea [4, Section 6] showed that the extremal rays generating the effec-
tive cone (which is dual to the nef cone) of Y may accumulate to the ray
generated by [−KY ]. If this happens, the nef cone of Y will not be rational
polyhedral in a neighbourhood of the ray generated by [−KY ]; by work of
Totaro [34, Theorem 8.2], this occurs if and only if the Mordell-Weil group
of Y is infinite. The Mordell-Weil groups of all rational elliptic surfaces were
computed explicitly by Oguiso and Shioda in [28]; they may be infinite even
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in cases admitting polarizations by one of the lattices from Table 4.1. Due
to this, it seems quite unlikely that a direct analogue of Proposition 4.8 will
hold for rational elliptic surfaces of type d.

On the other side, moduli spaces of del Pezzo surfaces have also been
widely studied, notably by Colombo, van Geeman, and Looijenga [5], and
by Hacking, Keel, and Tevelev [19]. However, for our purposes the correct
objects to study should be weak del Pezzo pairs (X,C), where X is a weak
del Pezzo surface and C is a smooth anticanonical divisor on X. The moduli
of such pairs has been studied by Friedman [14] and McMullen [25] but,
to our knowledge, a complete description in terms of periods (analogous to
that in [17, 24]) has not been worked out.

That said, we do expect the moduli spaces of weak del Pezzo pairs to
admit such a description. Fix a smooth elliptic curve C and let (X,C, µ)
denote a marked weak del Pezzo pair of degree d whose anticanonical curve
is isomorphic to C. Define the period point φ ∈ Hom(f⊥d , C) associated to
(X,C, µ) by

φ : f⊥d −→ Pic0(C) ∼= C

α 7−→ µ−1(α)|C .

McMullen [25, Corollary 4.4 and Theorem 6.4] has shown that (X,C, µ) is
determined up to isomorphism by its period point φ, and surjectivity of the
period map follows easily from his results. However, in order to prove a global
Torelli theorem for marked weak del Pezzo pairs, and hence relate their
moduli space to the period domain Hom(f⊥d , C), one needs better control
over the action of the automorphism group of Λd on the markings. We expect
that this will require additional conditions in the definition of a marking;
see Remark 4.3.

Based on these partial results, and the results of Section 3.1, we make
the following conjecture about the moduli spaces of marked lattice polarized
weak del Pezzo pairs.

Conjecture 5.4. Fix a smooth elliptic curve C. There is a period map
from the moduli space of marked L-polarized weak del Pezzo pairs (X,C, µ)
of degree d, with anticanonical curve C, to Hom(f⊥d /RL, C), and this period
map is an isomorphism over a dense open set U ⊂ Hom(f⊥d /RL, C).

Remark 5.5. We briefly remark upon the relationship between the ideas
in this section and the results of [2]. Note that, in contrast to the discus-
sion above, the authors of [2] are primarily concerned with comparing the
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complex structure on (X,C) with the symplectic structure on Y \D. This
allows them to largely ignore the complex structure of Y \D; in particular,
they make the assumption that the critical points of the elliptic fibration on
Y \D are all isolated and non-degenerate, so all singular fibres have Kodaira
type I1. This assumption is required by Seidel’s [32] definition of the derived
category of Lagrangian vanishing cycles, which is needed in homological
mirror symmetry.

We claim that the formulation of mirror symmetry thus obtained agrees
with our conjecture up to deformation. In our setting, different choices of
lattice polarization on (X,C) will lead to different configurations of singular
fibres on Y \D, but all configurations may be deformed to the mirror as
described by [2]. It would be interesting to see whether homological mirror
symmetry statements, such as those in [2], could also be made in cases where
Y \D has more severe singular fibres.

6. Compatibility with Dolgachev-Nikulin-Pinkham mirror
symmetry for K3 surfaces

In the remainder of this paper, we discuss the compatibility of the mirror
construction from Section 5 with various other forms of mirror symmetry.
We begin by analysing how it fits with Dolgachev-Nikulin-Pinkham mirror
symmetry for lattice polarized K3 surfaces [8, 9, 27, 30]. The basic idea
behind this correspondence is set out in [11, Section 4]; this section provides
a much more detailed picture.

We begin with some setup. We first describe how to endow a family of K3
surfaces with a lattice polarization, following [10]. Suppose that π : V∗ → ∆∗

is a smooth family of K3 surfaces over the punctured unit disc ∆∗ ⊂ C.
Let Vp denote the fibre of V over p ∈ ∆∗ and let NS(Vp) denote its Néron-
Severi lattice. Finally, let M ⊂ ΛK3 be a primitive sublattice of the K3 lattice
ΛK3 := H⊕3 ⊕ E⊕2

8 , where H = II1,1 denotes the hyperbolic plane and E8 is
the root lattice corresponding to the Dynkin diagram E8.

Definition 6.1. [10, Definition 2.1] π : V∗ → ∆∗ is an M -polarized family
of K3 surfaces if

• there is a trivial local subsystemM of R2π∗Z so that, for each p ∈ ∆∗,
the fibre Mp ⊂ H2(Vp,Z) of M over p is a primitive sublattice of
NS(Vp) that is isomorphic to M , and
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• there is a line bundle A on V∗ whose restriction Ap to any fibre Vp is
ample with first Chern class c1(Ap) contained inMp and primitive in
NS(Vp).

Now, suppose that π : V → ∆ is a type II degeneration of K3 surfaces,
where ∆ ⊂ C denotes the unit disc. Recall that this means that

• V is a nonsingular threefold with trivial canonical bundle;

• the restriction of π to ∆∗ is a smooth morphism whose fibres are K3
surfaces; and

• the central fibre V0 of V is a chain of smooth surfaces X1 ∪E1
X2 ∪E2

· · · ∪Ek Xk, where X1 and Xk are rational, X2, . . . , Xk−1 are elliptic
ruled, and Xi and Xi+1 meet normally along a smooth elliptic curve
Ei.

We will further assume that the restriction of π to ∆∗ is an M -polarized
family of K3 surfaces, in the sense of Definition 6.1, for some M ⊂ ΛK3.
Moreover, so that we can make a comparison with the notion of mirror
symmetry defined in Section 5, we will assume that X1 is a weak del Pezzo
surface. By adjunction and the condition that ωV ∼= OV , we see that E1 ∈
| −KX1

|, so (X1, E1) is a weak del Pezzo pair. Let d denote its degree.

Example 6.2. A simple example of the type of degeneration discussed
above is as follows. Consider the family

V := {z2 = (f3(x1, x2, x3))2 + tg6(x1, x2, x3)} ⊂WP(1, 1, 1, 3)[x1, x2, x3, z]

over the disc ∆ with coordinate t, where f3 and g6 denote a generic cubic
and sextic respectively. V is singular at the 18 points f3 = g6 = z = t = 0,
but we may perform a simultaneous small resolution by blowing up the ideal
〈t, z − f3〉 in V (this ideal defines a Weil divisor in V that is not Q-Cartier).
The result is a type II degeneration of K3 surfaces that is polarized by the
lattice 〈2〉. The central fibre has two components X1 ∪E1

X2, and (X1, E1)
is a weak del Pezzo pair of degree 9 (in this case, X2 is a copy of P2 blown
up in 18 points, so is not weak del Pezzo).

Several more complicated examples are described in [11, Section 4].

Now we begin to discuss mirror symmetry. Our type II degeneration
corresponds to a 1-dimensional cusp C1 in the Baily-Borel compactification
DM of the period domain DM of M -polarized K3 surfaces. By the discus-
sion in [31, Section 2.1], such cusps are in bijective correspondence with
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rank two isotropic sublattices of M⊥. Denote the rank 2 isotropic sublattice
corresponding to C1 by I.

In order for us to apply Dolgachev-Nikulin-Pinkham mirror symmetry,
we must assume that C1 contains a 0-dimensional cusp (Type III point)
C0. Such cusps correspond to primitive isotropic vectors e ∈M⊥ (satisfying
certain conditions), and the condition that C0 ⊂ C1 is equivalent to requiring
that e ∈ I.

Under these conditions, the Dolgachev-Nikulin-Pinkham mirror to a gen-
eral fibre of V is a K3 surface W polarized by the lattice

M̌ := (Ze)⊥M⊥ /Ze.

Note that, by [11, Proposition 4.1], the fact that e lies in the rank two
isotropic lattice I is equivalent to the existence of a primitive isotropic vector
f ∈ M̌ , which gives rise to an elliptic fibration on W . The vectors e and f
span I.

6.1. The relationship with mirror symmetry for weak
del Pezzo pairs

We begin by relating the lattice polarization on V to one on the weak del
Pezzo pair (X1, E1). To do this, we use the Clemens-Schmid exact sequence
of mixed Hodge structures. This exact sequence gives rise to an exact se-
quence of weight graded pieces

(6.1) 0→ Gr0(H0
lim)→ Gr−4(H4(V0))

ϕ→ Gr2(H2(V0))
i∗→ Gr2(H2

lim)→ 0,

where Hk
lim denotes the limiting mixed Hodge structure on the kth cohomol-

ogy of Vp, for a general p ∈ ∆∗, and i∗ denotes the natural map H2(V0) ∼=
H2(V)→ H2(Vp) given by pulling-back by the inclusion i : Vp → V.

We begin by examining these graded pieces in more detail. By [26, Sec-
tion 4], the weight filtration on H2

lim is given by

{0} ⊂ IQ ⊂ I⊥Q ⊂ H2
lim
∼= H2(Vp,Q),

where IQ := I ⊗Q. Thus Gr2(H2
lim) = I⊥Q /IQ. By construction, there is a

natural injective map M ↪→ Gr2(H2
lim).
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The weight filtration on H2(V0) is given by Deligne’s mixed Hodge struc-
ture on a normal crossing variety. We compute that

Gr2(H2(V0)) = ker

δ :

k⊕
i=1

H2(Xi,Q)→
k−1⊕
j=1

H2(Ej ,Q)

 ,

where δ = (δ1, . . . , δk−1) is given by the alternating sums δj :=
∑k

i=1(−1)iδij
of the restriction maps δij : H2(Xi,Q)→ H2(Ej ,Q). This kernel may be

identified with those classes (D1, . . . , Dk) ∈
⊕k

i=1H
2(Xi,Q) which satisfy

the gluing condition Di|Ei −Di+1|Ei = 0 for all i ∈ {1, . . . , k − 1}.

Lemma 6.3. The Clemens-Schmid exact sequence (6.1) induces an injec-
tive map j : [E1]⊥ → Gr2(H2

lim), where [E1]⊥ denotes the orthogonal comple-
ment of E1 in H2(X1,Z) ∼= Λd.

Proof. By the discussion above, [E1]⊥ is equal to the intersection of the
weight graded piece Gr2(H2(V0)) with H2(X1,Z). We claim that the re-
striction j := i∗|[E1]⊥ is injective.

To prove this, we look at the weight filtration on H4(V0). This weight
filtration is Poincaré dual to the weight filtration on H4(V0) arising from
Deligne’s mixed Hodge structure. It has Gr−4(H4(V0)) = H4(V0), generated
by the classes [Xi]. The image of the map ϕ is those classes supported on the
curves Ei; for such classes the gluing condition becomes the condition that
the sum of the coefficients of Ei|Xi in H2(Xi,Q) and Ei|Xi+1

in H2(Xi+1,Q)
is zero, along with the classical triple point formula (Ei|Xi)2 + (Ei|Xi+1

)2 = 0
(which holds for any type II degeneration). It is clear that the intersection
of this image with [E1]⊥ is trivial, so j is injective by exactness. �

Remark 6.4. The injection j : [E1]⊥ ↪→ Gr2(H2
lim) defined by this lemma

induces an embedding of [E1]⊥ into the orthogonal complement (Qf)⊥/Qf
of the class f in H2

lim. This should be thought of as analogous to the em-
bedding f⊥d ↪→ F⊥d in the formulation of mirror symmetry from Section 5.

The definition of this embedding depends upon the class f ∈ I, which
in turn depends upon the choice of 0-dimensional cusp C0. Thus we see that
the choice of embedding f⊥d ↪→ F⊥d corresponds to the choice of a maxi-
mally unipotent monodromy (Type III) point C0 in the Dolgachev-Nikulin-
Pinkham formulation of mirror symmetry.

Now let L denote the preimage of M ⊗Q under j. Then L is a primitive
sublattice of [E1]⊥ ⊂ H2(X1,Z) ∼= Pic(X1).
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Proposition 6.5. The weak del Pezzo pair (X1, E1) is L-polarized.

Proof. To show that (X1, E1) is L-polarized, it remains to show that RL
contains a set of positive roots Φ+ which lies in the effective cone in Pic(X1).

To show this, it suffices to show that if α is any root in L, then either
α or −α is effective in H2(X1,Z) (the condition on sums of positive roots
then follows immediately from the fact that the sum of two effective classes
is effective). So let α ∈ L be a root. Then α′ := j(α) is an integral (−2)-
class, so defines a root in M . As V∗ → ∆∗ is an M -polarized family, α′ thus
defines a (−2)-class in H2(Vp,Z), for general p ∈ ∆∗, that is invariant under
monodromy.

Since Vp is a K3 surface, a standard result [3, Proposition VIII.3.7] tells
us that either α′ or −α′ is the class of an effective divisor on Vp. This class
sweeps out a divisor on V∗, which extends to a divisor on V. The intersection
of this divisor with X1 is an effective divisor in the class α or −α. Thus either
α or −α is effective. �

With this in place, we make the following definition.

Definition 6.6. The lattice polarizations L on (X1, E1) and M on V∗ →
∆∗ are said to be compatible if j(L⊥[E1]⊥) ⊂M⊥, where L⊥[E1]⊥ denotes the

orthogonal complement of L in [E1]⊥ and the orthogonal complement of M
is taken in the K3 lattice ΛK3.

Throughout the remainder of this section we will always assume that
the lattice polarizations L and M are compatible. The next proposition
justifies this assumption by showing that, for any lattice polarized weak del
Pezzo pair (X,C), we may always find a compatible lattice polarized type
II degeneration which has (X,C) as a component of its central fibre.

Proposition 6.7. Let (X,C) be an L-polarized del Pezzo pair of degree d,
for some lattice L. Then there exists a Type II degeneration of K3 surfaces
π : V → ∆ such that (X,C) is a component of the central fibre of V and the
restriction of V to ∆∗ is an M -polarized family of K3 surfaces, for some
lattice M that is compatible with L.

Proof. For clarity of notation, set (X1, E1) := (X,C). We begin by finding
a second pair (X2, E1), so that X1 ∪E1

X2 forms the central fibre of a Type
II degeneration.

Choose a rational surface X2 with a smooth anticanonical divisor iso-
morphic to E1, so that NE1/X1

⊗NE1/X2
= OE1

(this is Friedman’s [13] d-
semistability condition). One can construct such a pair (X2, E1) as follows:
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begin with an embedding E1 ⊂ P2 (which is unique up to isomorphism),
then choose (18− d) points P1, . . . , P18−d on E1 and blow them up to ob-
tain X2. The d-semistability criterion imposes a single condition on the Pi,
so there is a (17− d)-dimensional family of such pairs (X2, E1).

Next, choose a nef and big divisor H on X2 such that OX2
(H)|E1

∼=
OX1

(E1)|E1
. For the explicitly constructed pair above, one may take H to

be three times the pull-back of the hyperplane section from P2 minus d of
the exceptional curves; for this H the condition OX2

(H)|E1
∼= OX1

(E1)|E1

imposes a second condition on the positions of the Pi, so we have a (16− d)-
dimensional family of suitable choices of (X2, E1) and H.

Now glue the surfaces X1 and X2 along the curve E1 to obtain a normal
crossing surface V0 := X1 ∪E1

X2. By construction, V0 is a polarized sta-
ble K3 surface of Type II [15, Definition 3.1], with polarizing class h :=
(E1, H) ∈ H2(X1,Z)⊕H2(X2,Z). Define M ⊂ H2(X1,Z)⊕H2(X2,Z) to
be the smallest primitive sublattice containing L and h. By construction
we have M ⊂ Gr2(H2(V0)), where we have equipped H2(V0) with Deligne’s
mixed Hodge structure on a normal crossing variety.

Now, a mild modification to the proof of [15, Proposition 4.3] shows that
V0 is the central fibre in a Type II degeneration of K3 surfaces π : V → ∆,
such that the restriction of V to ∆∗ is an M -polarized family of K3 surfaces.
It thus only remains to prove that L and M are compatible; this follows
from the fact that L⊥[E1]⊥ is orthogonal to M . �

Now we proceed to the mirror. The next lemma allows us to relate the
mirror lattices Ľ and M̌ .

Proposition 6.8. Assume that the lattice polarizations L on (X1, E1) and
M on V∗ → ∆∗ are compatible. Then the mirror lattice Ľ is a sublattice of
the orthogonal complement (Zf)⊥

M̌
/Zf of the vector f in M̌ .

Proof. By definition, j defines an injection Ľ ↪→M⊥. To complete the proof,
we have to show that Ľ is in the orthogonal complement of both e and f ; i.e.
that Ľ ⊂ I⊥/I. But this follows immediately from the fact that the image
of j lies in Gr2(H2

lim). �

Now we put all the pieces together. Let W be a K3 surface that is
Dolgachev-Nikulin-Pinkham mirror to a general fibre Vp of V. Then there
exists a lattice polarization ν : M̌ ↪→ Pic(W ). By the previous proposition,
we may identify Ľ with a sublattice of M̌ .

Let RĽ denote the sublattice of Ľ generated by roots and let α, α′ ∈
RĽ be any two roots. It follows from standard results on K3 surfaces [3,
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Proposition VIII.3.7] that either ν(α) or ν(−α) is the class of an effective
divisor on W , and if ν(α) and ν(α′) are both classes of effective divisors,
then so is ν(α+ α′). Thus there is a set of positive roots Φ+ ⊂ RĽ such that
ν(Φ+) is contained in the effective cone in Pic(W ).

In fact, we can say more. Recall from [11, Proposition 4.1] that ν(f) is
the class of a fibre in an elliptic fibration on W and, by Proposition 6.8, we
have Ľ ⊂ (Zf)⊥

M̌
/Zf . Thus ν(β).ν(f) = 0 for all β ∈ Ľ.

This looks a lot like the definition of an Ľ-polarization on a rational
elliptic surface (Y,D) of type d (where we identify ν(f) with the class of
the divisor D). This is not unexpected: the discussion from [11, Section 4]
suggests that the type II degeneration V should be mirror to a “slicing” of
the base P1 of the fibration on W into a series of (necessarily) analytic open
sets, such that the fibration over each slice is mirror to a component of the
central fibre V0. In our setting, this gives the following conjecture.

Conjecture 6.9. There exists an analytic open set in W which is iso-
morphic to an analytic open set Y \ ZD in an Ľ-polarized rational elliptic
surface (Y,D) of type d, where ZD is a small closed neighbourhood of the
elliptic fibre D.

Remark 6.10. The philosophy of [11] suggests that the notion of mirror
symmetry presented in this paper should admit a significant generalization
to quasi-Fano pairs: pairs (X,C) consisting of a rational surface along with
a smooth (but not necessarily nef and big) anticanonical divisor C. The pair
(X2, E1) constructed in the proof of Proposition 6.7 is an example of such a
quasi-Fano pair, that is not a weak del Pezzo pair (the anticanonical divisor
E1 is not nef). Most of the proofs in this section (with the notable exception
of Proposition 6.7) require only minor modifications to work in this broader
setting, and we would therefore expect a version of Conjecture 6.9 to hold.
In this setting it is likely that the mirror will still be an elliptic fibration
over an analytic open subset of C, but we do not expect it to always admit
a compactification to a rational elliptic surface. We aim to address this in
future work.

Remark 6.11. We briefly remark on a version of this conjecture in the set-
ting of homological mirror symmetry. Homological mirror symmetry between
the K3 surfaces Vp and W may be formulated as an equivalence between
the category Perf(Vp) of perfect complexes on Vp and the Fukaya category
Fuk(W ) of W . Harder and Katzarkov [20] have studied the extension of this
equivalence to semistable degenerations of Type II, albeit in a much broader
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setting to the one considered here. In particular, they construct the category
Perf(V0) of perfect complexes on the semistable fibre V0, which is a defor-
mation of Perf(Vp), then present evidence for the conjecture that Perf(V0)
is equivalent to the derived exact Fukaya category of the complement of
(k − 1) smooth fibres in the fibration on W (where, as above, k denotes the
number of irreducible components in V0).

To complete the picture note that, according to Seidel [33], the Fukaya
category of W with (k − 1) smooth fibres removed should be a deformation
of the Fukaya category of W . We expect that Seidel’s deformation of Fuk(W )
should agree with the deformation of Perf(Vp) to Perf(V0).

7. Compatibility with the Gross-Siebert program

In this section we will describe how the conjectures of Section 5 should
fit with the Gross-Siebert mirror construction. We rely extensively on the
methods from [16, 18] to perform these computations; we refer the interested
reader to those papers for further details of the techniques used.

7.1. Degree 8′

We begin by describing in detail how this construction works in the degree
8′ case, as this case is simple enough to be tractable but complex enough to
display some interesting geometry. In this case f⊥8′ ⊂ Λ8′

∼= II1,1 is generated
by the root a− b (here a, b are generators of II1,1 as in Section 2; they have
a2 = b2 = 0 and a.b = 1). We therefore have two possible choices of lattice
polarization: L = 0 or L = f⊥8′

∼= A1. So that we can discuss the ideas of
Section 5.1, for now we assume L = f⊥8′ ; the case L = 0 will be discussed in
Remark 7.2.

So let (X,C) be an L-polarized weak del Pezzo pair of degree 8′, with L =
f⊥8′
∼= A1. Then X ∼= F2 and C is a smooth elliptic curve. Let s denote the

class in H2(X,Z) ∼= Pic(X) of the unique (−2)-curve in X and let f denote
the class of a fibre of the ruling on X. Then s, f are primitive generators of
H2(X,Z) and s is a positive root which generates L. If we identify s and f
with their Poincaré duals, then s, f also generate the cone of effective curves
on X.

Remark 7.1. To run the Gross-Siebert program and find the mirror of
(X,C), we first need to perform a toric degeneration of (X,C). However,
even for simple toric degenerations, the computations required to proceed
with the program from there are intractable with current methods.
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Instead, we travel by an easier route: we fix X and degenerate C to a
union of four smooth rational curves C ′ = C1 ∪ C2 ∪ C3 ∪ C4, find the Gross-
Siebert mirror of the pair (X,C ′) (which is very tractable with the methods
of [18]), then attempt to correct for the degeneration of C at the end. Note
that this is not a rigorous application of the Gross-Siebert program, so the
mirror we produce here is not the Gross-Siebert mirror of (X,C) in a strict
sense; we nonetheless hope that most important properties are shared be-
tween the two constructions.

Let C ′ = C1 ∪ C2 ∪ C3 ∪ C4 ⊂ X denote a degeneration of C a union of
four smooth rational curves, arranged in a square and ordered cyclically,
chosen so that [C1] = s, [C2] = [C4] = f , and [C3] = s+ 2f .

Next define B to be the tropicalization of X, defined as follows. Let
DivC′(X) ⊂ Div(X) denote the subspace of divisors supported on C ′ and set
DivC′(X)R := DivC′(X)⊗Z R. Note that {Ci} forms a basis of DivC′(X)R.
Let DivC′(X)∗ = Hom(DivC′(X),Z) denote the dual lattice, DivC′(X)∗R :=
DivC′(X)∗ ⊗Z R, and {C∗i } denote the dual basis of DivC′(X)∗R. Define a
collection of cones in DivC′(X)∗R by

P :=

{∑
i∈I

R≥0C
∗
i

∣∣∣∣∣I ⊂ {1, 2, 3, 4} such that
⋂
i∈I

Ci 6= ∅

}
=
{
R≥0C

∗
1 , R≥0C

∗
2 , R≥0C

∗
3 , R≥0C

∗
4 ,R≥0C

∗
1 + R≥0C

∗
2 ,

R≥0C
∗
2 + R≥0C

∗
3 , R≥0C

∗
3 + R≥0C

∗
4 , R≥0C

∗
1 + R≥0C

∗
4

}
.

and set B :=
⋃
τ∈P τ . Finally, set B(Z) := B ∩DivC′(X)∗.

Let P denote the monoid in H2(X,Z) generated by the classes s and
f ; note that P contains all effective curve classes. We may identify C[P ]
with C[x, y] by identifying the class ms+ nf with the monomial xmyn. Let
m = 〈x, y〉 denote the maximal ideal, and set I ⊂ C[x, y] to be any ideal with√
I = m. Write AI = C[x, y]/I and set RI to be the free AI -module

RI :=
⊕

p∈B(Z)

AIϑp.

We next define a multiplicative structure to make RI into an AI -algebra.
Define

ϑp.ϑq :=
∑

r∈B(Z)

αpqrϑr
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for αpqr ∈ AI defined by

αpqr =
∑
β∈P\I

Nβ
pqrx

myn,

where β = ms+ nf and Nβ
pqr is a count of curves in the class β.

In our case, Nβ
pqr is the number of rational curves Z in class β with

marked points x1, x2, x3 such that

• Z is tangent to Ci at x1 with order p(Ci);

• Z is tangent to Ci at x2 with order q(Ci);

• Z is tangent to Ci at x3 with order −r(Ci);

• x3 maps to a specified point in
(
∩i:r(Ci)>0Ci

)◦
(where this intersection

is X if r = 0).

For instance, for the product ϑC∗2 .ϑC∗4 , if we set r =
∑4

j=1 rjC
∗
j we find

β.Ck = C∗2 (Ck) + C∗4 (Ck)−
4∑
j=1

rjC
∗
j (Ck)

=

{
−rk if k = 1, 3

1− rk if k = 2, 4.

But, if β = ms+ nf , we also see that

β.Ck =


−2m+ n if k = 1

m if k = 2, 4

n if k = 3.

Since m,n ≥ 0 and rk ≥ 0 for all k, it follows that we must have n = 0 and
m ∈ {0, 1}. However, if m = 0 then r = C∗2 + C∗4 , which is not a class in
B(Z). So we must have m = 1, which implies that β = s and r = 2C∗1 .

N s
C∗2 ,C

∗
4 ,2C

∗
1

is the number of rational curves in the class s = [C1] which
intersect C2 and C4 once each, have intersection number (−2) with C1, and
pass through a specified point in C◦1 . There is clearly only one such curve
(which is C1 itself), so N s

C∗2 ,C
∗
4 ,2C

∗
1

= 1 and αC∗2 ,C∗4 ,2C∗1 = x. Thus we find

ϑC∗2 .ϑC∗4 = xϑ2C∗1 .
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Similarly, with the convention ϑ0 = 1, we obtain

ϑC∗1 .ϑC∗3 = y,

ϑC∗i .ϑC∗i = ϑ2C∗i ,

ϑC∗i .ϑC∗i+1
= ϑC∗i +C∗i+1

,

where all indices are taken modulo 4.
Finally, the Gross-Siebert mirror of (X,C ′) is a general member of the

family Spec R̂→ SpecC[x, y], where R̂ is the inverse limit lim←RI over ide-
als I ⊂ C[x, y] with

√
I = m. This is equal to

SpecC[x, y][ϑC∗1 , ϑC∗2 , ϑC∗3 , ϑC∗4 ] / (ϑC∗1ϑC∗3 − y, ϑC∗2ϑC∗4 − xϑ
2
C∗1

)

��

SpecC[x, y].

A general member of this family admits a fibration over C (with parameter
t) given by t = ϑC∗1 + ϑC∗2 + ϑC∗3 + ϑC∗4 . The general fibre in this fibration is
an elliptic curve with four punctures.

Now we come back to the fact that we began by degenerating C to C ′ =
C1 ∪ C2 ∪ C3 ∪ C4 (see Remark 7.1). The philosophy of mirror symmetry
states that smoothing the four nodes in C ′ to obtain C corresponds to filling
in the four punctures in the elliptic fibres on the mirror, so we attempt to
correct for our original degeneration C ; C ′ by compactifying the fibres in
the mirror of (X,C ′) to smooth elliptic curves.

This can be done explicitly as follows. Fix x, y ∈ C generic and write a
general member of the family above as

(7.1) {ac− y, bd− xa2} ⊂ A4[a, b, c, d],

where we have set a := ϑC∗1 , b := ϑC∗2 , c := ϑC∗3 , and d := ϑC∗4 for clarity.
Compactifying to P4, we obtain

{ac− ye2, bd− xa2} ⊂ P4[a, b, c, d, e].

This surface has simple nodes (A1 singularities) at the points (0, 1, 0, 0, 0)
and (0, 0, 0, 1, 0), and an A3 at the point (0, 0, 1, 0, 0). These singularities
should be resolved in the usual way to obtain a smooth surface S.

The equation a+ b+ c+ d = te (for t ∈ P1) defines a pencil of elliptic
curves with 4 base points on S. Blowing up these four base points, we obtain
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a rational elliptic surface Y fibred over P1 (with parameter t), which has
an I8 singular fibre D over t =∞ and four singular fibres of type I1 over
the points t = ±2

√
y(1± 2

√
x). We find that the pair (Y,D) is a generic

(unpolarized) rational elliptic surface of type 8′. Removing D, we obtain
an elliptic fibration over C, which should be thought of as mirror of our
original pair (X,C). As Ľ = 0 in this setting, this agrees with the prediction
of Conjecture 5.1.

Since L = f⊥8′ and Ľ = 0, we may go further and ask how this fits with
the correspondence between complex and Kähler moduli discussed in Sec-
tion 5.1. Suppose that we have fixed an embedding L = f⊥8′ ↪→ F⊥8′ . Then we
wish to examine the relationship between the Kähler cone of X in a neigh-
bourhood of the ray generated by [C], and the strata in the complex moduli
space of Y in a neighbourhood of the stratum U8′,L.

We begin by studying the complex deformations of Y given by the family
(7.1). Away from the lines {x = 0} and {y = 0}, where the members of
this family become non-normal, there is only one special sublocus where
degenerations occur. This is the sublocus {x = 1

4}, where two of the I1 fibres
collide to produce a fibre of type I2. A member of the family (7.1) over a
point in {x = 1

4} is a lattice polarized rational elliptic surface of type 8′,
polarized by the lattice L ∼= A1; such surfaces are all isomorphic. Indeed,
the members of the family (7.1) over any line {x = constant, y 6= 0} are
all isomorphic, so the period map factors through the projection to the y-
axis. The correspondence with the stratification (3.1) here is clear: P8′,0

corresponds to the entire (x, y)-plane (without the two lines {x = 0} and
{y = 0}), and U8′,L corresponds to the sublocus {x = 1

4}.
Next we look at the nef cone of X. This cone is generated by the two

classes [C] = s+ 2f and f , which lie along its boundary rays. It is dual to
the effective cone, which is generated by the classes s and f .

Now we make an important observation. The ray generated by [C] in the
nef cone is dual to the ray generated by s in the effective cone. Let P ′ ⊂ P
denote the submonoid obtained by setting the coefficient of s to zero (so P ′ is
generated by multiples of f). Identifying C[P ] with C[x, y] and taking Spec,
we find that the submonoid P ′ gives rise to a sublocus {x = constant} in
A2[x, y]. This is precisely the form observed for the sublocus corresponding
to the lattice enhancement above. This idea will be discussed further in
Section 7.3.

Remark 7.2. One may ask what happens if we perform the same calcu-
lation for a generic (unpolarized) weak del Pezzo pair (X,C) of degree 8′.
Here X = P1 × P1 and C is a smooth anticanonical divisor. For a suitable
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degeneration C ; C ′, the Gross-Siebert mirror of (X,C ′) is the family over
SpecC[x, y] given by

(7.2) {ac− y, bd− x} ⊂ A4[a, b, c, d].

Compactifying to P4, we obtain

{ac− ye2, bd− xe2} ⊂ P4[a, b, c, d, e].

This surface has four simple nodes at (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
and (0, 0, 0, 1, 0); these should be resolved to obtain a smooth surface S.

The equation a+ b+ c+ d = te (for t ∈ P1) defines a pencil of elliptic
curves with 4 base points on S. Blowing up these four base points, we obtain
a rational elliptic surface Y fibred over P1 (with parameter t), which has an
I8 singular fibre D over t =∞ and four singular fibres of type I1 at the points
t = ±2

√
x± 2

√
y. As above, the pair (Y,D) obtained is a generic rational

elliptic surface of type 8′. Removing D, we obtain an elliptic fibration over
C, with four singular fibres of type I1.

This is not what is predicted by Conjecture 5.1, which claims that the
mirror should be polarized by the lattice f⊥8′

∼= A1. Such a polarization
should give rise to a fibration over C with two fibres of type I1 and one
fibre of type I2.

However, we may salvage something: f⊥8′ -polarized rational elliptic sur-
faces appear as the subfamily x = y in the family (7.2). We postulate that it
is this subfamily which is the mirror to (X,C) in the lattice polarized sense.

This appears to be a general phenomenon. Indeed, in all cases with
RĽ 6= 0 that we have explicitly computed, the mirror family predicted by
Conjecture 5.1 appears as a subfamily of the computed mirror family.

7.2. Degree 8

It is instructive here to contrast the case of a weak del Pezzo pair (X,C)
of degree 8. In this case, X is always isomorphic to the Hirzebruch surface
F1 (independent of the choice of lattice polarization) and C is a smooth
anticanonical divisor. Running the Gross-Siebert program for a suitable de-
generation C ; C ′, as above, we obtain a family over A2[x, y] given by

(7.3) {ac− y, bd− xa} ⊂ A4[a, b, c, d],
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which is the Gross-Siebert mirror to the pair (X,C ′). Compactifying to P4,
we obtain

{ac− ye2, bd− xae} ⊂ P4[a, b, c, d, e].

This surface has A1 singularities at (0, 1, 0, 0, 0) and (0, 0, 0, 1, 0), and an A2

at (0, 0, 1, 0, 0); these should be resolved to obtain a smooth surface S.
The equation a+ b+ c+ d = te (for t ∈ P1) defines a pencil of elliptic

curves with 4 base points on S. Blowing up these four base points, we obtain
a rational elliptic surface Y fibred over P1 (with parameter t), which has an
I8 singular fibre D over t =∞ and four singular fibres of type I1 at the roots
of the polynomial

t4 + xt3 − 8yt2 − 36xyt− 27x2y + 16y2.

In this case, the pair (Y,D) is a generic rational elliptic surface of type 8.
Removing D, we obtain an elliptic fibration over C, which should be thought
of as mirror to our original pair (X,C).

How does this fit with lattice polarizations? Recall that f8 = 3l − e1 ∈
I1,1, so f⊥8 is generated by l − 3e1, which has self-intersection −8 (see Ta-
ble 4.1). Thus f⊥8 does not contain any roots and RL = {0} independent of
which polarizing lattice L we take. Proceeding to the mirror, the fact that
f⊥8 does not contain any roots also implies that RĽ must be trivial, so the
mirror to (X,C) should be the open set Y \D in a generic rational elliptic
surface (Y,D) of type 8. This is exactly what is given by equation (7.3).

This is not quite the end of the story for degree 8. Indeed, one may
ask whether the rational elliptic surface defined by equation (7.3) can ever
acquire fibres that are worse than I1 away from t =∞, as happened along the
sublocus {x = 1

4} in the degree 8′ case? Indeed, examining the discriminant
of the quartic equation determining t, one sees that such fibres occur if and
only if 256y + 27x2 = 0. Imposing this condition, we obtain a rational elliptic
surface with two fibres of type I1 and one fibre of type II. But a type II fibre
is irreducible, so does not give an enhancement in the lattice polarization.

7.3. A compatibility conjecture

Based on computations like these, we conclude this paper with a conjecture
that relates the notion of mirror symmetry introduced in Section 5 to the
Gross-Siebert program.

We begin with some setup. Let (X,C, µ) denote a marked L-polarized
weak del Pezzo pair of degree d, with L = f⊥d . Let P denote the effective cone
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of X. Then by [4, Proposition 6.2], P is rational polyhedral and generated
by a finite set of rays; let r1, . . . , rn denote generators of these rays, for some
n ∈ N.

Let {α1, . . . , αk} denote the set of simple roots in Φ+
L . By Proposition 4.8,

each face Fi of Nef(X) with [C] ⊂ Fi is orthogonal to µ−1(αi), for some
i ∈ {1, . . . , k}. Thus, by duality, each class µ−1(αi) generates one of the
boundary rays rj in the effective cone. Without loss of generality, assume
that µ−1(αi) = ri, so that [C] is orthogonal to the face of the effective cone
generated by {r1, . . . , rk}.

In this setting, the computation of Section 7.1 constructs a mirror fam-
ily Y over SpecC[P ]. Let xi denote the variable in C[P ] corresponding to
ri. Based on the the mirror correspondence postulated in Section 5.1 and
the computations of Sections 7.1 and 7.2, one might expect there to ex-
ist codimension 1 subfamilies Yi := {xi = ci} of Y, for ci constants and
i ∈ {1, . . . , k}, so that Yi corresponds to the codimension 1 stratum Ud,〈αi〉 ⊂
Pd,0 (here we have assumed that an embedding L = f⊥d ↪→ F⊥d has been cho-
sen, so 〈αi〉 ⊂ L can be identified with an overlattice of Ľ = 0 ⊂ F⊥d ).

Unfortunately this is not quite the case. The mirror correspondence in
Section 5.1 is fundamentally local in nature; when we attempt to extend
it to the constructed mirror family Y we find that we cannot, in general,
make a global choice of marking, so we cannot directly identify subfamilies
of Y with strata in the (marked) period domain Pd,0. Instead, we have to
compensate for the possible action of monodromy on the markings.

By [17, Lemma 4.3], this monodromy group is contained in the group
Admd of d-admissible automorphisms of I1,9.

Definition 7.3. An automorphism of I1,9 is d-admissible if it fixes the
sublattice Fd and preserves the cone C++

d .

Remark 7.4. The results of [17, Section 6] show that the stack quotient
Pd,0/Admd is a period domain for unmarked rational elliptic surfaces of
degree d, and the corresponding period mapping is an isomorphism over an
open set in this space.

The group Admd acts on the set {α1, . . . , αk} of simple roots in F⊥d . For
each αi ∈ {α1, . . . , αk}, define Ad(αi) to be the set of αj ∈ {α1, . . . , αk} such
that αj = ϕ(αi) for some ϕ ∈ Admd. The set Ad(αi) should be thought of
as those simple roots αj ∈ Φ+

L that are equivalent to αi up to the choice of
marking. Similarly, define Ad(ri) to be µ−1(Ad(αi)) and Ad(xi) to be the
set of variables in C[P ] corresponding to Ad(ri).
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Then we have the following conjecture, which should be thought of as a
formalization of the discussion in Section 5.1.

Conjecture 7.5. For each face Fi of Nef(X) with [C] ⊂ Fi, there exists a
codimension 1 subfamily Yi of the mirror family Y (constructed using the
method of Section 7.1) whose members are 〈αi〉-polarized rational elliptic
surfaces of type d. Explicitly, Yi is given by a subfamily fi(Ad(xi)) = 0,
where fi(Ad(xi)) is a polynomial in the variables from the set Ad(xi).

Moreover, if S =
⋂
i∈I Fi is a subface of Nef(X), then the subfamily

YS :=
⋂
i∈I Yi is a family of 〈αi : i ∈ I〉-polarized rational elliptic surfaces

of type d.

Remark 7.6. We note that the subfamilies Yi will not, in general, all be
distinct. Indeed, we should have Yi = Yj if and only if Ad(αi) = Ad(αj).
In this case, one should think of the two faces Fi and Fj of Nef(X) as
corresponding to two different markings on the surfaces in the subfamily Yi.

We also note that if Yi = Yj , then an intersection Yi ∩ Yj should be
interpreted as a singular locus in Yi of codimension 1.

Remark 7.7. The authors have verified this conjecture explicitly for de-
grees d ∈ {6, 7, 8, 8′, 9}.

Remark 7.8. One might hope that a similar conjecture would hold to de-
scribe the structure of the Gross-Siebert mirror of (X,C) (see Remark 7.1).
However, the difficulty of explicitly computing Gross-Siebert mirrors means
that the authors have been unable to verify this in even the simplest cases.

Example 7.9. This conjecture is best illustrated by an example. Consider
a marked L-polarized weak del Pezzo pair (X,C, µ) of degree 6, with L =
f⊥6
∼= A2 +A1. The lattice L contains three simple roots α1, α2, α3 ∈ Φ+

L ,
and the effective cone P of X is generated by the αi and an additional class
E, with intersection matrix

E α1 α2 α3

E −1 1 1 0
α1 1 −2 0 0
α2 1 0 −2 1
α3 0 0 1 −2

By Proposition 4.8, in a neighbourhood of the ray generated by [C] =
[−KX ], the codimension 1 faces of Nef(X) are given by the three hyperplanes
Fi := (µ−1(αi))

⊥.
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Identify C[P ] with C[x, y, z, t] by identifying the class kα1 + lα2 +mα3 +
nE with xkylzmtn. The construction of Section 7.1 gives rise to a family Y
over SpecC[x, y, z, t], whose generic member is an (unpolarized) rational el-
liptic surface of degree 6. Then we find the following correspondence between
subfamilies and the structure of Nef(X).

• The locus {x = 1
4} gives rise to a subfamily Y1 of rational elliptic sur-

faces with fibre type I6I2I1I1I1I1. These admit a polarization by the lat-
tice 〈α1〉 ∼= A1. Noting that A6(α1) = {α1}, we see that A6(x) = {x},
so f1(A6(x)) = x− 1

4 . In the sense of Conjecture 7.5, this subfamily is
mirror to the face F1.

• The locus {27y2z2 − 18yz + 4y + 4z − 1 = 0} gives rise to a subfamily
Y2 of rational elliptic surfaces, which also have fibre type I6I2I1I1I1I1.
These admit a polarization by the lattice 〈α2〉 ∼= A1. Observing that
A6(α2) = A6(α3) = {α2, α3}, we find that A6(y) = A6(z) = {y, z}, so
f2(A6(y)) = f3(A6(z)) = 27y2z2 − 18yz + 4y + 4z − 1. In the sense of
Conjecture 7.5, this subfamily is mirror to the faces F2 and F3.

• The sublocus {x− 1
4 = 27y2z2 − 18yz + 4y + 4z − 1 = 0}, correspond-

ing to the intersection Y1 ∩ Y2, gives rise to a subfamily Y12 of rational
elliptic surfaces, which have fibre type I6I2I2I1I1. These admit a polar-
ization by the lattice 〈α1, α2〉 ∼= A1 +A1. In the sense of Conjecture
7.5, this subfamily is mirror to the faces F1 ∩ F2 and F1 ∩ F3.

• The locus {27y2z2 − 18yz + 4y + 4z − 1 = 0} is singular in codimen-
sion 1, along the sublocus {y = z = 1

3}. Over this sublocus, we have
a subfamily Y22 of rational elliptic surfaces which have fibre type
I6I3I1I1I1. These admit a polarization by the lattice 〈α2, α3〉 ∼= A2.
In the sense of Conjecture 7.5, this subfamily is mirror to the face
F2 ∩ F3.

• Finally, we have the sublocus {x− 1
4 = y − 1

3 = z − 1
3 = 0}. Over this

sublocus we have a subfamily Y122 of rational elliptic surfaces which
have fibre type I6I3I2I1. These admit a polarization by the lattice L =
〈α1, α2, α3〉 ∼= A2 +A1. In the sense of Conjecture 7.5, this subfamily
is mirror to the face F1 ∩ F2 ∩ F3, which is the ray generated by [C].
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