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Abstract

The Doran-Harder-Thompson “gluing/splitting” conjecture unifies mirror sym-

metry conjectures for Calabi-Yau and Fano varieties, relating fibration structures

on Calabi-Yau varieties to the existence of certain types of degenerations on their

mirrors. This was studied for the case of Calabi-Yau complete intersections in toric

varieties in [12] for the Hori-Vafa mirror construction. In this paper we prove one

direction of the conjecture using a modified version of the Gross-Siebert program.

This involves a careful study of the implications within tropical geometry and

applying modern deformation theory for singular Calabi-Yau varieties.

Mirror symmetry started with the study of Calabi-Yau manifolds, predicting a du-

ality associating to any Calabi-Yau X a mirror partner X̌. As it grew it came to

incorporate other statements, most notably it predicts a similar duality associating to

any Fano variety and anti-canonical divisor pZ,Dq a Landau-Ginzburg model, a variety

W̌ and a super-potential w : W̌ Ñ C. The theory of Landau-Ginzburg models was

formalised in [1] where these were required to be a fibration of X̌ by lower dimensional

Calabi-Yau varieties.

The two worlds, Calabi-Yau and Fano, meet in the example of Tyurin degenerations.

A Tyurin degeneration is a semi-stable degeneration Xt Ñ ∆ such that the central fibre

is the union of two smooth components X0 “ Z1 Y Z2 meeting along a smooth divisor

D. From the work of Kawamata-Nakayama D is an effective anti-canonical divisor on

the components Zi, and the normal bundles are dual, ND{Z0
bND{Z0

– OD, and this is a

necessary and sufficient condition for such smoothings to exist. This was expanded on

by Kato in [13] where he proved that this condition is equivalent to the existence of a

log structure of semi-stable type (in modern language locally free) on the central fibre,

log smooth over the standard log point. This generalises the Kawamata-Nakayama

condition since there are surgeries permitted by log geometry which produce central

fibres necessarily smoothable but not of the type they consider, where the central fibre
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is a chain of components. The most basic example would be to blow up D inside

the total space, to obtain a smoothable central fibre with three smooth components,

Z0 Y Z1 Y Z2 meeting along two copies of D, say D1 and D2. Note that it is not

true that we have a balancing condition ND1{Z0
b ND1{Z1

– OD1
, instead we only have

ND1{Z0
b ND1{Z1

b ND2{Z1
b ND2{Z2

– OD.

We will study higher order degenerations extending the definition of Tyurin degen-

erations. This produces a notion of higher rank Landau-Ginzburg model, appearing in

situations where we have not a smooth divisor pair, but an snc divisor pair.

Definition 0.1. Let X Ñ A1 be a family such that Xgen and X are both smooth and

the central fibre is an snc divisor whose smallest strata is codimension k. We call

such families k-Tyurin degenerations, in analogy to type k degenerations of Calabi-Yau

varieties.

Let S be a smooth variety of dimension k and w : W Ñ S a proper family with

W smooth and generic fibre a smooth Calabi-Yau. We call such a structure a rank k

Landau-Ginzburg model.

There is relatively little literature on higher rank LG models. A sensible restric-

tion is to look at those families such that S admits an snc compactification and such

that W admits a relatively log smooth compactification whose fibres over an n dimen-

sional strata of S has a strata of dimension n. This recreates the expectation that the

compactification of an LG model has a MUM point at infinity. We will see how this

condition naturally arises. For the remains of the introduction we exposit the Tyurin

case where k “ 1.

Under these conditions we can form the mirror to Xgen, }Xgen, and the mirror to

the pairs pZ0,Dq and pZ1,Dq, W0 : qZ0 Ñ C and W1 : qZ1 Ñ C. One direction of the

Doran-Harder-Thompson conjecture is the statement that }Xgen is fibred over P1, which

we prove given a compatible toric degeneration:

Conjecture 0.2 (“Degenerations to Fibrations”). [Corollary 2.14] If X admits a Tyurin
degeneration to Z0 YD Z1 then the mirror }Xgen admits a map to P1 with fibres smooth
Calabi-Yau varieties of one dimension lower and further D is mirror to a generic fibre
of this fibration.

Our proof naturally extends to k-Tyurin degenerations, and demonstrates that they are

fibred over a k-dimensional base.

A reconstruction theorem of the following flavour was found to hold in [11], [21].

These cases have the property that the fibres have at most one dimensional complex

moduli, and this seems to be a necessary condition to have a holomorphic gluing,

forming a second part of the conjecture:

Conjecture 0.3 (“Reconstruction via gluing”). [Theorem 3.8] Suppose that the fibres of
qZ0 Ñ A1 have one dimensional complex moduli. Then the Calabi-Yau }Xgen is obtained
by gluing the LG models qZ0 to qZ1 along the fibres over C˚ Ă C under a deformation of
the map t ÞÑ t´1.
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This conjecture has geometric interpretations on the level of periods for Calabi-

Yau complete intersections in toric varieties using techniques from [33]. As stated the

conjecture is agnostic of how we construct the mirror, one typically uses the Batyrev-

Borisov construction of [34] or the Hori-Vafa construction of [19]. We will use an

older version of the Gross-Siebert program, which assumes the existence of a toric

degeneration:

Theorem 0.4. Suppose that X Ñ A1 is a simple toric degeneration. Then the mirror
to Xgen is given by an explicit log smoothing of a combinatorially determined central
fibre. It is a smoothing of a singular space over a monoid ring of effective curve classes
in X.

We define a compatibility of toric degenerations and Tyurin degenerations, and in

general between toric and type k degenerations with smooth total space. From this we

find a fibration of a component of the mirror before we smooth. It is not clear at the

moment how to simultaneously smooth both |X0 and a Calabi-Yau subvariety inside it

purely using the techniques of the program. The algebra map on the central fibre is

clear, but there are quantum corrections that occur during the smoothing procedure

which we cannot control.

Thankfully there has been a large amount of progress in the past year on how to

smooth log Calabi-Yau varieties using scattering diagrams. For us the most notable

are recent advances first by Chan-Leung-Ma in [5] and then by Felten-Filip-Ruddat

in [31]. These perturb the Maurer-Cartan equation in an iterative way to construct a

formal, and then analytic, smoothing. The problem of smoothing complexes was studied

in [7] where the authors give a smoothing criterion for locally free complexes, which

is not satisfied by our examples. Following classical deformation theory we prove the

smoothability of a Calabi-Yau variety and a Calabi-Yau subvariety with trivial normal

bundle by directly relating the BV-algebras used in the correction process. This also

shows that if the normal bundle is not trivial then the subspace is at least stable. This

result is perhaps of independent interest for constructing subvarieties tropically:

Theorem 0.5 (Theorem 2.12). Let X be a log toroidal family over Spec k:, and D Ă

X a strictly embedded complete intersection Calabi-Yau subvariety transverse to the
singularities of the log structure on X. Then there are smoothings of the pair X,D over
Spec krrtss

This statement could be proved by other means, showing that the normal bundle in

this case describes locally isotrivial smoothings. Our eventual goal would be to construct

a scattering process that extends this result to the intrinsic construction of [25]. This

requires that we study an appropriate differential graded Lie algebra (dgLa) via this

more complicated machinery.

Finally we apply relative deformation theory to the interior of the LG models and

the fibration. This process only applies on the level of formal geometry, as relative

deformation theory over an affine base is not very well behaved in the algebraic or

analytic categories. We prove that |X0 restricted to the interior Gm Ă A1 is a versal
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deformation space for families of |D0-bundles under a surjectivity assumption that can

be checked on the mirror. If |D0 has one dimensional deformation space this allows us

to produce an open formal embedding of W0 into X.

In the case of k-Tyurin degenerations the analogous statement requires a surjectivity

H1pΘqXq Ñ H1pΘqDq. For the simple toric degenerations we consider this can be studied

on the mirror.

Comments on restrictions

There are four comments we must make about this work. Firstly we do not know how

to construct a quasi-Fano variety directly from a Landau-Ginzburg model. There is

the work of Prince in [28] which has partial solutions but this does not apply in the

generality we are looking for. This makes the converse of the theorem impossible to

resolve using these techniques in complete generality.

On the other hand the statement that the mirror to a fibred Calabi-Yau admits a

Tyurin degeneration is tractable. In this case there is a canonical affine direction on

the base of the mirror, corresponding to pairing with a fibre class. Once one smooths

perpendicularly to this one should obtain a log scheme which is log smooth over the

standard log point, which by [13] is enough to produce a Tyurin degeneration. This

requires a much stronger analysis of the local structure of partial smoothings of the log

structure than appears in say [17].

The third comment is that we are restricted here to working in the case where X is

not dimension two. This is to avoid a polarisation issue that is intrinsic to the geometry

of K3 surfaces. So long as the tropicalisation ΣpXq has vanishing H2 every choice of

open gluing data for the fan picture gives rise to a choice of gluing data for the cone

picture and our construction is written directly in terms of the cone picture. A more

detailed study of the K3 surface case and its subtleties will be performed in [15].

Since there are already subtleties of mirror symmetry for K3 surfaces that have not

been addressed in the wider literature we pass on addressing this.

The final comment is that it is possible to prove that the mirror is fibred directly

from the recent paper [25]. Unfortunately it is not immediately clear what it is fibred

by. Essentially the toric degeneration assumption here forces enough local rigidity to

allow us to study the scattering diagram through other deformation theoretic means.

Historically this has precedent, the work of [25] came only after the work of [17]. In

future work we intend to use the gluing calculations of [9] and [35] and the period

calculations of [29] to prove the period gluing formulae of [12] from the perspective of

tropical curves, even though we do not know a precise method to prove that fibres are

mirror to D.
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1 From the general fibre inwards

We begin with an adapted version of toric Calabi-Yau degenerations to provide com-

patibility between toric and Tyurin degenerations.

Definition 1.1. Let S “ Spec krrt0, t1ss be the formal spectrum of a two dimensional

local ring with the log structure induced by the divisors t0 and t1. A toric connected

k-Tyurin degeneration over S is a proper normal log algebraic space over flat over S

with the following properties:

(i) The generic fibre Xη is an irreducible normal variety.

(ii) The fibre over t1 “ 0 is reducible and the components are in bijection with the

components over a closed point t0 “ a ‰ 0.

(iii) The restriction of X to the open subscheme Spec kppt0qqrrt1ss is a k-Tyurin degen-

eration. In particular the closed fibre of this family Spec kppt0qqrrt1ss{xt1y contains

a minimal smooth strata Dgen of codimension k, the intersection of components

Z0
gen up to Zk

gen. These have well defined boundary divisors, which we write BZi
gen

(iv) The central fibre X0 satisfies the assumptions (2) and (3) of [24] Definition 4.1.

(v) The map X Ñ S is a saturated and log smooth morphism away from a set S Ă X

which is relative codimension ď 2 and does not contain any toric strata of the

central fibre X0.

The fact that the general fibre is a k-Tyurin degeneration forces a very particular

structure on the log structure, at least near points of D.

Lemma 1.2. There are charts for the log structure on X in étale neighbourhoods of the
points of the closure of Dgen of the form:

t1 ÞÑ p t2 ÞÑ y0 . . . yk

for p, y0, . . . , yk generating a monoid subring and such that y0, . . . , yk are irreducible
elements cutting out Z0

gen up to Zk
gen generating an Nk submonoid and not dividing p.

Proof. Since X Ñ S is generically log smooth we can find charts:
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X

Spec krP s ˆSpec krN2s S Spec krP s

S Spec krN2s

φ

where the map N2 Ñ P is an inclusion, φ is smooth and t1 and t2 correspond to

the monomials p1, 0q and p0, 1q respectively and S Ñ Spec krN2s is smooth. Suppose

that we can write f#pt1q as a sum of irreducible elements
ř

aipi. These irreducible

elements give components of the fibre over t2 ‰ 0, with ai being the generic length

of the subscheme ti “ 0 over each component. But we assumed that on this locus

the degeneration had smooth total space, which enforces the above description of the

monoid map, where yi is the monomial zpi .

Now if p were divisible by any pi then there would be an entire divisor contained in

the fibre over t1 “ t2 “ 0. But by assumption f is flat. The ring elements yi are the

pullbacks of pi.

Definition 1.3. We set D to be the subscheme of X obtained locally by the equations

yi “ 0 for all i. We write Zi for the subscheme obtained locally by the equation yi “ 0.

We need to further restrict, so that the central fibre has degenerate properties similar

to a Tyurin degeneration. For us this means that D is a normal integral scheme, and

this is satisfied so long as X has property Sk`1 near D, in particular if the total space

of the degeneration is Cohen-Macaulay since we know D is R0 and R0 plus S1 implies

reduced. This is also satisfied for our examples arising as complete intersections in toric

varieties since toric varieties are always Cohen-Macaulay.

Definition 1.4. We say that X is a toric k-Tyurin degeneration if the induced toric

degeneration of D has normal integral total space and the Tyurin singular locus D is

transverse to the singular locus of the total space. We say that Zi is a toric degenerating
component if the induced degeneration of Zi is toric.

Many of the schemes appearing here are Cohen-Macaulay where being normal is

equivalent to being regular in codimension one, which is substantially easier to check,

we will use this observation without mention.

Taking the fibre of X over the closed subset t0 “ a t1 for generic choice of a (which

we may take to be 1) we obtain a toric degeneration in the sense of [24] Definition 4.1

over a DVR. We write this degeneration X∆. We can also extract from this the data of

a toric degeneration of the components of the Tyurin degeneration.

Lemma 1.5. The scheme D is a toric degeneration under the induced maps to V pt0 ´

a t1q.
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Proof. Condition (1) of [24] Definition 4.1 is trivial, the generic fibre Dgen is smooth.

To prove condition (2) we have to recall the construction and definition of the

normalisation from [32]. We proceed in two steps. The first restricts to the vanishing of

one of the yi, which interacts with the normalisation in an essentially trivial way. The

second step is then a stability under passing along a regular sequence.

We fix y1 say, and consider the associated degeneration of Z1. The central fibre

X0 has normalisation the disjoint union of toric varieties XΞi
for i P I and the central

fibre of Zi selects a subset J Ă I of the components. The connected and irreducible

components XΞi
are in bijection with the irreducible components of X0 via a birational

map with function field Ki. XΞi
is locally the integral closure of the corresponding

component of X0 inside the function field Ki.

By the universal property of [32, Lemma 035Q] the normalisation of Z is the disjoint

union
š

jPJ XΞj
. The conductor locus is precisely the union of the toric Weil divisors

not lying on an intersection between the components of Z1. In particular it is reduced,

the map CZ1
Ñ νpCZ1

q unramified and generically two-to-one. That the square:

CZ1

ś
jPJ XΞj

νpCZ1
q Z1

is Cartesian follows by the description of the conductor ideals appearing in [32, Lemma 035Q]

and co-Cartesian since all the objects are reduced, and embed into the corresponding

diagram for X. Hence it is enough to see that they have the same closed points as the

desired pushout, which they do by construction.

Condition (3) follows from firstly the fact that D0 is a complete intersection inside a

Gorenstein scheme, hence is Gorenstein, using theorem 1 of [22]. The second statement

follows from adjunction applied to the sequence of intersections V py1q, V py1, y2q, . . . ,D0.

Condition (4) is precisely encoded by our assumptions on the structure of the log

morphism X Ñ S.

The final restriction that we require is that the family be simple. In the context

of the Gross-Siebert program this is a monodromy requirement on the affine manifold.

It constrains the monodromy polytopes associated to each strata to be elementary

simplices, so the only integral points are the vertices.

Definition 1.6. A toric k-Tyurin degeneration is called simple if the induced degen-

eration of X is simple.

We could not answer satisfactorily if the induced degeneration of D is necessarily

also simple. If it is then we know that our construction here agrees with that appearing

in [24]. If it is not then we will see that it still carries a simple and generically log

smooth log structure by restriction, and so we did not pursue this. All the examples

we give of toric complete intersections indeed have this property.
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Of course one is interested in providing examples which satisfy these conditions.

The easiest examples of Tyurin degenerations of Calabi-Yau varieties are obtained as

a pk ` 1, 2q hypersurface in Pk ˆ P1 and applying the subdivision techniques of [20].

This corresponds to the polytope pk` 1q∆k ˆ 2∆1, the product of dilations of standard

simplices.

Example 1.7. We partially follow [14] and look for a product of MPCP desingulariza-

tions of the total family. Fix an MPCP subdivision of pk ` 1q∆k Ă Rk with associated

strictly convex function hPk and we implicitly pull this back to Rk ‘ R. On the other

hand we have the piecewise linear function on R given by hP1 “ maxp0, xq where x is a

coordinate on the final factor, giving an MPCP desingularization of the polytope for P1.

Again we use the same notation for the pullback. The sum h “ hPk `hP1 `φPkˆP1 gives

a polytopal decomposition of pk` 1q∆k ˆ 2∆1 together with a strictly convex piecewise

linear function on the refinement, such that h ´ φPkˆP1 is nef. Rather than taking a

one parameter graph to obtain a log smooth map to A1 we take the two dimensional

graph over phPk , hP1q, following section 4 of [20] and for the same reasons outlined in

example 4.2 of [24] or theorem 3.10 of [14] to obtain a generically log smooth morphism

to A2 throughout. The restriction of the two parameter degeneration to the diagonal

is by construction the single parameter degeneration associated to h. On the dual side

we choose the data of any MPCP desingularization none of whose faces have interior

intersecting the hyperplane H given by the vanishing of the final coordinate. This is

not quite the data of an MPCP desingularization on pk ` 1q∆k ˆ 2∆1, there are some

“square” polytopes appearing.

Nonetheless we follow the proof of simplicity given in Theorem 3.17 of [14], translated

back to be working on ∆ rather than ∇. First we note that the local monodromy

description the simplifies the barycentric subdivision description of the singular locus,

it is supported on the set

Singppk ` 1q∆k`1q ˆ r0, 1s Y pk ` 1q∆k`1 ˆ t´1{2, 1{2u

In this decomposition there are four types of τ P ∆1. The types are:

(i) Faces intersecting the interior of the the top and bottom copies of pk ` 1q∆k.

(ii) Faces contained inside the boundary of the top and bottom copies of pk ` 1q∆k.

(iii) Faces of the side which are horizontal contained inside the vanishing of the final

coordinate.

(iv) Faces of the side which are vertical projecting to the boundary of pk ` 1q∆k.

The first type are locally given by an MPCP desingularization and in particular are

guaranteed to be simple. The second and third types of faces contain no vertical edges,

and any horizontal codimension one component can be ignored when constructing the

choices of Ωi since there is not any monodromy around them. In the third case this re-

duces the description of the monodromy to that induced by the MPCP desingularization

given above, restricted to the boundary, which remains MPCP.
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The second type has two types of divisors, the horizontal divisors of pk ` 1q∆k and

the vertical fibres over codimension two strata in the decomposition of pk ` 1q∆k. A

local computation shows that the monodromy is only non-trivial for the vertical divisors

contained inside the boundary, all the other loops occur entirely inside the interior of

each face where there is trivial monodromy. Then we are back in the above situation.

The final type of faces are those which are vertical. These are not contained inside

any horizontal divisor, and hence we may ignore horizontal edges in the calculation of

the monodromy since they will be monodromy invariant. The new singularities that it

meets have monodromy:

n ÞÑ n ` xm,ny u

where u is a unit vector in the vertical direction and m is the normal vector to the

vanishing of x in the u-direction. It is clear from this description that the associated

monodromy polytopes are elementary simplices.

In the case of a degeneration of a K3 surface embedded as an anti-canonical hyper-

surface inside P2 ˆ P1 we can draw explicitly the picture, seen in the figure below with

the degenerating hyperplane dotted, and the 16 visible singularities of the 24 focus-

focus singularities are marked in red. It is clear that the induced subdivision is simple,

although we avoid specifically this surface case later:

This is the limit of the cases where explicit examples are tractable, and in dimension

higher than two computer algebra packages would be needed to attempt any calcula-

tions. For a general refinement of a nef partition there are choices of lifts involved, we

handle the symmetric blow-up case from [12] below, along with a non-symmetric exam-

ple for the quintic threefold. For this we need to use an actual MPCP desingularization,

but one well adapted to the choice of resolution.

Theorem 1.8. Let P Ă M be a reflexive polytope with a nef partition P “
řn

0 ∆i and
let ∆0 “ ∆a `∆b be a refinement of this nef partition. Let P̃ be the polytope associated
to blowing up ∆a and ∆b, and ∆̃i the associated partitions of this polytope.

Then there is a simple toric-Tyurin degeneration associated to this data, with generic
fibre a complete intersection in P given by the nef partition ∆̃a, ∆̃b, ∆̃1, . . . , ∆̃n.
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Proof. The degeneration may be embedded into the total space associated to P ˆr´1, 1s

embedded inside M‘R and we write H for the hyperplane given by the vanishing of the

final coordinate. The associated refined polytopes ∆i are the trivial product ∆i ˆ t0u

except for ∆̃a, ∆̃b and ∆̃0. The polytope ∆̃a is the product ∆a ˆ r0, 1s with P̃ while

∆̃b is the product ∆b ˆ r´1, 0s. The intersection with H gives a reflexive polytope of

dimension one lower, in which the degeneration for D is embedded.

Choose an MPCP desingularization pΣ1, hq of which none of the interiors of the

maximal polytopes intersect H . This can be obtained by taking any MPCP desingular-

ization and taking the Minkowski sum of the dual polytope to h and a large multiple of

the degenerate polytope tp0, 1q, p0,´1qu. This produces a new strictly convex function

on a new refinement of Σ, Σ̃. There are vertical edges under the projection to the

final factor and a small perturbation horizontally of these ensures that Σ̃ is an elemen-

tary triangulation of the intersection with H as proved in [33]. A perturbation of the

points not lying as end points of the vertical edges then ensures that the rest of the

triangulation is elementary. We replace h and Σ1 by these choices.

Then we form the two parameter family given by taking the graph over h1 con-

structed in [14] and hP1. This gives a log smooth degeneration of the total space. Re-

stricting this to the diagonal we obtain the MPCP desingularization given by h1 ` hP1 .

The construction of the complete intersection is modified to produce a semi-stable de-

generation given by h1 as done in section 4 of [20]. The induced two parameter family

then has the above toric degeneration properties by the same arguments that the one

parameter family does. The induced degeneration of D can already be seen to be sim-

ple, induced by the toric degeneration obtained by intersecting the above data with

the hyperplane H . The MPCP desingularization restricts on each side of H to give

compatible MPCP desingularizations.

The piecewise linear functions φ˚ are defined to be the maximum over the points in

the corresponding dual polytope. By construction these are linear across H and so there

is no monodromy across these faces. Thus the Tyurin singular locus D is transverse to

the singular locus of the degenerating family.

Example 1.9. Let Qt Ă P4 be a family of generic quintic threefolds degenerating to the

union of a degree i and a degree 5 ´ i hypersurface. We construct the family produced

by blowing up the degree i hyperplane.

Recall from [20] the construction of degenerations of toric varieties given by subdi-

viding polytopes. The polytope ∆ for P4 is of course given by the convex hull of the

columns of the following matrix contained in the vector space spanned by u1, . . . , u4:

»
———–

´1 4 ´1 ´1 ´1

´1 ´1 4 ´1 ´1

´1 ´1 ´1 4 ´1

´1 ´1 ´1 ´1 4

fi
ffiffiffifl

We subdivide this polytope along the hyperplane H given by u1 “ i´1 and take the

piecewise linear function minp0, i ´ 1 ´ uiq. The associated degeneration of the quintic
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is into a degree 5´ i hypersurface and the blow up of a degree i hypersurface, recalling

the description of the fan for the total space of a projective bundle from Example 7.3.5

of [8] and the classification of section 4.2 of [20]. It carries an embedding into a non-

compact toric variety with polytope ∆̃. The polytope ∆̃ further carries a piecewise linear

function φ pulled back from ∆ which generically fibrewise gives a quintic hypersurface

inside P4. One can use an auxiliary choice of toric compactification and the proof of [33]

to construct an MPCP desingularization of ∆ whose non-linear locus contains H X B∆.

This condition ensures that it pulls back to give an MPCP desingularization of the

bottom face of ∆̃, though possibly with singularities along the side. As in the previous

two examples gives a two parameter family log smooth over A2, where one factor is

given by the new coordinate introduced by Hu’s construction (section 4.1.2 of [20])

and the other factor is the toric degeneration parameter (the section after Observation

3.9 of [14]). Since φ is linear across H the Tyurin singular locus is transverse to the

singularities of the total space. It is a toric-Tyurin degeneration for the same reasons

that the one parameter family is a toric degeneration. The corresponding degeneration

of D is given by restricting the polytope to the preimage of H , in particular it is a toric

degeneration.

Note that this is a slightly different construction from the one appearing in [12]

which makes explicit the target in which the degeneration is embedded. The above

example also produces torically degenerating components of the two components of the

Tyurin degeneration, fitting into the examples considered in our third section.

Examples of toric k-Tyurin degenerations can be constructed as a pk ` 1, 2, . . . 2q

hypersurface in Pk ˆ P1 ˆ . . . ˆ P1, or as more complicated subdivisions arising in the

above example. It seems to be an essentially hard problem to tell if a given Tyurin

degeneration, connected in moduli to a large complex structure limit point, admits

such a toric model. This is similar to the case for toric degenerations arising in the

Gross-Siebert program more generally.

We want to deduce statements via tropical geometry, and so we need to recall the

definition of the dual intersection complex and tropicalisation.

Definition 1.10. Let X be a log scheme. Let C be the category whose objects are

in bijection with the log strata of X and whose morphisms are given by inclusions of

strata. There is a functor sending each object to the dual cone of the stalk of MX over

the corresponding strata and each morphism to the corresponding inclusion of faces.

The cone complex ΣCpXq is defined to be the complex obtained by this gluing data.

Given a map X Ñ Spec k: there is an induced map ΣCpXq Ñ Rě0 and the tropi-
calisation or dual intersection complex, ΣpXq is defined to be the fibre over 1. At the

moment it only carries an affine structure on the interior of each cell. To provide an

affine structure away from a set of codimension two we equip this with a fan structure

around each zero-dimensional strata using the corresponding toric variety as done in

the proof of Proposition 4.10 of [24].

From this data and a choice of closed gluing data in the cone picture (see [24]

Definition 2.3) there is a projective scheme obtained by gluing spectra of the affine

tangent spaces, as outlined in [17]. We will write this Proj krΣpXqs.
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We can identify an embedding of dual intersection complexes of ΣpDq into the dual

intersection complex ΣpX∆q and by doing so build an explicit surjection on the level of

rings.

Lemma 1.11. There is a closed embedding of ΣpDq into ΣpXq inducing a surjection on
integral tangent spaces and compatible with the fan structures at zero-dimensional points
of ΣpDq. Further for any toric degenerating component Z of the Tyurin degeneration
there is an affine linear open embedding of an open subset of ΣpZ, BZq˝ into ΣpX∆q˝

compatible with the fan structure around each point of ΣpZ, BZq.

Proof. We calculate at a point x P D, comparing the local structure to the local struc-

ture induced by treating these as points of X. The let P be the cone of X at x, it

admits a collection of maps Nk ‘ N Ñ P . Taking the dual these give a collection of

maps ρΣ : P_
R Ñ Rk

ě0‘Rě0. Let ` : Rk
ě0‘Rě0 Ñ R2

ě0 be the map sending pp1, . . . pk, qq

to p
ř

pi, qq. The composite ` ¨ ρΣ is the structure map to R2
ě0. By construction the

set ΣD is locally precisely the fibre of ρΣ over p1, 1, . . . , 1q, whilst ΣX is locally the fibre

of ` ¨ ρΣ over p1, 1q. This map is integral affine linear, and the ordering of p1, . . . pk is

fixed since the monodromy action on the divisors Zi is trivial.

This gives a description of ΣX as a fibration over a k`1 dilation of a k-simplex, ∆x,

with ΣD the fibre over the central point. As a warning we point out that this does not

need to be a trivial fibration, for instance it might rescale the integral affine structure.

The statement for Z is the following. At a point x of X lying on Z there is a canonical

inclusion PZ Ñ PX∆
such that the image of the elements 2p and

ř
yi `p are equal (here

it is important that we are using PX∆
and not PX). This corresponds to a diagram on

the duals:

P_
Z P_

X∆

Rě0

The local structure of ΣpZ, BZq and ΣpX∆q is given as the fibre over 1 of each of these

spaces. Since they are the same dimension and the map is a continuous embedding it

is locally an isomorphism. Now in a neighbourhood of each point lying on Z this map

is in fact an isomorphism by a comparison of the local fan structures. It extends then

in a neighbourhood of ΣpBZq, which by compactness we may take to include a positive

integral neighbourhood of each point. This gives the desired statement.

The reason that it is not a global isomorphism is because of the existence of phe-

nomena of the type pictured below:

The picture shows the conical complexes, together with the level set corresponding to

the tropicalisation. The tropicalisation of ΣpX∆q is only locally a closed subset, and it

may have some other components missing that do not appear in ΣpZ, BZq, but on the

left hand side it is a local isomorphism.

Associated to this is a choice to 0th order of an embedding of qD into |X∆.
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ΣpX∆q ΣpZ, BZq

Lemma 1.12. There is an open subset of Proj krΣpX∆qs fibred over Gk
m with fibres

inducing potentially different log structures on Proj krΣpDqs. Over an open subset the
fibres have simple log structure in the sense of [16].

Proof. Open gluing data for X gives rise to open gluing data for D by restriction. In

turn this gives cone gluing data compatibly under restriction. Defining equations for

Proj krΣpD∆qs can locally be constructed by pulling back the integral tangent vectors

from ∆k using the fact that ΣpDq is transverse to the walls of ΣpX∆q. Locally this

gives a choice of monomial along each face, and any two choices differ by a function

invertible on the polytope cell connecting them. Given a choice of gluing data in the

cone picture (as defined in [24] Definition 2.3) on Proj krΣpX∆qs we get induced gluing

data on Proj krΣpDqs compatible with these choices. Note that a monoid relation

m “ 0 becomes after passing to the associated monoid ring zm “ 1, not zm “ 0. Fix

one chart corresponding to a k-dimensional face of ΣpX∆q corresponding to a zero-

dimensional strata of ΣpDq and a relation zm “ 1, twisting by the gluing data gives

a collection of relations zmσ “ aσ in each chart compatible with one another under

restriction. Since the monodromy action on ΣpXq restricts to the monodromy action

on ΣpDq the associated sections of the normal bundle are non-vanishing on ΣD and

linearly independent.

On an initial chart rather than taking zm “ 1 as the defining relation one can

choose zm “ a to obtain a different embedding. Doing this separately for each of the

k ` 1 generators gives a Gk`1
m worth of choices, but a common rescaling identifies the

associated ideals and so we get the desired claim. A generic choice is transverse to the

singular locus and any other log strata and so the strict induced log structure is indeed

simple and generically log smooth.

A similar statement holds for the LG model:

Lemma 1.13. Let Zi be a toric degenerating component. There is an open embedding
of Proj krΣpZi, BZiqs into Proj krΣpXqs.

Proof. This is a trivial consequence of the above open embedding on tropical spaces.
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2 Logarithmic deformation of pairs

We now bootstrap the smoothing results of [5] and [31] from smoothing Calabi-Yau

varieties to smoothing pairs of such varieties, and higher codimension. This uses an

explicit description of the canonical class to calculate how one corrects the Maurer-

Cartan equations and show compatibility. We should explain that this is not a trivial

application of deformation theory since none of the deformations are locally trivial,

and it applies in the case where D is an elliptic curve. The classical statement is the

following:

Theorem 2.1. Suppose that pqX, qDq are a pair with qX a Calabi-Yau variety of dimension
at least 3, and qD a smooth Cartier divisor on qX which is itself Calabi-Yau. Equivalently
the normal bundle of qD, NqD{qX, is OqD. Then qX is fibred over P1 with fibre class qD and

any deformation of qX induces an unobstructed deformation of pqX, qDq. Hence any smooth
Calabi-Yau obtained from deforming qX is also fibred by Calabi-Yau divisors.

A similar statement holds for qD any smooth Calabi-Yau subvariety of qX with trivial

normal bundle. Under these conditions qX is generically fibred by smooth Calabi-Yau

varieties and the same remains true for deformations of qX.

In [5] the authors prove formal smoothability for any log scheme for which two

Hodge-theoretic conditions hold. These are known to hold for maximal degenerations

of Calabi-Yau manifolds, and [31] extended this to much larger classes of singular spaces,

those which are toroidal families. In future work they intend to extend this to families

not just over the standard log point, but more general bases but still with underlying

scheme a point. Our technique here would extend in parallel to their work.

To begin with we have qX Ñ Spec k: a log toroidal family and a strictly embedded

codim k log subscheme qD Ă qX such that the induced map qD Ñ Spec k: is log toroidal

and the normal bundle of qD inside qX is trivial, isomorphic to Ok
qD. In particular local to

qD the log scheme qX is isomorphic to qD ˆ Ak. This will give local models for qX near qD
compatible with the local models of qD. We consider divisorial deformations of X and

D with a compatible closed embedding.

Lemma 2.2. Let V Ñ Spec k: be an affine log toroidal family, W Ă V a strictly
embedded codimension k closed subscheme transverse to all the log strata and such that
the induced map to Spec k: is also a log toroidal family. Then any two first order
deformations of this data are isomorphic.

Proof. One étale locally factors the problem with V “ Ak ˆY and W “ t0u ˆY where

Y Ñ Spec k: is a log toroidal family. Then this works precisely as in [16].

2.1 Compatible BV structures

The key idea of the proof of our main theorem is that there are compatible BV structures

between the deformation theories of Proj krΣpqX0qs, Proj krΣp qDqs, and pProj krΣpqX0qs,
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Proj krΣp qDqsq. We follow [30] in defining the log vector fields on qX tangent to qD. In

the case k “ 1 we could describe this using an additional log structure on qX, but since

we want to handle all the cases at once we will stick to a classical description. For

this subsection we will assume that qX and qD are globally log smooth, and will lift this

restriction later.

Definition 2.3. Let qD locally be defined by V ptq inside qX. Strict étale locally we

have that qX is isomorphic to qD ˆ A1 with t the final coordinate. We take a local basis
d
dt
, d
dx1

... d
dxk´1

. . . d
d log xk

. . . d
d log xn´1

of Θ1
qX. The algebra of polyvector fields on qX tangent

to qD is the subalgebra generated locally to qD by t d
dt
, d
dx1

... d
dxk´1

. . . d
d log xk

. . . d
d log xn´1

and the full algebra over other open sets. We write this Θi
qXx qDy

for the degree i term,

and
Ź

ΘqXx qDy for the whole polyvector field algebra.

In general if qD is an equisingular complete intersection inside qX then we analogously

take the algebra of polyvector fields on qX tangent to qD to be the subalgebra generated

locally to qD by t1
d
dt1

, . . . , t1
d
dtr

, . . . tr
d
dtr

, d
d log xr`1

... d
d log xk

. . . d
dxk

. . . d
dxn

and the full alge-

bra over other open sets. We write this Θi
qXx qDy

for the degree i term, and
Ź

ΘqXx qDy for

the whole polyvector field algebra.

This structure controls the deformations of the local models as described in [31],

and for the same reason as their Theorem 6.13, combined with our local rigidity.

From now on let us assume that the surjectivity and Hodge theoretic assumptions

necessary to apply techniques of [5] hold for qX and qD. In the case we are interested in

both are maximal and so by [18] Theorem 4.1 we will see that these assumptions hold.

Note that if qD is codimension greater than one this is not a collection of bundles,

rather of sheaves. One worries at this point that much of the argument involved in prov-

ing smoothness works by studying cotangent rather than tangent vectors. Amazingly

this is not a problem as we shall see. An easy local calculation shows that
Ź

ΘqXx qDy is

a subalgebra of
Ź

ΘqX and the inclusion is compatible with the BV operator:

Lemma 2.4. The complex
Ź

ΘqXx qDy with the Schouten-Nijenhuis bracket is a sub-
Gerstenhaber algebra of

Ź
ΘqX. The BV operator on

Ź
ΘqX restricts to a BV operator

on
Ź

ΘqXx qDy.

Proof. The statements are all local in nature, so we may reduce to the case where we

have local equations for qD. To show that the Schouten-Nijenhuis bracket restricts to a

bracket on this sub-space we need only check it for degree one elements, so for vector

fields. Let t1 . . . tr be local equations for qD, then we must check that the brackets

rti
d
dtj

, tl
d

dtm
s lie inside the span of these:

„
ti

d

dtj
, tl

d

dtm


“ tiδj,l

d

dtm
´ tlδm,i

d

dtj

And so this forms a sub-Gerstenhaber algebra. Now let ω be a global top formŹ
dti ^

Ź
dxi ^

Ź
d log xi inducing the BV operator. Then the composite z ω ¨ d ¨ z ω
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maps:

ź

jPJ

tjfpt1, . . . , xn´1q
ľ

jPJ

d

dtj

ľ

iPI

d

dxi

ľ

kPK

d

d log xk

ÞÑ
ź

jPJ

tjf
ľ

jPĴ

dtj
ľ

iPÎ

dxi

ľ

kPK̂

d log xk

ÞÑ
ÿ

lPJ

˜
f dtl

ź

jPJ,j‰l

tj

¸ ľ

jPĴ

dtj
ľ

iPÎ

dxi `
ź

jPJ

tj
ÿ

lPJ

ˆ
df

dtl
dtl

˙ ľ

jPĴ

dtj
ľ

iPÎ

dxi

ľ

kPK̂

d log xk

`
ź

jPJ

tj
ľ

jPĴ

dtj

˜ÿ

iPI

df

dxi

dxi `
ÿ

kPK

df

d log xi

d log xi

¸ ľ

iPÎ

dxi

ľ

kPK̂

d log xk

ÞÑ
ÿ

lPJ

˜˜
f

ź

jPJ,j‰l

tj `
df

dtl

ź

jPJ

tj

¸ ľ

jPJ,j‰l

d

dtj

¸ ľ

iPI

d

dxi

ľ

kPK

d

d log xk

`

˜ÿ

lPI

df

dxl

ľ

iPI,i‰l

d

dxi

ľ

kPK

d

d log xk

`
ÿ

lPK

df

d log xl

ľ

iPI

d

dxi

ľ

kPK,k‰l

d

d log xk

¸ ź

jPJ

tj
ľ

jPJ

d

dtj

where Â is the complement of the indexing set A. So this BV operator preserves the

subalgebra
Ź

ΘqXx qDy.

The definition of Θi
qXx qDy

is precisely set up so that the restriction Θi
qXx qDy

|qD admits a

map to ΘqD, which sends any section deforming away from qD to zero. We claim that

there is a commutative diagram of BV algebras:

Lemma 2.5. The following diagram commutes as a diagram of BV algebras and the
outer square is Cartesian as a diagram of complexes of sheaves on qX:

ΘqXx qDy ΘqX

ΘqXx qDy |qD ΘqX |qD

ΘqD ΘqX |qD

Proof. This is a local calculation and follows directly from the above coordinate de-

scription.

We now make the assumption that the normal bundle of qD inside qX is globally

trivial. This is a strong assumption satisfied by fibrations and without it we could only

show that qD is stable inside qX. Since we assume that qD is Calabi-Yau and dimension

at least two this assumption is also stable under infinitesimal deformations of qD (since

Ext1pOr
qD,O

r
qDq “ 0). Note that by strictness of the embedding of qD into qX the log

normal bundle coincides with the normal bundle.
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Definition 2.6. Let qD Ă qX be a regularly embedded subscheme. Let f1 . . . fr be local

equations cutting out qD. We define the sheaf of graded algebras
Ź

NqD{qX to be the

exterior algebra generated in degree one by d
df1

. . . d
dfr

supported on qD.

Lemma 2.7. There is a split exact sequence on the level of sheaves:

0 Ñ Θ1
qD Ñ Θ1

qX |qDÑ NqD{qX Ñ 0 (1)

This induces a split exact sequence of sheaves of graded algebras:

0 Ñ
ľ

ΘqD Ñ
ľ

ΘqX |qDÑ
ľ

NqD{qX b
ľ

ΘqD Ñ 0 (2)

The left hand map of this second sequence is a map of Gerstenhaber algebras. The
induced map

Ź
ΘqX Ñ

Ź
ΘqD is a surjective map of BV algebras.

Proof. Again we can pass to a local chart where we have coordinates ti defining qD
inside qX and t1

d
dt1

, . . . , t1
d
dtr

, . . . tr
d
dtr

, d
d log xr`1

... d
d log xk

. . . d
dxk

. . . d
dxn

local generators on

qX. There is a clear injection of ΘqD into ΘqX |qD with cokernel spanned by the d
dti

. This

produces the exact sequence. It is split via the obvious map.

It is not immediate that the “Hodge numbers” H ipΘj
qXq are invariant under pullback

along the Frobenius map Fr : qX1 Ñ qX. To see why note that although the Frobenius

map on S is an isomorphism of schemes for a perfect field, it can never be an iso-

morphism of fine saturated log schemes for divisibility reasons. Fortunately the maps
qX Ñ S and qD Ñ S are saturated and the Frobenius map integral, we will see in the

next section that this is enough to ensure independence.

2.2 Away from the smooth locus

We have described these sheaves in the case that qX and qD are log smooth over S. We

are about to apply this to the mirrors where there is no guarantee that the log structure

is smooth or even globally defined. Instead we know that qX and qD are central fibres of

log toroidal families. Let us introduce some notation:

Let qX Ñ S be a log toroidal morphism with generically smooth locus iqX : UqX Ă qX
and complement ZqX, qD a Calabi-Yau cycle on qX which is itself a log toroidal family

over S with respect to the induced log structure and iqD : UqD Ă qD the generically

smooth locus. Write FrS : S Ñ S for the Frobenius map, qX1 for the fibre product

S ˆS
qX, qD1 for the product S ˆS

qD. These are themselves log toroidal over S, with

open smooth locus UqX1 and UqD1 respectively, which we may assume are the pullbacks

of UqX and UqD respectively. They admit induced pullback maps FrqX1 : qX1 Ñ qX and

FrqD1 : qD1 Ñ qD. Since the maps are saturated the underlying scheme maps of FrqX1 and

FrqD1 are isomorphisms of schemes (though not over S).

As in [31] we can take the pushforward of these sheaves from the log smooth locus to

the whole space and show that the desired properties hold for them, even once pushed
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forward. In particular we know already that
Ź

ΘqX{S and
Ź

ΘqD{S are ZqX-closed. This

follows from the fact that the open inclusion of the smooth locus is affine and so in both

cases pushforward and pullback are exact. In particular this gives for free that Θ‚
qXx qDy{S

is ZqX-closed since it is the kernel of a surjective map between two ZqX-closed sheaves.

All the constructions above for split exact sequences continue to hold by exactness. We

finally prove that Frobenius independence holds.

Lemma 2.8. There are isomorphisms H ipqX,ΘqX{Sq – H ipqX1,ΘqX1{Sq, H ip qD,ΘqD{Sq –

H ip qD1,ΘqD1{Sq and H ipqX,ΘqXx qDy{Sq – H ipqX1,ΘqX1x qD1y{Sq for all i.

Proof. By [27] there are canonical isomorphisms i˚UqX1
Ωi

UqX{S – Ωi
UqX1 {S and i˚U qD1

Ωi
U qD{S –

Ωi
U qD1 {S. By [31] these remain isomorphisms under pushforward to qX1 and qD1 respectively.

Since FrqX1 and FrqD1 are isomorphisms on schemes the first two isomorphisms now hold.

The final isomorphism holds then by applying the five lemma to the exact sequence

appearing in 2.

To apply this we construct the pre-sheaves kPV n
qX , kPV n

qD and kPV n
qXx qDy

as outlined

in [31] section 13.1. There are canonical maps kPV n
qXx qDy

Ñk PV n
qX and kPV n

qXx qDy
Ñk PV n

qD
which are morphisms of BV algebras. Given a kφ solving the Maurer-Cartan equation on
kPV n

qXx qDy
the image under each of these maps solves the corresponding Maurer-Cartan

equations and we have compatible morphisms of Gerstenhaber algebras between the

induced cohomology pre-sheaves.

Corollary 2.9. The induced morphisms H‚pkPVqXx qDyq Ñ H‚pkPVqDq and H‚pkPVqXx qDyq Ñ

H‚pkPVqXq are morphisms of presheaves of Gerstenhaber algebras.

So the final thing we need to check are the assumptions of [5] Theorem 5.5, or

equivalently [31] Theorem 13.4 and show that one can use the BV operator to construct

solutions to the Maurer-Cartan equation. The components are degeneration of the

Hodge-to-de-Rham spectral sequence at E1 and a surjection H ipkPV ‚q Ñ H ipk´1PV ‚q.

Theorem 2.10. The ranks of H ipΘj
qXx qDy

q are invariant in one dimensional log toroidal
families.

Proof. We will make use of the technology developed in [31] together with some homo-

logical algebra. First we spread out to finite characteristic which we can do compatibly

for qX and qD preserving the inclusion. We can therefore form the Frobenius twists

FqX : qX Ñ qX1 and FqD : qD Ñ qD1 with qD1 Ă qX1 a closed subscheme. Note that qX, qX1, qD
and qD1 all have trivial dualizing sheaf and F is a finite map. Then taking derived sheaf

Hom and using the fact that F !
qXOqX1 “ ω˝

qX b pF ˚
qXω

˝
qX1

q_ b F ˚
qXOqX1rdim qX ´ dim qX1s “ OqX

we have:
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FqX ˚Θ
‚
qX{S

“ H0RFqX ˚Θ
‚
qX{S

“ H0RFqX ˚RHomqXpW ‚
qX{S

,OqXq

“ H0RFqX ˚RHomqXpW ‚
qX{S

, F !
qXOqX1q

“ H
0RHomqX1pRFqX ˚W

‚
qX{S

,OqX1q

“ HomqX1pFqX ˚W
‚
qX{S

,OqX1q

and similarly for qD. Thus we have that pushforward and dualizing commute for ΘqX{S

and ΘqD{S on qX and qD respectively. Unfortunately the dual of Θ‚
qXx qDy{S

would have to be

the derived dual, and the above argument would not apply. The Cartier isomorphisms

for qX and qD induce dual decompositions in the derived category of qX:

FqX ˚pΘ‚
qX{S

q –
à

Θi
qX1{S

r´is and FqD ˚pΘ‚
qD{S

q –
à

Θi
qD1{S

r´is

Then there is a partial morphism of distinguished triangles which we may complete to

a morphism of distinguished triangles:

FqX ˚Θ
‚
qXx qDy{S

FqX ˚Θ
‚
qX{S

FqD ˚Θ
‚
qD{S

À
Θi

qX1x|D1y{S
r´is

À
Θi

qX1{S
r´is

À
Θi

qD1{S
r´is b

Ź
NqD{qX

ι

The right hand square commutes by the explicit description of the Cartier isomorphism.

The left hand map is a quasi-isomorphism since the other two vertical maps are. The

map ι is the natural inclusion, hence inducing the trivial differential on the complexÀ
Θi

qX1x qD1y{S
r´is. Thus we have a decomposition of FqX ˚Θ

‚
qXx qDy{S

as a complex with trivial

differential without having to find the derived dual. Now we apply the same argument

as found in section 4 of [10] to this complex using the two spectral sequences, the “Hodge

spectral sequence” and the “conjugate spectral sequence”:

E
i,j
1 : Rif˚Θ

j
qXx qDy{S

ñ Ri`jf˚Θ
‚
qXx qDy{S

and

cE
i,j
2 : Rif 1

˚H
jFqX ˚Θ

‚
qXx qDy{S

ñ Ri`jf˚Θ
‚
qXx qDy{S

obtained as the Cartan-Eilenberg spectral sequence and the Grothendieck spectral se-

quence respectively. Note that this argument crucially relies on three facts, that Θi
qX1x qDy{S

are flat over S, formation of cohomology is compatible with base change for these sheaves

and that the “Hodge numbers” Rif˚Θ
j
qXx qDy{S

are invariant under Frobenius. The first

is true when S is a one-dimensional thickening of a point since there are no sections

which are torsion over S. The second follows from the same results in large enough
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characteristic for Θi
qX{S

and Θi
qD{S

. The last one we have proved earlier.

This gives us a proof whenever there is a Frobenius lifting, and the standard spread-

ing out argument then proves the claim.

For the sake of completeness we translate the proof of section 4 of [10] into English.

We found it both surprising that this result has not been exposited elsewhere and was

relatively unknown in the community, for instance it acts to replace the local Poincaré

lemma assumption in [5] and reduces the work required in section 11 of [31]. Although

we have rephrased the argument without mentioning the de Rham complex we have

kept the thematic namings of “Hodge”, “conjugate” and “Cartier” as they explain where

the terms came from.

Theorem 2.11. Let f : X Ñ S be a flat finite type morphism of schemes of charac-
teristic p, S local Artinian with closed point s and residue field k and F‚

XT {T a function
associating to every object T of Sch{S a bounded complex on XT “ X ˆS T of S-
flat coherent sheaves and to every morphism g : pf 1 : T 1 Ñ Sq Ñ pf : T Ñ Sq an
isomorphism

g˚F‚
XT {T Ñ F‚

XT 1 {T 1

Suppose further that F˚pF‚
X{Sq is quasi-isomorphic to a complex with trivial differential,

where F is the relative Frobenius map X Ñ X 1 and that there is a Cartier isomorphism
C´1 : F i

X1{S Ñ H iF˚pF‚
X{Sq for every i.

Then under these hypotheses the “Hodge spectral sequence” formed as the Grothendieck
spectral sequence of the complex verifies E

ij
1 “ E

ij
8 for i ` j “ n and the sheaves

E
ij
1 “ Rjf˚F

i
X{S are locally free of formation compatible with all base change for

i ` j “ n.

Proof. First note that the statement that F˚pF‚
X{Sq is quasi-isomorphic to a complex

with trivial differential implies that the “conjugate spectral sequence” obtained as the

Grothendieck spectral sequence for the composite of proper pushforward along the

composable maps X Ñ X 1 Ñ S degenerates at page E2.

Write S “ SpecA, since the sheaves F i
X{S are S-flat and f is finite type, the com-

plexes Rf˚F
i
X{S are isomorphic to a bounded complex K‚

i of free A-modules. We write

fT for the base change of f to T . For every subscheme T Ă S the complex RfT ˚F
i
XT {T

is the base change of Rf˚F
i
X{S, and in particular restricting to s P S we have that

HjpXs,F
i
Xs{sq is equal to HjpKi bA kq. It follows by devissage that

lengthRf˚F
i
X{S ď hij length A (3)

where hij “ dimk H
jpXs,F

i
Xs{sq and we take length as an A-module, which are all finite

as they are the proper pushforward of finite complexes of coherent sheaves. We may

assume that K‚
i is minimal, so that the differentials on K‚

i bA k are all zero. Once we

know that the inequality in 3 is an equality then all the differentials in K‚
i are trivial

and we have the desired local freeness and compatibility with base change.

The convergence E
ij
1 “ E

ij
8 is equivalent to the equality:
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lengthRnf˚F
‚
X{S “

ÿ

i`j“n

lengthRjf˚F
i
X{S (4)

On the other hand X 1
s, constructed from Xs by an extension of the base field, has

the same “Hodge” numbers hij as Xs. Hence one obtains an equality

lengthRnf˚F
‚
X{S “

ÿ

i`j“n

lengthRjf 1
˚F

i
X1{S (5)

Already if S is the spectrum of a field this equality implies the desired equality in 3.

Now we prove the general case by induction on the nilpotency of the maximal ideal m

of A. Suppose that N is positive integer and mN “ 0, and by the above we are free to

assume that N is at least two. Hence there exists N 1 with 1 ď N 1 ă N and pN 1 ě N .

For such an N 1 the Frobenius endomorphism of S, F , factorises over T “ SpecpA1q,

A1 “ A{mN 1

:

X X 1 XT X

S T S

F

f
f 1 fT f

Applying the induction hypothesis to XT {T we see that Rjf 1
˚F

i
X1{S are locally free

of rank hij . The degeneration of the “conjugate spectral sequence” ensures in turn that

Rnf˚F
‚
X{S is locally free of rank

ř
i`j“n h

ij . Hence we must have equality in 3 and the

desired result.

The surjectivity assumption follows as argued in Theorem 13.1 of [31] once one

knows the compatibility of these sheaves with base change shown above.

Corollary 2.12. For qX and qD described above there is an analytic log toroidal family
smoothing this pair.

Proof. By the above compatibility results, together with the description of how to build

the deformed Maurer-Cartan equation this follows from [31] section 13.

This proof actually works without assuming that qD has the cohomology type of a

Calabi-Yau so if H ipOqDq ‰ 0 for i ‰ 0, n ´ 1, it only requires the existence of a global

top form. In our case since qD arises as the central fibre of a toric degeneration of

Calabi-Yau varieties, and so does have the cohomology type of a Calabi-Yau by [31].

The same proof applies however to subschemes which are étale covers of products of

Abelian varieties and Calabi-Yau varieties. Since we have an analytic smoothing we

can then apply the classical deformation argument to a smooth fibre to obtain:

Corollary 2.13. A smooth generic fibre of the smoothing of qX is fibred by Calabi-Yau
varieties in codimension d.
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In particular this applies to the above examples of toric k-Tyurin degenerations from

which we deduce the following corollary.

Corollary 2.14. Let X Ñ S be a simple toric k-Tyurin degeneration, then the mirror
|X∆ is fibred by Calabi-Yau subvarieties in codimension k. Further if the degeneration
of D is simple then the fibres are mirror to D.

The dgLa described above suggests that there is a version of the scattering dia-

grams described in [26] where the coefficients lie in this subalgebra. There is a notion

of consistency based on these structures and the above section implies that there is an

appropriate iterated method to ensure consistency. It would be a fundamental devel-

opment to define a canonical scattering diagram for such a subalgebra.

This result also implies a (non-effective) variant of a quantum-Lefschetz theorem.

Take the asymptotic limit of the Maurer-Cartan equation as outlined in [6] and relating

the terms to counts of log invariants on X and D as outlined in [25] we see that this

expresses the log Gromov-Witten invariants for D in terms of X. This is a broader

context than that considered in [3], there are no ampleness assumptions around. We

would rather develop fully the theory of these scattering diagrams than make this

explicit.

3 Gluing Landau-Ginzburg models

We now consider what happens for k “ 1 if we formed the Landau-Ginzburg mirror to

Z0 and Z1 and then attempt to glue them, considering each as a divisor pair relative to

D. We solve the problem satisfactorily and prove that this recreates the mirror to X∆

under a necessary compatibility condition.

3.1 Formation of Landau-Ginzburg models

The deformation theoretic Gross-Siebert program described above is sadly not very

well developed for the case of LG models. We believe that such a theory will appear in

tandem with a comparison to the modern approach. To avoid reliance on forthcoming

work we will give a partial description here of how to construct Landau-Ginzburg models

using the old theory, which is convoluted to avoid issues of boundedness of the cells.

As an upside we see a natural occurrence of a phenomenon mentioned in [23].

We have the tropicalisation of pZ0,Dq, an unbounded polytope with a well defined

affine direction u and a proper piecewise linear map to r0,8q. Assuming that D is

nef on Z0 all the initial slab functions on this point non-negatively in the u direction.

We can form an affine manifold with boundary by restricting to the closed subset over

r0, 1s. This admits an affine linear embedding into ΣpXq by 1.11.

We choose the slab structure given by restriction, so there are no slabs contained

inside the fibre over 1. But by the above observations the scattering diagram is con-

sistent to order zero. Therefore applying the construction of [17] to this now bounded

affine manifold we obtain a pair pW0, BW0q and the open subscheme W0zBW0 admits
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a map to A1 given by u. This fits into the philosophy of [23] where one expects to see a

compactification at infinity with a canonical choice of differential form on the interior.

Such a compactification exists for higher rank Tyurin degenerations at least so long

as each of the components themselves have nef anti-canonical bundle. We believe that

the restriction to this case is a necessary first step to understanding the “Mirror P “ W

conjecture” of [2] through the Gross-Siebert construction. The compactifications have

the property that there are no broken lines passing in from infinity. In particular one

obtains a compactification of the base B, B by an snc divisor and a relative compactifi-

cation of W which is relatively log divisorial over B and possesses a strata of dimension

d over a d-dimensional strata of B.

3.2 Relative deformation theory

To prove the existence of the desired embedding we construct a relative deformation

theory for the interior of the Landau-Ginzburg models. This is simple on the central

fibre where we know precisely where the singular fibres are, the same techniques apply

to relatively smooth families of Calabi-Yau varieties with minor modifications.

To begin with we have qX Ñ P1 ˆ Spec zkrP s a formally versal smoothing of a toric

Calabi-Yau space fibred over P1 and a fixed Gm Ă P1 a dense affine open with fibres

generically divisorial smoothings of D0. We have an LG model w0 : W0 Ñ A1 ˆ

Spec zkrP s and again a dense open Gm Ă A1 whose fibres are generically divisorial

smoothings of D0. Over 0 P Spec zkrP s the superpotential W0 Ñ A1 admits compatible

open embeddings into qX0 Ñ P1. We write .˝ for the restriction of an object to the

corresponding open Gm.

Our goal is to produce an open embedding of W0 into qX. We begin by introducing

relative toric CY spaces and our choice of formal deformation functor.

Definition 3.1. Let CB be the category of log schemes strict over Spec krNs whose

underlying scheme is an infinitesimal extension of B and B a fixed affine scheme. This

category inherits a notion of small extension from the notion for the underlying schemes,

noting that all morphisms are strict.

Let ρ : Y Ñ B: :“ B ˆ Spec k: be a morphism of log schemes such that:

(i) The log scheme Y is a toric Calabi-Yau space.

(ii) ρ is flat as a morphism of schemes and ρ is log smooth on the log smooth locus

of Y

(iii) There are diagrams as appearing in [24] (2.1) but with X: replaced by X: ˆ B.

A relative divisorial deformation of ρ over A P CB is a map ρA : YA Ñ A and an

isomorphism of the central fibre YA ˆA Spec k: – Y such that:

(i) ρA is flat as a morphism of schemes and log smooth on the restriction to the log

smooth locus of Y.
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(ii) There are diagrams as appearing in [24] (2.2) but with X:
A :“ Y : ˆSpec krNsSpecA

:

replaced by X
:
A
:“ Y : ˆSpec krNs A.

The deformation functor F we consider will be have B Ă Gm the common dense

open sending an element A to the set of relative divisorial deformations over it, where

two relative divisorial deformations are isomorphic if there is an isomorphism fixing the

central fibre. The action on morphisms is given by pullback.

We first of all claim that this deformation problem has a deformation and obstruction

sheaf on B. To be precise we mean that the analogue of Theorem 2.11 of [24] holds,

but with ΘY{k: replaced everywhere with ΘY{B:. The proof is simply compatibility of

these sheaves with base change and the previous result.

Theorem 3.2. Let A1 and A be elements of CB, with A1 a small extension of A by an
ideal I, finite over B. Let a P F pAq be a divisorial deformation of Y Ñ B:. Then:

(i) Let YA1 be a lift of YA to A1. Then the set of log automorphisms of YA1 fixing
YA is:

R0ρ˚pY,ΘY{B bB Iq

(ii) The set of equivalence classes of lifts YA1 Ñ A1 if non-empty is a torsor over:

R1ρ˚pY,ΘY{B bB Iq

(iii) An obstruction sheaf for the existence of liftings is:

R2ρ˚pY,ΘY{B bB Iq

Let us check that the relative log versions of the Schlessinger axioms hold.

Theorem 3.3. The following three axioms hold:

(i) Let A1 Ñ A be a small extension and B Ñ A be a surjective morphism, then the
canonical map:

F pA1 ˆA Bq Ñ F pA1q ˆF pAq F pBq

is surjective.

(ii) If A “ B and A1 “ B ` M for a finite module over B. Then the above map is
bijective.

(iii) For a finite B module M the set F pB ‘ Mq is a finite B-module.

Proof. The third item follows from the above theorem together with relative properness

of ρ. The second follows from the first once one notices that isomorphisms are preserved

under deformation, see Lemma 9.1 of [13]. Therefore it remains to prove the first.

Suppose we are given the data of A1 Ñ A a small extension and B Ñ A a surjective

24



morphism. For objects X 1 P F pA1q and X2 P F pBq, both restricting to X P F pAq.

Then we can fix closed immersions X Ñ X 1 and X Ñ X2. We then define X˚ to

be the scheme whose structure sheaf is OX1 ˆOX
OX2 . We give this the log structure

given by MX1 ˆMX
MM2, by the universal property of products it admits a map to

OX1 ˆOX
OX2 . That this is a log scheme with the desired restriction properties is proved

in section 9 of [13]. Condition i) of the definition of relative divisorial deformations is

trivial, flat deformations of log smooth morphisms remain log smooth. We briefly prove

condition ii) of the definition, X˚ admits étale locally maps to X
:
A1ˆAB

whose central

fibres are étale. But flat deformations of an étale map remain étale and so we have the

result.

We cannot apply the machinery built by Artin directly, even if it were translated into

logarithmic geometry for the simple reason that we do not know openness of versality

for log deformations. Raffaele Caputo has some results in this direction using analytic

techniques in the absolute case, see [4]. Instead we argue directly, that we can construct

a versal family over an open affine subset of Gm by inducing one from the deformations

of qX.

Lemma 3.4. Suppose that H1pΘqX0{ Spec kq Ñ H1pΘqD0{ Spec kq is surjective under a split-
ting of the morphism ΘqX0{ Spec k Ñ ΘqX0{Spec k |D0

Ñ ΘD0{ Spec k for some initial choice

of fibre. Then the space qX Ñ Spec krrP ss induces a versal family over some choice of
B Ă Gm.

We prove this in several steps, first we relate the absolute and relative deformation

theories (depending of course on a choice of splitting).

Lemma 3.5. There is a non-canonical morphism H1pΘqX{Spec kqbkkrx˘s Ñ R1π˚pΘWi{Tiq
˝.

Proof. First take the relative tangent triangle for the triple of morphisms qX Ñ P1 Ñ

Spec k:, and push it forward under ρ. This produces an exact sequence on P1:

Rρ˚ΘqX{P1 Ñ Rρ˚ΘqX{Spec k: Ñ Rρ˚ρ
˚ΘP1{ Spec k:

applying the projection formula to the last term we see that the cokernel of R1ρ˚ΘqX{P1 Ñ

R1ρ˚ΘqX{Spec k: is torsion supported on the singular fibres. In particular over Gm it is

split. Pulling back to Gm and applying cohomology and base change we obtain a map:

pR1ρ˚ΘqX{P1q˝ – R1ρ˝
˚ΘqX˝{Gm

The Grothendieck spectral sequence gives a map H1pΘqX{ Spec k:q Ñ ΓpR1ρ˚pΘqX{P1qq,

and since Gm is affine composing with a choice of splitting we get the desired map.

By our assumptions on the surjectivity of the map H1pΘqX0{ Spec kq Ñ H1pΘD0{Spec kq

there is an open dense B Ă Gm where the above map is surjective on fibres. This is

our choice of B.
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We lift this formal statement about differentials to show that we can glue the formal

smoothings:

Lemma 3.6. Let F Ñ B ˆ Spec krrtss be a divisorial family deforming a trivial D0

bundle. Then there is a non-canonical map B ˆ Spec krrtss Ñ B ˆ ApH1pΘqX{ Spec k:qq.

Proof. For t “ 0 there is a canonical such map. We now induct on the order, suppose

that we have a choice of map B ˆ Spec krrtss{xtky Ñ B ˆ ApH1pΘqX{Spec kqq for some k.

Then from the above analysis the lift of F to B ˆ Spec krrtss{xtky defines an element

of R1ρ˚pY,ΘY{B bB Bq, up to an element of R0ρ˚pY,ΘY{B bB Bq. But the map

H1pΘqX{ Spec kq bk krx˘s Ñ R1ρ˚pY,ΘY{B bB Bq is surjective and so we may lift it to an

element of H1pΘqX{Spec kq bk krx˘s.

But this gives a lift of F inside qX, hence an embedding B ˆ Spec krrtss{xtk`1y Ñ

B ˆ ApH1pΘqX{ Spec kqq.

We need only one more tool to prove the claimed theorem.

Lemma 3.7. Suppose that h1pΘqD{ Spec kq “ 1. Then there is a formal automorphism of
BˆSpec krrtss such that the induced map BˆSpec krrtss Ñ BˆApH1pΘqX{ Spec kqq sends
elements of H1pΘqX{Spec kq to pure powers of t.

Proof. This follows from the formal version of the inverse function theorem applied to

generators of H1pΘqX{ Spec k:q.

We can now prove the existence of the embedding:

Theorem 3.8. There is a formal open embedding of W0 into qX compatible with the
fibration structure.

Proof. Suppose we have a divisorial smoothing of W0 over Spec krrtss. The same trick

as 3.6 produces a relative deformation of the fibres. Then we can find an embedding of

the restriction of this smoothing to B horizontally into the smoothings of qX restricted

to B. We take the corresponding degeneration of qX over Spec krrtss. Then there is a

common dense open U of Wi and qX which we can identify.

Remove from P1 the set A1zB Y t0u to obtain an open subset of qX and glue along

the open dense set found above. This produces a family which is locally everywhere a

divisorial deformation of qX0 over Spec krrtss. But the family qX is a versal deformation

space for divisorial deformations of qX0, and hence this lifts to an open embedding of

Wi into a family of deformations of qX, which is the desired gluing statement.

Example 3.9. The mirror to a quintic threefold, a sextic fourfold, etc, can be con-

structed as a specialisation of a family of Calabi-Yau’s obtained by gluing the two

Landau-Ginzburg models obtained as mirrors to the components of the Tyurin degen-

eration constructed by blowing up both sides evenly.
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The same technique works for higher rank LG models under some comparable re-

strictions so long as one works with formal complex analytic spaces. The restriction is

introduced part way through the construction, after we have introduced some termi-

nology.

Construction 3.10. Let X Ñ S be a type k ` 1 toric-Tyurin degeneration. There

are two associated tropical structures. The first is the tropicalisation of the type k ` 1

locus which defines an affine manifold with singularities Ξgen “ ΣpXgenq but without a

fan structure around the vertices. The second is the tropicalisation of the central fibre,

defining for us an affine manifold with singularities Ξ0 “ ΣpX0q with a fan structure

around the vertices. There is a canonical map ρΞ : Ξgen Ñ Ξ0 given by specialisation.

We take the vanilla gluing data on Ξ0 and Ξgen

To this data we have a reduced reducible scheme given by taking the cone picture

on Ξgen. We write Bgen “ Proj krΞgens for this scheme, noting that without any more

integral affine structure we cannot deform this even to first order. The map ρΞ lifts to

a map ρX : Proj krΞ0s Ñ Proj krΞgens.

We are now ready for our assumption. Choose a zero dimensional strata b P Ξgen

corresponding to a component of the general fibre over the Tyurin degenerate locus Z0.

Suppose that the induced degeneration of Z0 is toric, simple and the boundary divisors

of Z0 are nef. This furnishes us with a collection of top dimensional strata of Ξgen,

σ1, . . . , σm corresponding to the zero-dimensional strata of Z0 and intersecting at b. We

write Di for the Calabi-Yau variety corresponding to σi, and we assume that all the

induced degenerations are simple. Locally there is a morphism of affine manifolds with

singularities ρΣ : Ξgen Ñ ΣpZ0, BZ0q.

We can construct a higher rank LG model as the mirror to pZ0, BZ0q, by taking the

induced tropical map to be evaluation against the irreducible strata of BZ0 and we write

this W Ñ B. The base B is obtained by gluing a collection of toric varieties along toric

strata, and each σi corresponds to a dense torus in a toric component. By assumption

there is a unique zero dimensional strata which we are free to conflate with b. Over

the interior of each σi the map ρX is a locally trivial Di bundle. In particular it is a

relatively divisorial family. We assume that the map H1pΘqX0{Spec kq Ñ ‘H1pΘDi{Spec kq

is surjective and dimSpec krP s ě
ř

h1pΘDi{Spec kq.

Restrict the higher rank LG model mirror to W0 Ñ B to an analytic open set UP

containing b. Take an open set of B overlapping UP only inside the σi, and so that the

complement δP is codimension two. The fibre of ρX over this set is then codimension

also at least two inside the total space qX0. The same argument above would show that

we can glue these two complex analytic varieties except over a closed set of codimension

two. This uniquely defines a global deformation of X compatible with the above gluing.

Hence we can extend it to a globally defined gluing since differentials extend uniquely

across codimension two sets.

Our restriction on H1pΘqX0{Spec k:q Ñ H1pΘD0{ Spec k:q has an interpretation on the

mirror side which is more easily checkable. Assume that X is an ample complete in-

tersection inside a Fano toric variety T of dimension at least 3. Up to torsion we have
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an isomorphism H2pXq – H1pΩXq. Then by the Lefschetz hyperplane theorem there is

an isomorphism H2
QpT q – H2

QpXq. Via composition with restriction there is therefore a

canonical morphism H2
QpXq Ñ ‘H2

QpDiq.

Lemma 3.11. In this situation the above condition holds so long as each degeneration
of Di is simple and H2

QpXq Ñ ‘H2
QpDiq is surjective.

Proof. We apply Theorem 3.22 of [16].

Constructing examples of such degenerations seems to be a hard problem, and the

initial assumptions on surjectivity are certainly not sharp, it rarely includes the case of

even toric hypersurfaces! One family of examples can be constructed via subdividing

the hypercube r´1, 1sk along the coordinate hyperplanes and studying an anti-canonical

section. This produces a k-Tyurin degeneration whose minimal strata are therefore

points. There is a further toric degeneration given by scaling the toric parameters.

A better solution than classifying examples would be to extend the work of [5] and

[31] to the case of log toroidal families over bases where the log structure on the base

is allowed to change. How much of the theory can be extended from the fibrewise

theory is at present unclear. Nonetheless there are some forthcoming results of Doran,

Kostiuk and You in which they prove gluing formulae for periods under such higher

rank degenerations. Since their results do not require such strong assumptions one

would hope that better technology would allow us to lift the restrictions here.
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