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DEGENERATIONS, FIBRATIONS AND HIGHER RANK

LANDAU-GINZBURG MODELS

CHARLES F. DORAN, JORDAN KOSTIUK, AND FENGLONG YOU

Abstract. We study semi-stable degenerations of quasi-Fano varieties to unions of two
pieces. We conjecture that the higher rank Landau-Ginzburg models mirror to these two
pieces can be glued together to lower rank Landau-Ginzburg models which are mirror to
the original quasi-Fano varieties. We prove this conjecture by relating their Euler charac-
teristics, generalized functional invariants as well as periods. We also use it to conjecture a
relation between the degenerations to the normal cones and the fibrewise compactifications of
higher rank Landau-Ginzburg models. Furthermore, we use it to iterate the Doran-Harder-
Thompson conjecture and obtain higher codimension Calabi-Yau fibrations.
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1. Introduction

We study a generalization of the conjecture of [DHT17] by considering a semi-stable de-
generation of a quasi-Fano variety X (instead of a degeneration of a Calabi-Yau in [DHT17])
such that the central fibre is a union of two quasi-Fano varieties X1 ∪D0

X2. We would like
to study the relation of their mirrors.

Recall that, an (ordinary) Landau-Ginzburg (LG) model (X∨,W ) is a mirror partner of a
quasi-Fano variety X with its smooth anticanonical divisor D such that the generic fibre of
W is mirror to D. If D is not anticanonical (e.g. D0 ⊂ Xi, for i = 1,2, in the degeneration
of a quasi-Fano variety described above) and we still want to define a mirror “LG model”
for the pair (X,D) such that the generic fibre is mirror to D (with a smooth anticanonical
divisor in D), then the generic fibre of the “LG model” for the pair (X,D) should also be
an LG model. Therefore, one should consider an “LG model” whose generic fibre is another
LG model. In other words, one should consider a higher rank LG model.

Therefore, in our set-up, we consider a degeneration of a quasi-Fano variety X which leads
to a Tyurin degeneration of a smooth anticanonical divisor D ⊂ X into D1 ∪D0∩D1=D0∩D2

D2

where D1 ⊂ X1 and D2 ⊂ X2. We consider the hybrid LG models of (X1,D0 + D1) and(X2,D0 +D2) studied by S. Lee [Lee21]. In this paper, we will simply refer to hybrid LG
models as higher rank LG models. In particular, a rank 1 LG model is an ordinary LG
model, i.e., an LG model in the usual sense. In general, a higher rank LG model is a mirror
partner of a quasi-Fano variety with a simple normal crossing anticanonical divisor. When
the anticanonical divisor consists of two irreducible components, a higher rank LG model (of
rank 2) consists of a pair (X∨, h), where X∨ is a Kähler manifold and h is the multi-potential
h ∶X∨ → C2 satisfying certain conditions (see Definition 2.5 for detail). Then we propose the
following gluing conjecture.

Conjecture 1.1. Given a semi-stable degeneration of (X,D) into the union of (X1,D0+D1)
and (X2,D0 +D2), the rank 1 LG model of (X,D) can be constructed topologically by gluing
two rank 2 LG models of (X1,D0 +D1) and (X2,D0 +D2).
Conjecture 1.1 can be considered as a generalization of the conjecture in [DHT17] to the

log Calabi-Yau setting. We provide several pieces of evidence for this conjecture. In Section
2, we prove the topological version of this conjecture by computing Euler numbers. In other
words, if a quasi-Fano variety X is obtained from X1 ∪D0

X2 by smoothing and (X∨,W ) is
obtained by gluing rank 2 LG models of (X1,D0 +D1) and (X2,D0 +D2), then
Theorem 1.2 (see Theorem 2.8).

χ(X) = (−1)dχ(X∨,W −1(t)),
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where d = dimCX and t is a regular value of W .

We refer to Theorem 2.8 for the precise statement.

In [DKY19], the Doran-Harder-Thompson conjecture is proved at the level of generalized
functional invariants as well as periods for Calabi-Yau complete intersections in toric varieties.
In this paper, we generalize it to the quasi-Fano complete intersections in toric varieties. In
Section 3 and Section 4, we study two explicit examples in detail. In Section 3, we study
a complete intersection of bidegrees (3,1) and (1,1) in P4 × P1. In Section 4, we study the
quartic threefold in P4. In Section 5, we study toric complete intersections in general. We
show that the generalized functional invariants of (X∨,W ), (D∨,W0), (X∨1 , h1) and (X∨2 , h2)
satisfy a product relation (see Proposition 5.3). Using this product relation among generalized
functional invariants, we obtain the relation among periods.

Theorem 1.3 (=Theorem 5.4). The following Hadamard product relation holds for relative
periods of (X∨,W ), (D∨,W0), (X∨1 , h1) and (X∨2 , h2):

fX
0 (q) ⋆q fD0

0 (q) = 1

2πi ∮ fX1

0 (q, y) ⋆q fX2

0 (q, y)dyy .
The relation among bases of solutions to Picard-Fuchs equations holds in a similar form.

Theorem 1.4 (Theorem 5.5). The Hadamard product relation among the bases of solutions
to Picard-Fuchs equations is

IX(q) ⋆q ID0(q) = 1

2πi ∮ IX1(q, y) ⋆q IX2(q, y)dy
y
.

The main difference between Theorem 1.3, Theorem 1.4 and [DKY19, Theorem 1.1 and
Theorem 1.2] is the following. In [DKY19], absolute periods are obtained as the gluing (i.e.,
the residue integral of the Hadamard product) of two relative periods of rank 1 LG models.
In Theorem 1.3 and Theorem 1.4, we glue relative periods of two rank 2 LG models to obtain
the relative periods for rank 1 LG models. By the relative mirror theorem of [TY20a], relative
periods of higher rank LG models are mirror to the genus zero Gromov-Witten invariants of
simple normal crossings pairs defined in [TY20b].

Besides considering an LG model as a gluing of rank 2 LG models, one may also consider
an LG model as a fibrewise compactification of a rank 2 LG model. More precisely, one can
consider a quasi-Fano variety X with a smooth anticanonical divisor D or a simple normal
crossing anticanonical divisor D1 + D2. Then the LG model mirrors to (X,D) should be
considered as fibrewise compactification of the rank 2 LG model mirrors to (X,D1 +D2). In
Section 6, we consider a degeneration to the normal cone of the quasi-Fano variety X with
respect to the divisor D1. In this case, gluing two rank 2 LG models can be considered as
providing a fibrewise compactification of a non-proper LG model of (X,D1 +D2) to obtain
a proper LG model of (X,D). In other words,

Conjecture 1.5 (=Conjecture 6.1). The ordinary LG model of (X,D) is a (partial) com-
pactification of the rank 2 LG model of (X,D1+D2) and the compactification can be obtained
by gluing the rank 2 LG mirror of (PD1

(ND1
⊕ O),D1 + D̃1) to the rank 2 LG mirror of(X,D1 +D2).
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Furthermore, we use this conjecture to study the iterative Tyurin degenerations of Calabi-
Yau varieties. For Calabi-Yau varieties admitting such degenerations, we predict that the
mirror has a fibration structure over higher dimensional bases. For Calabi-Yau complete
intersections in toric varieties that admit two-step Tyurin degenerations, the mirror will
have a Calabi-Yau fibration over P1

× P1.

We illustrate this with an explicit example in Section 7, where we study an elliptic fibration
structure of the mirror quintic threefold over a P1

×P1 base. The fibration is by mirror cubic
elliptic curves, mirror to the cubic curves arising in the pair of two-step Tyurin degenerations:(5) → (1) + (4) → (1) + (1) + (3) and (5) → (2) + (3) → (1) + (1) + (3). Moreover, the first
of these degenerations corresponds to a mirror quartic K3-surface fibration and the second
to a mirror sextic K3-surface fibration. There is a perfect correspondence between these
K3-fibrations on the mirror quintic threefold compatible with the mirror cubic fibration and
the two-step Tyurin degenerations of the quintic itself via the refinement of the nef partition.
More generally, we expect the following.

Conjecture 1.6 (=Conjecture 7.3). If a Calabi-Yau variety X (or a log Calabi-Yau vari-
ety X ∖ D) admits a semi-stable degeneration, connected to a point of maximal unipotent
monodromy, such that the cone over the dual intersection complex of the central fibre is of
dimension k, then the mirror of X (or X ∖D) admits a Calabi-Yau fibration structure with
a k-dimensional base.

To understand more general degenerations of Calabi-Yau varieties or more general iterative
Tyurin degenerations of Calabi-Yau varieties, it is also necessary to consider degenerations
of simple normal-crossings log Calabi-Yau pairs. Recall that Conjecture 1.1 considers a
degeneration of a smooth pair. The conjecture can be generalized to the case when we
consider a degeneration of a quasi-Fano variety X with a simple normal crossing anticanonical
divisor D. In this case, the mirror of (X,D) itself is a higher rank LG model. Roughly
speaking, the conjecture can be stated as follows.

Conjecture 1.7. Given a quasi-Fano variety X with a simple normal crossings anticanonical
divisor D, we consider a semi-stable degeneration of a quasi-Fano variety X into X1 ∪D0

X2.
The mirror of (X,D), which is a rank n LG model, can be obtained by topologically gluing
two rank (n + 1) LG models which are mirror to X1 and X2 with their corresponding simple
normal crossing divisors.

Remark 1.8. Recall that the generic fibre of a rank n LG model is a codimension n Calabi-
Yau and the mirrors of Calabi-Yau varieties are Calabi-Yau varieties of the same dimension.
Therefore, we may consider the mirrors of Calabi-Yau varieties as rank 0 LG models, that is,
LG models with 0-dimensional bases which are just Calabi-Yau varieties without superpo-
tentials. From this point of view, we may consider the Doran-Harder-Thompson conjecture
as the rank 0 case of Conjecture 1.7. Conjecture 1.1 is a rank 1 case of Conjecture 1.7.

To prove a topological gluing formula, we need to have a proper definition of Hodge numbers
of higher rank LG models. For simplicity, we consider the case when n = 2. Its generalization
to n > 2 is straightforward. Hodge numbers of a rank 2 LG model (X∨, h = (h1, h2)) are
defined in Definition 8.1:

hp,q(X∨, (h1, h2)) ∶= hp,q(X∨, h−11 (t1) ∪ h−12 (t2)),
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where t = (t1, t2) is a regular value of (h1, h2). One may consider this as a generalization of
the Hodge numbers of LG models of [KKP17]. With this definition of Hodge numbers, we
prove a topological gluing formula relating Euler numbers (see Theorem 8.4):

χ(X) = (−1)d(χ(X∨, h−11 (t1) ∪ h−12 (t2))).
The relations among their generalized functional invariants and relative periods for toric
complete intersections hold just like the rank 1 case.

Acknowledgements. C.D. is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC). F.Y. is supported by Research Council of Norway grant no.
202277 and was supported by the EPSRC grant EP/R013349/1. We would like to thank
Lawrence Barrott, Andrew Harder and Alan Thompson for helpful discussions.

2. Gluing rank 2 LG models

In [DHT17], Doran-Harder-Thompson conjectured a relation between mirrors of Calabi-
Yau varieties and mirrors of quasi-Fano varieties under Tyurin degenerations of Calabi-Yau
varieties. In this section, we consider a generalization of [DHT17] to degenerations of quasi-
Fano varieties.

2.1. Set-up.

Definition 2.1. A smooth variety X is called quasi-Fano if its anticanonical linear system
contains a smooth Calabi-Yau member and H i(X,OX) = 0 for all i > 0.
Definition 2.2 ([DHT17], Definition 2.1). A Landau-Ginzburg (LG) model of a quasi-Fano
variety X is a pair (X∨,W ) consisting of a Kähler manifold X∨ satisfying h1(X∨) = 0 and a
proper map W ∶X∨ → C, where W is called the superpotential.

The generic fibre of W is expected to be mirror to a smooth anticanonical divisor D ⊂ X .
The pair (X∨,W ) is considered as a mirror to the pair (X,D). A natural question to ask
is how to extend this mirror symmetry to the case when D has more than one irreducible
component. For this, we need the following generalization of LG models.

Definition 2.3. An LG model of rank 1 is the ordinary LG model in Definition 2.2. For
n ≥ 2, an LG model of rank n is a pair (X∨, h), where

h ∶= (h1, . . . , hn) ∶ X∨ → Cn,

such that

● the generic fibre of hi together with the restriction of ĥi ∶= (h1, . . . , hi−1, hi+1, . . . , hn)
to this fibre is an LG model of rank (n − 1).
● by composing with the summation map Σ ∶ Cn

→ C, we get a non-proper ordinary
LG model

W ∶= Σ ○ h ∶X∨ → C.

Remark 2.4. In this paper, we consider the case when the base of a rank n LG model is
Cn. In general, we can allow the base being more general n-dimensional varieties. This will
be studied elsewhere.
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Now we assume that D = D1 +D2 is a simple normal crossings anticanonical divisor of X
and D12 ∶=D1∩D2 is smooth. In Sukjoo Lee’s thesis [Lee21], he defined the hybrid LG model
which is expected to be mirror to the pair (X,D1 +D2) where X is a Fano variety. Here, we
consider the hybrid LG models for quasi-Fano varieties.

Definition 2.5 ([Lee21], Definition 1.4.1). A hybrid LG model of a quasi-Fano variety X
with a simple normal crossings anticanonical divisor D =D1 +D2 is a pair

(X∨, h = (h1, h2) ∶X∨ → C2),
where X∨ is a Kähler manifold such that

● a generic fibre of h1, denoted D∨1 , with

h∣D∨
1
= h2 ∶ D∨1 → C

is mirror to (D1,D12);
● a generic fibre of h2, denoted D∨2 , with

h∣D∨
2
= h1 ∶ D∨2 → C

is mirror to (D2,D12);
● by composing with the summation map Σ ∶ C2

→ C, we get a non-proper ordinary
LG model

W ∶= Σ ○ h ∶X∨ → C.

We will refer to hybrid LG models in Definition 2.5 as rank 2 LG models.

2.2. Topological gluing. Given a quasi-Fano variety X with its smooth anticanonical di-
visor D, we consider a semi-stable degeneration of X into X1 ∪D0

X2 such that it also gives
a Tyurin degeneration of D into D1 ∪D12

D2 where D1 ⊂ X1, D2 ⊂ X2 and D12 = D1 ∩D0 =
D2 ∩D0 = D1 ∩D2.

Let (X∨1 , h1 = (h11, h12)) and (X∨2 , h2 = (h21, h22)) be rank 2 LG models mirror to (X1,D0+

D1 ∈ ∣ −KX1
∣) and (X2,D0 +D2 ∈ ∣ −KX2

∣) respectively. We will glue the rank 2 LG models
along their first factors to form an LG model (X∨,W ) with a fibration over P1:

X∨ C

P1

W

π

We choose r1 and r2 such that ∣λ1∣ ≤ r1 for every λ1 in the critical locus of h11 and ∣λ2∣ ≤ r2 for
every λ2 in the critical locus of h21. We assume that the fibres of h11 and h21 are topologically
the same LG model which mirrors to (D0,D12).
Let t = (t1, t2) be a regular value of hi. The monodromy symplectmorphism φ11 associated

to a clockwise loop around infinity of t1 on h−11 (t) should be the same as the monodromy
sympectmorphism φ−121 associated to a counter-clockwise loop around infinity of t1 on h−12 (t).
For each t2, we choose local trivialization of h−1i2 (t2) over Ui = {z ∈ C ∶ ∣z∣ > ri} and let
Qi,t2 = h−1i1 (Ui, t2). Following [DHT17], one can glue h−112(t2) to h−122(t2) along Q1,t2 and Q2,t2 to
produce the fibre of X∨ over t2. Let t2 ∈ C varies, then we obtain X∨ with the superpotential
W such that W ∣X∨

1
= h12 and W ∣X∨

2
= h22. The gluing respects the fibrations h11 and h21, so

X∨ is equipped with a fibration over P1.
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Remark 2.6. We can consider a rank 2 LG model as a family of ordinary LG models. Then
gluing two rank 2 LG models can be considered as gluing two families of ordinary LG models
to obtain a family of Calabi-Yau varieties and this family of Calabi-Yau varieties is the LG
mirror of (X,D). Therefore, the gluing picture here is a family version of the original gluing
picture of [DHT17].

Remark 2.7. There is an alternative view of the gluing picture. Instead of considering the
gluing of two rank 2 LG models to the mirror of the quasi-Fano variety X , we can also
consider mirror symmetry in the complement of a smooth anticanonical divisor D in X by
forgetting the superpotential W . Then the mirror of the non-compact Calabi-Yau X ∖D can
be obtained by gluing two (ordinary) LG models of two non-compact varieties X1 ∖D1 and
X2 ∖D2.

We have the following mirror relation between the Euler numbers of quasi-Fano varieties
and the LG model constructed by the gluing picture described above.

Theorem 2.8. Let X1 and X2 be d-dimensional quasi-Fano varieties which contain the same
quasi-Fano hypersurface D0, such that

KX1
∣D0
= −KX2

∣D0
and KD1

∣D12
= −KD2

∣D12
,

where D12 = D0 ∩D1 = D0 ∩D2. Let (X∨1 , h1 = (h11, h12)) and (X∨2 , h2 = (h21, h22)) be rank
2 LG models mirror to (X1,D0 +D1 ∈ ∣ −KX1

∣) and (X2,D0 + D2 ∈ ∣ −KX2
∣) respectively.

Suppose that the fibres of h1 and h2 are topologically the same Calabi-Yau manifold, which
is topologically mirror to D12. Let X be a quasi-Fano variety obtained from X1 ∪D0

X2 by
smoothing and let D ⊂ X be a Calabi-Yau variety obtained from D1 ∪D12

D2 by smoothing.
Let (X∨,W ) be the LG model obtained by gluing rank 2 LG models (X∨1 , h1) and (X∨2 , h2).
Then

χ(X) = (−1)dχ(X∨,W −1(t)), and χ(D) = (−1)d−1χ(W −1(t))
for t a regular value of W , where χ is the Euler number.

Proof. The equality χ(D) = (−1)d−1χ(W −1(t)) was proved in [DHT17, Theorem 2.3]. It
remains to prove χ(X) = (−1)dχ(X∨,W −1(t)).
The gluing picture gives the following relative Mayer-Vietoris sequence

⋯→Hj(X∨,W −1(t);C)→ Hj(X∨1 , h−112(t1);C)⊕Hj(X∨2 , h−122(t2);C)(1)

→ Hj(X∨1 ∩X∨2 , h−112(t1) ∩ h−122(t2);C) →⋯.
Recall that X∨1 ∩ X

∨
2 and h−112(t1) ∩ h−122(t2) are fibrations over annuli. Their cohomology

can be computed using the Wang sequence [PS08, Theorem 11.33] and we conclude that
χ(X∨1 ∩X∨2 , h−112(t1) ∩ h−122(t2)) = 0. Therefore, we have

χ(X∨,W −1(t)) = χ(X∨1 , h−112(t1)) +χ(X∨2 , h−122(t2)).(2)

Note that (X∨i , hi2) should be considered as the mirror of the complement of the divisor D0

of Xi, because we forget about hi1 which corresponds to the divisor D0. Therefore, we have

χ(X∨i , h−1i2 (ti)) = (−1)dχ(Xi ∖D0) = (−1)dχ(Xi) − (−1)dχ(D0).(3)

Combining (2) and (3), we have

χ(X∨,W −1(t)) = (−1)d(χ(X1) + χ(X2) − 2χ(D0)).(4)
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On the other hand, by [Lee06, Proposition IV. 6],

χ(X) = χ(X1) + χ(X2) − 2χ(D0).(5)

Therefore, (4) and (5) together imply the identity:

χ(X) = (−1)dχ(X∨,W −1(t))
�

2.3. Periods. The definition of relative periods for LG models is given in [DKY19]. One
can define periods for higher rank LG models similarly.

Definition 2.9 ([DKY19], Definition 2.2). Let f ∶X → B be a family of Calabi-Yau manifolds.
The morphism g∶B →M, taking a point in the base to the corresponding point in the moduli
spaceM of the fibre is called the generalized functional invariant of the family.

Definition 2.10. Given a (rank k) LG model and a choice of holomorphic n-form ω, we
define the periods of the (rank k) LG model relative to the (rank k) superpotential and ω to
be the period functions associated to the varying fibres of the (rank k) LG model obtained
by integrating transcendental cycles across the n-form ω.

We refer to [DKY19] for more details about the definition of relative periods and how
to compute them via generalized functional invariants. In mirror symmetry, under suitable
assumptions, periods are mirror to generating functions of genus zero Gromov-Witten invari-
ants (see, for example, [Giv98] and [LLY97]). For LG models which are mirror to smooth
pairs (X,D), the relative periods considered in [DKY19] are mirror to generating functions of
genus zero Gromov-Witten invariants of (X,D) by the relative mirror theorem in [FTY19].
Now, if we have higher rank LG models which are mirror to a simple normal crossings pairs(X,D), then the relative periods that we consider in this paper are mirror to genus zero
Gromov-Witten invariants of (X,D) ([TY20a], see also Section 9).

3. Example 1: a complete intersection in P4
× P1

In this section, we consider an example which is analogous to the example considered in
[DKY19, Section 3]. Let Q̃4 be a complete intersection of bidegrees (3,1) and (1,1) in P4

×P1.
The threefold Q̃4 admits a degeneration

Q̃4 ↝ X̃1 ∪C X̃2,

where

● X̃1 is a hypersurface of bidegree (3,1) in P3
× P1;

● X̃2 is a complete intersection of bidegrees (3,0), (1,1) in P4
× P1;

● C is a smooth cubic surface in P3.

Indeed, X̃1 is the blow-up of P3 along the complete intersection of two cubic surfaces and
X̃2 is the blow-up of a cubic threefold C3 along the complete intersection of two hyperplanes
(degree one hypersurfaces in C3).

The smooth anticanonical K3 surface in Q̃4 is a complete intersection of bidegrees (3,1)
and (1,1) in P3

× P1. The degeneration of Q̃4 leads to a Tyurin degeneration of this K3
surface into a hypersurface D1 of bidegree (3,1) in P2

× P1 and a complete intersection D2
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of bidegrees (3,0), (1,1) in P3
× P1. This Tyurin degeneration of the K3 surface is the

degeneration considered in [DKY19, Section 3] in one dimensional lower (i.e. in dimension
two).

3.1. Functional invariants. The mirrors of Q̃4, X̃1 and X̃2 (relative to their smooth anti-
canonical divisors) can be written down explicitly following [Giv98]. The mirror of Q̃4 is an

LG model (Q̃∨4 ,W ) where Q̃∨4 is the compactification of

{(x0, x1, x2, x3, y) ∈ (C∗)5 ∣x1 + x2 + q1

x0x1x2x3
+
q0

y
= 1;x3 + y = 1}

and the superpotential

W1 ∶ Q̃
∨
4 → C

(x0, x1, x2, x3, y)↦ x0.

The LG model for X̃1 is

W1 ∶ X̃
∨
1 → C

(x0, x1, x2, y1)↦ y1 + x0,

where X̃∨1 is the fibrewise compactification of

{(x0, x1, x2, y1) ∈ (C∗)4 ∣x1 + x2 + q1,1

x0x1x2
+
q0,1

y1
= 1} .

The LG model for X̃2 is

W2 ∶ X̃
∨
2 → C

(x0, x1, x2, y2)↦ y2 + x0,

where X̃∨2 is the fibrewise compactification of

{(x0, x1, x2, y2) ∈ (C∗)4 ∣x1 + x2 + q1,2

x0x1x2(1 − q0,2/y2) = 1} .
The rank 2 LG models for (X̃1,D1 +C) and (X̃2,D2 +C) are the following:

h1 ∶ X̃
∨
1 → C2

(x0, x1, x2, y1)↦ (x0, y1)
and

h2 ∶ X̃
∨
2 → C2

(x0, x1, x2, y2)↦ (x0, y2),
respectively.

The LG mirror of the cubic surface C (relative to its smooth anticanonical divisor D12 =
C ∩D1 = C ∩D2) is:

W0 ∶ C
∨
→ C

(x0, x1, x2)↦ x0,
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where C∨ is the fibrewise compactification of

{(x0, x1, x2) ∈ (C∗)3 ∣x1 + x2 + q1,0

x0x1x2
= 1} .

By performing an appropriate change of variables, we see that all four of these families, which
are mirrors to (Q̃4,K3), (X̃1,D1 +C), (X̃2,D2 +C) and (C,D12) respectively, are fibred by
the mirror cubic curve whose defining equation is the following:

{(x̃1, x̃2) ∈ (C∗)2 ∣x̃1 + x̃2 + λ̃

x̃1x̃2
= 1} .

This allows us to conclude that they are families of mirror cubic curves and read off their
functional invariants. For example, for the family X̃∨1 , we make the following change of
variables:

x̃1 = x1

1 − q0,1/y1 , x̃2 =
x2

1 − q0,1/y1 , λ̃ =
q1,1

x0(1 − q0,1/y1)3 ,
to obtain the mirror cubic family. We then read off the functional invariant for X̃∨1 as

λ1 = q1,1
x0(1−q0,1/y1)3

. Similarly, we compute the functional invariants for C∨, Q̃∨4 and X̃∨2 by

making appropriate changes of variables to match with the cubic mirror family. We obtain
the following functional invariants for Q̃∨4 , C

∨, X̃∨1 and X̃∨2 respectively:

λ = q1

x0(1 − y)(1 − q0/y)3 , λ0 = q1,0
x0
, λ1 = q1,1

x0(1 − q0,1/y1)3 , λ2 = q1,2

x0(1 − q0,2/y2) .
We glue the second factors of the bases of rank 2 LG models through the following change

of variables:

q1 = q1,0 = q1,1 = q1,2, q0 = q0,1, y = y1 = q0,2/y2.(6)

Proposition 3.1. Under the identification (6), the following product relation holds among
the functional invariants:

λ ⋅ λ0 = λ1 ⋅ λ2.(7)

The discriminant loci of these fibrations are determined by the functional invariants. Note
that the mirror cubic family of elliptic curves has singular fibres of types I3, I1, IV

∗ over the
points 0, 1

33
,∞ respectively.

Functional Invariant λ1:

● λ−11 (0) = {y3 = 0}∪{(q0−y)3 =∞}∪{x0 =∞}. The first two components then support
I9 fibres while the third component supports I3-fibres.
● λ−11 (∞) = {y3 = ∞} ∪ {x0 = 0} ∪ {(q0 − y)3 = 0}. Since λ1 = ∞ is a type IV∗ fibre, it
follows that only the locus x0 = 0 supports fibres with non-trivial monodromy.
● λ−11 ( 1

33
) is described by the locus x0(y−q0)3 = 33q1y3 and generically supports I1-fibres.

Functional Invariant λ2:

● λ−12 (0) = {x0 =∞} ∪ {1 − y =∞}; both components then support I3-fibres.
● λ−12 (∞) = {x0 = 0} ∪ {y = 1}, both of which support IV∗-fibres.
● λ−12 ( 1

33
) is described by the locus x0(1 − y) = 33q1 and generically supports I1-fibres.
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Functional Invariant λ0:

● λ−10 (0) = {x0 =∞} is a locus of I3-fibres.
● λ−10 (∞) = {x0 = 0} is a locus of IV∗-fibres.
● λ−10 ( 1

33
) is described by x0 = 33q1 and generically supports I1-fibres.

Functional Invariant λ:

● λ−1(0) = {y3 = 0} ∪ {(y − q0)3 = ∞} ∪ {x0 = ∞} ∪ {(1 − y) = ∞} with the first two
components supporting I9-fibres and the last two components supporting I3-fibres.
● The locus λ−1(∞) = {x0 = ∞} ∪ {y = 1} ∪ {(y − q0)3} and the first two components
support IV∗-fibres and the last components supports smooth fibres.
● The locus λ−1( 1

33
) is described by x0(1 − y)(y − q0)3 = 33q1y3 and supports I1-fibres

generically.

Note that the singular loci for the invariant λ is essentially the union of those corresponding
to λ1, λ2 with the λ0 factor eliminating excess branching at both x0 = 0 and x0 =∞. Therefore
one may also write the identity (7) as

λ = λ1λ2
λ0

.

3.2. Periods. Recall that, the holomorphic period for the mirror cubic curve family is

fE∨

0 (λ̃) = ∑
d≥0

(3d)!
(d!)3 λ̃d.

Following [DKY19], the relative period for the LG model (C∨,W0) is
fC∨

0 (q1,0, x0) = fE∨

0 (λ0) = ∑
d≥0

(3d)!
(d!)3 (q1,0/x0)d.

The relative period for the LG model (Q̃∨4 ,W ) can be computed as a residue integral of the
pullback of

1

(1 − y)(1 − q0/y)fE∨

0 (λ̃)
by the functional invariant

λ = q1

x0(1 − y)(1 − q0/y)3 .
We have

1

(1 − y)(1 − q0/y)fE∨

0 (λ) = 1

(1 − y)(1 − q0/y) ∑d1≥0
(3d1)!(d1!)3 (

q1

x0(1 − y)(1 − q0/y)3)
d1

= 1

(1 − q0/y) ∑
d1,d0,1≥0

(3d1)!(d1!)3 (
q1

x0(1 − q0/y)3)
d1 (d1 + d0,1)!

d1!d0,1!
(y)d0,1

= ∑
d1,d0,1,d0,2≥0

(3d1)!(d1!)3 (q1/x0)
d1 (d1 + d0,1)!

d1!d0,1!

(3d1 + d0,2)!(3d1)!d0,2! (y)d0,1(q0/y)d0,2 ,
where we used the identity

1

(1 − x)k+1 =
∞∑
d=0

(d + k)!
d!k!

xd.
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After taking a residue, we obtain the holomorphic relative period of (Q̃∨4 ,W ):

f
Q̃∨

4

0 (q1, q0, x0) = 1

2πi ∮
1

(1 − y)(1 − q0/y)fE∨

0 (λ)dy
y

= ∑
d1,d0≥0

(3d1)!(d1!)3 (q1/x0)
d1 (d1 + d0)!

d1!d0!

(3d1 + d0)!(3d1)!d0! (q0)d0

= ∑
d1,d0≥0

(3d1 + d0)!(d1 + d0)!(d1!)4(d0!)2 (q1/x0)d1qd00 .(8)

Remark 3.2. The relative period (8) matches with the computation for the relative period

of the LG model (Q̃∨4 ,W ) when the relative period is pullback from the period of mirror
quartic K3 surface family. In that case, the computation will be as follows. The smooth
anticanonical divisor of Q̃4 is a K3 surface. The period of the mirror K3 surface family is
the following:

∑
d1,d0≥0

(3d1 + d0)!(d1 + d0)!(d1!)4(d0!)2 (q1)d1qd00 .(9)

The generalized functional invariant for (X∨,W ) with respect to the mirrorK3 surface family
is

λ = q1
x0
.

The relative period can be computed by pulling back the period of the mirror K3 surface
family via the generalized functional invariants. The resulting relative period is precisely (8).
The reason why these two computations match follows from the iterative structure of periods
that we explained in [DKY19, Section 2.2.1]. Since the mirror K3 surface family is fibred
by the mirror cubic curve family, the period (9) of the mirror K3 can be computed as the
residue of the period of the mirror cubic via the functional invariant.

The relative periods for the rank 2 LG models can also be computed as pullback of the
period of the mirror cubic via functional invariants:

f X̃1

0 (q1,1, q0,1, y1, x0) = 1

(1 − q0,1/y1)fE∨

0 (λ1)
= 1

(1 − q0,1/y1) ∑d1≥0
(3d1)!(d1!)3 (

q1,1

x0(1 − q0,1/y1)3)
d1

= ∑
d1,d0≥0

(3d1)!(3d1 + d0)!(d1!)3(3d1)!d0! (q1,1/x0)d1(q0,1/y1)d0

= ∑
d1,d0≥0

(3d1 + d0)!(d1!)3d0! (q1,1/x0)d1(q0,1/y1)d0 ;
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f X̃2

0 (q1,2, q0,2, y2, x0) = 1

(1 − q0,2/y2)fE∨

0 (λ2)
= 1

(1 − q0,2/y2) ∑d1,d0≥0
(3d1)!(d1!)3 (

q1,2

x0(1 − q0,2/y2))
d1

= ∑
d1,d0≥0

(3d1)!(d1 + d0)!(d1!)3(d1)!d0! (q1,2/x0)d1(q0,2/y2)d0

= ∑
d1,d0≥0

(3d1)!(d1 + d0)!(d1!)4d0! (q1,2/x0)d1(q0,2/y2)d0 .
Under the identification (6), we can write relative periods as follows:

fC∨

0 (q1, x0) = fE∨

0 (λ0) = ∑
d≥0

(3d)!
(d!)3 (q1/x0)d;

f
Q̃∨

4

0 (q1, q0, x0) = ∑
d1,d0≥0

(3d1 + d0)!(d1 + d0)!(d1!)4(d0!)2 (q1/x0)d1qd00 ;

f X̃1

0 (q1, q0, y, x0) = ∑
d1,d0≥0

(3d1 + d0)!(d1!)3d0! (q1/x0)d1(q0/y)d0;
f X̃2

0 (q1, y, x0) = ∑
d1,d0≥0

(3d1)!(d1 + d0)!(d1!)4d0! (q1/x0)d1(y)d0 .
Relative periods satisfy the Hadamard product formula similar to the Calabi-Yau case.

Theorem 3.3. The holomorphic relative periods of rank 2 LG models can be glued together
to form the holomorphic relative period of the LG model (Q̃∨4 ,W ) with the correction given
by the holomorphic relative period of the LG model (C∨,W0). More precisely, the relation is
given by the Hadamard product

f
Q̃4

0 (q1, q0, x0) ⋆q1 fC∨

0 (q1, x0) = 1

2πi ∮ f X̃1

0 (q1, q0, y, x0) ⋆q1 f X̃2

0 (q1, y, x0)dyy ,
where ⋆q1 means the Hadamard product with respect to the variable q1 and we used (6) to
identify variables.

Proof. The computation is straightforward:

1

2πi ∮ f X̃1

0 (q1, q0, y, x0) ⋆q1 f X̃2

0 (q1, y, x0)dyy
= 1

2πi ∮ ∑
d1,d0,1,d0,2≥0

(3d1 + d0,1)!(d1!)3d0,1!
(3d1)!(d1 + d0,2)!(d1!)4d0,2! (q1/x20)d1(q0/y)d0,1(y)d0,2 dy

y

= ∑
d1,d0≥0

(3d1 + d0)!(d1!)3d0!
(3d1)!(d1 + d0)!(d1!)4d0! (q1/x20)d1qd00

=f Q̃4

0 (q1, q0, x0) ⋆q1 fC∨

0 (q1, x0).
�
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Remark 3.4. Note that, in f
Q̃4

0 , fC∨

0 , f X̃1

0 and f X̃2

0 , variables q1 and x0 always appear
together as the factor q1/x0. We can also simply absorb the factor 1/x0 into q1 by rescaling
q1. Then Theorem 3.3 stays the same.

Furthermore, the periods f Q̃4

0 , fC∨

0 , f X̃1

0 and f X̃2

0 are solutions to systems of PDEs. We
can write down the bases of solutions to these four systems of PDEs (Note that we absorb
the factor 1/x0 into q1 as mentioned in Remark 3.4):

IQ̃4(q1, q0) = qH1 qP0 ∞∑
d1,d0≥0

qd11 q
d0
0

∏3d1+d0
k=1 (3H + P + k)∏d1+d0

k=1 (H + P + k)
∏d1

k=1(H + k)4∏d0
k=1(P + k)2 mod H2, P 2,

IC
∨(q1) = qH1 ∞∑

d1≥0

qd11
∏3d1

k=1(3H + k)
∏d1

k=1(H + k)3 mod H2,

IX̃1(q1,1, x) = qH1,1xP ∞∑
d1,d0≥0

qd11,1x
d0

∏3d1+d0
k=1 (3H +P + k)

∏d1
k=1(H + k)3∏d0

k=1(P + k) mod H2, P 2,

IX̃2(q1,2, y) = qH1,2yP ∞∑
d1,d0≥0

qd11,2y
d0
∏3d1

k=1(3H + k)∏d1+d0
k=1 (H + P + k)

∏d1
k=1(H + k)4∏d0

k=1(P + k) mod H2, P 2,

where qH1 = eH log q1 and similarly for other prefactors of this form. They again satisfy the
Hadamard product formula. The following theorem follows from a straightforward compu-
tation similar to the proof of Theorem 3.3.

Theorem 3.5. We have the following Hadamard product relation

IQ̃4(q1, q0) ⋆q1 IC∨(q1) = 1

2πi ∮ IX̃1(q1, q0/y) ⋆q1 IX̃2(q1, y)dy
y

mod H2, P 2.(10)

In (10), we treat log q1 as a variable that is independent from q1. Alternatively, one may
consider Ī(q1, q0) ∶= I(q1, q0)/qH1 qP0 and write (10) in terms of Ī.

4. Example 2: quartic threefold

In this section, we consider the semi-stable degeneration of a smooth quartic threefold Q4

into a cubic threefold C3 and the blow-up BlC P3 of P3 along complete intersection center of
degrees 3 and 4 hypersurfaces, that is,

Q4 ↝ C3 ∪C2
BlC P3,

where C is the complete intersection of degrees 3 and 4 hypersurfaces in P3, and C2 is
the common intersection which is a cubic surface. Note that the smooth anticanonical K3
surface in Q4 also degenerates. It degenerates into a cubic surface C ′2 which is in C3 and a
blow-up BlP2 of P2 along a complete intersection of degrees 3 and 4 curves. The blown-up
variety BlP2 is a hypersurface in BlC P3. Therefore, we degenerate (Q4,K3) into (C3,C

′
2)

and (BlC P3,BlP2) intersecting along C2.

We would like to write down the rank 2 LG models for (C3,C2+C2) and (BlC P3,BlP2+C2)
and glue them to the mirror LG model of (Q4,K3). Since BlC P3 can be written as a
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hypersurface in a toric variety, we can write down its LG model following Givental [Giv98].
For the rest of this section, we write

X ∶= Q4, D0 ∶= C2, X1 ∶= C3, and X̃2 ∶= BlC P3.

We also write D for the smooth anticanonical K3 surface in X . We write

D1 ∶= C ′2 ⊂X1, D2 ∶= BlP2 ⊂X2, and D12 ∶=D1 ∩D2.

4.1. Functional invariants. The mirror LG model of X is defined by

W1 ∶ X∨ → C

(x0, x1, x2, y)↦ x0,

where X∨ is the fibrewise compactification of

{(x0, x1, x2, y) ∈ (C∗)4 ∣x1 + x2 + y + q1,1

x0x1x2y
= 1} .

The mirror LG model of the cubic surface D0 is defined by

W1 ∶ D∨0 → C

(x0, x1, x2)↦ x0,

where D∨0 is the fibrewise compactification of

{(x0, x1, x2) ∈ (C∗)3 ∣x1 + x2 + q1,0

x0x1x2
= 1} .

The mirror LG model of X1 is

W1 ∶ X∨1 → C

(x0, x1, x2, y1)↦ x0 + y1,
where X∨1 is the fibrewise compactification of

{(x0, x1, x2, y1) ∈ (C∗)4 ∣x1 + x2 + q1,1

x0x1x2y1
= 1} .

Following [CCGK16, Section E], the quasi-Fano variety X̃2 = BlC(P3) can be constructed
as a hypersurface of degree (3,1) in the toric variety P(OP3(−1)⊕OP3). The LG model of X̃2

is defined as follows

W2 ∶ X̃∨2 → C

(x0, x1, x2, y2)→ x0 + y2,
where X̃∨2 is the fibrewise compactification of

{(x0, x1, x2, y2) ∈ (C∗)4 ∣x1 + x2 + q0,2
y2
+ q1,2y2

x0x1x2
= 1} .

The rank 2 LG models for (X1,D1 +D0) and (X̃2,D2 +D0) are
h1 = (h11, h12) ∶ X∨1 → C2

(x0, x1, x2, y1)↦ (x0, y1),
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and

h2 = (h21, h22) ∶ X̃∨2 → C2

(x0, x1, x2, y2)→ (x0, y2)
respectively. Recall that the mirror cubic curve family is given by the compactification of

{(x̃1, x̃2) ∈ (C∗)2 ∣x̃1 + x̃2 + λ̃

x̃1x̃2
= 1} .

Similar to the computation in Section 3.1, we obtain the functional invariants for X∨, D∨0 ,

X∨1 and X̃∨2 respectively :

λ = q1

x0y(1 − y)3 , λ0 = q1,0
x0

, λ1 = q1,1

x0y1
, λ2 = q1,2y2

x0(1 − q0,2/y2)3 .(11)

We set

q1 = q1,0 = q1,1 = q1,2y2, y = y1 = q0,2/y2.(12)

The matching of singular fibres works similarly as in Section 3. We have

Proposition 4.1. Under the identification (12), the following product relation holds among
the functional invariants:

λ ⋅ λ0 = λ1 ⋅ λ2.(13)

4.2. Periods. Similar to Section 3, relative periods can be computed as pullbacks of the
period for the mirror cubic curve family via the functional invariants. The relative period
for (X∨,W ) is

fX∨

0 (q1, x0) = ∑
d1≥0

(q1/x0)d1 (4d1)!(d1!)4 .
The relative period for (D∨0 ,W0) is

f
D∨

0

0 (q1,0, x0) = ∑
d1≥0

(q1,0/x0)d1 (3d1)!(d1!)3 .
The relative period for (X∨1 , h1) is

f
X∨

1

0 (q1,1, y1, x0) = fE∨

0 (λ1) = ∑
d1≥0

(3d1)!(d1!)3 (
q1,1

x0y1
)d1 .

The relative period for (X̃∨2 , h2) is
f
X̃∨

2

0 (q1,2y2, q0,2/y2, x0) = 1

1 − q0,2/y2fE∨

0 (λ2)
= 1

1 − q0,2/y2 ∑d1≥0
(3d1)!(d1!)3 (

q1,2y2

x0(1 − q0,2/y2)3)
d1

= ∑
d1,d0≥0

(3d1)!(d1!)3 (q1,2y2/x0)d1
(3d1 + d0)!(3d1)!d0! (q0,2/y2)d0

= ∑
d1,d0≥0

(3d1 + d0)!(d1)!3d0! (q1,2y2/x0)d1(q0,2/y2)d0 .
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Note that q1 = q1,1 = q1,2y2 and y = y1 = q0,2/y2 when we glue the rank 2 LG models. We

may rewrite the relative period for (X̃∨2 , h2) as
f
X̃∨

2

0 (q1, y, x0) = ∑
d1,d0≥0

(3d1 + d0)!(d1)!3d0! (q1/x0)d1(y)d0 .
Theorem 4.2. We have the following Hadamard product relation:

fX∨

0 (q1, x0) ⋆q1 fD∨
0

0 (q1, x0) = 1

2πi ∮ f
X∨

1

0 (q1, y, x0) ⋆q1 f X̃∨
2

0 (q1, y, x0)dyy .
As mentioned in Remark 3.4, we can absorb the factor 1/x0 into the factor q1. These

periods are solutions to systems of PDEs. The bases of solutions for the PDEs are as follows:

IQ4(q1) = qH1 ∑
d≥0

(∏4d
k=1(4H + k)
∏d

k=1(H + k)4 ) q
d
1 ;

IC
∨(q1) = qH1 ∞∑

d1≥0

∏3d1
k=1(3H + k)
∏d1

k=1(H + k)3 q
d1
1 ;

IX1(q1, y) = (q1/y)H ∞∑
d1≥0

∏3d1
k=1(3H + k)
∏d1

k=1(H + k)3 (q1/y)
d1;

IX̃2(q1, y) = qH1 yP ∞∑
d1,d0≥0

∏3d1+d0
k=1 (3H + P + k)

∏d1
k=1(H + k)3∏d0

k=1(P + k)q
d1
1 y

d0.

Theorem 4.3. The following Hadamard product relation holds:

IQ4(q1) ⋆q1 IC∨(q1) = 1

2πi ∮ IX1(q1, y) ⋆q1 IX̃2(q1, y)dy
y

mod H2,(14)

where we set P = H. In (14), we treat log q1 as a variable that is independent from q1.
Alternatively, we can consider Ī(q1) ∶= I(q1)/qH1 and write (14) in terms of Ī.

5. Toric complete intersections

5.1. Set-up. Let X be a complete intersection in a toric variety Y defined by a generic
section of E = L0⊕L1⊕⋯⊕Ls, where each Ll is a nef line bundle for 0 ≤ l ≤ s. Let ρl = c1(Ll),
we assume that −KY −∑s

l=0 ρl is a sum of toric prime divisors (not necessarily nef). Without
this assumption, the Hori-Vafa mirror may not be of the correct dimension.

Let sl ∈ H0(Y,Ll), for 0 ≤ l ≤ s, be generic sections determining X . We consider a
refinement of the partition with respect to L0 such that L0,1,L0,2 are two nef line bundles
and L0 = L0,1 ⊗ L0,2. Let ρ0,1 = c1(L0,1) and ρ0,2 = c1(L0,2). Then we have two varieties X1

and X2 defined by generic sections of E1 = L0,1 ⊕ L1 ⊕ ⋯ ⊕ Ls and E2 = L0,2 ⊕ L1 ⊕⋯ ⊕ Ls

respectively.

Let s0,1 ∈H0(Y,L0,1) and s0,2 ∈H0(Y,L0,2) be the generic sections determining X1 and X2.
We can construct a pencil of complete intersections as follows. Let

X ′ = ∩sl=1{sl = 0}.
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We assume that X ′ is connected and quasi-smooth. Then we consider the pencil

X ∶= {ts0 − s0,1s0,2 = 0} ∩X ′
in A1 × Y where t is a parameter on A1. X has singularities along t = s0 = s0,1 = s0,2 = 0. We
resolve the singularities of X by blowing up t = s0,2 = 0 inside A1 × Y and take the proper
transform of X. This gives a degeneration of X such that the central fibre of the degeneration
is the union of X1 and X̃2, where X̃2 is given by blowing up X2 along X ′∩{s0 = s0,1 = s0,2 = 0}.
Two varieties X1 and X̃2 intersect along D0 which is a complete intersection in the toric
variety Y defined by a generic section of L0,1 ⊕L0,2 ⊕L1 ⊕⋯⊕Ls.

Let X be quasi-Fano, then its anticanonical linear system contains a smooth Calabi-Yau
member. LetD be a smooth anticanonical divisor ofX . Then the degeneration ofX leads to a
degeneration ofD into D1∪D12

D̃2 where D1 ⊂ X1, D̃2 ⊂ X̃2 andD12 =D1∩D̃2 ⊂D0. We do not
assume −KY −∑s

l=0 ρl is nef on Y . But we assume that the restriction of −KY −∑s
l=0 ρl is nef on

a toric subvariety Y ′ ⊂ Y and D is defined by a generic section of E′ = L′0⊕L′1⊕⋯⊕L′s⊕L′s+1,
where L′i, 0 ≤ i ≤ s + 1, are nef line bundles of Y ′ and L′i are restrictions of Li on Y ′ for
0 ≤ i ≤ s. For example, let X be the blow-up of P3 along a complete intersection of degree
4 and 5 hypersurfaces. It can be realized as a degree (4,1) hypersurface in the toric variety
Y ∶= P(OP3(−1) ⊕ OP3), see [DKY19, Section 4]. Note that −KX is not nef. However, the
smooth anticanonical divisor of X is a quartic K3 surface in P3. Therefore, this example is
within our assumption. The Tyurin degeneration of D is obtained by a refinement of the nef
partition which is induced by the refinement of the nef partition of E. In other words, we
consider a refinement of the nef partition with respect to L′0 such that L′0 = L′0,1⊗L′0,2, where
L′0,1,L

′
0,2 are two nef line bundles given by the restriction of L0,1 and L0,2 to Y ′ respectively.

We can realize X̃2 as a complete intersection in a toric variety following [CCGK16, Section
E]. Indeed, it is a hypersurface in the total space of π ∶ PX2

(O ⊕ i∗L−10,2) → X2 defined by a
generic section of the line bundle π∗i∗L0,1 ⊗O(1), where i ∶ X2 ↪ Y is the inclusion map.
In other words, it is a complete intersection in the toric variety PY (O ⊕ L−10,2) given by a
generic section of π∗L0,2 ⊕ π∗L1 ⊕⋯⊕ π∗Ls ⊕ (π∗L0,1 ⊗O(1)) where we use the same π for
the projection of PY (O ⊕L−10,2) to the base Y .

Let p1, . . . , , pr ∈H2(Y,Z) be a nef integral basis. We write the toric divisors as

Dj = r∑
i=1

mijpi, 1 ≤ j ≤m,
for some mij .

The partition of the toric divisors gives a partition of the variables x1, . . . , xm into s + 2
groups. Let Fl(x) be the sum of xi in each group for l = 0, . . . , s, s + 1. Let F0,1(x) and
F0,2(x) correspond to the refinement of the nef partition with respect to L0. We write
F0,1(x) = xj1 + . . . , xja and F0,2(x) = xja+1 + . . . , xja+b . Note that we have F0,1(x) + F0,2(x) =
F0(x).
Following [Giv98], the Hori-Vafa mirror of X is the LG model

W ∶ X∨ → C∗

(x1, . . . , xm)↦ Fs+1(x),



DEGENERATIONS, FIBRATIONS AND HIGHER RANK LANDAU-GINZBURG MODELS 19

where X∨ is the fibrewise Calabi-Yau compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi, i = 1, . . . , r;Fl(x) = 1, l = 0, . . . , s} .
The mirror for D0 is the LG model

W0 ∶ D∨0 → C∗

(x1, . . . , xm)↦ Fs+1(x),
where D∨0 is the fibrewise Calabi-Yau compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi, i = 1, . . . , r;
Fl(x) = 1, l = 1, . . . , s;F0,1(x) = 1, F0,2(x) = 1} .

The mirror for (X1,D0 +D1) is the rank 2 LG model

h1 ∶ X∨1 → (C∗)2
(x1, . . . , xm)↦ (Fs+1(x), F0,2(x)),

where X∨1 is the fibrewise compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi,1, i = 1, . . . , r;
Fl(x) = 1, l = 1, . . . , s;F0,1(x) = 1} .

X̃2 is a complete intersection in the toric variety PY (O ⊕ L−10,2) given by a generic section

of L0,2 ⊕L1 ⊕⋯⊕Ls ⊕ (π∗L0,1 ⊗O(1)). The rank 2 LG model for (X̃2,D0 + D̃2) is
h2 ∶ X̃∨2 → (C∗)2

(x1, . . . , xm, y2)↦ (Fs+1(x), y2),
where X̃∨2 is the fibrewise compactification of

{(x1, . . . , xm, y2) ∈ (C∗)m+1 ∣( m

∏
j=1

x
mij

j )y−∑a+b
k=a+1 mijk

2 = qi,2, i = 1, . . . , r;
Fl(x) = 1, l = 1, . . . , s;F0,1(x) + q0,2

y2
= 1, F0,2(x) = 1} .

5.2. Generalized functional invariants. Then, we can compute the generalized functional
invariants. Recall that X∨ is the compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi, i = 1, . . . , r;Fl(x) = 1, l = 0, . . . , s} .
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Set F0,2(x) = y, then F0,1(x) = 1 − y. For y ≠ 1, the following change of variables can give us
D∨0 .

x̄jk = xjk
1 − y , k = 1, . . . , a; x̄jk = xjky , k = a + 1, . . . , a + b;

and

λi = qi

∏a
k=1(1 − y)mijk ∏a+b

k=a+1(y)mijk

, i = 1 . . . , r.
Therefore, the generalized functional invariant for X∨ is λ⃗ = (λ1, . . . , λr), where

λi = qi

∏a
k=1(1 − y)mijk ∏a+b

k=a+1(y)mijk

, i = 1 . . . , r.(15)

ForX∨1 , we also set F0,2(x) = y1. By similar computation, the generalized functional invariant

is λ⃗1 = (λ1,1, . . . , λr,1), where
λi,1 = qi,1

∏a+b
k=a+1 y

mijk

1

, i = 1 . . . , r.(16)

Similarly, the generalized functional invariant for X̃2 is λ⃗2 = (λ1,2, . . . , λr,2), where
λi,2 = qi,2

y
−∑a+b

k=a+1 mijk

2 ∏a
k=1(1 − q0,2/y2)mijk

, i = 1 . . . , r.(17)

We set

qi = qi,1 = qi,2y∑a+b
k=a+1 mijk

2 , i = 1, . . . , r, y = y1 = q0,2/y2.(18)

Proposition 5.1. Under the identification (18), the generalized functional invariants satisfy
the product relation

λiqi = λi,1λi,2, i = 1, . . . , r.
Remark 5.2. Note that the generalized functional invariants in here are with respect to
the mirror family of D0. This is slightly different from the generalized functional invariants
considered in Section 3 and Section 4 where the functional invariants are with respect to
the mirror family of the smooth anticanonical divisor D12 of D0. In Proposition 5.1 qi is
considered as the generalized functional invariants for D0 with respect to itself.

We can also compute the generalized functional invariants when the base family is the
mirror to the smooth anticanonical divisor D12 of D0. Recall that we have a Tyurin degener-
ation of D into D1∪D12

D̃2, where D1 ⊂ X1, D̃2 ⊂ X̃2, induced by a refinement of nef partition.
If we assume that −KY −∑s

l=0 c1(Ll) is nef, then D∨12 is defined by the fibrewise Calabi-Yau
compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi, i = 1, . . . , r;(19)

Fl(x) = 1, l = 1, . . . , s + 1;F0,1(x) = 1, F0,2(x) = 1} .
If we only assume that the restriction of −KY −∑s

l=0 c1(Ll) is nef on a toric subvariety Y ′ ⊂ Y ,
then D∨12 is a specialization of (19) to qi = 0 for some i ∈ {1, . . . , r}. We will simply use (19)
to do the computation and we can specialize to qi = 0, for some i ∈ {1, . . . , r}, when it is
necessary.
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Then, we can compute generalized functional invariants with respect to D∨12. Recall that
the mirror for D0 is the LG model

W0 ∶ D∨0 → C∗

(x1, . . . , xm)↦ Fs+1(x),
where D∨0 is the fibrewise Calabi-Yau compactification of

{(x1, . . . , xm) ∈ (C∗)m ∣ m∏
j=1

x
mij

j = qi, i = 1, . . . , r;
Fl(x) = 1, l = 1, . . . , s;F0,1(x) = 1, F0,2(x) = 1} .

Let Is+1 be the index set for the summand of Fs+1(x). We set Fs+1(x) = y0 and consider the
change of variables

x̄j = xj
y0
, j ∈ Is+1

and

λi,0 = qi

∏a+b
j∈Is+1 y

mij

0

, i = 1 . . . , r.
Generalized functional invariants of X∨, X∨1 and X̃∨2 with respect to D∨12 can also be com-
puted. The computation is similar to the computation for (15), (16) and (17) except that
there is an extra change of variables

x̄j = xj
y0
, j ∈ Is+1.

Therefore, the generalized functional invariants of X∨, X∨1 and X̃∨2 with respect to D∨12 are

λ′i = λi 1

∏a+b
j∈Is+1 y

mij

0

, i = 1 . . . , r;

λ′i,1 = λi,1 1

∏a+b
j∈Is+1 y

mij

0

, i = 1 . . . , r;

λ′i,2 = λi,2 1

∏a+b
j∈Is+1 y

mij

0

, i = 1 . . . , r.
Then, we again have the relation among generalized functional invariants

Proposition 5.3. Under the identification (18), the generalized functional invariants satisfy
the product relation

λ′iλi,0 = λ′i,1λ′i,2, i = 1 . . . , r.
5.3. Periods. Recall that p1, . . . , , pr ∈H2(Y,Z) is a nef integral basis and the toric divisors
are

Dj = r

∑
i=1

mijpi, 1 ≤ j ≤m,
for some mij .
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If we assume that ρs+1 = −KY −∑s
l=0 c1(Ll) is nef on Y , then the relative period for (D∨0 ,W0)

is

fD0

0 (λ0) = ∑
d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∏s
l=1⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!⟨ρ0,1, d⟩!⟨ρ0,2, d⟩⟨ρs+1, d⟩!λd0.(20)

Suppose ρs+1 is nef when restricted to a toric subvariety Y ′ ⊂ Y . Then the relative period
for (D∨0 ,W0) is a restriction of (20) to qi = 0 for some of i ∈ {1, . . . , r}.
We can compute the holomorphic period for X∨ via generalized functional invariants:

1

(1 − y)fD0

0 (λ′)
= ∑

d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∏s+1
l=1 ⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!⟨ρ0,1, d⟩!⟨ρ0,2, d⟩!⟨ρs+1, d⟩!

λd0(1 − y)1+⟨ρ0,1,d⟩y⟨ρ0,2,d⟩

= ∑
d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∑
d0,1≥0

∏s+1
l=1 ⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!⟨ρ0,1, d⟩!⟨ρ0,2, d⟩!⟨ρs+1, d⟩!

(d0,1 + ⟨ρ0,1, d⟩)!λd0
d0,1!⟨ρ0,1, d⟩!y⟨ρ0,2,d⟩yd0,1 .

We obtain the holomorphic period for X∨:

fX
0 (λ0) = 1

2πi ∮
1

(1 − y)fD0

0 (λ′)dyy
= ∑

d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∏s
l=1⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!(⟨ρ0,1, d⟩ + ⟨ρ0,2, d⟩)!⟨ρs+1, d⟩!λd0.

= ∑
d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∏s
l=0⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!⟨ρs+1, d⟩!λd0.

The holomorphic periods for X∨1 and X̃∨2 are computed in a similar way, we have

fX1

0 (λ0, y1) = ∑
d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∏s
l=1⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!⟨ρ0,1, d⟩!⟨ρ0,2, d⟩!⟨ρs+1, d⟩!

λd0(y1)⟨ρ0,2,d⟩ ;

f X̃2

0 (λ0, y) = ∑
d∈H2(Y ;Z)
∀j,⟨Dj ,d⟩≥0

∑
d0≥0

∏s
l=1⟨ρl, d⟩!

∏m
j=1⟨Dj, d⟩!

(d0 + ⟨ρ0,1, d⟩)!⟨ρ0,2, d⟩!λd0
d0!

⟨ρs+1, d⟩!(y)d0 .

Recall that y = y1 = q0,2/y2 and λi,0 = qi

∏a+b
j∈Is+1

y
mij
0

, i = 1 . . . , r. Since λ0 and q are only differ by

a scaling factor, we will simply replace λ0 by q for the rest of the section. Then we have

Theorem 5.4. The following Hadamard product relation holds

fX
0 (q) ⋆q fD0

0 (q) = 1

2πi ∮ fX1

0 (q, y) ⋆q f X̃2

0 (q, y)dyy .
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Similarly, we have the Hadamard product relation among Picard-Fuchs operators. Let

IX(q) = e∑r
i=0 pi log qi ∑

d∈NE(Y )Z

m

∏
j=1

⎛
⎝
∏0

k=−∞(Dj + k)
∏⟨Dj ,d⟩

k=−∞ (Dj + k)
⎞
⎠
⎛
⎝

s

∏
l=0

⟨ρl,d⟩

∏
k=1

(ρl + k)⎞⎠
⟨ρs+1,d⟩

∏
k=1

(ρs+1 + k)qd;

ID0(q) = e∑r
i=1 pi log qi ∑

d∈NE(Y )Z

m

∏
j=1

⎛
⎝
∏0

k=−∞(Dj + k)
∏⟨Dj ,d⟩

k=−∞ (Dj + k)
⎞
⎠
⎛
⎝

s

∏
l=1

⟨ρl,d⟩

∏
k=1

(ρl + k)⎞⎠
⋅ ⎛⎝
⟨ρ0,1,d⟩

∏
k=1

(ρ0,1 + k)
⟨ρ0,2,d⟩

∏
k=1

(ρ0,2 + k)⎞⎠
⟨ρs+1,d⟩

∏
k=1

(ρs+1 + k)qd;

IX1(q, y) = e∑r
i=1 pi logλi,1 ∑

d∈NE(Y )Z,d0≥0

m

∏
j=1

⎛
⎝
∏0

k=−∞(Dj + k)
∏⟨Dj ,d⟩

k=−∞ (Dj + k)
⎞
⎠
⎛
⎝

s

∏
l=1

⟨ρl,d⟩

∏
k=1

(ρl + k)⎞⎠
⋅ ⎛⎝
⟨ρ0,1,d⟩

∏
k=1

(ρ0,1 + k)
⟨ρ0,2 ,d⟩

∏
k=1

(ρ0,2 + k)⎞⎠
⟨ρs+1,d⟩

∏
k=1

(ρs+1 + k) qd

y⟨ρ0,2,d⟩
,

where λi,1 = qi,1

∏a+b
k=a+1 y

mijk
1

, i = 1 . . . , r;

IX̃2(q, y) = e∑r
i=1 pi log qi+p0 log y ∑

d∈NE(Y )Z,d0≥0

m

∏
j=1

⎛
⎝
∏0

k=−∞(Dj + k)
∏⟨Dj ,d⟩

k=−∞ (Dj + k)
⎞
⎠
⎛
⎝

s

∏
l=1

⟨ρl,d⟩

∏
k=1

(ρl + k)⎞⎠
⋅
(∏⟨ρ0,1,d⟩+d0k=1 (ρ0,1 + p0 + k)∏⟨ρ0,2,d⟩k=1 (ρ0,2 + k))

∏d0
k=1(p0 + k)

⟨ρs+1,d⟩

∏
k=1

(ρs+1 + k)yd0qd.
Theorem 5.5. The Hadamard product relation among the bases of solutions to Picard-Fuchs
equations is

IX(q) ⋆q ID0(q) = 1

2πi ∮ IX1(q, y) ⋆q IX̃2(q, y)dy
y
,

where we set p0 = ρ0,2. In the Hadamard product ∗q, we treat log qi as a variable that is inde-
pendent from qi. Alternatively, we can consider Ī(q) ∶= I(q)/(∑ pi log qi) and write Hadamard
product relation for Ī.

Remark 5.6. The Hadamard product relation between periods is also true if we remove the

factor ⟨ρs+1, d⟩! from each period. Similarly, we can remove the factor ∏⟨ρs+1,d⟩k=1 (ρs+1 +k) from
I-functions appeared in Theorem 5.5. Then the hypergeometric series are related to different
enumerative invariants. For example, IX(q) is related to a generating function of genus zero

relative Gromov-Witten invariants of (X,D). Removing the factor ∏⟨ρs+1,d⟩k=1 (ρs+1 + k) from
IX(q), it is related to a generating function of genus zero absolute Gromov-Witten invariants
X instead of relative Gromov-Witten invariants of (X,D).

6. Degeneration to the normal cones

In this section, we consider a special kind of degeneration: degeneration to the normal
cones. Let X be a quasi-Fano variety with its smooth anticanonical divisor D. We can
consider the degeneration to the normal cone of X with respect to a divisor D1. More
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precisely, let X be the blow-up of X ×A1 along the subvariety D1×{0}. There is a projection
map π ∶ X → A1 to the second factor. The central fibre π−1(0) is X ∪D1

PD1
(ND1

⊕O).
Let D1+D2 ∈ ∣−KX ∣ be simple normal crossings and D12 = D1∩D2. Then, the degeneration

of X also gives a Tyurin degeneration of D into D2 ⊂ X and a blow-up D̃1 of D1. The blown-
up variety D̃1 is in PD1

(ND1
⊕O). Therefore, the degeneration that we are considering is the

following:

(X,D)↝ (X,D2) ∪(D1,D12) (PD1
(ND1

⊕O), D̃1).
Then Conjecture 1.1 states that the LG mirror of (X,D) can be obtained by gluing rank

2 LG mirrors of (X,D1 +D2) and (PD1
(ND1

⊕O),D1 + D̃1). Recall that, suppose (X∨, h =(h1, h2)) is the rank 2 LG mirror of (X,D1 + D2), then W = h1 + h2 ∶ X∨ → C is a non-
proper LG model. By mirror symmetry, it is expected that the LG model (X̄∨, W̄ ) of (X,D)
is a compactification of the non-proper LG model (X∨,W ). Our conjecture suggests the
following.

Conjecture 6.1. Given a quasi-Fano variety X with its smooth anticanonical divisor D. Let
D1 +D2 be a simple normal crossings anticanonical divisor of X. The ordinary LG model
of (X,D) is a (partial) compactification of the rank 2 LG model of (X,D1 + D2) and the

compactification can be obtained by gluing the rank 2 LG mirror of (PD1
(ND1

⊕O),D1 + D̃1)
to the rank 2 LG mirror of (X,D1 +D2).
When D ⊂ X is a toric complete intersection of a toric variety determined by a nef parti-

tion. The refinement of the nef partition discussed in [DHT17, Section 3] gives a degeneration
of (X,D) which is compatible with a Tyurin degeneration of D. One can obtain the rela-
tion between their generalized functional invariants, periods, and I-functions following the
procedure of [DKY19, Section 5]. This is similar to the discussion in Section 5, but slightly
different. Suppose X is a complete intersection in a toric variety Y defined by a generic
section of E = L0 ⊕ L1 ⊕⋯ ⊕ Ls and D ⊂ X is a Calabi-Yau intersection in Y defined by a
generic section of E = L0 ⊕ L1 ⊕ ⋯ ⊕ Ls ⊕ Ls+1. For degeneration to the normal cones, we
consider a refinement of the nef partition with respect to the part Ls+1. While, in Section 5,
we consider a refinement of the nef partition with respect to Li for i ∈ {0,1, . . . , s}. We will
work out an example of the degeneration to the normal cone explicitly in the next section.
The general case works similarly.

6.1. An example. In this section, we will consider an example of the degeneration to the
normal cone. We consider a degeneration to the normal cone of P3 with respect to a smooth
cubic surface S:

P3
↝ P3 ∪S P(NS ⊕OS).

Then a quartic K3 surface in P3 degenerates to P2 ⊂ P3 and a blow-up of S along a complete
intersection of a degree one and a degree four hypersurfaces. This blown-up variety D̃ is
a hypersurface in Y ∶= P(NS ⊕ OS) defined by the vanishing locus of a generic section ofOY (1)⊗ π∗OS(1), where π ∶ Y → S is the projection.

Therefore, what we consider is the degeneration of (P3,K3) into (P3,P2) and (P(NS ⊕
OS), D̃) intersecting along S. We study the relation among their mirrors. The mirror of
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(P3,K3) is an LG model given by the fibrewise compactification of

W ∶ (C∗)3 → C

(x0, x1, x2)↦ x0 + x1 + x2 + q1

x0x1x2
.

It can be rewritten as

W ∶ X∨ → C

(x0, x1, x2, y)↦ y,

where X∨ is the fibrewise compactification of

{(x0, x1, x2, y1) ∈ (C∗)4 ∣x0 + x1 + x2 + q1

x0x1x2
= y} .

The rank 2 LG model mirrors to (P3,P2 + S) is given by

h1 ∶= (h11, h12) ∶ (C∗)3 → (C)2
(x0, x1, x2)↦ (x0, y1 ∶= q1,1

x0x1x2
+ x1 + x2).

The rank 2 LG model mirrors to (P(NS ⊕OS), D̃ + S) is given by.

h2 ∶ X∨2 → (C)2
(x0, x1, x2, y, y2)↦ (y, y2),

where X∨2 is the fibrewise compactification of

{(x0, x1, x2, y, y2) ∈ (C∗)5 ∣x1 + x2 + q1,2

x0x1x2(y − x0)3 = 1, (y − x0)y2 = q2,2} .
Recall that the mirror LG model of the cubic surface D0 is defined by

W1 ∶ D∨0 → C

(x0, x1, x2)↦ x0,

where D∨0 is the fibrewise compactification of

{(x0, x1, x2) ∈ (C∗)3 ∣x1 + x2 + q1,0

x0x1x2
= 1} .

The functional invariants are the following:

λ = q1

x0(y − x0)3 , λ0 = q1,0
x0
, λ1 = q1,1

x0y
3
1

, λ2 = q1,2y
3
2(y − q2,2/y2)q32,2 .(21)

We have the following identification of variables

q1 = q1,0 = q1,1 = q1,2y32
q32,2

, y1 = q2,2/y2 = y − x0.(22)

The relation among their functional invariants are the following

λ ⋅ λ0 = λ1 ⋅ λ2.
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The relative period for (S∨,W0) is
fS∨

0 (q1,0, x0) = ∑
d1≥0

(q1,0/x0)d1 (3d1)!(d1!)3 .
The relative period of (P3,K3) can be computed as a residue integral of the pullback of

1

(1 − x0/y)fE∨

0 (λ̃).
by the functional invariant

λ = q1

x0(y − x0)3 =
q1

x0y3
1

(1 − x0/y)3 .
Therefore, we have

1

(1 − x0/y)fE∨

0 (λ) = 1

(1 − x0/y) ∑d1≥0
(3d1)!(d1!)3 (

q1

x0y3
1

(1 − x0/y)3)
d1

= ∑
d1,d0,1≥0

(3d1)!(d1!)3 (
q1

x0y3
)d1 (3d1 + d0,1)!(3d1)!d0,1! (x0/y)d0,1

= ∑
d1,d0,1≥0

(3d1 + d0,1)!(d1!)3d0,1! (
q1

x0y3
)d1 (x0

y
)d0,1

After taking a residue, we obtain the holomorphic period of (P3,K3):
fX∨

0 (q1, y) = 1

2πi ∮
1

(1 − x0/y)fE∨

0 (λ)dx0
x0

= ∑
d1≥0

(3d1 + d1)!(d1!)3d1! (
q1

y3
)d1 (1

y
)d1

= ∑
d1≥0

(4d1)!(d1!)4 (
q1

y4
)d1 .

This again matches with the previous computation of relative periods in [DKY19].

Relative period for the rank 2 LG model of (P3,P2 + S) is
f
X∨

1

0 (q1,1, y1, x0) = ∑
d1≥0

( q1,1
x0y

3
1

)
d1 (3d1)!(d1!)3 .

Now, we compute the relative period for the rank 2 LG model of (P(NS ⊕ OS), D̃ + S).
Recall that the functional invariant is

λ2 = q1,2y
3
2(y − q2,2/y2)q32,2 =

q1,2y
3
2

yq32,2

1

1 − q2,2/(y2y) .
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The relative period is

1

1 − q2,2/(y2y)fE∨

0 (λ2)
= 1

1 − q2,2/(y2y) ∑d1≥0(
q1,2y

3
2

yq32,2
)
d1 ( 1

1 − q2,2/(y2y))
d1 (3d1)!(d1!)3

= ∑
d1,d0,2≥0

(q1,2y32
yq32,2

)
d1 (d1 + d0,2)!

d1!d0,2!
(q2,2
y2y
)d0,2 (3d1)!(d1!)3 .

Under the identification (22), the relative period can be rewritten as

f
X∨

2

0 (q1, y1, y) = ∑
d1,d0,2≥0

(q1
y
)d1 (d1 + d0,2)!

d1!d0,2!
(y1
y
)d0,2 (3d1)!(d1!)3 .

Then we can glue periods as follows

1

2πi ∮ f
X∨

1

0 (q1, y1, x0) ⋆q1 fX∨
2

0 (q1, y1, y)dy1y1
= 1

2πi ∮
⎛
⎝∑d1≥0(

q1

x0y
3
1

)
d1 (3d1)!(d1!)3

⎞
⎠ ⋆q1

⎛
⎝ ∑d1,d0,2≥0

(q1
y
)d1 (d1 + d0,2)!

d1!d0,2!
(y1
y
)d0,2 (3d1)!(d1!)3

⎞
⎠
dy1

y1

= ∑
d1≥0

( q1
x0
)d1 (3d1)!(d1!)3 (

q1

y
)d1 (d1 + 3d1)!

d1!(3d1)! (
1

y
)3d1 (3d1)!(d1!)3

=(∑
d1≥0

(4d1)!(d1!)4 (
q1

y4
)d1) ⋆q1 (∑

d1≥0

( q1
x0
)d1 (3d1)!(d1!)3 )

=fX∨

0 (q1, y) ⋆q1 fS∨

0 (q1, x0).(23)

Just like previous examples, these periods are solutions to systems of PDEs. We can write
down the bases of solutions for the systems of PDEs and they also satisfy the Hadamard
product relation.

7. Iterating the Doran-Harder-Thompson conjecture

In this section, we apply the conjecture of gluing rank 2 LG models in Section 2 to iterate
the Doran-Harder-Thompson conjecture.

We consider a Tyurin degeneration of a Calabi-Yau variety X such that the central fibre
of the degeneration is a simple normal crossing variety X1 ∪DX2 where X1 and X2 are quasi-
Fano varieties and D is their common smooth anti-canonical divisor. We further degenerate
the pairs (X1,D) and (X2,D) into (X11,D1) ∪D10

(X12,D2) and (X21,D1) ∪D20
(X22,D2)

respectively, such that the degeneration of D into D1 ∪D1∩D2
D2 is a Tyurin degeneration.

Then by [DHT17] and Conjecture 1.1, we expect that the mirror of X can be obtained by
gluing four rank 2 LG models.

Suppose X is a Calabi-Yau complete intersection in a toric variety given by a nef partition.
A refinement of the nef partition gives a Tyurin degeneration of X into a union of quasi-Fano
varieties X1 and X2 meeting normally along D. Following [DKY19, Section 5], X1, X2 and
D are still complete intersections in certain toric varieties. We can further degenerate X1
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and X2 following Section 5. Then X11,X12,X21 and X22 are all toric complete intersections.
The relation among their generalized functional invariants follows from the relation that we
obtained in [DKY19, Section 5] and Section 5. We explain it here in full detail for the
degeneration of the quintic threefold.

We consider the degeneration of the quintic threefoldQ5 ⊂ P4 into (P3,K3) and (BlC1,5
Q4,K3),

where BlC1,5
Q4 is the blow-up of a quartic fourfold Q4 along a complete intersection of degree

1 and 5 hypersurfaces. Then we further degenerate (P3,K3) into (P3,P2) and (P(NS⊕O), D̃)
intersecting along a cubic surface S1 which is described in Section 6.1. We also degenerate(BlC1,5

Q4,K3) into (BlC1,5
P3,P2) and (BlC1,4

BlC1,5
Q3, D̃) intersecting along a common di-

visor S2.

The blown-up varieties can be realized as complete intersections in toric varieties. The
variety BlC1,5

Q4 has been studied in [DKY19, Section 4.2]. It is a complete intersection of
degrees (1,1) and (4,0) in the toric variety P(OP4(−4)⊕OP4). The variety BlC1,5

P3 can be
constructed similarly. It is a hypersurface of degree (1,1) in the toric variety P(OP3(−4) ⊕OP3). Similarly, BlC1,4

BlC1,5
Q3 can be considered as follows. Let X ′ = BlC1,5

Q3. Then
X ′ is a complete intersection given by the zero locus of generic sections of lines bundlesOY (1)⊗ π∗OP4(1) and π∗OP4(3) in the toric variety

π ∶ Y ∶= P(OP4(−4)⊕OP4)→ P4.

Then BlC1,4
BlC1,5

Q3 = BlC1,4
X ′ is a complete intersection given by the zero locus of generic

sections of lines bundlesOY ′(1)⊗(π′)∗π∗OP4(1), (π′)∗OY (1)⊗(π′)∗π∗OP4(1) and (π′)∗π∗OP4(3)
in

π′ ∶ Y ′ = PY (π∗OP4(−3)⊕OY )→ Y.

The mirrors can be written down following Section 5. Recall that the functional invariant
for the mirror of (P3,K3) with respect to the mirror cubic curve family is

λ1 = q1,1

x0(y − x0)3
as in (21). We can compute the functional invariants for mirrors of Q5, (BlC1,4

Q4,K3) and
the quartic K3:

λ = q1

x0(1 − y)(y − x0)3 , λ2 =
q1,2y

4
2

x0(1 − x0)3(1 − q2/y2) , λ0 =
q1,0

x0(1 − x0)3 .
Under the identifications

y = q2/y2, and q1 = q1,1 = q1,2y42 = q1,0,
we have the product relation among functional invariants

λλ0 = λ1λ2.
Remark 7.1. Note that in our earlier paper [DKY19], we explained how to glue two func-
tional invariants λ1 = Q1

(y−1)4 and λ2 = Q2

y
to get λ = Q

y(y−1)4 . By replacing Qi with the expression

λ0 above, we obtain the expressions λ1, λ2. In this sense, the gluing formula above is really
the same as starting with our old one and then replacing the parameters with λ0, as was
described above in Section 5.
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Here is a brief analysis of the singular loci for the mirror cubic elliptic curve fibration of
the mirror quintic threefold. Recall once more that the mirror cubic family of elliptic curves
has singular fibres of types I3, I1, IV

∗ over 0, 1
33
,∞ respectively.

Functional invariant λ1:

● λ−11 (0) = {x0 =∞} ∪ {(y − x0)3 =∞} supports I3 and I9 singular fibres respectively.
● λ−11 (∞) = {x0 = 0} ∪ {(y − x0)3 = 0}; the first component supports IV∗-fibres with the
second component supporting smooth fibres.
● The locus λ−11 ( 1

33
) = {x0(y − x0)3 = 33q1} supports I1-fibres generically.

Functional invariant λ2:

● λ−12 (0) = {x0 =∞}∪{y = 1}∪{(1−x0)3 =∞} with the first two components supporting
I3-fibres and the last supporting I9-fibres.
● λ−12 (∞) = {x0 = 0}∪{(1−y) =∞}∪{(1−x0)3 = 0}. The first two components support
IV∗-fibres with the third component supporting smooth fibres.
● The locus λ−12 ( 1

33
) = {x0(1 − x0)3)(1 − y) = 33q1} supports I1-fibres.

Functional invariant λ0:

● λ−10 (0) = {x0 =∞} ∪ {(1 − x0)3 =∞} supports I3 and I9 singular fibres respectively.
● λ−10 (∞) = {x0 = 0}∪{(1−x0)3 = 0}. The first component supports IV∗-fibres with the
second component supporting smooth fibres.
● The locus λ−10 ( 1

33
) = {x0(1 − x0)3 = 33q1} supports I1-fibres.

Functional invariant λ:

● λ−1(0) = {x0 = ∞} ∪ {(1 − y) = ∞} ∪ {(y − x0)3 = ∞}, with the first two components
supporting I3 fibres and the last component supporting I9-fibres.
● λ−1(∞) = {x0 = 0}∪{(1−y) = 0}∪{(y−x0)3 = 0}; the first two component supporting
IV∗-fibres with the last component supporting smooth fibres.
● The locus λ−1( 1

33
) = {x0(1 − y)(y − x0)3 = 33q1} supports I1-fibres.

The singular loci of λ are essentially the union of the singular loci of λ1, λ2 with the
exception of the removal of one factor of x0 = 0 and x0 =∞ that is accounted for in λ0.

Now we further degenerate (P3,K3) and (BlC1,4
Q4,K3). By Proposition 5.1 and (21), the

functional invariants λ1 and λ2 satisfy the following relations:

λ1λ1,0 = λ1,1λ1,2
and

λ2λ2,0 = λ2,1λ2,2,
where λi,j are functional invariants of degenerated pieces (and the intersections of degenerated
pieces) with respect to the mirror cubic family; the identities are obtained under appropri-
ate identifications of variables. Therefore, we have the following relation among functional
invariants

λλ0λ1,0λ2,0 = λ1,1λ1,2λ2,1λ2,2.(24)

Now, we would like to show that the period for the mirror quintic can be obtained by
gluing relative periods of four rank 2 LG models. As computed in [DKY19, Section 2.2.1],
the period of the mirror quintic can be obtained from the residue integral of the pullback
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of the period of its internal fibration of mirror quartic K3 by the generalized functional
invariant λ = q

y(1−y)4 . Similarly, we can compute the period of the mirror quintic by taking

double residue integrals of the pullback of the period of its internal elliptic fibration by
the functional invariant λ = q1

x0(1−y)(y−x0)3
. The computation is as follows. Recall that, the

holomorphic period for the mirror cubic curve family is

fE∨

0 (λ̃) =∑ (3d)!(d!)3 λ̃d.
Then

1

(1 − y)(1 − x0/y)fE∨

0 (λ) = 1

(1 − y)(1 − x0/y) ∑d1≥0
(3d1)!(d1!)3 (

q1

x0y3(1 − y)(1 − x0/y)3)
d1

= 1

(1 − x0/y) ∑
d1,d0,1≥0

(3d1)!(d1!)3 (
q1

x0y3(1 − x0/y)3)
d1 (d1 + d0,1)!

d1!d0,1!
(y)d0,1

= ∑
d1,d0,1,d0,2≥0

(3d1)!(d1!)3 (
q1

x0y3
)d1 (d1 + d0,1)!

d1!d0,1!

(3d1 + d0,2)!(3d1)!d0,2! (y)d0,1 (
x0

y
)d0,2 .

We take the residue integrals to obtain the holomorphic period of the mirror of X = Q5:

fX∨

0 (q1) = 1

(2πi)2 ∮ ∮
1

(1 − y)(1 − x0/y)fE∨

0 (λ)dy
y

dx0

x0

= ∑
d1,d0≥0

(3d1)!(d1!)3 (q1)
d1 (d1 + 4d1)!

d1!(4d1)!
(3d1 + d1)!(3d1)!d1!

= ∑
d1≥0

(5d1)!(d1!)5 q
d1
1 .

Similarly, we can compute relative periods for the mirrors of (X1,D) ∶= (P3,K3), (X2,D) ∶=(BlC1,4
Q4,K3) and the quartic D ∶=K3 as

f
X̃∨

1

0 (q1, y) = 1

2πi ∮
1

(1 − x0/y)fE∨

0 (λ1)dx0
x0

,

f
X̃∨

2

0 (q1, y) = 1

2πi ∮
1

(1 − y)(1 − x0)fE∨

0 (λ2)dx0
x0

f D̃∨

0 (q1) = 1

2πi ∮
1

(1 − x0)fE∨

0 (λ0)dx0
x0

.

We have

fX∨

0 (q1) ⋆q1 f D̃∨

0 (q1) = 1

2πi ∮ f
X̃∨

1

0 (q1, y) ⋆q1 f X̃∨
2

0 (q1, y)dyy .(25)

On the other hand, f
X̃∨

1

0 (q1, y) and f X̃∨
2

0 (q1, y) satisfy the following product relations by The-
orem 5.4 and Equation (23):

fX∨

0 ⋆q1 f D̃∨

0 ⋆q1 fD∨
10

0 ⋆q1 fD∨
20

0

= 1

(2πi)2 ∮ ((∮ f
X̃∨

11

0 ⋆q1 f X̃∨
12

0

dy1

y1
) ⋆q1 (∮ f

X̃∨
21

0 ⋆q1 f X̃∨
22

0

dy2

y2
)) dy

y
.
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These holomorphic periods are solutions to systems of PDEs. This relation between periods
is also true for the bases of solutions for the systems of PDEs. In general, such a relation is
true when we consider iterating Tyurin degenerations of Calabi-Yau complete intersections
in toric varieties.

In the above example of quintic, the degeneration is induced from a refinement of the
nef partition (5) → (1) + (4). There is another refinement of the nef partition that one can
consider: (5) → (2) + (3). In this case, the quintic threefold is degenerated into a blow-up
Bl3,5Q2 of quadric threefold Q2 along complete intersection of degree 3 and 5 hypersurfaces
and a cubic threefold Q3. The intersection of Bl3,5Q2 and Q3 is a sextic K3 surface in
P4 whose mirror is a family of M3-polarized K3 surfaces. The family of M3-polarized K3
surfaces also admits an internal fibration structure over P1 whose generic fiber is a mirror
cubic curve. One can compute the functional invariants of the mirrors of Q5, (Bl3,5Q2,K3),(Q3,K3) and the sextic K3 with respect to the mirror cubic family. The computation is
similar to the previous example and we have a product relation among functional invariants

λλ0 = λ1λ2.
We can further degenerate (Bl3,5Q2,K3) and (Q3,K3). We degenerate (Bl3,5Q2,K3) into
(Bl3,5 P3,C) and (Bl1,2Bl3,5 P3, C̃) where C is a cubic surface and C̃ is a blow-up of a cubic

surface. We degenerate (Q3,K3) into (Q3,C) and (PC(NC⊕OC), C̃). We then also have the
relation for functional invariants of the two-step degenerations which takes the same form as
Identity (24).

Remark 7.2. It is natural to ask: viewing Q∨5 as a family of elliptic covers over P1 × P1,
what are the families of rational curves on the base that support K3 surfaces? The x0 and(y − 1) slices give rise to families of M3-polarized K3 surfaces and we obtain M2-polarized
K3 surfaces by considering (y − x0)-slices. Are there others?

The answer is no, and here is one way to see this. Firstly, any rational curve in P1 × P1 is
a curve of type (1, d) or (d,1). That is, in an affine chart, it can be represented as the graph
of a rational function given by the ratio of two degree d-polynomials. In turn, by replacing(x0,1−y) with the corresponding expressions in λ above, we obtain the generalized functional
invariant of the corresponding (family of) elliptic fibration(s). Unless d = 0 or d = 1, the degree
of the resulting functional invariant will be at least 5. On the other hand, Riemann-Hurwitz
and fibre-type considerations readily imply that the maximum degree generalized functional
invariant for a genus 0-cover of the λ-line that gives rise to a K3 surface is 4.

The above degenerations of quintic threefold are mirror to the elliptic fibration of the
mirror quintic over the P1 × P1 base. In general, one can expect the following generalization
of the Doran-Harder-Thompson conjecture, which is also mentioned in [BD21] and [DT21],

Conjecture 7.3. If a Calabi-Yau variety X (or a log Calabi-Yau variety X ∖D) admits a
semi-stable degeneration, connected to a point of maximal unipotent monodromy, such that
the cone over the dual intersection complex of the central fibre is of dimension k, then the
mirror of X (or X ∖D) admits a Calabi-Yau fibration structure with a k-dimensional base.

There are already some evidence of this conjecture. Given a semi-stable degeneration,
one can consider the Clemens-Schmid exact sequence relating the geometry of the central
fibre of the degeneration and the geometry of a nearby smooth fibre. On the mirror side, if a
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smooth variety admits a projective fibration over a projective base, Doran-Thompson [DT21]
introduce a four-term long exact sequence relating the cohomology of this variety and the
cohomology of the open set obtained removing the preimage of a general linear section. This
sequence is considered to be the mirror of the Clemens-Schmid sequence. It requires neither
a restriction to Calabi-Yau varieties nor a restriction to codimension one fibrations.

8. Degenerations for simple normal crossings pairs

In previous sections, we consider the degeneration of the pair (X,D) where X is a quasi-
Fano variety and D is a smooth anticanonical divisor of X . The story can be generalized to
the case when D is a simple normal crossings divisor. Let

D1, . . . ,Dn ⊂X
be smooth irreducible divisors and

D =D1 + . . . +Dn ∈ ∣ −KX ∣
be simple normal crossings. We consider a degeneration of (X,D) into

(X1,D11 +D12 + . . . +D1n), and (X2,D21 +D22 + . . . +D2n),
and

D1i ∪D1i∩D0=D2i∩D0
D2i

is a degeneration of Di. We consider the higher rank LG models for (X,D), (X1,D0 +
D11 +D12 + . . . +D1n) and (X2,D0 +D21 + D22 + . . . +D2n). The definition of higher rank
LG models when D has more than two components is a direct generalization of rank 2 LG
models defined in Definition 2.5. As mentioned in Definition 2.3, a rank n LG model can be
defined inductively in terms of LG models of lower ranks. We also refer to [Lee21] for the
definition.

The topological gluing for higher rank LG models is similar to the topological gluing
described in Section 2.2. We glue the rank (n+1) LG models of (X1,D0+D11+D12+. . .+D1n)
and (X2,D0 +D21 +D22 + . . . +D2n) along the first component to get the rank n LG models
for (X,D).
A natural question to ask is whether their Hodge numbers and Euler characteristics are

still related. To answer this question, we would like to ask what is a reasonable definition
of Hodge numbers of higher rank LG models? We examine it for the case when D contains
two irreducible components. The following discussions can be generalized to the cases when
D contains more than two irreducible components.

Let (X,D1 +D2) be a log Calabi-Yau simple normal crossings pair. Let (X∨, h = (h1, h2))
be the mirror rank 2 LG models.

Definition 8.1. We define the Hodge numbers of rank 2 LG models as

hp,q(X∨, (h1, h2)) ∶= hp,q(X∨, h−11 (t1) ∪ h−12 (t2)),
where t = (t1, t2) is a regular value of (h1, h2).
Conjecture 8.2. If the rank 2 LG model (X∨, h) is mirror to (X,D1 +D2), then

hn−q,p(X) = hp,q(X∨, (h1, h2)).
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Here are some reasons for the definition and the conjecture. Let D∨1 = h−11 (t1) and D∨2 =
h−1(t2). Note that X ∖ (D1 ∪D1∩D2

D2) is mirror to X∨. Therefore, we expect to have the
following relation between Euler characteristics under mirror symmetry:

χ(X ∖ (D1 ∪D1∩D2
D2)) = (−1)dχ(X∨).(26)

Furthermore, by assumption, (D1,D1 ∩D2) is mirror to (D∨1 , h2), where D∨1 ∶= h−11 (t1). Sim-
ilarly, (D2,D1 ∩D2) is mirror to (D∨2 , h1), where D∨2 ∶= h−12 (t2). Then, we have the following
relation

χ(D1) = (−1)d−1χ(D∨1 , h−12 (t2)), and χ(D2) = (−1)d−1χ(D∨2 , h−11 (t1)).(27)

Since h−1(t) ∶= h−11 (t1) ∩ h−12 (t2) is mirror to D1 ∩D2, we have

χ(D1 ∩D2) = (−1)d−2χ(h−1(t)).(28)

Combining (26), (27) and (28) together, we have

χ(X) = χ(X ∖ (D1 ∪D1∩D2
D2)) + χ(D1 ∪D1∩D2

D2)
= (−1)dχ(X∨) + χ(D1) + χ(D2) − χ(D1 ∩D2)
= (−1)dχ(X∨) + (−1)d−1χ(D∨1 , h−12 (t2)) + (−1)d−1χ(D∨2 , h−11 (t1)) − (−1)d−2χ(h−1(t))
= (−1)dχ(X∨, h−1(t)) + (−1)d−1χ(D∨1 , h−12 (t2)) + (−1)d−1χ(D∨2 , h−11 (t1))
= (−1)d (χ(X∨, h−1(t)) −χ(D∨1 , h−12 (t2)) − χ(D∨2 , h−11 (t1)))
= (−1)d (χ(X∨,D∨1 ∪D∨2 )) .

This is the expected relation between Euler characteristics of X and (X∨, h).
Recall that W ∶= h1 + h2 ∶ X∨ → C is a non-proper LG model. Naturally, one can ask what

is the relation between Hodge numbers of rank 2 LG models and Hodge numbers of proper
LG model (X̄∨, W̄ ) which is mirror to (X,D) when D is a smooth anticanonical divisor of
X? We have the following relation between their Euler characteristics. The relation between
their Hodge numbers may be studied elsewhere.

Theorem 8.3. Given a quasi-Fano variety X with a smooth anticanonical divisor D ∈ ∣−KX ∣.
Let (X̄∨,W ) be the LG mirror of (X,D) and (X∨, h) be the rank 2 LG mirror of (X,D1+D2),
where D1 +D2 ∈ ∣ −KX ∣ is simple normal crossing, then

χ(X̄∨, W̄ −1(t)) = χ(X∨, h−11 (t1) ∪ h−12 (t2)).
Proof. We can consider the degeneration to the normal cone of X with respect to D2. Then(X,D) degenerates to

(X,D1) ∪(D2,D1∩D2) (P(ND2
⊕O), D̃2).

By Conjecture 1.1, the LG model (X̄∨, W̄ ) is obtained by gluing two rank 2 LG models (X,h)
and (P ∨, hp), where (P ∨, hp) is the rank 2 LG model mirrors to (P(ND2

⊕O), D̃2 +D2). By
the relative Mayer-Vietoris sequence (1), we have

χ(X̄∨, W̄ −1(t)) = χ(X∨, h−11 (t1)) + χ(P ∨, h−1p,1(t2)).
Note that

χ(X∨, h−11 (t1)) = χ(X∨, h−1(t)) −χ(h−11 (t1), h−1(t)).
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On the other hand, since X ∪D2
P(ND2

⊕O) is smoothable to X , by [Lee06, Proposition IV.
6], we have

χ(X) = χ(X) + χ(P(ND2
⊕O) − 2χ(D2).

Hence χ(P(ND2
⊕ O) = 2χ(D2). Recall that (P ∨, hp) is the rank 2 LG model mirrors to

(P(ND2
⊕O), D̃2 +D2). Therefore, (P ∨, hp,1) is mirror to the complement of the divisor D2

in P(ND2
⊕O). Hence,

χ(P ∨, h−1p,1(t2)) = (−1)dχ(P(ND2
⊕O) ∖D2)

= (−1)d (χ(P(ND2
⊕O)) − χ(D2))

= (−1)dχ(D2)
= −χ(h−12 (t2), h−1(t)).

Finally, this gives

χ(X̄∨, W̄ −1(t))
=χ(X∨, h−11 (t1)) + χ(P ∨, h−1p,1(t2))
=χ(X∨, h−1(t)) − χ(h−11 (t1), h−1(t)) − χ(h−12 (t2), h−1(t))
=χ(X∨, h−11 (t1) ∪ h−12 (t2)).

�

This is exactly what we expected. Therefore, our definition is compatible with the mirror
duality between Euler characteristics when there is a proper LG model.

Now we return to the degeneration of simple normal crossing pairs. We consider the case
when D has two irreducible components. The case when D has more than two irreducible
components works similarly. We consider the degeneration of (X,D1 +D2) into

(X1,D11 +D12) ∪(D0,D0∩D11+D0∩D12) (X2,D21 +D22).
The gluing picture of Section 2 can be generalized to this case directly. Furthermore, the
following relation between Euler characteristics still holds.

Theorem 8.4. Let X1 and X2 be d-dimensional quasi-Fano varieties which contain the same
quasi-Fano hypersurface D0, such that

KX1
∣D0
= −KX2

∣D0
.

Let D0 +D11 +D12 ∈ ∣ −KX1
∣ and D0 +D21 +D22 ∈ ∣ −KX2

∣ such that D11 ∩D0 = D21 ∩D0,
D12 ∩D0 =D22 ∩D0 and

KD11
∣D0∩D11

= −KD21
∣D0∩D21

, KD12
∣D0∩D12

= −KD22
∣D0∩D22

,

and

KD11∩D12
∣D0∩D11∩D12

= −KD21∩D22
∣D0∩D21∩D22

.

Let (X∨1 , (h10, h11, h12)) and (X∨2 , (h20, h21, h22)) be the rank 3 LG models of (X1,D0 +D11 +
D12 ∈ ∣−KX1

∣) and (X2,D0+D21+D22 ∈ ∣−KX2
∣). Suppose that the fibres of (h10, h11, h12) and(h20, h21, h22) are topologically the same Calabi-Yau manifold, which is topologically mirror to

D012 =D0∩D11∩D12 = D0∩D21∩D22. Let X be a quasi-Fano variety obtained from X1∪D0
X2

by smoothing and let D1 ⊂X be a quasi-Fano variety obtained from D11∪D012
D21 by smoothing

and D2 ⊂X be a quasi-Fano variety obtained from D12 ∪D012
D22 by smoothing. Let (X∨, h =
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(h1, h2)) be the rank 2 LG model obtained by gluing rank 3 LG models (X∨1 , (h10, h11, h12))
and (X∨2 , (h20, h21, h22)) along the first factor. Then

χ(X) = (−1)d(χ(X∨, h−11 (t1) ∪ h−12 (t2))),
χ(D1) = (−1)d−1χ(h−11 (t1), h−12 (t2)),
χ(D2) = (−1)d−1χ(h−12 (t2), h−11 (t1)),

and

χ(D1 ∩D2) = (−1)d−2χ(h−1(t))
for t = (t1, t2) a regular value of h, where χ is the Euler number.

Proof. The last three identities follow from Theorem 2.8 and [DHT17, Theorem 2.3]. We
compute the RHS of the first identity.

By relative Mayer-Vietoris sequence

⋯→ Hj(X∨, (h1, h2)−1(t);C)→ Hj(X∨1 , (h11, h12)−1(t1);C)⊕Hj(X∨2 , (h21, h22)−1(t2);C)
→ Hj(X∨1 ∩X∨2 , (h11, h12)−1(t1) ∩ (h21, h22)−1(t2);C)→ ⋯,

similar to the proof of Theorem 2.8, we have

χ(X∨, (h1, h2)−1(t)) = χ(X∨1 , (h11, h12)−1(t1)) +χ(X∨2 , (h21, h22)−1(t2)).(29)

We can write

χ(X∨1 , (h11, h12)−1(t1)) = χ(X∨1 , h−111(t11)) + χ(h−111(t11), (h11, h12)−1(t1))
(30)

= (−1)dχ(X1 ∖ (D0 +D12)) + (−1)d−1χ(D11 ∖ (D0 ∩D11))
= (−1)d (χ(X1) −χ(D0) − χ(D12) + χ(D0 ∩D12) − χ(D11) +χ(D0 ∩D11)) .

Similarly,

χ(X∨2 , (h21, h22)−1(t2)) = (−1)d (χ(X2) −χ(D0) − χ(D22) + χ(D0 ∩D22) − χ(D21) +χ(D0 ∩D21)) .
(31)

Recall that X1 ∪D0
X2 is smoothable to X , D11 ∪D0∩D11=D0∩D21

D12 is smoothable to D1 and
D12 ∪D0∩D12=D0∩D22

D22 is smoothable to D2. Therefore, by [Lee06, Proposition IV. 6], we
have

χ(X) = χ(X1) + χ(X2) − 2χ(D0),(32)

χ(D1) = χ(D11) +χ(D21) − 2χ(D0 ∩D11),(33)

and

χ(D2) = χ(D12) +χ(D22) − 2χ(D0 ∩D12).(34)

Hence,

χ(X∨, (h1, h2)−1(t)) = χ(X∨1 , (h11, h12)−1(t1)) +χ(X∨2 , (h21, h22)−1(t2))
= (−1)d (χ(X1) −χ(D0) − χ(D12) + χ(D0 ∩D12) − χ(D11) +χ(D0 ∩D11))
+ (−1)d (χ(X2) −χ(D0) − χ(D22) + χ(D0 ∩D22) − χ(D21) +χ(D0 ∩D21))
= (−1)d (χ(X) − χ(D1) − χ(D2)) ,
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where the first line is (29); the second line follows from (30) and (31); the last line follows
from (32), (33) and (34). This proves the first equality. �

For toric complete intersections, the same computation in Section 5 also applies to the
degeneration of simple normal crossing pairs. We again have the product relation among
generalized functional invariants and the Hadamard product relation among relative periods
and bases of solutions of the corresponding PDEs.

9. Gromov-Witten invariants

Classical mirror symmetry relates absolute Gromov-Witten invariants with periods (see, for
example, [Giv98], [LLY97]). Recently, relative mirror symmetry has been proved in [FTY19]
to relate relative Gromov-Witten invariants of a smooth pair with relative periods of its
mirror. In [DKY19], we explain that the relation between periods gives a relation between
absolute and relative Gromov-Witten invariants of a Tyurin degeneration of a Calabi-Yau
variety. In this paper, we consider gluing of rank (n + 1) LG models to an rank n LG model
and gluing relative periods of rank (n + 1) LG models to a relative period of a rank n LG
model. Higher rank LG models are mirror to simple normal crossings pairs. It is natural to
ask if relative periods of higher rank LG models also mirror to certain A-model invariants.
In this paper, we consider the type of invariants associated to a simple normal crossing
pairs defined in [TY20b] which fits well into our context. In [TY20a], a mirror theorem has
been proved to relate the formal Gromov-Witten invariants of infinite root stacks, which are
invariants associated to simple normal crossing pairs and defined in [TY20b], and periods.

Remark 9.1. Another well-known invariant for simple normal crossing pairs is (punctured)
logarithmic Gromov-Witten invariants of [AC14], [Che14], [GS13], [ACGS20]. Punctured
invariants are essential for the intrinsic mirror symmetry construction in the Gross-Siebert
program [GS19]. An approach of using the Gross-Siebert program to prove the Doran-Harder-
Thompson conjecture has appeared in [BD21]. It would be interesting to relate the period
calculation in this paper and in [DKY19] to the approach via the Gross-Siebert program. It
will be studied elsewhere.

We will briefly review the formal Gromov-Witten theory of infinite root stacks and its
mirror theorem.

9.1. Orbifold Gromov-Witten invariants. Let X be a smooth proper Deligne-Mumford
stack such that its coarse moduli space X is projective. We consider the moduli spaceM0,l(X , β) of l-pointed genus zero degree β ∈H2(X) stable maps to X .
The genus-zero orbifold Gromov-Witten invariants of X are defined as follows

⟨ l

∏
i=1

τai(γi)⟩
X

0,l,β

∶= ∫
[M0,l(X ,β)]vir

l

∏
i=1

(ev∗i γi)ψ̄ai
i ,(35)

where,

● [M0,l(X , β)]vir is the virtual fundamental class.
● for i = 1,2, . . . , l,

evi ∶M0,l(X , β)→ IX
is the evaluation map and IX is the inertia stack of X .
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● γi ∈H∗CR(X ) are cohomological classes of the Chen-Ruan orbifold cohomologyH∗CR(X ).● ai ∈ Z≥0, for 1 ≤ i ≤ l.
● ψ̄i ∈H2(M0,l(X , β),Q) is the descendant class.

In the context of mirror theorems, we need to consider the following generating function
of genus zero invariants, called the J-function:

JX (t, z) ∶= z + t + ∑
β∈NE(X)

∑
l≥0

∑
α

qβ

l!
⟨ φα

z − ψ̄ , t, . . . , t⟩
X

0,l+1,β

φα,

where

● NE(X) ⊂H2(X,R) is the cone generated by effective curves and NE(X)Z ∶= NE(X)∩(H2(X,Z)/ tors).
● {φα},{φα} ⊂ H∗CR(X ) are additive bases dual to each other under orbifold Poincaré
pairing,
● t = ∑α t

αφα ∈ H∗CR(X ).
The J-function is a slice of Givental’s Lagrangian cone. We refer to [Tse10] and [CG07] for
more details. One can decompose the J-function according to the degree of curves

JX (t, z) =∑
β

JX ,β(t, z)qβ .
9.2. The formal Gromov-Witten invariants of infinite root stacks. Let X be a
smooth projective variety and let

D1, . . . ,Dn ⊂X
be smooth irreducible divisors. We assume that

D =D1 + . . . +Dn

is simple normal crossings. For any index set I ⊆ {1, . . . , n}, we define

DI ∶= ∩i∈IDi.

In particular, we write
D∅ ∶=X.

Let
s⃗ = (s1, . . . , sn) ∈ Zn.

We define
Is⃗ ∶= {i ∶ si ≠ 0} ⊆ {1, . . . , n}.

We consider the multi-root stack

XD,r⃗ ∶=X(D1,r1),...,(Dn,rn),

where r⃗ = (r1, . . . , rn) ∈ (Z≥0)n and ri’s are pairwise coprime. For the purpose of this paper, we
only consider genus zero invariants. By [TY20b, Corollary 16], genus zero orbifold Gromov-
Witten invariants of XD,r⃗, after multiplying suitable powers of ri, is independent of ri for ri
sufficiently large. Following [TY20b, Definition 18], the formal Gromov-Witten invariants of
XD,∞ is defined as a limit of the corresponding genus zero orbifold Gromov-Witten invariants
of XD,r⃗.

Let
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● γj ∈ H∗(DI
s⃗j
), for j ∈ {1,2, . . . ,m};

● aj ∈ Z≥0, for j ∈ {1,2, . . . ,m}.
The formal genus zero Gromov-Witten invariants of XD,∞ are defined as

⟨[γ1]s⃗1ψ̄a1 , . . . , [γm]s⃗mψ̄am⟩XD,∞

0,{s⃗j}m
j=1

,β
∶= ( n

∏
i=1

r
si,−
i ) ⟨γ1ψ̄a1 , . . . , γmψ̄

am⟩XD,r⃗

0,{s⃗j}m
j=1

,β

for sufficiently large r⃗, where

● the vectors

s⃗j = (sj1, . . . , sjn) ∈ (Z)n, for j = 1,2, . . . ,m,
satisfy the following condition:

m

∑
j=1

s
j
i = ∫

β
[Di], for i ∈ {1, . . . , n}.

These vectors are used to record contact orders of markings with respect to divisors
D1, . . . ,Dn. For orbifold Gromov-Witten theory of multi-root stacks XD,r⃗, they record
ages of twisted sectors of the inertial stacks IXD,r⃗. We refer to [TY20b] for more
details.
● si,− is the number of markings that have negative contact order with the divisor Di.
In other words,

si,− ∶=#{j ∶ sji < 0}, for i = 1,2, . . . , n.
Remark 9.2. When the divisor D is smooth, the formal Gromov-Witten invariants of the
infinite root stack XD,∞ are simply relative Gromov-Witten invariants of the smooth pairs(X,D) following the work of [ACW17], [TY18] and [FWY19].

9.3. Mirror theorems. A Givental style mirror theorem can be stated as an equality be-
tween the J-function and the I-function via mirror maps. More generally, a mirror theorem
can be stated using Givental’s formalism (Givental’s Lagrangian cone etc.). A mirror theo-
rem for the formal Gromov-Witten invariants of infinite root stacks is proved in [TY20a] as
a limit of the mirror theorem for multi-root stacks.

The state space H for the Gromov-Witten theory of XD,∞ is defined as follows:

H ∶= ⊕⃗
s∈Zn

Hs⃗,

where

Hs⃗ ∶=H∗(DIs⃗).
Each Hs⃗ naturally embeds into H. For an element γ ∈ Hs⃗, we write [γ]s⃗ for its image in H.
The pairing on H

(−,−) ∶ H ×H→ C

is defined as follows: for [α]s⃗ and [β]s⃗′, define
([α]s⃗, [β]s⃗′) =

⎧⎪⎪⎨⎪⎪⎩
∫DIs⃗

α ∪ β, if s⃗ = −s⃗′;
0, otherwise.

(36)

The pairing on the rest of the classes is generated by linearity.
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When Di are nef, the non-extended I-function is

IXD,∞
(q, t, z) ∶= ∑

β∈NE(X)

JX,β(t, z)qβ n

∏
i=1

∏
0<a<di

(Di + az)[1](−d1,−d2,...,−dn).(37)

A mirror theorem for infinite root stacks is proved in [TY20a, Section 4] (see also [TY20b,
Theorem 29]) which states that the I-function IXD,∞

lies in Givental’s Lagrangian cone for
XD,∞. When −KX −D is nef, the I-function equals to the J-function via a change of variable
called the mirror map. When n = 1, this specializes to the mirror theorem for relative Gromov-
Witten invariants of smooth pairs (X,D) proved in [FTY19, Theorem 1.4]. One can also
write down the extended I-function which is more complicated. Again, by [TY20b, Theorem
29] the extended I-function lies in Givental’s Lagrangian cone. For our propose, we only
write down the part of the extended I-function of XD,∞,denoted by IXD,∞,0(q, x, t, z), that
takes value in H(0,...,0) ∶=H∗(X):

IXD,∞,0(q, x, t, z) ∶= ∑
β∈NE(X),(ki1,...,kim)∈(Z≥0)

m

∑m
j=1 jkij=di,1≤i≤n

JX,β(t, z)qβ ∏n
i=1∏m

j=1 x
kij
ij

z∑
n
i=1∑

m
j=1 kij∏n

i=1∏m
j=1(kij !)

⋅ ( n

∏
i=1

∏
0<a≤di

(Di + az)) ,
where variables xij ’s are used to record tangency conditions: contact order j along the divisor
Di.

We can specialize it to the toric complete intersections that we considered in Section
5. Let X be a complete intersection in a toric variety Y defined by a generic section of
E = L0⊕L1⊕⋯⊕Ls, where each Ll is a nef line bundle. Let ρl = c1(Ll) and Dj, 1 ≤ j ≤m, be
toric divisors. Let D ∶=D1 + . . . +Dn ∈ ∣ −KX ∣ and assume that D is simple normal crossings
and Di are nef for 1 ≤ i ≤ n. Then the I-function for (X,D) can be written as

IXD,∞,0(q, x, t, z) ∶= e∑r
i=0 pi log qi ∑

d∈NE(Y )Z

m

∏
j=1

⎛
⎝
∏0

k=−∞(Dj + kz)
∏⟨Dj ,d⟩

k=−∞ (Dj + kz)
⎞
⎠
⎛
⎝

s

∏
l=0

⟨ρl,d⟩

∏
k=1

(ρl + kz)⎞⎠ qd(38)

∏n
i=1∏m

j=1 x
kij
ij

z∑
n
i=1∑

m
j=1 kij∏n

i=1∏m
j=1(kij !) ⋅ (

n

∏
i=1

∏
0<a≤di

(Di + az)) .
Note that the nefness assumption on Di can be removed if Di is coming from a toric divisor
of Y .

Similar to the discussion in [DKY19, Section 6.4], the information of periods in Section
5.3 can be extracted from the I-function (38). By relative mirror theorem [TY20a, Theorem
29], these periods compute genus zero Gromov-Witten invariants of (X,D).
Recall that, we consider the degeneration of (X,D) into (X1,D1)∪(D0,D12) (X̃2, D̃2), where

X1 ∩ X̃2 = D0 and D1 ∩ D̃2 = D12. Then IX , IX1 , IX̃2 and ID0 in Section 5.3 are extracted
from the I-functions of (X,D), (X1,D0 +D1), (X̃2,D0 + D̃2) and (D0,D12) respectively.
As mentioned in Remark 5.6, the gluing formula still holds if we remove the common factor

involving ρs+1 from the I-functions. In here, it means removing the factors involving Di, for
1 ≤ i ≤ n. Then we obtain a relation among I-functions of X, (X1,D1), (X̃2, D̃2) and D0.
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Through mirror symmetry, the gluing formulae among periods provides a relation among
Gromov-Witten invariants. On the A-model side, there are degeneration formulae relating
Gromov-Witten invariants. In future work, we will study how these formulae from A-model
and B-model are related.
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