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Abstract. A 2015 conjecture of Codesido-Grassi-Mariño in topo-
logical string theory relates the enumerative invariants of toric CY
3-folds to the spectra of operators attached to their mirror curves.
We deduce two consequences of this conjecture for the integral reg-
ulators of K2-classes on these curves, and then prove both of them;
the results thus give evidence for the CGM conjecture. (While the
conjecture and the deduction process both entail forms of local
mirror symmetry, the consequences/theorems do not: they only
involve the curves themselves.) Our first theorem relates zeroes
of the higher normal function to the spectra of the operators for
curves of genus one, and suggests a new link between analysis and
arithmetic geometry. The second theorem provides dilogarithm
formulas for limits of regulator periods at the maximal conifold
point in moduli of the curves.

1. Introduction

The simplest Calabi-Yau threefolds are the noncompact toric CYs
X determined by a convex lattice polygon ∆ (or more precisely by the
fan on a triangulation of {1}×∆ in R3). Each such CY has a family of
mirror curves C ⊂ C∗ ×C∗, of genus g equal to the number of interior
integer points of ∆, given by the Laurent polynomials F (x1, x2) with
Newton polygon ∆. Recently a fundamental and novel relationship
between (i) the enumerative geometry ofX and (ii) the spectral theory
of certain operators F̂ on L2(R) attached to C, has been proposed by M.
Mariño and his school, in the context of non-perturbative topological
string theory [GHM, Ma, CGM]. The goal of this paper is to lay out
some mathematical consequences of this meta-conjecture, and provide
evidence for it by proving them in two important cases.

A Laurent polynomial F = ∑
m∈∆∩Z2 amx

m is promoted to an op-
erator F̂ (or “quantum curve”) by a process called Weyl quantization,
which depends on a real constant ~. Writing r for the coordinate on
R, let x̂ denote multiplication by r, and ŷ := i~∂r, so that [x̂, ŷ] = i~.
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Taking F̂ := ∑
ame

m1x̂+m2ŷ, [CGM] define a generalized spectral deter-
minant ΞC(a; ~) whose zero-locus describes those curve moduli a for
which ker(F̂ ) 6= {0}. They conjecture that under a “quantum mir-
ror map” a 7→ t~(a), ΞC is proportional to a quantum theta function
ΘX(t; ~) derived from the all-genus enumerative invariants of X; see
Conjecture 2.2. In particular, the zeroes of ΘX should recover the
spectrum of any fixed quantum curve F̂ .

In the formulation of [BKV], local mirror symmetry relates the “max-
imally supersymmetric” case (~ = 2π) of (i) to (iii) the Hodge-theoretic
invariants (or “regulators”) of algebraic K2-classes on C. This allows
us to reformulate this case of the conjecture of Codesido-Grassi-Mariño
[CGM] in §2.3 as a putative relationship between quantum curves and
regulators (i.e. between (ii) and (iii)). We do this under the assump-
tion that F ranges only over the integrally tempered Laurent polyno-
mials, so that the symbol {−x1,−x2} ∈ K2(C(C)) extends to motivic
cohomology classes on the compactifications C̄a ⊂ P∆. This smaller
moduli space M has dimension g, and the resulting regulator classes

1
4π2R(a) ∈ H1(C̄a,C/Z) may be projected modulo H1,0(C̄a) to yield a
section ν of the Jacobian bundle J → M of the family C → M,
called the higher normal function. We deduce from the conjecture of
[CGM] that the locus in M where ν meets a specific torsion shift of
the theta divisor in J should match the zero-locus of ΞC after tweaking
the signs of the moduli; this is made precise in Conjecture 2.4.

We may further refine this prediction in the genus-1 case, where ∆ is
now reflexive and the Laurent polynomial F (x) = ϕ(x)+a now has only
one parameter a. In §3.1, we use integral mirror symmetry to compute
the torsion shifts, and show that (after a miraculous cancellation) they
simply translate the theta divisor to the origin! The prediction is now
that the spectrum of the quantum curve is given by1

(1.1) σ(ϕ̂) = {a ∈M | ν(a) ≡ 0 ∈ J(C̄a)}.

Keeping in mind that g = 1 (∆ reflexive), ϕ is tempered, and ~ = 2π,
our first main unconditional result is then the following

Theorem A (Theorems 3.7 and 3.10). Assume ∆ ⊂ R× [−1, 1]. Then
the “⊇” direction of (1.1) holds, and the “⊆” direction holds for “al-
most all” eigenvalues.

1Note the implicit sign flip on a: we are saying that ker(ϕ̂ − a) 6= {0} when
the regulator associated to {−x1,−x2} on ϕ(x) + a = 0 dies in the Jacobian. The
notation for the normal function changes from ν to ν as it no longer has multiple
components.
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We prove the “⊇” statement in §3.2 by explicitly constructing square-
integrable eigenfunctions of ϕ̂ with eigenvalue a, using vanishing of
ν(a) to show well-definedness. The result (in §3.3) on the “⊆” in-
clusion is obtained by using the coherent state representation of ϕ̂
to bound the accumulation of eigenvalues in a manner that matches
growth (∼ const. × log2(a)) of ν as a → ∞. One perspective on The-
orem A is that we may view ν(a) as a normalized solution to an inho-
mogeneous Picard-Fuchs equation, and in effect (1.1) states that the
eigenvalues of ϕ̂ are simply the points where ν(a) ∈ Z (see Remark
3.5(i)). The latter condition is a statement about a period of a mixed
motive, and combining this with a variant of Grothendieck’s period
conjecture allows one to show conditionally that the eigenvalues of ϕ̂
are transcendental numbers (Prop. 3.13).

The conjecture of [CGM] yields a different prediction in the ’t Hooft
limit ~→∞, which is not empty for g = 1 but much more interesting
for g > 1. Results of Kashaev, Mariño and Zakany [KM, MZ] on the
limits of spectral traces of three-term operators can be viewed as pro-
viding a general formula for the limiting value of a particular regulator
period Rγ(a) =

´
γ
R{−x1,−x2}|Ca at the maximal conifold point â, in

terms of special values of the Bloch-Wigner (“real single-valued diloga-
rithm”) function. Here “maximal conifold” means a particular point in
moduli at which C acquires g nodes while remaining irreducible; that
is, the normalization C̃â is a P1. By applying a method from [DK,
§6] for computing regulator periods on singular curves of geometric
genus zero, we are able to verify this in two infinite families of cases,
corresponding to

F a
g,g(x) = x1 + x2 + x−g1 x−g2 +∑g

j=1 ajx
1−j
1 x1−j

2 and
F
a
2g−1,1(x) = x1 + x2 + x−2g+1

1 x−1
2 +∑g

j=1 ajx
1−j
1 .

The g = 1 case was already verified in [DK, §6.3], while the g = 2
identities were partially verified in [7K, §6].

To give a more explicit statement of this result, write F̃ a := F a− a1
in either case, and [·]0 for the operator taking the constant term (in
x1, x2) in a Laurent polynomial. Then we have:

Theorem B (Theorem 4.1 and (4.37)). The regulator periods at the
maximal conifold point satisfy

log(2g+1)−∑k>0
(−1)k(g+1)

k(2g+1)k [(F̃ â
g,g)k]0 = 1

2πiR
g,g
γ (â) = (2g+1)

π
D2(1+e

2πig
2g+1 )

and
log(2g+1)−

∑
k>0

1
k(2g+1)k [(F̃ â2g−1,1)k]0 = 1

2πiR
2g−1,1
γ (â) = (2g+1)

π D2(1+e
2πi

2g+1 ).
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In fact, the two families are isomorphic under the moduli-map send-
ing aj 7→ ag−j+1, and the cycles are just two amongst g (named γ1, . . . , γg)
for which we can compute the regulator period at â, obtaining g differ-
ent identities. Part of the proof involves using a method from [Ke2] to
determine (from the series expansions of their periods) how many times
the “limits” of the {γj} at â pass through each of the g nodes, cf. Prop.
4.4; this method may be of independent interest in the study of mon-
odromy. Incidentally, the identities we prove should have implications
for the asymptotic behavior of genus-zero Gromov-Witten numbers of
the corresponding CY X, but we do not pursue this direction here.

In an appendix we compute some regulator periods used in the paper
and relate the torsion constants so crucial in §3.1 to integral periods of a
limiting mixed Hodge structure. Finally, as a quick word on notation:
we use ∂x = ∂

∂x
and δx = x∂x throughout; and we avoid the use of

Einstein summation.

Acknowledgments. The authors thank M. Mariño for bringing the
conjecture to our attention. This work was partially supported by Si-
mons Collaboration Grant 634268 and NSF Grant DMS-2101482 (MK),
and an NSERC Discovery Grant (CD).

2. A conjecture in topological string theory and its
consequences

2.1. Quantum curves. Let ∆ ⊂ R2 be a polygon with vertices in Z2

whose interior contains the origin 0. Write

(2.1) F (x1, x2) = ∑
m∈∆∩Z2 amx

m

for a general Laurent polynomial with Newton polygon ∆. The affine
curve C := {x ∈ (C∗)2 | F (x) = 0} is then smooth of genus g :=
|int(∆) ∩ Z2|. It admits a smooth compactification C̄ in P∆, which de-
notes a minimal toric desingularization of the toric surface constructed
from the normal fan of ∆. For instance, if ∆ is reflexive with polar
polygon ∆◦, then g = 1 and P∆ is constructed from the fan with rays
passing through each of the nonzero points of ∆◦ ∩ Z2.

Taking a maximal integral triangulation tr(∆), consider the fan Σ
on {1} × tr(∆) ⊂ R3. The resulting toric variety

(2.2) X := PΣ
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is called a local CY 3-fold since KX
∼= OX .2 This will be our “A-

model”, on which we do enumerative geometry and run the Kähler
moduli. Such noncompact CY 3-folds often arise from the crepant
resolution of a finite quotient of C3. For instance, if 1 ∈ Z2k+1 acts on
C3 by diag{ζ2k+1, ζ

k
2k+1, ζ

k
2k+1}, the resolution X is obtained by taking

∆ to be the convex hull of (1, 0), (0, 1), and (−k,−k) (with g = k).
Another set of examples (with g = 1) arises when ∆ is reflexive: in this
case, X is just the total space of KP∆◦ . There is some overlap with the
quotient construction: for instance, KP2 [resp. KF2 , KdP′6

3] arises from
a quotient of C3 by Z3 [resp. Z4, Z6].

Local mirror symmetry connects the genus-zero enumerative invari-
ants of X to periods of the “B-model”

(2.3) Y := {(x, u, v) ∈ (C∗)2 × C2 | F (x1, x2) + uv = 0},

an open CY 3-fold with KY trivialized by the form

(2.4) η := 1
(2πi)2ResY

(
dx1/x1 ∧ dx2/x2 ∧ du ∧ dv

F (x) + uv

)
∈ Ω3(Y ).

We shall will say more about this in due course. It has been proposed
by Mariño and collaborators [GHM, Ma, CGM] that one can capture
the higher-genus enumerative invariants of X as well by quantizing the
curve C — that is, turning the Laurent polynomial F into an operator
and considering its spectral theory. The idea is to write x1 = ex,
x2 = ey, and promote x, y to noncommuting operators x̂, ŷ on L2(R)
with [x̂, ŷ] = i~ (~ ∈ R). More explictly, writing r for the coordinate on
R, we take x̂ = µr (multiplication by r) and ŷ = −i~∂r; and then we set
x̂1 = ex̂, x̂2 = eŷ. Notice that if f ∈ L2(R) is the restriction of an entire
function, then x̂2 is a shift operator, viz. (e−i~∂rf)(r) = f(r − i~).

The promotion of F to F̂ is highly nonunique: for instance, ex̂eŷ and
ex̂+ŷ [resp. eŷex̂] differ by a multiplicative factor of ei~/2 [resp. ei~] by
the Campbell-Baker-Hausdorff formula. The standard way to fix this
(before [CGM]) was to employ a perturbative approach called WKB
approximation, which works modulo successive powers of ~. In this
context a connection between quantization and K2(C(C)) was pointed
out in [GS], which we briefly review in the next paragraph, if only

2To see this, note that −c1(KX) = c1(X) is the sum of the irreducible divisors
corresponding to the elements of ∆ ∩ Z2, which is the divisor of the first toric
coordinate w0 on X hence rationally equivalent to zero.

3We shall use the notation dP′6 to refer to the generalized del Pezzo of degree 6
defined by the self-dual polygon with vertices (1, 0), (0, 1), and (−3,−2). (This is
called the “E8 del Pezzo” in [GKMR].
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to highlight that it is completely different from the link (in the non-
perturbative setting) we conjecture in §2.3 and establish in §3.

So suppose that we want a function ψ on C (rather than R) and a
choice of F̂ given by F̂0 := F (x̂1, x̂2) := F (µx1 , e

−i~δx1 ) mod O(~), for
which F̂ψ = 0. (In this case, we will say C is quantizable.) Begin with
formal asymptotic expansions F̂ = ∑

i≥0 ~iF̂i, and ψ = e
i
~
∑

j≥0 ~jSj .
Choosing a base point p0 ∈ CF with x1(p0) = 1, we take S0(p) =´ p
p0

log(x2)dx1
x1

(integral on C), which locally satisfies δx1S0 = log(x2)
hence (F̂ψ)(p) = [F (x1(p), x2(p)) +O(~)]ψ(p) = O(~)ψ(p). Of course,
e

i
~S0 only gives a well-defined function on C if the integral is path-

independent mod 2π~Z. When this happens, one then solves for the
higher-order corrections Si, by postulating their form in terms of “topo-
logical recursion”, and finally solves for the F̂i. We remark that for
~ = 2π, the well-definedness condition on S0 is precisely the statement
that the regulator class R{x1, x2} ∈ H1(C,C/Z(2)) of the coordinate
symbol {x1, x2} ∈ K2(C(C)) is trivial. More generally, if the regula-
tor class is torsion (which is the quantizability criterion proposed by
[GS]), then the well-definedness condition is satisfied for ~ = 2π

M
for

some M ∈ Z. This is a very different condition on the regulator class
than the one appearing in RHS(2.32) below, even in the g = 1 case
(see the discussion leading up to Lemma 3.11).

For the rest of this paper we consider only the non-perturbative
(exact) approach pioneered in [GHM]. Namely, we fix the single choice

(2.5) F̂ = ∑
m∈∆∩Z2 ame

m1x̂+m2ŷ

and try to describe its spectrum as an operator on L2(R). A little
more precisely, if int(∆) ∩ Z2 = {m(j)}j=1,...,g, then writing aj := am(j) ,
Pj = xm

(j) , F (0)
j = P−1

j F |a1=···=ag=0 and Fj = P−1
j F |aj=0, we are in-

terested in determining the eigenvalues {eE
(j)
n (a1,...,âj ,...,ag)}n∈N of F̂j for

j = 1, . . . , g.4 We should note here that as long as the {am} are all
real, the F̂j, F̂ (0)

j are obviously Hermitian; even better, their inverses
ρj, ρ

(0)
j are expected to be bounded self-adjoint and of trace class, with

a discrete positive spectrum. These properties, which justify indexing
the eigenvalues by N and make the Fredholm determinants

(2.6) det(1 + ajρj) = ∏
n≥0(1 + aje

−E(j)
n (a1,...,âj ,...,ag))

4For the time being, one should think of the non-interior parameters am as
being fixed. For the assertion that the spectrum is positive and discrete, further
restrictions (such as those we impose for temperedness later) should be made.
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well-defined, are proved in [KM] and [LST] for all the specific operators
we will discuss below.

Definition 2.1 ([CGM]). The generalized spectral determinant is

(2.7) ΞC(a; ~) := det(1 +∑g
j=1 ajP̂

− 1
2

j ρ
(0)
j P̂

1
2
j ).

This function contains all the information we are after. For any
fixed {ak}k 6=j, we may recover (2.6) as ΞC(a; ~)/(ΞC(a; ~)|aj=0), since
their zeroes (in aj) are the same and both sides are 1 at aj = 0 [CGM,
(2.74)]. So the spectra of F̂1, . . . , F̂g are simply slices of the zero-locus
of (2.7), a union of hypersurfaces in Rg indexed by N. Note that in the
genus one case, (2.7) is just det(1 + a1ρ1).

2.2. Local mirror symmetry and the CGM conjecture. Let r :=
|∂∆∩Z2|, so that |∆∩Z2| = g+ r; and denote by L ⊂ Zg+r the rank-
(g+r−3) lattice of relations vectors {`m}m∈∆∩Z2 with∑m `m(1,m) = 0.
Eachm ∈ ∆∩Z corresponds to a toric divisor Dm ⊂ X, amongst which
we have the g compact Dj := Dm(j) . If C ⊂ X is any compact toric
curve (corresponding to any edge of tr(∆)), its intersection numbers
with the divisors of the toric coordinates w0, w1, w2 are zero, leading
to a relations vector `m = (C · Dm)X . Such relations integrally span
L, although the (Mori) cone generated by effective curves may not be
smooth or even simplicial. We will ignore such “finite data” issues here,
as we will eventually pass to a slice of the complex-structure moduli
space where this is not an issue.

So write {Ci}i=1,...,g+r−3 for independent generators of this cone (i.e.
H2(X,Z)eff), with corresponding relations `(i), and define complex struc-
ture parameters

(2.8) zi = zi(a) := ∏
m∈∆∩Z2 a

`
(i)
m
m

for C and Y . It is convenient at this stage to fix three vertices of
∆ and set the corresponding am’s equal to 1. We shall mainly work
in a neighborhood of the large complex structure limit (LCSL) point
z = 0, though at times will also be concerned with the maximal conifold
point ẑ — the unique point (if it exists) on the “boundary” of that
neighborhood5 where C develops g nodes (while remaining irreducible)
hence has geometric genus zero.

5i.e., the region of convergence for certain power series representing the periods
of C; see §4.
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What are the periods parametrized by (2.8)? We summarize some
results from [BKV].6 One may construct 3-cycles T ,A1, . . . ,Ag+r−3 on
Y such that near the LCSL

(2.9)
ˆ
T
η = 2πi, −ti :=

ˆ
Ai
η ∼ log(zi).

The mirror map z 7→ et, which we usually express as t(z) (or t(a) :=
t(z(a))) then induces a biholomorphism between neighborhoods of the
LCSL and the large volume point (in Kähler moduli space7 of X). Next
write
(2.10) F0(t) := 1

6
∑
i ci1i2i3ti1ti2ti3 +∑

d∈H2(X,Z)eff N0,de
−d·t

for the genus-zero free energy of X, in which the ci ∈ Q are certain
triple intersection numbers8 and the N0,d ∈ Q are genus-zero local
Gromov-Witten numbers. The basic Hodge-theoretic assertion of local
mirror symmetry is that there are 3-cycles B1, . . . ,Bg on Y for which9

(2.11)
´
Bj η = 1

2πi
∑g+r−3
i=1 Cij∂tiF0(t)− 1

2
∑g+r−3
i=1 Aijti + 2πiTj

under the mirror map, where −Cij = (`(i)
m(j) =)Ci · Dj, Aij ≡

(2)
the

coefficient of Ci in D2
j , and Tj ∈ Q.

The 3-cycles are constructed by describing Y → (C∗)2 as a conic
bundle, with fibers isomorphic to C∗ over (C∗)2 \C, and to C∪0C (pair
of complex lines crossing once) over C. This yields (cf. [DK, §5.1]) an
exact sequence of MHS

(2.12) 0→ Q(3) A→ H3(Y ) B→ ker{H1(C)→ H1((C∗)2)}(1)→ 0
in which im(A) = 〈T 〉 and the right-hand term has basis (2πi times)
α1, . . . , αg+r−3, β1, . . . , βg. On the level of Q-vector spaces, B has a
sectionM sending this basis to the Ai =M(αi) and Bj =M(βj). It

6While stated there for g = 1, the proof — by “limiting” results of [Ir] for compact
CY 3-folds to the local setting — works for any ∆ that makes the BKV polytope
� := {the convex hull of (−1, 1, 0, 0), (2,−1, 0, 0), and (−1,−1)×∆ in R4} reflex-
ive. (For instance, take ∆ to be the convex hull of (1, 0), (0, 1), and (−g,−g) [resp.
(−n,−1)] for g | 6 [resp. n | 12]). We also expect these results to hold more gen-
erally. A minor difference in formulation here is that instead of applying the BKV
limit to derivatives of the prepotential Φ of a compact CY, we can directly take
derivatives of F0.

7If {Ji} ⊂ H2(X) is a basis dual to {Ci}, then the Kähler parameter is
∑
i
−ti
2πiJi.8by interpreting X as a (decompactifying) limit of a compact CY and computing

intersections −Ji1Ji2Ji3 there; see §3 for details in the genus one case.
9The 2nd and 3rd terms are required in order for integrality of the periods, and

arise from applying the procedure described in [BKV]; the second term arises from
the fact that ch(ODj

) ≡ [Dj ]− 1
2 [D2

j ] mod Q[p], where [p] is the class of a point.
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is constructed by sending ϕ ∈ ker{H1(C,Q) → H1((C∗)2,Q)} first to
its bounding Q-chain Γϕ in (C∗)2 (with ∂Γϕ = ϕ), over whichM(ϕ) is a
3-cycle with S1 fibers (shrinking to points over ϕ). Writing R{f, g} :=
log(f)dg

g
− 2πi log(g)δTf for the standard regulator current for Milnor

K2-symbols (Tf := f−1(R<0) the cut in branch of log), we have on
(C∗)2 the relation d[R{−x,−y}] = dx

x
∧ dy

y
− (2πi)2δ(R>0)2 . This leads

at once to

(2.13) 2πi
ˆ
M(ϕ)

η =
ˆ

Γϕ

dx
x
∧ dy

y
=
ˆ
ϕ

R{−x,−y} =: Rϕ,

which is to say that Rαi = −2πiti and Rβj ≡
∑
iCij∂tiF0 − πi∑iAijti

mod Q(2).
In the physics literature, the nontrivial am on the boundary are

called mass parameters; if we write these as a′1, . . . , a′r−3, then our com-
plex structure parameters take the form zi = ∏g

j=1 a
−Cij
j ×∏r−3

k=1 a
′
k
C′ik .

Taking the aj � 0 large but keeping the a′k bounded, so that ti ∼∑g
j=1Cij log(aj), the subleading terms (constant in a) can be shown10 to

be Q-linear combinations of logarithms of the negative roots {qk}k=1,...,r
of the edge polynomials of F . (The latter are defined as follows: if e
is an edge of ∆, with vertex ν, and me ∈ Z2 is a primitive lattice
vector along e, then put Pe(w) := ∑

m∈e∩Z2 amw
(m−ν)/me .) The key

observation is that each qk is the Tame symbol of {−x,−y} ∈ K2(C)
at a point pk ∈ C̄ ∩ (P∆ \ (C∗)2), so that a loop εk ⊂ C around pk has´
εk
R{−x,−y} = 2πi log(qk).
The physicists have a grand potential function JX(t; ~) which says

“everything they know how to say” about enumerative geometry of X,
and includes (refinements of) higher-genus GW-invariants. We refer the
reader to [CGM] for details, as we shall only discuss two special cases
in which those invariants (mostly) drop out. First, in the maximally
supersymmetric case ~ = 2π, we have11

JX(t; 2π) = 1
8π2

{∑
i1,i2 δti1δti2 − 3∑i δti + 2

}
F̂0(t)

+ F̂1(t) + F̂NS
1 (t) + A(q, 2π),

(2.14)

10Done from a physics perspective in [GKMR], and from a regulator perspective
in Appendix A. Here “negative roots” means the roots of Pe(−w). In particular, if
edge polynomials are powers of (1 + w), the qk are all 1.

11Remark that q is an abuse of notation since the qk are B-model coordinates;
one would ideally replace them by monomials in the eti which equal qk under the
mirror map. (Similar remarks apply to m in (2.15).) But we don’t need to be more
precise here as these terms quickly become irrelevant.
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where F̂0, F̂1, F̂NS
1 are free energies in which the instanton part is

twisted by a “B-field” B ∈ Zg+r−3:12

• F̂0(t) = 1
6
∑
i citi1ti2ti3 +∑

dN0,de
−d·(t−πiB);

• F̂1(t) = ∑
i biti + F inst

1 (t− πiB); and
• F̂NS

1 (t) = ∑
i b

NS
i ti + FNS, inst

1 (t− πiB).
In the ’t Hooft limit, where ~ → ∞ (and aj → ∞) while mk :=
e−

2π
~ log(qk), ζj := log(aj)

~ , and τi := 2πti
~ remain finite, one finds that

(2.15) ~−2JX(t; ~) = { 1
16π4 F̂0(τ) + 1

4π2
∑
i b

NS
i τi + A0(m)}︸ ︷︷ ︸

=:JX0 (ζ,m)

+O(~−2).

We may disregard the unknown functions A0(m), A(q, 2π) of the mass
parameters.

To state the main physics conjecture, we need two more ingredients.
First is the quantum theta function
(2.16) ΘX(t; ~) := ∑

n∈Zg exp {JX(t+ 2πi[C]n; ~)− JX(t; ~)} ,
where [C] is the matrix Cij (and so [C]n is a (g + r − 3)-vector with
entries ∑g

j=1Cijnj). Terms in JX which are 2πi-periodic in the {ti},
including all but ∑i(bi + bNSi )ti in the second line of (2.14), drop out.
The second is a “quantum deformation” t~(z) = t(z) + O(~) of the
mirror map. (We shall also write t~(a) := t~(z(a)) where convenient.)
Again, we describe this where we need it: at ~ = 2π it is given by
(2.17) ti(z) := t2πi (z) = ti((−1)Bz) + πiBi;
like ti(z), this is asymptotic to − log(zi), but the signs are (in general)
different in the power-series part. In the ‘t Hooft limit, the previous
asymptotic relation ti ∼

∑
j Cij log(aj) +∑

kDik log(qk) becomes exact
in the sense that
(2.18) τi = 2π∑j Cijζj −

∑
kDik log(mk).

Conjecture 2.2 ([GHM],[CGM]). Under the quantum mirror map, the
generalized spectral determinant of C is given (up to a nonvanishing
factor) by the quantum theta function of its mirror:

(2.19) ΞC(a; ~) = eJX(t~(a);~)ΘX(t~(a); ~).
This postulates a fundamental and very general relation between

spectral theory (of the B-model) and enumerative geometry (of the A-
model). Since local mirror symmetry relates the latter to Hodge theory
of the B-model, it should imply relationships between Hodge/K-theory

12In the g = 1 case, Bi is just Ci1; see §2.3 below and [SWH] for g > 1. We will
give Hodge-theoretic interpretations of b, bNS when g = 1 in §3.
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and spectral theory of our curves with no reference to mirror symmetry.
We now derive these in our two special cases, under the assumption
that F is integrally tempered: all qk = 1 = mk; equivalently, all edge
polynomials of F are powers of w + 1. Accordingly, by a (resp. z(a))
we henceforth shall mean just (a1, . . . , ag), with the remaining {am}
determined uniquely by this constraint.

2.3. Consequences in the “maximal SUSY” case. Of course, the
use of local mirror symmetry suggested in the last paragraph requires
elaboration, since the classical and quantum mirror maps are not the
same. One should rather expect a relation between Hodge theory of
Cz and spectral theory of a “partner” Cz′ given by z = t−1(t~(z′)) or
some variant thereof. (In fact this is still insufficiently precise, since
the spectral theory and the regulator class really depend on a.) We
now work this out at ~ = 2π.

First we address the nature and significance of B. Because the mono-
mials xm in F̂ were quantized as em1x̂+m2ŷ = e

i~
2 m1m2x̂m1

1 x̂m2
2 , at ~ = 2π

we have F̂ = ∑
m(−1)m1m2amx̂

m. The B-field is determined mod 2 by
the effect on the signs of the zi were we to replace am by (−1)m1m2am:
namely, Bi ≡

(2)

∑
mm1m2`

(i)
m . Under the assumption that

(2.20) ∂∆ ∩ (2Z× 2Z) = ∅,
this is compatible with taking B to be in the Z-span of the columns of
[C], which we write Bi = ∑g

j=1 AjCij.13 Notice that then t((−1)Aa) =
(−1)Bt(a), so that by (2.17) we have t2π((−1)Aa) = t(a) + πiB and the
conjectured equality (2.19) becomes
(2.21) ΞC((−1)Aa; 2π) = eJX(t(a)+πiB;2π)ΘX(t(a) + πiB; 2π).
That is, after absorbing the “+πiB” twist into ΘX and JX , our Hodge/
spectral “partners” are related by at most a change of sign in the com-
plex structure parameters. The main question is what the quantization
condition looks like: which values of a make ΘX(t(a) + πiB; 2π), hence
the spectral determinant, zero?

This is where the local mirror symmetry enters. Under our assump-
tion (2.20), its previous incarnation in (2.11) can (by a tedious inter-
section theory argument) be expressed as14

(2.22) Rβj(a) = ∑
iCij∂tiF̂0 (t(a) + πiB) + (2πi)2B◦j (B◦j ∈ Q).

13mod 2, A is just the characteristic function of ∆ ∩ (2Z× 2Z).
14Although the regulator periods Rϕ [resp. periods Ωj1j2 in (2.26) below] are

infinitely multivalued, they are periods of a class R [resp. classes {ωj}] which are
single-valued in a [resp. z]; so we shall loosely write them as functions thereof.



12 C. F. DORAN, M. KERR, AND S. SINHA BABU

Next, since our temperedness assumption has eliminated the Tame
symbols, the {Rαi}

g+r−3
i=1 are no longer independent (unless r = 3).

More precisely, there are g cycles γj ∈ H1(C̄,Z) with regulator periods
Rγj ∼ −2πi log(aj) (cf. Appendix A), whence

(2.23) Rαi = ∑
j CijRγj ;

and the Aj can be chosen so that {γj, βj}gj=1 is a symplectic basis.15
The regulator class R = R{−x1,−x2} ∈ H1(C̄,C/Z(2)) then has a
local lift16 to H1(C̄,C) given by

(2.24) R̃ = ∑g
`=1 (Rγ`γ

∗
` +Rβ`β

∗
` ) ,

whose Gauss-Manin derivatives

(2.25) ωj := ∇∂/∂Rγj
R̃ = γ∗j +∑g

`=1
∂Rβ`
∂Rγj

β∗`

are classes of holomorphic 1-forms by Griffiths transversality. Evidently
these are normalized so that the symmetric g × g matrix

Ωj1j2(z) : = − 1
2πi
∑
i1,i2 Ci1j1Ci2j2∂ti1∂ti2 F̂0(t(z) + πiB)

= − 1
2πi
∑
i1 Ci1j1∂ti1Rβj2

= ∑
i1 Ci1j1

∂Rβj2
∂Rαi1

=
∂Rβj2
∂Rγj1

=
´
γj1
ωj2

(2.26)

is the standard period matrix of C̄.
We have already observed that the isomorphism class of C̄ depends

only on z, which parametrizes the standard coarse moduli space for
toric hypersurfaces; and we are restricting to a “tempered slice” of
this space. However, R only becomes single-valued in a, forcing us
to work on the finite cover M := {a ∈ (C∗)g | Cz(a) is smooth} of
this slice. Let C̄ π→M be the universal (compactified) curve, and set
H := R1π∗C⊗OM, H := R1π∗Z, and J := H/{H+F1H}. Then J

is the sheaf of sections of the Jacobian bundle J ρ→M, and H /H is
the sheaf of sections of the C/Z cohomology bundle H1

C/Z →M, which
factors through the obvious Cg-torsor H1

C/Z
$→ J . By temperedness,

the symbol {−x1,−x2} ∈ K2(C(C)) lifts to a motivic cohomology class
Z ∈ H2

M(C̄,Z(2)), and we make the key

15This is again by local mirror symmetry: the Rγj
[resp. Rαi

] are the A-model
periods of flat sections arising from curves dual to the Dj [resp. Ji]; while the Rβj

are those arising from ch(ODj (−Ej)) ∪ Γ̂(X) for suitable curves Ej .
16For our purposes, this can be regarded as living on an open neighborhood (in

z-space Cg) of (0, ε)g for some ε > 0.
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Definition 2.3. By the higher normal function associated to Z, we
shall mean the well-defined section 1

(2πi)2R of H1
C/Z, or its projection

ν := $( 1
(2πi)2R) to a section of J . The latter is computed by evalu-

ating R as a functional on holomorphic 1-forms (modulo periods), i.e.
by the column vector

νj : = 1
(2πi)2 〈R, ωj〉 (j = 1, . . . , g)

= −1
4π2

∑g
`=1〈Rγ`γ

∗
` +Rβ`β

∗
` , γ

∗
j +∑

`′ Ωj`′β
∗
`′〉

= 1
4π2 (∑g

`=1Rγ`Ωj` −Rβj)
(2.27)

modulo the Z-span of columns of (Ig | Ω).

To use mirror symmetry to compute ν, put R̃βj := Rβj − (2πi)2Tj, and
observe that by (2.22) thru (2.26) (together with Ωjj′ = Ωj′j)

ξj(a) : = 1
4π2

∑
i1 Ci1j(

∑
i2 δti2 − 1)∂ti1 F̂0(t(a) + πiB)

= 1
4π2 (∑i δti − 1)R̃βj = 1

4π2 (−1
2πi
∑
iRαi∂tiRβj − R̃βj)

= 1
4π2 (−1

2πi
∑
i,`Ci`Rγj∂tiRβj − R̃βj)

= 1
4π2 (∑`Rγ`Ωj` − R̃βj) = νj − B◦j .

(2.28)

Returning to the quantization condition, the exponent in (2.16) is

(2.29) JX(t+ 2πi[C]n; 2π)− JX(t; 2π)
= πitn[Ω̂]n+ 2πin · ξ̂ − πi

3
∑
i,j ci

∏3
`=1Ci`j`nj` ,

where
• Ω̂j1j2 := −1

2πi
∑
i1,i2 Ci1j1Ci2j2∂ti1∂ti2 F̂0(t) and

• ξ̂j := 1
4π2

∑
i1 Ci1j(

∑
i2 δti2 − 1)∂ti1 F̂0(t) +∑

iCij(bi + bNSi )
by a straightforward computation, cf. [CGM, (3.28)]. Substituting in
t = t(a) + πiB, the first two terms of (2.29) become
(2.30) πitn[Ω(a)]n+ 2πin · (ν(a) + B + 1

2 [Ω(a)]A)
(for B ∈ Qg) by (2.26)-(2.28). By an intersection theory argument and
the identity n3 ≡

(6)
n, the cubic third term becomes −πi

3
∑
j njD

3
j mod

Z(1), which may be absorbed into B. Therefore, writing A := 1
2A and

θ for the usual Jacobi theta function,
(2.31) ΘX(t(a) + πiB; 2π) = θ(ν(a) + B + [Ω(a)]A, [Ω(a)]).

We have thus deduced from Conjecture 2.2 a striking relationship
between the quantization condition and the higher normal function.
Let Dθ ⊂ J be the theta divisor and Dθ[AB] its translate by (minus)
the torsion section B + [Ω]A.
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Conjecture 2.4. For ∆ satisfying (2.20) and F integrally tempered,
the zero-locus of the twisted spectral determinant ΞC((−1)Aa; 2π) is ex-
actly the locus where the normal function meets this torsion shift of the
theta divisor: as subsets of M, we have

(2.32) ZL
(
ΞC((−1)Aa; 2π)

)
= ρ

(
ν(M) ∩Dθ[AB]

)
.

In genus g = 1, there are 15 reflexive polygons (up to unimodular
transformation) which can be presented inside R×[−1, 1]. After making
the torsion shifts completely explicit in §3.1, we prove the “⊇” direction
of (2.32) for these cases in §3.2.

2.4. Consequences in the ‘t Hooft limit. Our spectral determinant
ΞC has fermionic spectral traces which generalize, from the (g = 1) case
of a single operator, the traces of ρ⊗N1 acting on ∧N L2(R), cf. [CGM,
§3.3]. Defined by

(2.33) ΞC(a; ~) =: ∑N1,...,Ng≥0 ZC(N, ~)aN ,

these can clearly also be expressed in terms of loop integrals about 0:

(2.34) ZC(N, ~) = 1
(2πi)g

˛
· · ·
˛

ΞC(a; ~) da1

aN1+1
1

∧ · · · ∧ dag

a
Ng+1
g

.

Applying Conjecture 2.2 replaces ΞC(a; ~) by ∑n∈Zg e
JX(t~(a)+2πi[C]n;~),

where the 2πi[C]n simply accounts for the change in t~(a) as the aj
go nj times around 0 — or equivalently, as µj := log(aj) increases by
2πinj (for each j). Accordingly, (2.34) becomes

(2.35) 1
(2πi)g

´ i∞
−i∞ · · ·

´ i∞
−i∞ e

JX(t~(a);~)−
∑g

j=1 Njµjdµ1 ∧ · · · ∧ dµg,

Recall from §2.2 that the ‘t Hooft limit takes ~→∞ while essentially
fixing ζj = µj

~ and τi = 2πti
~ , which we will also impose on λj := Nj

~ .
As temperedness makes the qk = 1 hence mk = 1, we write JX0 (ζ) :=
JX0 (ζ, 1), and note that (2.18) reduces to τi = 2π∑j Cijζj.

Remark 2.5. In fact, even if we don’t assume temperedness, but fix
the edge polynomials hence the {qk}, the effect is the same since mk(=
e−

2π
~ log(qk)) = 1 in the limit.

Now by (2.15), for ~� 0 (2.35) becomes

(2.36) ~g
(2πi)g

´ i∞
−i∞ · · ·

´ i∞
−i∞ e

~2{JX0 (ζ)−
∑

j
λjζj+O(~−2)}dζ1 ∧ · · · ∧ dζg;

and we write ζ̂(λ) for the stationary point of (the leading part of)
the exponential, where 0 = ∂ζi(JX0 (ζ)−∑j λjζj), or equivalently λj =



K2 AND QUANTUM CURVES 15

∂ζjJ
X
0 (ζ), for each j. By the saddle-point method, we can write (2.36)

as exp(~2{JX0 (ζ̂(λ))−∑j λj ζ̂j(λ) +O(~−2)}), which is to say that

(2.37) lim
~→∞

(∂λj~−2 logZC(~λ, ~))|λ=0 = −ζ̂j(0).

Moreover, according to [CGM, §2.3], τ̂i(λ) = 2π∑j Cij ζ̂j(λ) is nothing
but the classical mirror map in the “conifold frame”, with λ a parameter
which vanishes at the maximal conifold point ẑ.17 In other words, if â
is any preimage of ẑ in M, then we have Rαi(â) ≡ −2πiτ̂i(0) and
(2.38) Rγj(â) ≡ −4π2iζ̂j(0) mod Q(2).

On the other hand, if we set Nj = 0 for j > 1, then the asymptotic
expansion of ZC(N1, 0 . . . , 0; ~) = tr∧N1L2(R)((ρ

(0)
1 )⊗N1) can be computed

via operator theory and asymptotic properties of the quantum dilog-
arithm. This is worked out in [KM, MZ] for the three-term operators
(ρ(0)

1 )−1 = ex̂ + eŷ + e−mx̂−nŷ, corresponding to the Laurent polynomials

(2.39) F ◦m,n(x) := x1 + x2 + x−m1 x−n2 +∑g
j=1 ajx

m
(j)
1

1 x
m

(j)
2

2 .

(Here we recall that the {m(j)} index the interior integral points of ∆;
for instance, if m = n = g, then m(j) = (1 − j, 1 − j).) Note that
by Remark 2.5, τ̂(λ) will actually compute the mirror map/regulator
periods in the conifold frame for the families defined by the integrally
tempered polynomials18

Fm,n(x) := x1 + x2 + x−m1 x−n2 +∑g
j=1 ajx

m
(j)
1

1 x
m

(j)
2

2

+∑g1−1
`=1

(
g1
`

)
x

1−`m+1
g1

1 x
−` n

g1
2 +∑g2−1

`=1

(
g2
`

)
x
−`m

g2
1 x

1−`n+1
g2

2 ,
(2.40)

where g1 := gcd(m+ 1, n) and g2 = gcd(m,n+ 1). Anyway, the result
of [op. cit.] (see also [Ma, §4.3]) is that

(2.41) lim
~→∞

(∂λ1~−2 logZC(~λ1, 0, . . . , 0; ~))|λ1=0

= m+n+1
2π2 D2(−zm+1

m,n wm,n),

where D2 is the Bloch-Wigner function, zm,n := e
πi

m+n+1 , and wm,n :=
zmm,n−z

−m
m,n

zm,n−z−1
m,n

. Since LHS(2.41) must agree with LHS(2.37) (with j = 1), in
view of (2.38) we arrive at

17We are not aware of a proof of this statement, but there is strong computational
evidence; it is also consistent with the observation, in view of (2.22), that the
vanishing of ∂ζj

JX0 (ζ) at ζ̂(0) is equivalent to that of a Q(2)-translate of Rβj
(a) at

a ∈ t−1(τ̂(0)− πiB). This is exactly what should happen at a g-nodal fiber.
18Of course, there is no distinction between (2.39) and (2.40) if g1 = 1 = g2.



16 C. F. DORAN, M. KERR, AND S. SINHA BABU

Conjecture 2.6. For the families Cm,n arising from (2.40), the regu-
lator period Rγ1 asymptotic to −2πi log(a1) at the origin has value
(2.42) 1

2πiRγ1(â) ≡ m+n+1
π

D2(−zm+1
m,n wm,n) =: Dm,n mod Q(1)

at the maximal conifold point.

Example 2.7. A toric coordinate change brings F2,2 into the form
F3,1, but with a1 and a2 swapped. So Conjecture 2.6 actually yields
predictions for both nontrivial regulator periods at â = (5,−5), namely

1
2πiRγ1(â) ≡ D2,2 = 5

π
D2(e 2πi

5 w) and 1
2πiRγ2(â) ≡ D3,1 = 5

π
D2(eπi

5 w)
mod Q(1), where w := 1+

√
5

2 . This assertion was checked in [7K] by a
computation we will generalize (and make more rigorous) in §4.

3. From higher normal functions to eigenfunctions

In this section we state and prove a precise version of Conjecture 2.4
in the genus 1 case.

3.1. Integral mirror symmetry and quantization conditions.
The condition g = 1 is equivalent to reflexivity of ∆, whereupon X
becomes simply the total space of KP∆◦ . There is a unique compact
toric divisor D = D1 ∼= P∆◦ ⊂ X, corresponding to the ray through
(1, 0, 0), which amounts to the zero-section of ρ : X � D. Denoting
by E◦ ⊂ D a general anticanonical (elliptic) curve, we remark that
D2 = −E◦ in H∗c (X).

Let ϕ be the unique integrally tempered Laurent polynomial with
Newton polygon ∆, constant term 0, and coefficients 1 at the vertices,
and (writing a = a1) take F = a+ϕ. After compactifying fibers in P∆
and birationally modifying the total space, this produces a relatively
minimal elliptic fibration E → P1

a with rational total space, fibers Ea,
and discriminant locus Σ ∪ {∞}. Writing r := |∂∆ ∩ Z2| and r◦ :=
|∂∆◦ ∩ Z2|, E∞ has type Ir◦ , and Σ is cut out by a polynomial PΣ of
degree 12− r◦ = r.19

A section of the relative dualizing sheaf for our family is given by
(3.1) ω(a) := 1

2πiResEa(
dx1/x1∧dx2/x2

1+a−1ϕ(x) ),

with period20

(3.2) ωγ(a) :=
´
γ
ω(a) = 1 +∑

k>0(−1)k[ϕk]0a−k

19For a generic choice of ϕ, the remaining singular fibers of E are I1’s. Since E
is rational (as a blowup of P∆), the degree of the relative dualizing sheaf must be
1; and as each Ik contributes k

12 to this degree, there must be 12− r◦ I1’s. Each of
these contributes 1 to deg(PΣ), and this degree is invariant as we specialize ϕ.

20[·]0 takes the constant term; γ is γ1 from §2.3.
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in a neighborhood of the large complex structure point ∞. More
precisely, this series converges on D∗ := {a | |a| > |â|} ⊂ U :=
P1 \ (Σ ∪ {∞}), where the conifold point â can be described by −â :=
min(ϕ(R+ × R+)) since the coefficients of ϕ are all positive [Ga].

By assumption, all the tame symbols of {−x1,−x2} are trivial, and so
the Rαi (i = 1, . . . , r−2) must be integer multiples of Rγ ∼ −2πi log(a).
More precisely, we have −1

2πiRαi = ti = Ci1t = −(Ci ·D)t = dit, where
di ∈ [0, 4] ∩ Z is the lattice-length of the edge of ∂∆ corresponding to
Ci. From Appendix A, we have on the cut disk D− := D∗ \ (D∗ ∩ R−)

(3.3) t = t(a) := −1
2πiRγ(a) = log(a) +∑

k>0
(−1)k−1

k
[ϕk]0a−k,

which gives ω = −1
2πi∇δaR hence (in the notation of §2.3) ω1 = ω/ωγ

globally on U . We also see that e−t ∼ a−1 makes sense as a coordinate
on D = D∗ ∪{∞}. The local mirror symmetry results in [BKV] can be
made very explicit:21

Lemma 3.1. On D− we have the following identifications:
(a) Rβ(a) = r◦

2 t(a)2 + πir◦t(a) + (2πi)2(1
2 + r◦

12)−∑k>0 kNke
−kt(a),

(b) Ω(a) (= ωβ(a)
ωγ(a)) = ir◦

2π t(a)− r◦

2 −
1

2πi
∑
k>0 k

2Nke
−kt(a), and

(c) ν(a) = r◦

8π2 t(a)2 + (1
2 + r◦

12) + 1
4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a),
where Nk is the local GW-invariant for D counting rational curves
whose classes C ∈ H2(D) satisfy (C · E◦)D = k.
Proof. X is described in [BKV, §6] as the large-fiber-volume limit of
an elliptically-fibered compact CY 3-fold W → P∆◦ with section D.
Let C1, . . . , Cr be the components of P∆◦ \ (C∗)2 (and their images
in X), D′i := ρ−1(Ci), and C0 := ρ−1(pt). Then {C0, C1, . . . , Cr−2}
span H4(W,Q), {D,D′1, . . . , D′r−2} span H2(W,Q), and we can write
−D2 = E◦ = ∑r

i=1Ci = ∑r−2
i=1 eiCi for unique ei ∈ Q, whereupon

D3 = ∑r−2
i=1 diei = r◦. Let J0, . . . , Jr−2 denote a basis of H2(W,Q) dual

to C0, . . . , Cr−2, and define J1, . . . ,Jr−2 by Ji := Ji − ei
r◦
J0. Then the

ci in (2.10) are given by ci1i2i3 = −Ji1Ji2Ji3 .22
The integral periods of the A-model VHS given by [BKV, (6.13-

15)] lead (in the LMHS as t0 → 0) to the following periods for our
A-model VMHS. First, the limit of the Gamma class for W yields
Γ̂(X) := 1 − 1

2D
2 + (11r◦+r

24 )C0 = 1 + ∑r−2
i=1 eiCi + (1

2 + 5
12r
◦)C0 ∈

21Here as above β = β1, Ω = Ω11, ν = ν1.
22The results of [loc. cit.] are stated in terms of derivatives of the prepotential

Φ(t0, t) of W in the limit as t0 → ∞. One can obtain the free energy F0(t) for X
by substituting t0 = −

∑r−2
i=1

ei

r◦ ti into Φcl and taking t0 → ∞ in Φinst; we then
have 1

(2πi)3 ∂DΦ = 1
(2πi)2 (−∂0 +

∑
i di∂i)Φ = 1

(2πi)2

∑
i di∂iF0, hence the version of

the A-model periods given here.
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H∗(X,Q). Next, for integral periods we need to compose ch(·) ∪
Γ̂(X) : Kc,num

0 (X) → H∗c (X,Q) with the following assignment of pe-
riods to cohomology classes: pt 7→ 1; Ci 7→ 1

2πiti = −1
(2πi)2Rαi ; and

D 7→ 1
(2πi)2

∑r−2
i=1 di∂tiF0(t). Applying this to OD, we have ch(OD) =

D − 1
2D

2 + 1
6D

3, whence ch(OD) ∪ Γ̂(X) = D + 1
2
∑
i eiCi + (1

2 + r◦

12),
and finally (after multiplying the resulting integral period by (2πi)2)
(3.4) Rβ = ∑

i di∂tiF0(t) + πi∑i eiti + (2πi)2(1
2 + r◦

12).
We also recall from (2.26) that the period ratio is given by Ω =
−1
2πi
∑
i di∂tiRβ, and the normal function by ν = 1

4π2 (RγΩ−Rβ).
The last step is to substitute ti = dit, which gives

(3.5) F0(t) = −1
6(∑i Jiti)3 +∑

C N0,Ce
−(C·E◦)Dt = r◦

6 t
3 +∑

k>0 Nke
−kt

since ∑i Jidi = ∑
i diJi−

∑
i
eidi
r◦
J0 = (J0−D)−J0 = −D [BKV, (6.5)].

Using di∂ti = ∂t in (3.4)ff now gives (a)-(c). �

Remark 3.2. We point out two immediate consequences of Lemma 3.1.
First, along with (3.3), (c) makes it clear that ν(a) as well as
(3.6) V (a) := ωγ(a)ν(a) = 1

4π2 (Rγωβ −Rβωγ)
are real-valued on D∗ ∩R+. Second, notice that 1

(2πi)2∂
2
tRβ = ∂2

RγRβ =
∂Rγ

δaRβ
δaRγ

= ∂Rγ
ωβ
ωγ

= Y(a)
ω3
γ
, where the Yukawa coupling Y(a) = ωγδaωβ −

ωβδaωγ blows up at â. Differentiating (a) twice expresses this as a
power series in e−t, from which one deduces that

(3.7) lim supk→∞ k

√
|Nk| = exp(<(t(â))).

as in [DK, §5.4] (though this result in now unconditional).
We may now identify all of the torsion constants in §§2.2-2.3:23

Lemma 3.3. In Q/Z the following equalities hold:
(i) b := ∑

i dibi = r◦

12 −
1
2 and bNS := ∑

i dib
NS
i = r◦

24 −
1
2 .

(ii) T = 1
2 + r◦

12 and B◦ = 1
2 −

r◦

24 .
(iii) A = 1

2 = B, where B is as in (2.31)-(2.32).24

Proof. (i) These are the coefficients of t in F1 and FNS
1 (after sub-

stituting ti = dit), which can be derived from [GKMR, (4.18) and
(4.21)].25 Namely, we have bi = 1

24c2(X) · Ji [GKMR, (4.18)] and
23Again, for simplicity writing T = T1, B◦ = B◦1, B = B1, and A = A1.
24and not as in (2.30), where B does not yet incorporate the correction from the

cubic term.
25We should point out here that our “r” is not the “r” in [GKMR], where it

means gcd{di}. (Moreover, their “t” is rGKMR times our t.)
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c2(X) = (11r◦ + r)C0 + 12∑i eiCi = (10r◦ + 12)C0 − 12D2 [BKV,
§6.2] hence b = 1

24c2(X) ·∑i diJi = − 1
24c2(X) ·D = −10r◦+12

24 + 12r◦
24 =

r◦

12−
1
2 . According to [GKMR, (4.21)], we have FNS

1 ∼ − 1
24 log(PΣ(a)) ∼

−deg(PΣ)
24 log(a) ∼ − r

24t ∼ ( r◦24 −
1
2)t. (So of course, (i) holds in Q, but

we’ll only need it mod Z.)
(ii) The value of T is immediate from Lemma 3.1(a). To compute

B◦ = ν(a)− ξ(a), we need to revisit ξ from (2.28). The B-field is given
by Bi = di (cf. §2.3 above or [GKMR, §3.2]), and A = A1 = 1, which
means that replacing t by t+πiB is equivalent to replacing t by t+πi.
Together with ∑i δti = t

∑
i di∂ti = t∂t = δt and (3.5), this gives

ξ(a) = 1
4π2 (δt − 1)∂tF̂0(t(a) + πi)

= r◦

8π2 t(a)2 + r◦

8 + 1
4π2

∑
k>0 k(1 + kt(a))Nke

−kt(a)
(3.8)

and, together with Lemma 3.1(c), the claimed value of B◦.
(iii) We already have A = 1

2A = 1
2 . For B, we compute

ξ̂(t(a) + πi) = 1
4π2 ((t+ πi)∂t − 1) ∂tF̂0(t(a) + πi) + (b+ bNS)

= ξ(a) + πi
4π2∂

2
t F̂0(t(a) + πi) + (b+ bNS)

= ν(a) + 1
2Ω(a) + (b+ bNS − B◦)

(3.9)

and note that the cubic term in (2.29) becomes −πi
3 D

3n3 = − r◦

3 πin3 ≡
− r◦

6 2πinmod Z(1). Together with (i)-(ii), this results in the apparently
miraculous cancellation

(3.10) B = b+ bNS − B◦ − r◦

6 = −3
2 ≡

1
2

modulo Z. �

Finally, we turn to the quantization conditions, i.e. to the spectrum
(as an operator on L2(R)) of26

ϕ̂ = ∑
m∈∂∆∩Z2(−1)m1m2amx̂

m1
1 x̂m2

2

= ∑
m∈∂∆∩Z2(−1)m1+m2+1amx̂

m1
1 x̂m2

2 = −ϕ(−x̂1,−x̂2)
(3.11)

or ρ := ϕ̂−1. Writing σ(·) for spectrum and Λ(a) := Z〈ωγ(a), ωβ(a)〉
for the period lattice, we have the

Proposition 3.4. In the genus-1 case, Conjecture 2.4 is equivalent to

(3.12) σ(ϕ̂) = {a ∈ U | V (a) ∈ Λ(a)}.

26Remark that ϕ = F1 and ρ = ρ1 in the notation of §2.1. We have m1m2 ≡
(2)

m1 +m2 + 1 because (2.20) always holds for reflexive polygons.
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Proof. Noting that M = U , in the LHS of (2.32) we are taking the
zero-locus of Ξ(−a; 2π) = det(1− aρ), which is precisely the spectrum
of ϕ̂. The RHS of (2.32) is the locus in U where ν(a) meets the theta
divisor (which is 1+Ω(a)

2 mod Z〈1,Ω(a)〉) shifted by AΩ(a) + B = 1+Ω(a)
2 ,

which is to say where ν(a) is zero mod Z〈1,Ω(a)〉. Outside of D−, this
condition is only well-defined in the sense of analytic continuation; to
fix this, we multiply by ωγ to get the form displayed in RHS(3.12). �

Remark 3.5. (i) The condition V (a) ∈ Λ(a), which is well-defined on
U , reduces to ν(a) ∈ Z〈1,Ω(a)〉 for a ∈ D−. Moreover, the argument in
[LST, §3.1] using the coherent state representation shows more gener-
ally (for any ϕ considered here) that σ(ϕ̂) belongs to R+, and is count-
able with eigenvalues λj limiting to ∞ (so that ρ is bounded). In fact,
we expect that σ(ϕ̂) ⊂ (|â|,∞), as is clear for ϕ = x1 + x−1

1 + x2 + x−1
2

or x1 +x−1
1 +x2 +x−1

2 +x1x
−1
2 +x−1

1 x2 and experimentally observed in
other cases. This would mean that the quantization condition “V ∈ Λ”
reduces not just to ν ∈ Z〈1,Ω〉, but to
(3.13) ν(a) ∈ Z,
as ν is real by Remark 3.2. We’ll have more to say about this in §3.2.

(ii) The most crucial “torsion” invariant in Lemma 3.3, leading to
the cancellation in (3.10) and the simple form of (3.12), is surely the
constant term T of the regulator period Rβ. As an independent check,
one can directly compute this constant term without using mirror sym-
metry and the Gamma class; see Appendix A for examples. Another
check on our quantization condition is that it should coincide with
that in [GKMR, §3.3.2] when all Qmk = 1 ( =⇒ D0(m) = 0 and
B(m, 2π) = b + bNS = r◦

8 − 1). Since vol0(E) in [GKMR, (3.24)] is
just Rβ, we may also identify “C” there as r◦

2 . Taking E = log(a) and
Eeff = t(a), [GKMR, (3.105)] collapses to ξ(a) − r◦

24 ∈ Z + 1
2 , hence to

ν(a) ∈ Z.
(iii) There is an interesting sign discrepancy in (3.12): quantizability

of ϕ̂ − a is being linked to a regulator class on the curve Ea ⊂ P∆
compactifying solutions to ϕ(x) + a = 0. Blame it on the B-field! Or
better yet, proceed to the next section for a more basic reason why it
has to be this way.
3.2. Construction of eigenfunctions for difference operators.
In this section we assume that ∆ is a reflexive polygon satisfying
(3.14) ∆ ⊂ R× [−1, 1],
and ϕ is as in §3.1, so that
(3.15) ϕ(x) = xmu1 (x1 + 1)dux2 + ϕ0(x1) + xm`1 (x1 + 1)d`x−1

2 .
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Remark 3.6. Regarding unimodular change of coordinates (x1, x2 7→
xa

1x
b
2, x

c
1x

d
2 with ad − bc = 1) as an equivalence relation on reflexive

polygons, there are 16 equivalence classes. All but one27 of these has
representatives satisfying (3.14).

For each a ∈ U , Ea ⊂ P∆ denotes as before the Zariski closure
of E∗a := {x ∈ (C∗)2 | ϕ(x) + a = 0}. Forgetting x2 produces a
2 : 1 map π : Ea → P1 with corresponding involution ι : Ea → Ea and
discriminant
(3.16) (ϕ0(x1) + a)2 − 4xmu+m`

1 (x1 + 1)du+d` =: D(x1).
The latter is a Laurent polynomial (in x1) with “Newton polytope” an
interval [−c−, c+] containing [−1, 1] (and contained in [−2, 2]), whose
length is the number of ramification points of π−1(C∗) =: E×a

π×→ C∗;
denote the set of these by B ⊂ E×a , and let p0 ∈ B be one of them.
The holomorphic function
(3.17) δ(p) := x1(p)mu(x1(p) + 1)du(x2(p)− x2(ι(p))),
on E×a satisfies δ2 = (π×)∗D , thereby providing a well-defined lift of√

D to E×a .
Writing Ẽ×a for the fiber product of π× and (− exp) : C→ C∗ yields

a diagram

(3.18) Ea

π
����

E×a?
_oo

π×
����

Ẽ×a
Poooo

Π
����

z̃_

��

3

P1 C∗? _oo C− exp
oooo z3

with vertical maps of degree 2, and points in Ẽ×a [resp. C] denoted
by z̃ [resp. z = Π(z̃)]. We also write P(z̃) =: (x1(z̃), x2(z̃)), where
x1(z̃) = x1(z) = −ez, and z̃0 ∈ Ẽ×a for the point with P(z̃0) = p0 and
=(z0) ∈ (−π, π]. For later reference put Ẽ∗a := P−1(E∗a), which is either
all of Ẽ×a or the complement of Π−1(Z(1)).28

Now suppose V (a) ∈ Λ(a). If a ∈ D−, then γ, β, ωγ, ωβ,Ω, Rγ, Rβ,
and ν are well-defined; if not, we take them to be analytic continuations
(along the same path) to a of those objects from D−. (We will not write
ω(a) etc., just ω, since a is fixed and understood.) Then we have
(3.19) ν = 1

4π2 (RγΩ−Rβ) = n1 + n2Ω
27represented by ∆ = convex hull of {(−1,−1), (2,−1), (−1, 2)}, with P∆ = P2

28There are 4 equivalence classes of ploygons for which Ẽ∗a = Ẽ×a , corresponding
to X = P2, P1 × P1, F1, and F2. Otherwise, for z̃ ∈ Ẽ×a \ Ẽ∗a , in view of (3.15) we
have −1 = x1(z̃) = x1(z) = −ez =⇒ z ∈ Z(1).
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for some n1, n2 ∈ Z. Notice that the regulator class R is only well-
defined in H1(Ea,C/Z(2)), so its value on γ is still represented by
Rγ := Rγ − 4π2n2. This replaces (3.19) by

(3.20) Rβ −Rγ
ωβ
ωγ

= −4π2n1 ∈ Z(2),

and we claim this allows us to define a holomorphic function on Ẽ∗a by

(3.21) χ(z̃) := exp
(

i
2π

{´
P z̃
z̃0
z dx2(z̃)
x2(z̃) −

Rγ
ωγ

´
P z̃
z̃0
P∗ω

})
,

where ω is as in (3.1), and P z̃
z̃0 is any path from z̃0 to z̃.

The issue here is well-definedness, since nothing in the braces blows
up on Ẽ∗a. To check this, we remind the reader that for a loop L on
E∗a based at p0, the value of R on its homology class is computed by29

(3.22) RL ≡
Z(2)

´
L

log(−x1)dlog(−x2)− log(−x2(p0))
´

L
dlog(−x1),

where log(−x1) is analytically continued along L [Ke1]. If L lifts to
a loop L̃ on Ẽ∗a, then clearly

´
L

dlog(x1) = 0, and (3.22) pulls back
to
´

L̃
z dx2(z̃)
x2(z̃) . Now given two paths P,P ′ from z̃0 to z̃ on Ẽ∗a, take

L̃ to be the loop obtained by composing P with the “reverse” of P ′,
and write L = k1γ + k2β in H1(Ea,Z). (By integral temperedness of
{−x1,−x2}, this determines RL mod Z(2).) The difference between
the braced expression in (3.21) for these two paths is then´

L̃
z dx2(z̃)
x2(z̃) −

Rγ
ωγ

´
L̃
P∗ω =

´
L

log(−x1)dlog(x2)− Rγ
ωγ

´
L
ω

≡
Z(2)

k1Rγ + k2Rβ − Rγ
ωγ

(k1ωγ + k2ωβ)

= k1(Rγ −Rγ) + k2(Rβ −RγΩ)
= 4π2(k1n2 − k2n1) ≡

Z(2)
0,

(3.23)

using (3.20). After multiplying by i
2π , this discrepancy is killed by the

exp and the claim is verified.
In fact, χ(z̃) extends to a meromorphic function on Ẽ×a which is

holomorphic at Π−1(0). Of course, ω has no poles on Ea, and so P∗ω
has none on Ẽ×a ; the potential culprit is dx2

x2
, when du, d` are not both

zero. Writing z = 2πin+ w + O(w2), x2 = wd (for d = −du or d`), we
find
´
z dx2
x2
∼ 2πidn log(w) hence exp( i

2π

´
z dx2
x2

) ∼ w−nd, as desired.

29Of course, dlog(−x) = dlog(x) = dx
x . Note that (3.22), which is due to Beilin-

son [Be] and Deligne [unpublished], is different from the regulator formula using
the current R{−x1,−x2} (in which the function “log” is not analytically continued
but has a branch cut), but is easily shown to give the same integral regulator.
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Finally, writing ι̃ : Ẽ×a → Ẽ×a for the involution over C, we put

(3.24) Ψ̃(z̃) := χ(z̃)− χ(ι̃(z̃))
δ(P(z̃)) .

The denominator has zeroes at P−1(B), which does not intersect any
of the poles of the numerator.30 Moreover, these are simple zeroes, and
the numerator also has zeroes at these points (which are just the fixed
points of ι̃). So Ψ̃ is holomorphic on Ẽ×a \ Π−1(Z(1)\{0}). Notice also
that applying ι̃ to z̃ changes the sign in the numerator and denomi-
nator of (3.24) (since P ◦ ι̃ = ι ◦ P). We conclude that there exists a
meromorphic function Ψ on C, with (at worst) poles on 2πi(Z \ {0}),
such that Ψ̃ = Π∗Ψ; we write this loosely as

(3.25) Ψ(z) := χ(z̃)− χ(ι̃(z̃))
δ(P(z̃)) ,

and denote its restriction to the real line by ψ(r). We are now ready
to prove the

Theorem 3.7. For ∆ satisfying (3.14), the “⊇” direction of (3.12)
holds. That is, if V (a) ∈ Λ(a), then a ∈ σ(ϕ̂).

Proof. First note that x̂1 = multiplication by er (not −er), x̂2 = e−2πi∂r ,
and ϕ̂ = −ϕ(−x̂1,−x̂2) are unbounded operators on L2(R), whose do-
mains are roughly the proper linear subspaces on which each operator
preserves square integrability. (See [LST] for details.) In particular, it
is possible in this sense to be in the domain of ϕ̂ while failing to be
in that of x̂±1

1 and x̂±1
2 , which is just what happens for ψ(r). Indeed,

assuming V (a) ∈ Λ(a), we claim that ψ ∈ L2(R) \ {0} and

(3.26) ϕ̂ψ = aψ,

which will obviously prove the theorem.
As Ψ is holomorphic on {z ∈ C | −2πi < =(z) < 2πi}, with mero-

morphic extension to a neighborhood of its closure, we have

e±2πi∂rψ(r) = e±2πi∂zΨ(r) = Ψ(r ± 2πi)
=: Ψ(τ±(r)) =: (S±Ψ)(r) =: (S±ψ)(r).

(3.27)

Furthermore, τ± has a unique lift τ̃± : Ẽ×a → Ẽ×a with the property that
P ◦ τ̃± = P ; and so the difference operator S± lifts to (S̃±χ)(z̃) :=
χ(τ̃±(z̃)). By the independence of path in (3.21), we can take our path

30The only way ι has a fixed point at x1 = −1 is if du = d` = 0.
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from z̃0 to τ̃±(z̃) to be the composition of τ̃±(P z̃
z̃0) with a fixed path

P±
0 from z̃0 to τ̃±(z̃0). That is, writing P(P±

0 ) =: L ±
0 , we have

χ(τ̃±(z̃)) = exp
(

i
2π

{´
τ̃±(P z̃

z̃0
)+P±0

z dx2(z̃)
x2(z̃) −

Rγ
ωγ

´
τ̃±(P z̃

z̃0
)+P±0

P∗ω
})

= exp
(

i
2π

{´
P z̃
z̃0

(z ± 2πi)dx2(z̃)
x2(z̃) −

Rγ
ωγ

´
P z̃
z̃0
P∗ω

})
× exp

(
i

2π

{´
L±0

log(−x1)dx2
x2
− Rγ

ωγ

´
L±0

ω
})
.

(3.28)

Adding and subtracting − log(−x2(z̃0))
´

L±0

dx1
x1

(= ∓2πi log(−x2(z̃0)) )
in the last braced expression, (3.28) becomes

(3.29) χ(z̃)e∓{log(−x2(z̃))−log(−x2(z̃0))} × e
i

2π {RL±0
−Rγ
ωγ

ω
L±0
}
e∓ log(−x2(z̃0)).

By the same calculation as in (3.23), we have RL±0
− Rγ

ωγ
ωL±0

∈ Z(2),
and so after cancelling log(−x2(p0))’s, we arrive at
(3.30) (S̃±χ)(z̃) = −x2(z̃)±1 · χ(z̃).

Since −x̂1 = −µer = µ−er = µx1(r), ϕ̂ acts on ψ as −ϕ(µx1(r),−S−),
which lifts to −ϕ(µx1(r),−S̃−) for functions on Ẽ×a . Applying this to
χ(z̃) gives −ϕ(x1(z), x2(z̃)) · χ(z̃) = aχ(z̃), and applying it to χ(ι̃(z̃))
yields −ϕ(x1(z), x2(ι̃(z̃))) · χ(ι̃(z̃)) = aχ(ι̃(z̃)). (Here we are just using
the equation of the curve, ϕ(x1(z), x2(z̃)) + a = 0; and we can ignore
δ(P(z̃)) in the denominator of Ψ̃ since S̃± doesn’t affect it.) So the
overall effect on Ψ̃, hence ψ, is multiplication by a. This proves (3.26).

We still need to check is that ψ is indeed square-integrable. Clearly´
P∗ω has a finite limit as r → ±∞, so we consider the behavior of

(3.31)
´
r dz2(r̃)
z2(r̃) =

´
log(−x1(r))dlog(−x2(r̃)).

Let q ∈ Ea\E×a , and set oj := ordq(xj); then (−1)o1o2 limp→q
x1(p)o2
x2(p)o1 = 1

by integral temperedness. Hence there is a local holomorphic coordi-
nate w on Ea vanishing at q, with −x1 = wo1 and −x2 = ±wo2(1 +
O(w)), and (3.31) = o1o2

2 log2w+O(w logw) is just o2
2o1
r2 (with o1 6= 0)

plus terms limiting to zero. Since this is multiplied by i
2π before taking

exp, we conclude that χ(z̃) is bounded on Π−1(R). On the other hand,
in the denominator δ(P(r̃)) =

√
D(−er) of ψ, D(−er) = ∑c+

j=−c− ajejr

(a−c− , ac+ 6= 0) is dominated by the ec+r term as r → +∞ and the
e−c−r term as r → −∞. That is, |ψ(r)| ≤ Ce−|r/2| for some constant
C, hence ψ belongs to L2(R).

Finally, we must show that ψ is not identically zero. If it were,
then by basic complex analysis Ψ would be zero; so it suffices to check
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that (say) Ψ(z0 + 2πin) 6= 0 for some n ∈ Z. We may choose a local
holomorphic coordinate u on Ẽ×a about z̃0, such that (locally) ι̃ sends
u 7→ −u and z = z0 + u2. Clearly x2(z̃) = x2(p0)(1 + c1u + O(u2))
and P∗ω = (c2 + O(u))du for constants c1, c2 ∈ C∗. The expression in
braces in (3.21) (integrating on a path from z̃0 to z̃(u)) takes the form
(c1z0− Rγ

ωγ
c2)u+O(u2), and we can ensure the coefficient of u is nonzero

by replacing z0 by z0+2πin if necessary (since this affects nothing else).
So the numerator of (3.24) becomes ec0u+O(u2)−e−c0u+O(u2) ∼ 2c0u, and
since the denominator also has a simple zero at u = 0 we are done. �

Remark 3.8. Returning to the “sign flip” between curve and opera-
tor highlighted in Remark 3.5(iii), we remind the reader that it is
{−x1,−x2}, not {x1, x2}, which is integrally tempered for the simplest
choices of Laurent polynomial ϕ.31 So it is the regulator integral for
this symbol which produces a well-defined Ψ̃(z̃). But the signs in the
symbol force the shift operator x̂2 to act on χ(z̃) through multiplication
by −x2(z̃) rather than x2(z̃), which in turn forced us to use (− exp)
(not exp) in (3.18) so that x̂1 acts through multiplication by −x1(z),
resulting in the action of ϕ̂ = −ϕ(−x̂1,−x̂2) through multiplication
by −ϕ(x1(z), x2(z̃)). The upshot is that the signs in the symbol32 are
ultimately responsible for the presence of the B-field.

Remark 3.9. A result of Kashaev and Sergeev [KS, Theorem 7], while
expressed in very different terms, can be shown to be equivalent the
special case ϕ = x1 +x−1

1 +x2 +x−1
2 of Theorem 3.7. (The conditions in

[loc. cit.] on a pair (λ, ε) ∈ C×R>4 they require for their construction
of eigenfunctions of ϕ̂ amount to taking ν(ε) ∈ Z and λ = − iε

8π2
Rγ(ε)
ωγ(ε) .)

However, they do not relate their result to the relevant conjecture of
[GHM] or prove a partial converse as in Theorem 3.10 below.

Without stating any results formally, we want to briefly address the
higher genus hyperelliptic case, where F1 = ϕ still takes the form in
(3.14)-(3.15) but ∆ is no longer reflexive. (Note that ϕ0 will have
a2, . . . , ag as coefficients.) One easily checks that the construction of
ψ and the proof of Theorem 3.7 still go through after modifying χ(z̃),
provided we impose a stronger quantization condition than that in
RHS(2.32). Namely, referring to (2.27), suppose that
(3.32) the normal function vector ν(a) belongs to (Ig | Ω)Zg.

31e.g. x1 + x2 + x−1
1 x−1

2 , and including the examples studied in [GKMR] with
trivial mass invariants Qmk

= 1.
32along with those in (3.11) arising from Weyl quantization and the CBH

formula.
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Then replacing the expression in braces in (3.21) by

(3.33)
´

P z̃
z̃0
z dx2(z̃)
x2(z̃) −

∑g
j=1 Rγj

´
P z̃
z̃0
P∗ωj

for appropriate determinations of Rγj , the obvious generalization of
(3.23) goes through, ensuring that the generalized χ(z̃) is well-defined.
Under an additional assumption like (2.20), and changing the signs in
ϕ̂ of those aj’s attached to even powers of x̂1, one finds as before that
ϕ̂ψ = a1ψ.

The criterion (3.32), which we expect corresponds to the exact NS
quantization conditions of [SWH], will only hold at countably many
points in moduli. On the other hand, Conjecture 2.4 predicts the exis-
tence of eigenfunctions for a in a codimension-1 subset of moduli. So
it stands to reason that there should be something special about the
eigenfunctions ψ, which we can only construct for a in the smaller lo-
cus. In the genus-2 example worked out explicitly in [Za, §4.3], whose
“fully on-shell” quantization conditions (cf. [loc. cit., (4.45)]) should
agree with (3.32), Zakany highlights the enhanced decay of his explicit
eigenfunctions. Indeed, in our construction, for g > 1 the discrimi-
nant D will involve higher powers of both x1 and x−1

1 than for g = 1,
which leads to decay better than e−|r/2| at infinity for ψ(r); this perhaps
begins to explain the discrepancy.

3.3. Remarks on the spectrum of ϕ̂. Notably absent from the last
section is any discussion of the “converse question”, as to whether every
eigenfunction of ϕ̂ arises from the construction described there. We will
prove a fairly strong result in this direction, to the effect that “almost
every” eigenvalue λ satisfies V (λ) ∈ Λ(λ). As already mentioned in
Remark 3.5,33 the spectrum σ(ϕ̂) is a countable subset of [c,∞) for
some c > 0, whose elements can be arranged in an increasing sequence
{λj}j≥1 with λj → 0. We may replace ϕ̂ by its self-adjoint Friedrichs
extension to L2(R) without affecting these statements, cf. [LST].

Suppose P is a proposition (that can be true or false) about elements
of σ(ϕ̂). Write N(λ) := |{j ∈ N | λj ≤ λ}| and

NP(λ) := |{j ∈ N | λj ≤ λ and P(λj) holds}|.
We will say that P holds asymptotically if

(3.34) lim
λ→∞

NP(λ)
N(λ) = 1.

33The point is that the proof of [LST, Prop. 3.4] trivially generalizes to all ϕ
we consider here, because ∆ always contains a reflexive triangle (or square). The
proof of Theorem 3.10 involves, in contrast, a rather nontrivial generalization of
[op. cit., §3.2].
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Theorem 3.10. In the setting of Theorem 3.7, the “⊆” direction of
(3.12) holds asymptotically.

Proof. The statement P(λj) about eigenvalues here is, of course, that
ν(λj) ∈ Z.34 From Lemma 3.1(c), we know that ν(a) = r◦

8π2 log2 a +
O(log a), whence
(3.35) N(λ) ≥ NP(λ) ≥ bν(λ)− ν(|â|)c ≥ r◦

8π2 log2 λ+O(log λ).

Now given f, g ∈ L2(R), write 〈f, g〉 :=
´
R f(r)g(r)dr, and

(3.36) f̃(y1, y2) := 2−5/4π−3/2 ´
R e
− 1

4π {(r−y1)2+2iy2r}f(r) dr
for the coherent state transform of f . Adapting the calculations of
[LST, §3.1] to our setting gives
(3.37) 〈ϕ̂f, f〉 =

˜
R2 Φ(y1, y2) |f̃(y1, y2)|2dy1 dy2

where
(3.38) Φ(y1, y2) := ∑

m∈∂∆∩Z2 ame
−π2 (m2

1+m2
2)︸ ︷︷ ︸

=:ãm

em1y1+m2y2 .

This implies, for instance, the semi-boundedness of ϕ̂, as Φ ≥ c :=
miny∈R2 Φ(y) > 0 =⇒ ϕ̂ ≥ c · Id =⇒ σ(ϕ̂) ⊂ [c,∞).

Let (·)+ be the function on R defined by (s)+ = s for s ≥ 0 and
(s)+ = 0 for s ≤ 0, and note that

(3.39)
´ λ

0 N(s) ds = ∑
j≥1(λ− λj)+.

Reasoning with Jensen’s inequality as in [op. cit., §2.2], we have
(3.40) ∑

j≥1(λ− λj)+ ≤ 1
4π2

˜
R2(λ− Φ(y1, y2))+ dy1 dy2.

Choose M > 0 so that Mãm ≥ am (∀m ∈ ∂∆ ∩ Z2). Writing Yj := eyj

and ΓL := {Y ∈ R2
+ | L ≥ ϕ(Y1, Y2)}, note that the boundary ∂ΓL is

the cycle β on E−L. Together with Lemma 3.1(a) and (2.13), this gives
RHS(3.40) ≤ 1

4π2M

˜
R2(Mλ− ϕ(Y1, Y2))+

dY1
Y1

dY2
Y2

≤ λ
4π2

˜
ΓMλ

dY1
Y1

dY2
Y2

= λ
4π2Rβ(−Mλ)

= r◦

8π2λ log2 λ+O(log λ).
(3.41)

Putting the last three equations together, we get
(3.42) r◦

8π2 log2 λ+O(log λ) ≥ N(λ),
which combined with (3.35) gives the result. �

34We can always throw out a finite set of eigenvalues less than |â|, if they exist
(cf. Remark 3.5).
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The constraints imposed on the zero locus of ρ ◦ ν by its interpreta-
tion as eigenvalues of ϕ̂ (Theorem 3.7), and vice versa (Theorem 3.10),
seem worth exploring further. For instance, per Remark 3.5, we expect
(and know in some cases) that c > |â|; together with the following
Lemma, this essentially rules out points a ∈ U at which V (a) ∈ Λ(a)
(the exact quantization condition) and R(a) is torsion (the perturba-
tive quantization condition proposed in [GS]).
Lemma 3.11. For a ∈ (|â|,∞), R(a) ∈ H1(Ea,C/Z(2)) is a nontor-
sion class.
Proof. From the known integrality of local instanton numbers of toric
CY 3-folds [Ko], it follows that LHS(3.7) ≥ 1, hence that <(t(â)) ≥ 0.
From (3.3) (and positivity of coefficients of ϕ, and negativity of â), it
is immediate that t(|â|) > <(t(â)), hence t(a) ∈ R+ for a ∈ (|â|,∞).
But if R(a) is torsion, then Rγ(a) ∈ Q(2) =⇒ t(a) ∈ Q(1) ⊂ iR. �

More striking is a conditional transcendence result on the eigenval-
ues that arises from their asymptotic Hodge-theoretic interpretation in
Theorem 3.10. A mixed version of the Grothendieck period conjecture
(which we will simply call the GPC) says that the transcendence de-
gree of a period point arising from a motive defined over Q̄ is equal to
the dimension of the minimal mixed Mumford-Tate domain contain-
ing it. The (mixed) motive in question is the K2-cycle {−x1,−x2} on
Ea, with MHS the extension of Z(0) by H1(Ea,Z(2)) given by 1

(2πi)2R.
The possibillities for the M-T group are an extension of SL2 or a 1-
torus (depending on whether Ea is CM) by G×2

a or {1} (depending on
whether R is torsion); the corresponding domain is H, a CM point in
it, or the product of either one with C2. The coordinates of the period
point are Ω(a) (in H) and (Rγ(a)

(2πi)2 ,
Rβ(a)
(2πi)2 ) (in C2).35

Conjecture 3.12 (GPC). If a ∈ Q̄ and R(a) is nontorsion, then the
transcendence degree of Q̄(Ω(a), Rγ(a)

(2πi)2 ,
Rβ(a)
(2πi)2 )/Q̄(Ω(a)) is 2.

Proposition 3.13. Assuming the GPC, asymptotically σ(ϕ̂) consists
of transcendental numbers.
Proof. Let λ ∈ σ(ϕ̂) be an eigenvalue for which ν(λ) ∈ Z. (We
may assume λ ∈ (|â|,∞).) That is, we have an algebraic relation

1
4π2 (Rγ(λ)Ω(λi) − Rβ(λ)) = n on Rγ(λ)

(2πi)2 and Rβ(λ)
(2πi)2 over Q̄(Ω(λ)). By

the GPC, either λ /∈ Q̄ or R(λ) is torsion. But the latter possibility is
ruled out by Lemma 3.11, and so we are done by Theorem 3.10. �

35We have to divide by (2πi)2, of course, because a torsion class must have
coordinates in Q, not transcendental ones in Q(2).
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We conclude with somthing of a curiosity: in case ϕ = x1 + x−1
1 +

x2 + x−1
2 + x1x

−1
2 + x−1

1 x2, our normal function is closely related to the
Feynman integral I associated to the sunset graph with equal masses
[BKV]. This is written in [op. cit.] as a function of s = 1

3−a = the
inverse norm of the external momentum, but written as a function of
a we have I(a) = (2πi)2

a
V (a) (see [op. cit., (7.17)]). The condition

that V (a) ∈ Λ(a) means that V , or equivalently I, belongs to its own
lattice of ambiguities under monodromy. As we have seen, the values of
a at which this happens correspond to eigenvalues of ϕ̂. One wonders if
there is any deeper physical relation here between Feynman amplitudes
and quantum curves.

4. Regulator periods at the maximal conifold point

In this section we prove Conjecture 2.6 in the cases (m,n) = (g, g)
and (2g−1, 1), for every g ≥ 1. A proof for (m,n) = (2g, 1) will appear
in a forthcoming work by the third author.

Because we have to enumerate multiple nodes on the maximal coni-
fold curve, it is better in this section to replace (x1, x2) as toric coordi-
nates by (x, y), which we do throughout. We also denote the zero-locus
of a polynomial by Z(·).

4.1. The main result and some preliminaries. Consider the fam-
ilies of genus-g curves cut out of (C∗)2 by the (integrally tempered)
polynomials Fg,g(x, y) and F2g−1,1(x, y) from (2.40). In contrast to §2,
Cg,g and C2g−1,1 will denote their compactifications in P∆. There are no
mass parameters in either case, so r = 3 and the equations take the
simpler form (2.39). Moreover, Cg,g is torically equivalent to C2g−1,1 via
the map u = x−1y−1, v = xgyg−1. The effect of this map is straight-
forward: for n = 1, . . . , g it simply shifts n 7→ g − n + 1 on the level
of indices; that is, if Fg,g(x, y) is written with parameters an, then the
image (under the above map) is precisely F2g−1,g(u, v) with parameters
ag−n+1. The upshot of this connection is that statements concerning
regulator periods of C2g−1,1 can be pulled back to those correspond-
ing to Cg,g, provided we choose the correct cycles. For our purposes
here, the important case is that the cycle γg−n+1 of C2g−1,1 giving rise
to Rγg−n+1 ∼ −2πi log(ag−n+1) pulls back to the cycle γn of Cg,g corre-
sponding to Rγn ∼ −2πi log(an).
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Theorem 4.1. Conjecture 2.6 holds for the families Cg,g and C2g−1,1;
that is,

1
2πiRγ1(â) ≡

Q(1)
Dg,g and(4.1)

1
2πiRγg(â) ≡

Q(1)
D2g−1,g.(4.2)

Remark 4.2. The predictions of [CGM] aligning with Conjecture 2.6 are
written in terms of the complex structure/GKZ parameters zi := zi(a).
(In the (g, g) cases these are given by z1 = a2

a3
1
, z2 = a1a3

a2
2
, . . . , zg−1 =

ag−2ag
a2
g−1

, zg = ag−1
a2
g
.) Translated into statements about the corresponding

regulator periods (cf. (2.23)), these essentially amount to36

(4.3) 1
2πi
∑g
i=1[C−1]1jRαi(ẑ) ≡

Q(1)
Dm,n,

which of course is equivalent to (2.42). While zi and Rαi are more
natural from the standpoint of GKZ systems, the {aj} and the cor-
responding regulator periods Rγj simplify the statement of the result,
and are more natural to compute directly (cf. Appendix A). As we will
see, the {γj} are also the cycles which limit to loops passing through
individual nodes at the maximal conifold point â.

Remark 4.3. As R{−x,−y} ≡ R{x, y} mod Q(2) we may work with
the latter. Note also that (2.42) is stated in terms of the regulator
period asymptotic to −2πi log(an); it is convenient in this section to
drop the negative sign and work with one asymptotic to 2πi log(an).
Thus from now on

Rγn ∼ 2πi log(an).
Furthermore, since we intend to investigate different components of
the discriminant locus throughout this section, it will be important to
track the moduli; so henceforth we will rename Fg,g and F2g−1,1 to F a

g,g

and F a
2g−1,1.

Let us outline a proof of Theorem 4.1. Denote by Ĉg,g the fiber of
the family over the maximal conifold point â. It has g nodes {p̂j},
and the cycles {γ̂j}gj=1 passing through each node generate H1(Ĉg,g);
we set Rγ̂j :=

´
γ̂i
R{x, y}. Writing κ = γ̂[Id]γ(â) for the change-of-basis

matrix, we have

Proposition 4.4. Let κj := gcd(2j − 1, 2g + 1). Then
(4.4) κ = diag(κ1, . . . , κg).

36Here [C−1] is the inverse of the first g×g minor of the intersection matrix [C].
The Rαi

“correspond” to zi in the sense of being asymptotic to 2πi log(zi).
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It then follows from temperedness that
(4.5) 1

2πiRγj(â) ≡
Q(1)

κn
2πiRγ̂j .

In §4.2 we detect monodromies via power series representing classical
periods, verifying Proposition 4.4 in the process. In §4.3 we use a key
technique developed in [DK, §6] that allows us to connect conifold lim-
its of regulator periods to special values of the Bloch-Wigner function;
this method coupled with Proposition 4.4 settles Theorem 4.1. As a
consequence g-many series identities are borne out in §4.4 — not just
the two required for the Theorem.

We conclude this subsection with two preliminary results. The first
will help us to control certain power series asymptotics, and the second
gives us information on nodal fibers of Cg,g.

Lemma 4.5. If a, b, c ∈ R�0 are such that a = 2b+ c, then

(4.6) Γ(1 + a)
Γ2(1 + b)Γ(1 + c) ∼

1
2πb

√
a

c

a
c

(
c

b

)2b/a
a.

Proof. Stirling’s approximation yields
Γ(1 + a)

Γ2(1 + b)Γ(1 + c) ∼
1

2πb

√
a

c

aa

b2bcc
e−a+2b+c = 1

2πb

√
a

c

aa

b2bca−2b

= 1
2πb

√
a

c

aa

ca
c2b

b2b = 1
2πb

√
a

c

a
c

(
c

b

)2b/a
a

for b, c→∞ (and a = 2b+ c). �

Lemma 4.6. Suppose that the fiber over ã = (ã1, . . . , ãg) has g-many
singularities, say p̃j := (x̃j, ỹj), n = 1, . . . , g. Then for each j, p̃j is a
node, and x̃j = ỹj.

Proof. Since x∂xF a
g,g(x, y)−y∂yF a

g,g(x, y) = x−y, any singularity must
have symmetric co-ordinates; that is, x̃j = ỹj. By toric equivalence we
may replace F ã

g,g(x, y) by

(4.7) F
ã
2g−1,g(u, v) = u+ v +∑g

`=1 ã`u
−`+1 + u−2g+1v−1

(reversing the order of the {a`}); by abuse of notation we continue to
label the singularities of F ã

2g−1,1 by p̃j, but with coordinates (ũj, ṽj)
satisfying ũ−2g+1

j = ṽ2
j . Since the edge polynomials of (4.7) are all

w+ 1, the curve intersects each component of the toric boundary with
multiplicity 1, and so all p̃j ∈ C∗ × C∗. Moreover, (4.7) is irreducible
since it is quadratic in v, with discriminant D(u) of odd degree. As a
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consequence, the vanishing cycle sequence associated to the smoothing
F
ã
2g−1,1 + s takes the form

(4.8) 0→ H1(C ã2g−1,1)→ H1
lim → H1

van → 0.
Since rk(F 1H1

lim) = g and the g singularities each contribute nontriv-
ially to rk(F 1H1

van), each contribution must be exactly 1. So the p̃j are
either nodes or cusps, and to show they are nodes it will suffice to show
that the Hessians H

F
ã
2g−1,1

is non-degenerate at p̃j.
To do this, define

(4.9) P̃ (u) := 2g + 1 +∑g
j=1(2g + 1− 2j)ãju−j,

and observe that
(4.10) P̃ (ũj) = 2g−1

ũj
F
ã
2g−1,1(p̃j) + 2∂uF ã

2g−1,1(p̃j) = 0.

Thus Z(P̃ ) = {ũ1, . . . , ũg}. It follows that P̃ has no repeated roots;
that is, P̃ ′(ũj) 6= 0 (∀j). To compute the Hessians, write

∂uuF
ã
2g−1,1(p̃j) = ∑g

`=1 `(`− 1)ã`ũ−`−1
j + 2g(2g − 1)ũ−2g−1

j ṽ−1
n

= ∑g
`=1 `(`− 1)ã`ũ−`−1

j + 2g(2g−1)ỹj
ũ2
j

,(4.11)

∂uvF
ã
2g−1,1(p̃j) = (2g − 1)ũ−2g

j ṽ−2
j = 2g−1

ṽj
, and(4.12)

∂vvF
ã
2g−1,1(p̃j) = 2ũ2g−1

j ṽ−3
j = 2

ṽj
.(4.13)

At this point a few simplifications can be made. Differentiating the
defining equation of P̃ and plugging in u = ũj, we obtain,
(4.14) P̃ ′(ũj) = 2∑g

`=1 `(`− 1)ã`ũ−`−1
j −∑g

`=1(2g − 1)`ã`ũ−`−1
j

On the other hand ∂u(F ã
2g−1,1(u, v)/u) vanishes at p̃j, which yields

− ṽj
ũ2
j
−∑g

`=1 `ã`ũ
−`−1
j − 2gũ−2g−1

j ṽ−1
j = 0

=⇒ ∑g
`=1(2g − 1)jã`ũ−`−1

j = − (2g−1)(2g+1)ṽj
ũ2
j

(4.15)

Combining everything, we arrive at

(4.16) ∂uuF
ã
2g−1,1(p̃j) = (2g−1)2ṽj

2ũ2
j

+ P̃ ′(ũj)
2

Therefore,

H
F
ã
2g−1,1

(p̃j) =
(
∂uvF

ã
2g−1,1(p̃j)

)2
− ∂uuF ã

2g−1,1(p̃j)∂vvF ã
2g−1,1(p̃j)

= (2g−1)2

ũ2
j
− (2g−1)2

ũ2
j
− P̃ ′(ũj)

ṽj
= − P̃ ′(ũj)

ṽj
6= 0

as was to be shown. �
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4.2. Monodromy calculations via power series. Consider a 1-
parameter family of curves C → P1 with coordinate t, endowed with
a section ω of the relative dualizing sheaf; on smooth fibers Ct, ω1 is
a holomorphic 1-form. Assume that Cc has a single node pc (i.e. is a
“conifold fiber”), and let δ0 be the “conifold” vanishing cycle pinched
at pc. Writing ε0 for a cycle invariant about t = 0, its monodromy
about t = c is a multiple of δ0, say kδ0 for some k ∈ Z≥0. We would
like to compute this conifold multiple k.

Writing ε0(t) = ∑
m≥0 bmt

m :=
´
ε0
ωt, we have

(4.17)
ˆ
kδ0

ωt = (Tc − I)ε0 = 2πiC0 +O(t− c)

for some C0 ∈ C. Observe that

(4.18)
ˆ
kδ0

ωc = k

ˆ
δ0

ωc = k · 2πi · Res
pc

ωc =⇒ C0 = k · Res
pc

ωc.

On the other hand, [Ke2, Lemma 6.4] (with B(t) = ε0(t), λ = 2πiC0,
and w = 1) yields

(4.19) bm ∼
C0

cm ·m
.

provided C0 6= 0.37 Therefore we have proven

Lemma 4.7. The conifold multiple is computed by

(4.20) k =
lim
m→∞

bm · cm ·m
Respc ωc

.

Example 4.8. Consider the Legendre family, y2 = x(x − 1)(x − t).
Setting c = 1 gives rise to a node at (1, 0). Taking ωt = dx

y
, we have

(4.21) Res(1,0) ωc = Resx=1
dx

(x−1)
√
x

= 1.

Moreover bm = 2π
(
−1/2
m

)2
, hence (4.20) implies

(4.22) k = lim
m→∞

2πm
(
−1/2
m

)2
= 2.

Example 4.9. Now consider the family Ct defined by ft(x, y) = xy −
t1/3(x3+y3+1). In this case c = 1

33 and bm = (3m)!
m!3 , but Cc = Z(∏3

`=1(1+
ζ i3x + ζ2i

3 y)) is a Néron 3-gon with three nodes pi. But since ε0(c) will
pass through each pi the same number k0 of times, and ωc must have

37Otherwise, Bm has a smaller exponential growth-rate and RHS(4.20) is zero,
which confirms the Lemma when C0 = 0 as well.
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the same residue at each, (4.20) holds (taking say pc = p1 := (1, 1))
provided we interpret k as 3k0. For the residue of

(4.23) 2πiωc = ResCc
dx ∧ dy
fc

= dx

∂yfc
= dx

x− y2

at p1, we can restrict to the component Xc := Z(1 + ζ3x+ ζ2
3y):

Resp1ωc = 1
2πi

Res(1,1)

(
dx

x− y2

∣∣∣∣∣
Xc

)
= 1

2πi
Resy=1

(
ζ3dy

y2 + ζ3y + ζ2
3

)

= 1
2πi

ζ3

1− ζ2
3

= 1
2π
√

3
.(4.24)

Since bm = (3m)!
m!3 we get

(4.25) k = lim
m→∞

1
33m ·m ·

(3m)!
m!3 · 2π

√
3 = 3,

which means that ε0(c) winds once around the Néron 3-gon.

For the proof of Proposition 4.4, we need to compute the Picard-
Lefschetz matrix κ, whose entries κij tell how many times the special-
ization γi(â) passes through p̂j. In order to invoke Lemma 4.7 for this
purpose, we should reinterpret these numbers as (roughly speaking)
conifold multiples for 1-parameter subfamilies of Ca acquiring a single
node. The idea is that â is a normal-crossing point of the discriminant
locus, whose g local-analytic irreducible components each parametrize
fibers carrying a single node pj. These are labeled in such a way that
the jth component can be followed out to where it meets the aj-axis at
aj = åj. Call this fiber C

åj
g,g, and p̊j = (̊xj, x̊j) for the limit of the node

to it.
From Appendix A we have the 1-forms

(4.26) $j = 1
2πi∇δaj

R{x, y} = −aj2πi
ResCg,g

(
dx ∧ dy

xjyjFg,g(x, y)

)

and 1-cycles γj (j = 1, . . . , g). The computation that follows will con-
sider periods Πjj =

´
γj
$j on the 1-parameter families over the aj-axes

(acquiring a single node at aj = åj), which will suffice to determine the
diagonal terms κjj. That the remaining, off-diagonal terms are actually
zero follows from the fact (cf. Appendix A) that each γj is well-defined
on a tubular neighborhood of the hyperplane in (compactified) moduli
defined by zj = 0, which is cut by the conifold components carrying pi
for every i 6= j.
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Now C åjg,g is defined by

(4.27) f (j)
g,g := F

åj
g,g(x, y) = x+ y + åjx

1−jy1−j + x−gy−g,

and to find the node p̊j we solve

x̊2g
j f

(j)
g,g

∣∣∣∣∣
x=y=x̊j

= 2x̊2g+1
j + 1 + åjx̊

2g−2j+2
j = 0,(4.28)

x̊2g+1
j ∂xf

(j)
g,g

∣∣∣∣∣
x=y=x̊j

= x̊2g+1
j − g − (j − 1)̊ajx̊2g−2j+2

j = 0.(4.29)

to obtain

x̊j = 2g+1

√
g − j + 1

2j − 1 ,(4.30)

åj = −2g + 1
2j − 1

(
2g + 1
g − j + 1

)2(g−j+1)
2g+1

.(4.31)

In particular, we have the relation

(4.32) åjx̊
2(g−j+1)
j = −2g + 1

2j − 1 .

In order to calculate the residue of$j at p̊j, recall that for any f(x, y) =
Ax2 +Bxy + Cy2 + higher order terms ∈ C[x, y], we have

(4.33) Res2
0
dx ∧ dy

f
:= Res0

(
ResZ(f)

dx ∧ dy
f

)
= 1√

B2 − 4AC
.

Changing variables to X := x − x̊j, Y := y − x̊j in f (j)
g,g (x, y) leads to

the equation

xgygf (j)
g,g = x̊2g−1

j (2g2+2g+1−(g−j+1)(2g+1))
2 X2 + x̊2g−1

j (2g2+2g−(g−j+1)(2g+1))XY

+ x̊2g−1
j (2g2+2g+1−(g−j+1)(2g+1))

2 Y 2 + higher order terms.(4.34)

Therefore

Res2
p̊j

dx ∧ dy
xgygf

(j)
g,g

= 1
x̊2g−1
j

√
(2g2+2g−(g−j+1)(2g+1))2−(2g2+2g+1−(g−j+1)(2g+1))2

= 1
x̊2g−1
j

√
(2g−2g−1)(4g2+4g+1−2(g−j+1)(2g+1))

= 1
x̊2g−1
j

√
−(2g+1)(2g+1−2g+2j−2)

(4.35)

= i
x̊2g−1
j

√
(2g+1)(2j−1)

.
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Consequently the residue of $j may now be found:

Resp̊j$j = −åj2πi
Res2

p̊j

dx ∧ dy
xjyjf

(j)
g,g

= −åj2πi
· x̊2(g−j)

j · Res2
p̊j

dx ∧ dy
xgygf

(j)
g,g

= −1
2π · (̊ajx̊

2(g−j+1)
j ) · 1

x̊2g+1
j

√
(2g + 1)(2j − 1)

(4.36)

=
√

2g + 1
2π(g − j + 1)

√
(2j − 1)

.

For the periods of $j, we start as in Appendix A with those of the
regulator class. Writing ϕj := xj−1yj−1F a

g,g(x, y) − aj, (A.3) (with the
sign flip from our choice of γj) yields

1
2πi

Rγj(a) ≡
Q(1)

log(aj)−
∑
m>0

(−aj)−m
m

[ϕmj ]0

= log(aj)−
∑
m>0

(−aj)−m
m

×(4.37)

[(xjyj−1︸ ︷︷ ︸
=:Aj

+xj−1yj︸ ︷︷ ︸
=:Bj

+∑g
k=1
k 6=j

ak x
j−kyj−k︸ ︷︷ ︸

=:Ckj

+xj−g−1yj−g−1︸ ︷︷ ︸
=:Dj

)m]0

where [L]0 stands for the constant term (in x, y) appearing in the Lau-
rent polynomial L. Now, given l1, l2, · · · , lg ∈ Z, we define

lj := 1
2j − 1

(
(2g + 1)lj +

g∑
k=1
k 6=j

(2k − 1)lk
)

(4.38)

l′j := 1
2j − 1

(
(g − j + 1)lj +

g∑
k=1
k 6=j

(k − j)lk
)
, and put(4.39)

Lj := {(l1, l2, · · · , lg) ∈ Zg≥0 | l′j ∈ Z≥0} \ {(0, · · · , 0)}(4.40)

Note that l′j ∈ Z≥0 =⇒ lj ∈ Z≥0. The upshot of this construction is
if Lj, L′j ∈ Z≥0 are such that

A
Lj
j B

L′j
j

g−1∏
k=1
k 6=j

(Ck
j )lkDlj

j = 1 and(4.41)

Lj + L′j +
g∑

k=1
lk = m(4.42)
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then Lj = L′j = l′j (by symmetry) andm = lj. Thus the lattice Lj ⊂ Zg
encodes all possible constant terms appearing in (4.37), giving
(4.43)

1
2πi

Rγj(a) ≡
Q(1)

log(aj) −
∑
Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−aj)−lj
g∏

k=1
k 6=j

alkk .

For the classical periods Πj` =
´
γj
$` = 1

2πiδa`Rγj , it is clear from (4.43)
that Πj` vanishes on the aj-axis for ` 6= j. Focusing then on
(4.44)

Πjj(a) =
ˆ
γj

$j = 1 +
∑
Lj

Γ(1 + lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−aj)−lj
g∏

k=1
k 6=j

alkk ,

we set ai = 0 for i 6= j to obtain

S := 1 +
∑

g−j+1
2j−1 lj∈Z>0

Γ(1 + 2g+1
2j−1 lj)

Γ2(1 + g−j+1
2j−1 lj)Γ(1 + lj)

(−aj)
−2g+1

2j−1 lj .(4.45)

Recall that κj := gcd(2j − 1, 2g + 1), and set

nj : = 2j − 1
κj

, mj := 2g + 1
κj

= (2g + 1)nj
2j − 1 ,

rj : = lj
nj
, and sj := a

−mj
j .

(4.46)

Clearly nj,mj, rj ∈ Z>0. Now we have a power series of the form

(4.47) S = 1 +
∑
rj∈N

(−1)mjrjΓ(1 +mjrj)
Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
s
rj
j =:

∑
rj

brjs
rj
j .

Let s̊j := å
−mj
j . Applying Lemma 4.5,

(4.48) Γ(1 +mjrj)
Γ2(1 + mj−nj

2 rj)Γ(1 + njrj)
≈

(−1)mjrj2√mj

2πrj(mj − nj)
√
nj
s̊
rj
j

from which we may conclude that

(4.49) lim
rj→∞

brj · rj · s̊
rj
j =

2√mj

2π(mj − nj)
√
nj
.
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Observing that

Resp̊j$j =
√

2g + 1
2π(g − j + 1)

√
(2j − 1)

=
√
nj

2πnj(g − j + 1) ·
√

(2g + 1)nj
2j − 1

=
2√mjnj

2π(mj − nj)(2j − 1) .(4.50)

we apply (4.20) to obtain

(4.51) κjj =
lim
rj→∞

brj · rj · s̊
rj
j

Resp̊j$j

= 2j − 1
nj

= κj.

This concludes the proof of Theorem 4.4.
Remark 4.10. Notice that κ1 = κg = 1. We document κ := (κ1, . . . , κn)
for g = 1, . . . , 10 in Table 1. The lack of symmetry for g ≥ 4 should
not be surprising given the shape of the Newton polygon.

g κ
1 1
2 (1,1)
3 (1,1,1)
4 (1,3,1,1)
5 (1,1,1,1,1)
6 (1,1,1,1,1,1)
7 (1,3,5,1,3,1,1)
8 (1,1,1,1,1,1,1,1)
9 (1,1,1,1,1,1,1,1,1)
10 (1,3,1,7,3,1,1,3,1,1)

Table 1. Conifold multiples for small genera

4.3. Normalization of the conifold fibers. For the family Cm,n de-
termined by the {F a

m,n}, themaximal conifold point â ∈ (C∗)g is defined
to be the unique point (if it exists) on the boundary of the region of
convergence of the g power series (A.3) where C âm,n (given by F â

m,n = 0)
acquires g nodes (labeled by p̂j := (x̂j, ŷj)). In this subsection we
determine â in the (g, g) cases (where r = 0).
Remark 4.11. In this case it is not necessary to impose a convergence
requirement to get uniqueness of a g-nodal rational curve in moduli.
This comes along for the ride as we shall see in Remark 4.15. However,
one should add right away that it is only ẑ which is unique (with or
without this requirement), not â. In fact, M is a (2g + 1)-to-1 étale
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cover of Mz, the GKZ moduli space (cf. Remark 4.2). Precisely one
of the 2g+ 1 preimages of ẑ has real coordinates; it is this one we shall
call â. Given existence of â, established in Prop. 4.13 below, a result
of Tyomkin [Ty, Prop. 7] guarantees uniqueness of ẑ.

The idea is to begin with the moduli space of all curves on P∆ in the
linear system |O∆(1)| avoiding the singularities. (That is, we consider
essentially all Laurent polynomials on ∆ = conv{(1, 0), (0, 1), (−g,−g)},
not just the tempered ones.) This has dimension g + 2, and con-
tains a variety V parametrizing all irreducible nodal rational curves.
By [loc. cit.], V is irreducible and isomorphic to an open subset of
(C∗)2 × (P1)3 modulo PGL2(C) viewed as automorphisms of the mor-
malizing P1, hence of dimension 2. Quotienting out by toric automor-
phisms (i.e. (C∗)2) maps each curve to its z-coordinate. The action
of (C∗)2 on V has no fixed points, so the image of V in Mz is zero-
dimensional and irreducible, i.e. a single point.

Now the most straightforward way to find â would be via the dis-
criminant locus: one should look for transverse intersections amongst
its local analytic branches. This is a viable strategy in particular cases;
however, it requires careful analysis even in genus 2.

Example 4.12. The family C2,2 arising as the mirror of the resolution
of C3/Z5 orbifold was extensively studied in [CGM, §4.1]. Its discrim-
inant locus is described by the equation

(4.52) 3125z2
1z

3
2 + 500z1z

2
2 + 16z2

2 − 225z1z2 − 8z2 + 27z1 + 1 = 0,

where

(4.53) z1 = a2

a3
1
, z2 = a1

a2
2
.

Figure 4.1 illustrates the intersection that gives rise to the maximal
conifold point ẑ = (− 1

25 ,
1
5), which lifts to â = (5,−5).

It is clear that for the family Cg,g, the discriminant locus is described
by a degree 2g + 1 polynomial in g variables; so that approach quickly
becomes untenable. However, a close study of the g = 1 and g = 2
cases suggested a “constructive” approach to producing g-nodal fibers,
which generalized well and leads to the following:

Proposition 4.13. Let Tm denote the mth Chebyshev polynomial of
the first kind; this is a degree-m polynomial characterized by Tm(cos θ) =
cosmθ. Then we have

(4.54) F â
g,g(x, x) = 2x(T2g+1( 1

2x) + 1).
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Figure 4.1. Discriminant locus of C2,2; axes are zi’s.

It follows that

âj = (−1)g−j+1 2g + 1
2j − 1

(
g + j − 1
g − j + 1

)
and(4.55)

x̂j = ŷj = (−1)g−j
2 sec

(
g − j + 1

2g + 1 π

)
(4.56)

for j = 1, . . . , g. In particular, â ∈ Zg.

Proof. That x̂j ∈ Z(RHS(4.54)) is immediate from the defining prop-
erty of T2g+1, and the x̂j are distinct and different from −1

2 . Moreover,
writing Um for the mth Chebyshev polynomial of the second kind, the
relation (T2g+1(w) − 1)(T2g+1(w) + 1) = (w2 − 1)(U2g(w))2 guarantees
that all roots other than −1

2 of (T2g+1( 1
2x) + 1) have even multiplicity.

So they all have multiplicity 2 and are precisely the {x̂j}.
The polynomial F̂ (x, y) := x + y + ∑g

j=1 âjx
1−jy1−j + x−gy−g, with

âj as in (4.55), satisfies F̂ (x, x) = RHS(4.54) by standard results on
coefficients of Tm. Clearly F̂ (p̂j) = 0, and the {p̂j} are in fact singular-
ities of Z(F̂ ) since ∂F̂

∂x
(x, x) = 1

2
d
dx

(F̂ (x, x)) and they are double roots
of F̂ (x, x). Therefore, by Proposition 4.6, they are all nodes. Since
one can also check that (4.43) converges at p̂j, Z(F̂ ) is the maximal
conifold curve. �

Remark 4.14. Of course, Proposition 4.13 recovers the known maximal
conifold points for the families C1,1, C2,2 (â1 = −3 for g = 1 and â1 =
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5, â2 = −5 for g = 2). Table 2 gathers T2g+1 and â for a few low genus
cases.

g T2g+1(x) â
1 4x3 − 3x -3
2 16x5 − 20x3 + 5x (5,-5)
3 64x7 − 112x5 + 56x3 − 7x (-7,14,-7)
4 256x9 − 576x7 + 432x5 − 120x3 + 9x (9,-30,27,-9)
5 1024x11 − 2916x9 + 2816x7 − 1232x5 + 220x3 − 11x (-11, 55, -77, 44, -11)

Table 2. Maximal conifold points for low genera.

Being of geometric genus zero, the maximal conifold fiber Ĉg,g ad-
mits uniformizations by P1. In particular, we have the g distinct
parametrizations z 7→ (X̂j(z), Ŷj(z)), with

X̂j(z) =
x̂j
(
1− 1

z

)g+1

(
1− ζg−j+1

2g+1
z

)(
1− ζ

2(g−j+1)
2g+1

z

)g and(4.57)

Ŷj(z) =
ŷj

(
1− z

ζ
2(g−j+1)
2g+1

)g+1

(
1− z

ζg−j+1
2g+1

)
(1− z)g

,(4.58)

having the property that z = 0,∞ are mapped to p̂j. (We defer the
proof to the end of this subsection.) Hence the image of the path from
z = 0 to z = ∞ on P1 is sent (by the jth map) to γ̂j. As dictated
by [DK, §6.2], we assign a formal divisor N̂j on P1 \ {0,∞} to each
uniformization: for X(z) = c1

∏
j(1−

αj
z

)dj and Y (z) = c2
∏
k(1− z

βk
)ek ,

this divisor isN := ∑
j,k djek[

αj
βk

]. According to [loc. cit.], the imaginary
part of

´∞
0 R{X(z), Y (z)} is then given by D2(N ) := ∑

j,k djekD2(αj
βk

).
In our present situation,

N̂j = g2[ζ2(g−j+1)
2g+1 ] + 2g[ζg−j+1

2g+1 ]− (2g2 + 2g − 1)[1]

− 2(g + 1)[ζ−(g−j+1)
2g+1 ] + (g + 1)2[ζ−2(g−j+1)

2g+1 ]

= 2(2g + 1)[ζg−j+1
2g+1 ]− (2g + 1)[ζ2(g−j+1)

2g+1 ](4.59)
= 2(2g + 1)[1 + ζg−j+1

2g+1 ],
where we are working modulo the scissors congruence relations

[ξ] + [1
ξ
] = 0, [ξ] + [ξ] = 0, [ξ] + [1− ξ] = 0 and(4.60)

[ξ1] + [ξ2] + [ 1−ξ1
1−ξ1ξ2 ] + [ 1−ξ2

1−ξ1ξ2 ] + [1− ξ1ξ2] = 0(4.61)
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of the Bloch group B2(C). Consequently we have the identity

D2(N̂j) = 2(2g + 1)D2(1 + ζg−j+1
2g+1 ),(4.62)

of which two particular cases are of note: we claim that
D2(N̂1) = −2πDg,g and(4.63)
D2(N̂g) = −2πD2g−1,1.(4.64)

(See §2.4 for notation.) In fact, we can say something even more gen-
eral. Given m ∈ Z>0, we have

−zm+1wm,1 = −zm+1 z
m
m,1 − z−mm,1
zm,1 − z−1

m,1
= −ζm+1

2(m+2)

m−1∑
k=0

ζk2(m+2)ζ
−(m−1−k)
2(m+2)

= −
ζm+1

2(m+2)

ζm−1
2(m+2)

m−1∑
k=0

ζ2k
2(m+2) = −ζ2

2(m+2)

m−1∑
k=0

ζkm+2(4.65)

= ζm+2

(
ζmm+2 + ζm+1

m+2

)
= 1 + ζm+1

m+2 .

Therefore, taking conjugates,
2(m+ 2)D2(1 + ζm+2) = −2(m+ 2)D2(1 + ζm+1

m+2 )
= −2πDm,1(4.66)

which implies (4.64) upon setting m = 2g − 1. Similarly one can see
that
(4.67) wg,g = ζ1−g

2(2g+1)
∑g−1
k=0 ζ

k
2g+1

and thus
2(2g + 1)D2(1 + ζg2g+1) = −2(2g + 1)D2

(
−∑g

k=1 ζ
k
2g+1

)
= −2(2g + 1)D2

(
−ζ2

2(2g+1)
∑g−1
k=0 ζ

k
2g+1

)
(4.68)

= −2πDg,g,
as was to be shown.

We are now ready to prove Theorem 4.1. By the previously men-
tioned result of [DK, §6.2], we know that =(Rγ̂j) = D2(N̂j) or

(4.69) <( 1
2πiRγ̂j) = 1

2πD2(N̂j).
Next, Proposition 4.4 tells us that Rγj(â) = κjRγ̂j , while (4.55) and
(4.43) ensure that (mod Q(1)) 1

2πiRγj(â) hence 1
2πiRγ̂j is real. Combin-

ing this with (4.62) gives
1

2πi
Rγj(â) = 1

2πi
κjRγ̂j ≡Q(1)

(2g + 1)κj
π

D2(1 + ζg−j+1
2g+1 ),(4.70)
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whence (4.1) [resp. (4.2)] follows from (4.63) [resp. (4.64)] by setting
j = 1 [resp. j = g] in (4.70).

To tie up the remaining loose end, we conclude with the

Proof of the parametrizations (4.57)-(4.58). Consider the map

ηj : P1 → P∆

given by (4.57)-(4.58) and ηj(z) := (X̂j(z), Ŷj(z)). Obviously ηj(0) =
(x̂j, ŷj) = ηj(∞). We must show that ηj is of degree 1 onto its image,
and that this image is precisely C âg,g.

The first part is easy. Here (only) we take P∆ to be the singular toric
variety given by the normal fan of ∆ (and not a refinement). Write
D1, D2, D3 for the boundary divisors, ordered so that the divisors of
the torus coordinates read

(x) = (g + 1)D1 − gD2 −D3 and (y) = (g + 1)D2 − gD1 −D3.

Now on P1, write ξj := ζg−j+1
2g+1 , and also p1, p2, p3 for 1, ξ2

j , ξj respec-
tively. Clearly we have (X̂j(z)) = (g+1)[p1]−g[p2]− [p3] and (Ŷj(z)) =
(g+1)[p2]−g[p1]−[p3]. This shows that η∗jDi = [pi] for i = 1, 2, 3, so the
map has degree 1 and the image meets all three boundary components
transversely.

The next step is to check that it meets each boundary component
where the edge coordinate is −1, which is where Cag,g hits them for any
a. That is, we must show that the limits

lim
z→p1

X̂j(z)gŶj(z)g+1, lim
z→p2

X̂j(z)g+1Ŷj(z)g, and lim
z→p3

X̂j(z)
Ŷj(z)

are all −1. For the third, since x̂j = ŷj we get X̂j(z)
Ŷj(z)

= ( z−1
z−ξ2

j
)2g+1 which

obviously gives −1 after substituting z = ξj. For the first, we have
X̂j(z)gŶj(z)g+1 = x̂2g+1

j ( z−ξ
2
j

z−ξj )2g+1; substituting z = 1 yields (x̂j(1 +
ξj))2g+1. Writing ξ1/2

j := ζg−j+1
4g+2 , (4.56) gives x̂j = (−1)g−j

ξ
1/2
j +ξ̄1/2

j

hence x̂j(1+

ξj) = (−1)g−jξ1/2
j , which has (2g + 1)st power (−1)g−j(−1)g−j+1 = −1.

The second limit is very similar to the first.
Now suppose ηj(P1) 6= C âg,g, and consider the divisor (F â

g,g) = C âg,g −
gD1 − gD2 −D3. The results of the last 3 paragraphs give (η∗jF â

g,g) =
η∗jC âg,g − g[p1]− g[p2]− [p3] ≥ 2[0] + 2[∞]− (g − 1)[p1]− (g − 1)[p2]. If
g = 1 or 2, (η∗jF â

g,g) already has positive degree, which is absurd; and
the contradiction means that ηj(P1) = C âg,g. If g > 2, we have to work
a bit harder to reach this contradiction. It will suffice to verify that
ηj(P1) also passes through the nodes (x̂i, ŷi) for i 6= j.
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To do this, write ξi := ζg−i+1
4g+2 and µi := ζg−i+1

2g+1 = ξ2
i , and note that

x̂i = (−1)g−i(ξi + ξ̄i)−1 = −µg+1
i (1 + µi)−1. We claim that

θij := µj(µjµ̄i − 1)(µ̄i − µj)−1

(and ξ2
j /θij, too, but we won’t need that) are sent to (x̂i, x̂i) by ηj. For

the x-coordinate, we have

X̂j(θij) = x̂j
(θij − 1)g+1

(θij − µj)(θij − µ2
j)g

=
−µg+1

j

1 + µj

µg+1
j (µj µ̄i−1

µ̄i−µj − µ̄j)
g+1

µg+1
j (µj µ̄i−1

µ̄i−µj − 1)(µj µ̄i−1
µ̄i−µj − µj)

g

=
−µg+1

j

1 + µj

µ̄g+1
i µ̄g+1

j (µ2
j − 1)g+1

(µj − 1)(µ̄i + 1)(µ2
j − 1)g = −µ̄gi

1 + µi
= x̂i,

and the y-coordinate calculation is similar. �

4.4. Explicit series identities. Spelling out (4.70) in light of (4.43)
kills any torsion modulo Q(1) as both sides are real,38 and yields the
relationship
(2g + 1) · gcd(2j − 1, 2g + 1)

π
D2(1 + ζg−j+1

2g+1 ) = log(|âj|)−
∑
Lj

Γ(lj)

Γ2(1 + l′j)
g∏

k=1
Γ(1 + lk)

(−âj)−lj
g∏

k=1
k 6=j

âlkk(4.71)

valid for j = 1, . . . , g. The LHS can be shifted to a different avatar via
the formula

(4.72) D2(1 + ζg−j2g+1) = D2
(
2 cos( π

2g+1)eπi(g−j)/(2g+1)
)
.

Let us consider some applications of (4.71). For the family C2,2 Table
1 and Table 2 say that κ = (1, 1) and â = (5,−5). Recalling that
w := 1+

√
5

2 = 2 cos(π/5) and plugging in j = 1 in (4.71) gives

5
π
D2(we2πi/5) = log 5−

∑
l1,l2∈Z≥0

′ Γ(5l1 + 3l2)(−5)−5l1−3l2(−5)l2
Γ2(1 + 2l1 + l2)Γ(1 + l1)Γ(1 + l2)

= log 5−
∑

m,r∈Z≥0

′ (−1)mΓ(5m+ 3r)5−5m−2r

Γ2(1 + 2m+ r)Γ(1 +m)Γ(1 + r) .

38after changing log(âj) to log(|âj |)
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On the other hand for j = 2,

5
π
D2(weπi/5) = log 5−

∑
l1,l2∈Z≥0

′ Γ(5l2+l1
3 )5−

5l2+l1
3 5l1

Γ2(1 + l2−l1
3 )Γ(1 + l1)Γ(1 + l2)

.(4.73)

Defining r := l1,m := (l2 − l1)/3,
5
π
D2(weπi/5) = log 5−

∑
m,r∈Z≥0

′ Γ(5m+ 2r)5−5m−r

Γ2(1 +m)Γ(1 + r)Γ(1 + 3m+ r) .(4.74)

These identities, conjectured in [CGM, A.10], match the identities [7K,
(6.13)-(6.14)].39 Likewise, for C3,3 we have â = (−7, 14,−7) and k =
(1, 1, 1), and thus

7
π
D2(1 + ζ3

7 ) = log 7−
∑

m,r,p∈Z≥0

′ (−1)rΓ(7m+ 5r + 3p)7−7m−4r−2p2p

Γ2(1 + 3m+ 2r + p)Γ(1 +m)Γ(1 + r)Γ(1 + p)

(4.75)

7
π
D2(1 + ζ2

7 ) = log 7−
∑

m,r,p∈Z≥0

′ (−1)rΓ(7m+ 5r + p)7−4m−5r+2p2−7m−5r−p

Γ2(1 + 2m+ r − p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p)

(4.76)

7
π
D2(1 + ζ7) = log 7−

∑
m,r,p∈Z≥0

′ (−1)mΓ(7m+ 3r + p)7−7m+2p23r

Γ2(1 +m− r − 2p)Γ(1 + 3m)Γ(1 + 3r)Γ(1 + 3p) .

(4.77)

More generally, for the family Cg,g, L1 becomes the lattice Zg≥0\{0, . . . , 0}
and we end up with a tidy expression,

(2g + 1)
π

D2(1 + ζg2g+1) = log(|â1|)−

∑
lk∈Z≥0
1≤k≤g

′ (−1)
g∑
k=1

lk Γ
(

(2g+1)l1+
g∑
k=2

(2k−1)lk

)
Γ2

(
1+gl1+

g∑
k=2

(k−1)lk

)
g∏
k=1

Γ(1+lk)
â
−(2g+1)l1−

g∑
k=2

(2k−1)lk

1

g∏
k=2

âlkk ,

(4.78)

where ∑
lk

′ means that we omit the term corresponding to {0, . . . , 0}.

Remark 4.15. We briefly address convergence of the power series part
of RHS(4.78), to R̃(a) := 1

2πiRγ1(a) + log(a1) evaluated at a = â. Re-
placing âi with ai, then substituting the GKZ variables zi (cf. Remark
4.2), it becomes a power series of the form∑′

`≥0 c`z
g`1+

∑g

k=2(k−1)`k
1 z

(g−1)`1+
∑g

k=3(k−2)`k
2 · · · z`1g

39The proof there was incomplete as it did not address κ.
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which represents R̃(a(z)) for sufficiently small z.
Moreover, we claim that R̃(a(uz)) has no monodromy for z = z(t) :=

(tm, t, . . . , t) if m � 0 and |t| < 1. It is enough to check that there is
no monodromy on z1 = 0 (obvious, as the power series is identically
zero there) or when |z1| < 1 and zi = ẑi (i ≥ 2). For the latter, note
that (4.54) becomes 2x{z−1/2

1 T2g+1( 1
2xz

1/(4g+2)
1 )+1}, whose discriminant

is a power of z1 − 1. (Roots of T ′2g+1 = (2g + 1)U2g are cos( kπ
2g+1) for

k = 1, . . . , 2g, and T2g+1(cos( kπ
2g+1))+z1/2

1 = (−1)k+z1/2
1 is 0 iff z1 = 1.)

So B(t) := R̃(a(z(t))) is represented by a power series ∑mBmt
m

on the unit disk, is bounded on {|t| < 1 + ε} \ [1, 1 + ε) (as the K2
symbol is nonsingular at t = 1), and has monodromy about t = 1
(T1 − I)B ∼ cst. × (t − 1) (since (T1 − I)γ1 is a vanishing cycle with
trivial regulator). We are now in the situation of [Ke2, Lemma 6.4]
with w = 2, so that Bm ∼ cst.×m−2. The power series thus converges
at t = 1, and must evaluate to B(1) by Tauber’s theorem.

Appendix A. Some regulator calculations

Here we demonstrate the existence of integral 1-cycles {γj}gj=1 on C
with regulator periods behaving as Rγj ∼ −2πi log(aj) for large aj, as
claimed in §2.3. In the genus 1 case, we also indicate how one can
check the constant term in Rβ (cf. Lemma 3.1) without using mirror
symmetry, and relate the constant term to the limit of a variation of
MHS. We refer the reader to [DK] or [KLi] for background on regulator
currents.

We start by defining the 1-cycles in distinct regions of moduli. We
will need some notation. Set T := {x ∈ (C∗)2

∣∣∣|x1| = 1 = |x2|} (with the
standard orientation as a 2-cycle) and let Γ ⊂ P∆ be a 3-chain bounding
on T (but avoiding C̄\C). Write xe := xm

e for the toric coordinate along
the boundary component De ⊂ P∆ corresponding to an edge e ⊂ ∂∆,
and {qe,`} for the roots of P (−xe) (amongst the {qk}), repeated with
multiplicity; we have Pe(xe) = ∏

`(1 + xe
qe,`

), with ∏
` qe,` = 1. Also,

loge(ξ) will mean log(ξ) for ξ enclosed (counterclockwise on De) by
Γ ∩ De and 0 otherwise.

Now, fixing j ∈ {1, . . . , g}, take iaj ∈ H and |aj| � maxi 6=j |ai|; and
note that then F (T) ∩ R− = ∅. In this region, define γj := Γ ∩ C, and
use the current coboundary
(A.1)

1
2πid[R{F (x), -x1, -x2}] = ∑

e R{Pe(xe), -xe} · δDe −R{-x1, -x2} · δC̄
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together with the Tame symbols of R{P (xe),−xe} (which are just the
{q−1

e,`}) and the Cauchy integral formula to compute

Rγj =
´
γj
R{-x1, -x2} =

´
Γ R{-x1, -x2} · δC̄

= −1
2πi
´
TR{F (x), -x1, -x2}+∑

e
´

Γ∩De
R{Pe(xe), -xe}

= −1
2πi
´
T log(aj(1 + a−1

j Fj(x)))dx1
x1
∧ dx2

x2
+∑

e
´

Γ∩De
R{Pe(xe), -xe}

= 2πi
(
− log(aj) +∑

k
(−1)k
k

[(Fj(x))k]0a−kj −
∑

e,` loge(qe,`)
)
.

(A.2)

In the tempered case, the {qk} are of course all 1, and the last term
vanishes. We are then left with40

(A.3) 1
2πiRγj(a) = − log(aj) +∑

k>0
(−1)k
k

[F k
j ]0a−kj ,

in which (by virtue of the GKZ theory) the sum can always be writ-
ten as a power series in z1, . . . , zg.41 This gives a common region of
convergence for the series for all j (where the z-coordinates are small),
to which the γj admit well-defined continuation from the regions on
which they were originally defined: namely, they are the cycles with
these regulator periods. Moreover, they are clearly independent due to
the asymptotic behaviors of these periods in the {aj}.

In addition, (A.2)-(A.3) lead to formulas for periods of 1-forms. Not-
ing that d[R{F (x),−x1,−x2}] = dF

F
∧ dx1

x1
∧ dx2

x2
, one introduces

(A.4) $` := 1
2πi∇δa`

R = −1
2πiResC

(
δa`F

F
dx1
x1
∧ dx2

x2

)
and computes

(A.5) − Πj` := −
ˆ
γj

$` = −1
2πiδa`Rγj = δ`j +∑

k>0(−1)k[F k
j ]0a−kj ,

where δ`j is the Kronecker delta. This formula proves useful in §4.2
where we change the sign of γj.

Turning to the g = 1 case and the computation of Rβ, it is more
convenient to work with u = −a� 0. In this coordinate, (3.3) becomes
t = log(u)−πi +O(u−1). Substituting this in Lemma 3.1(a) and using
12− r◦ = r yields
(A.6) Rβ = r◦

2 log2 u− r
6π

2 +O(u−1 log u).
40Note that the version of this formula in [KLi, Prop. 6.2] is missing a ±πi

(“2-torsion”) term: the λj parameter there is −aj , so the leading term should have
read − log(−λj) or − log(λj) + πi.

41Essentially, this is just because in order to contribute to the constant term in
(Fj(x))k, a product of monomials must correspond to a sum of relations on points
of ∆ ∩ Z2, and the relations are how we defined the {zi}.
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Consider the Laurent polynomial ϕ = x1 + x−1
1 + x2 + x−1

2 , which
corresponds to local (P∆◦ =)P1 × P1. The discriminant (over the
x1-axis) of the equation x2 + (x1 + x−1

1 − u) + x−1
2 = 0 has roots

ξ1 ∼ 1
u+2 , ξ2 ∼ 1

u−2 , ξ3 ∼ u − 2, and ξ4 ∼ u + 2 (in increasing or-
der). Introduce 2x2,±(x1) := u− x1 − x−1

1 ±
√

(x1 + x−1
1 − u)2 − 4 and

w(x1) := 4
(u−x1−x−1

1 )2 . For x1 ∈ (ξ2, ξ3), w lies in (0, 1), and we write
log( 4

w
· 1−

√
1−w

1+
√

1−w ) =: ∑m≥1 θmw
m = 1

2w + 3
16w

2 + · · · . Now we compute

Rβ = −
´
β
R{−x2,−x1} =

´ ξ3
ξ2

log(x2,+
x2,−

)dx1
x1

=
´ ξ3
ξ2

log(1+
√

1−w
1−
√

1−w )dx1
x1

= −
´ ξ3
ξ2

log(w4 )dx1
x1
−∑m≥1 θm

´ ξ3
ξ2
wmdx1

x1

= 2 log(u)
´ ξ3
ξ2

dx1
x1

+ 2
´ ξ3
ξ2

log(1− u−1(x1 + x−1
1 ))dx1

x1
+O(u−1 log u)

= 4 log2 u− 2∑k>0
u−k

k

´ ξ3
ξ2

(x1 + x−1
1 )k dx1

x1
+O(u−1 log u)

= 4 log2 u− 2π2

3 +O(u−1 log u),

(A.7)

at the end using the approximations
´ ξ3
ξ2

(x1 + x−1
1 )k dx1

x1
∼ 2ξk3

k
∼ 2uk

k
to

rewrite the sum as −4∑ 1
k2 = −2

3π
2 up to O(u−1 log u). The point is

that since r = 4, this agrees with the result (A.6) from integral local
mirror symmetry. A similar computation in [KLi, §6] for ϕ = x1 +x2 +
x−1

1 x−1
2 (mirror to local P2) gives Rβ = 9

2 log2 u − π2

2 + O(u−1 log u),
where the −π2

2 arises as −2Li2(1
2)− 2Li2(1)− log2 2. Since r = 3, this

agrees once more with (A.6) (as it must).
The crucial constant term in Rβ has a nice interpretation via the

LMHS at a =∞ of the VMHS V attached to R ∈ H1(Ea,C/Z(2)), the
regulator class of {−x1,−x2} ∈ H2

M(Ea,Z(2)). (Note that the LMHS
depends on a choice of a local coordinate, which we take to be a−1 or
equivalently Q := e−t = a−1(1 + O(a−1)).) We can present V and its
dual as extensions

(A.8) H1(E,Z(2))→ VZ → Z(0) and Z(0)→ V∨Z → H1(E,Z(−2)).

On the left, a unique class R ∈ F 0VC maps to 1 ∈ Z(0); on the
right, let τ ∈ V∨Z be the image of 1, and γ̃, β̃ ∈ V∨Z classes mapping to

1
(2πi)2γ,

1
(2πi)2β. Writing `(Q) := log(Q)

2πi , we have

(A.9) R̃β := 〈R, β̃〉 = 1
(2πi)2Rβ = r◦

2 `(Q)2 − r◦

2 `(Q) + T +O(Q),

where T = 1
2 + r◦

12 (cf. Lemma 3.1(a)), as well as R̃γ := 〈R, γ̃〉 =
1

(2πi)2Rγ = `(Q) and 〈R, τ〉 = 1.
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To obtain a period matrix for V , we compare Hodge and Betti
bases as follows. Writing ∇ for ∇∂`(Q) , the change-of-basis matrix from
{R,∇R, 1

r◦
∇2R} to {τ∨, γ̃∨, β̃∨} is

(A.10) Ω :=
(

1
R̃γ 1
R̃β ∂`(Q)R̃β 1

)
=
( 1

`(Q) 1
r◦

2 `(Q)2− r
◦

2 `(Q)+T r◦`(Q)− r
◦

2 1

)
+O(Q).

From (A.10) one easily deduces the monodromies T ∈ Aut(V) and
T∨ ∈ Aut(V∨) about Q = 0:

(A.11) [T∨]{β̃,γ̃,τ} =
( 1
r◦ 1
0 1 1

)
=⇒ T := [T ]{τ∨,γ̃∨,β̃∨} =

( 1
1 1
0 r◦1

)
.

Consequently the limiting period matrix is

(A.12) Ωlim,Q := lim
Q→0

e−`(Q) log(T )Ω =

1
0 1
T − r◦

2 1

 .
The LMHS with respect to a−1, as mentioned above, gives the same
result; but if we change local coordinate to −Q or (equivalently) u−1,
we get

(A.13) Ωlim,−Q := lim
Q→0

e−`(−Q) log(T )Ω =

 1
1
2 1
B◦ 0 1

 ,
where B◦ = 1

2 −
r◦

24 = T− r◦

8 . So we see that both of the constants ap-
pearing in Lemma 3.3(ii) have a standard asymptotic Hodge-theoretic
meaning, in terms of (torsion) extension classes in the LMHS of V in
the large complex structure limit.
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