K_2 AND QUANTUM CURVES CHARLES F. DORAN, MATT KERR, AND SOUMYA SINHA BABU ABSTRACT. A 2015 conjecture of Codesido-Grassi-Mariño in topological string theory relates the enumerative invariants of toric CY 3-folds to the spectra of operators attached to their mirror curves. We deduce two consequences of this conjecture for the integral regulators of K_2 -classes on these curves, and then prove both of them; the results thus give evidence for the CGM conjecture. (While the conjecture and the deduction process both entail forms of local mirror symmetry, the consequences/theorems do not: they only involve the curves themselves.) Our first theorem relates zeroes of the higher normal function to the spectra of the operators for curves of genus one, and suggests a new link between analysis and arithmetic geometry. The second theorem provides dilogarithm formulas for limits of regulator periods at the maximal conifold point in moduli of the curves. ### 1. Introduction The simplest Calabi-Yau threefolds are the noncompact toric CYs X determined by a convex lattice polygon Δ (or more precisely by the fan on a triangulation of $\{1\} \times \Delta$ in \mathbb{R}^3). Each such CY has a family of mirror curves $\mathcal{C} \subset \mathbb{C}^* \times \mathbb{C}^*$, of genus g equal to the number of interior integer points of Δ , given by the Laurent polynomials $F(x_1, x_2)$ with Newton polygon Δ . Recently a fundamental and novel relationship between (i) the enumerative geometry of X and (ii) the spectral theory of certain operators \hat{F} on $L^2(\mathbb{R})$ attached to \mathcal{C} , has been proposed by M. Mariño and his school, in the context of non-perturbative topological string theory [GHM, Ma, CGM]. The goal of this paper is to lay out some mathematical consequences of this meta-conjecture, and provide evidence for it by proving them in two important cases. A Laurent polynomial $F = \sum_{\underline{m} \in \Delta \cap \mathbb{Z}^2} a_{\underline{m}} \underline{x}^{\underline{m}}$ is promoted to an operator \hat{F} (or "quantum curve") by a process called Weyl quantization, which depends on a real constant \hbar . Writing r for the coordinate on \mathbb{R} , let $\hat{\mathbf{x}}$ denote multiplication by r, and $\hat{\mathbf{y}} := \mathbf{i}\hbar \partial_r$, so that $[\hat{\mathbf{x}}, \hat{\mathbf{y}}] = \mathbf{i}\hbar$. Taking $\hat{F} := \sum a_{\underline{m}} e^{m_1 \hat{\mathbf{x}} + m_2 \hat{\mathbf{y}}}$, [CGM] define a generalized spectral determinant $\Xi_{\mathcal{C}}(\underline{a}; \hbar)$ whose zero-locus describes those curve moduli \underline{a} for which $\ker(\hat{F}) \neq \{0\}$. They conjecture that under a "quantum mirror map" $\underline{a} \mapsto \mathfrak{t}^{\hbar}(\underline{a})$, $\Xi_{\mathcal{C}}$ is proportional to a quantum theta function $\Theta_X(\underline{t}; \hbar)$ derived from the all-genus enumerative invariants of X; see Conjecture 2.2. In particular, the zeroes of Θ_X should recover the spectrum of any fixed quantum curve \hat{F} . In the formulation of [BKV], local mirror symmetry relates the "maximally supersymmetric" case ($\hbar = 2\pi$) of (i) to (iii) the Hodge-theoretic invariants (or "regulators") of algebraic K_2 -classes on \mathcal{C} . This allows us to reformulate this case of the conjecture of Codesido-Grassi-Mariño [CGM] in §2.3 as a putative relationship between quantum curves and regulators (i.e. between (ii) and (iii)). We do this under the assumption that F ranges only over the integrally tempered Laurent polynomials, so that the symbol $\{-x_1, -x_2\} \in K_2(\mathbb{C}(\mathcal{C}))$ extends to motivic cohomology classes on the compactifications $\bar{\mathcal{C}}_a \subset \mathbb{P}_{\Delta}$. This smaller moduli space \mathcal{M} has dimension g, and the resulting regulator classes $\frac{1}{4\pi^2}R(\underline{a}) \in H^1(\bar{\mathcal{C}}_a,\mathbb{C}/\mathbb{Z})$ may be projected modulo $H^{1,0}(\bar{\mathcal{C}}_a)$ to yield a section ν of the Jacobian bundle $\mathcal{J} \to \mathcal{M}$ of the family $\mathcal{C} \to \mathcal{M}$, called the higher normal function. We deduce from the conjecture of [CGM] that the locus in \mathcal{M} where $\boldsymbol{\nu}$ meets a specific torsion shift of the theta divisor in \mathcal{J} should match the zero-locus of $\Xi_{\mathcal{C}}$ after tweaking the signs of the moduli; this is made precise in Conjecture 2.4. We may further refine this prediction in the genus-1 case, where Δ is now reflexive and the Laurent polynomial $F(\underline{x}) = \varphi(\underline{x}) + a$ now has only one parameter a. In §3.1, we use integral mirror symmetry to compute the torsion shifts, and show that (after a miraculous cancellation) they simply translate the theta divisor to the origin! The prediction is now that the spectrum of the quantum curve is given by¹ (1.1) $$\sigma(\hat{\varphi}) = \{ a \in \mathcal{M} \mid \nu(a) \equiv 0 \in J(\bar{\mathcal{C}}_a) \}.$$ Keeping in mind that g = 1 (Δ reflexive), φ is tempered, and $\hbar = 2\pi$, our first main unconditional result is then the following **Theorem A** (Theorems 3.7 and 3.10). Assume $\Delta \subset \mathbb{R} \times [-1,1]$. Then the " \supseteq " direction of (1.1) holds, and the " \subseteq " direction holds for "almost all" eigenvalues. ¹Note the implicit sign flip on a: we are saying that $\ker(\hat{\varphi} - a) \neq \{0\}$ when the regulator associated to $\{-x_1, -x_2\}$ on $\varphi(\underline{x}) + a = 0$ dies in the Jacobian. The notation for the normal function changes from ν to ν as it no longer has multiple components. We prove the " \supseteq " statement in §3.2 by explicitly constructing square-integrable eigenfunctions of $\hat{\varphi}$ with eigenvalue a, using vanishing of $\nu(a)$ to show well-definedness. The result (in §3.3) on the " \subseteq " inclusion is obtained by using the coherent state representation of $\hat{\varphi}$ to bound the accumulation of eigenvalues in a manner that matches growth (\sim const. $\times \log^2(a)$) of ν as $a \to \infty$. One perspective on Theorem A is that we may view $\nu(a)$ as a normalized solution to an inhomogeneous Picard-Fuchs equation, and in effect (1.1) states that the eigenvalues of $\hat{\varphi}$ are simply the points where $\nu(a) \in \mathbb{Z}$ (see Remark 3.5(i)). The latter condition is a statement about a period of a mixed motive, and combining this with a variant of Grothendieck's period conjecture allows one to show conditionally that the eigenvalues of $\hat{\varphi}$ are transcendental numbers (Prop. 3.13). The conjecture of [CGM] yields a different prediction in the 't Hooft limit $\hbar \to \infty$, which is not empty for g=1 but much more interesting for g>1. Results of Kashaev, Mariño and Zakany [KM, MZ] on the limits of spectral traces of three-term operators can be viewed as providing a general formula for the limiting value of a particular regulator period $R_{\gamma}(\underline{a}) = \int_{\gamma} R\{-x_1, -x_2\}|_{\mathcal{C}_{\underline{a}}}$ at the maximal conifold point $\underline{\hat{a}}$, in terms of special values of the Bloch-Wigner ("real single-valued dilogarithm") function. Here "maximal conifold" means a particular point in moduli at which \mathcal{C} acquires g nodes while remaining irreducible; that is, the normalization $\widetilde{\mathcal{C}}_{\underline{\hat{a}}}$ is a \mathbb{P}^1 . By applying a method from [DK, §6] for computing regulator periods on singular curves of geometric genus zero, we are able to verify this in two infinite families of cases, corresponding to $$\begin{split} F_{\overline{g},g}^{\underline{a}}(\underline{x}) &= x_1 + x_2 + x_1^{-g} x_2^{-g} + \sum_{j=1}^g a_j x_1^{1-j} x_2^{1-j} \quad \text{and} \\ F_{\overline{2g}-1,1}^{\underline{a}}(\underline{x}) &= x_1 + x_2 + x_1^{-2g+1} x_2^{-1} + \sum_{j=1}^g a_j x_1^{1-j}. \end{split}$$ The g=1 case was already verified in [DK, §6.3], while the g=2 identities were partially verified in [7K, §6]. To give a more explicit statement of this result, write $\tilde{F}^{\underline{a}} := F^{\underline{a}} - a_1$ in either case, and $[\cdot]_{\underline{0}}$ for the operator taking the constant term (in x_1, x_2) in a Laurent polynomial. Then we have: **Theorem B** (Theorem 4.1 and (4.37)). The regulator periods at the maximal conifold point satisfy $$\log(2g+1) - \sum_{k>0} \frac{(-1)^{k(g+1)}}{k(2g+1)^k} [(\tilde{F}_{g,g}^{\hat{\underline{a}}})^k]_{\underline{0}} = \frac{1}{2\pi \mathbf{i}} R_{\gamma}^{g,g}(\underline{\hat{a}}) = \frac{(2g+1)}{\pi} D_2 (1 + e^{\frac{2\pi \mathbf{i} g}{2g+1}})$$ and $$\log(2g+1) - \sum_{k>0} \frac{1}{k(2g+1)^k} [(\tilde{F}_{2g-1,1}^{\hat{\underline{a}}})^k]_{\underline{0}} = \frac{1}{2\pi \mathbf{i}} R_{\gamma}^{2g-1,1}(\hat{\underline{a}}) = \frac{(2g+1)}{\pi} D_2(1 + e^{\frac{2\pi \mathbf{i}}{2g+1}}).$$ In fact, the two families are isomorphic under the moduli-map sending $a_j \mapsto a_{g-j+1}$, and the cycles are just two amongst g (named $\gamma_1, \ldots, \gamma_g$) for which we can compute the regulator period at $\hat{\underline{a}}$, obtaining g different identities. Part of the proof involves using a method from [Ke2] to determine (from the series expansions of their periods) how many times the "limits" of the $\{\gamma_j\}$ at $\hat{\underline{a}}$ pass through each of the g nodes, cf. Prop. 4.4; this method may be of independent interest in the study of monodromy. Incidentally, the identities we prove should have implications for the asymptotic behavior of genus-zero Gromov-Witten numbers of the corresponding CY X, but we do not pursue this direction here. In an appendix we compute some regulator periods used in the paper and relate the torsion constants so crucial in §3.1 to integral periods of a limiting mixed Hodge structure. Finally, as a quick word on notation: we use $\partial_x = \frac{\partial}{\partial
x}$ and $\delta_x = x\partial_x$ throughout; and we avoid the use of Einstein summation. **Acknowledgments.** The authors thank M. Mariño for bringing the conjecture to our attention. This work was partially supported by Simons Collaboration Grant 634268 and NSF Grant DMS-2101482 (MK), and an NSERC Discovery Grant (CD). # 2. A CONJECTURE IN TOPOLOGICAL STRING THEORY AND ITS CONSEQUENCES 2.1. Quantum curves. Let $\Delta \subset \mathbb{R}^2$ be a polygon with vertices in \mathbb{Z}^2 whose interior contains the origin $\underline{0}$. Write (2.1) $$F(x_1, x_2) = \sum_{\underline{m} \in \Delta \cap \mathbb{Z}^2} a_{\underline{m}} \underline{x}^{\underline{m}}$$ for a general Laurent polynomial with Newton polygon Δ . The affine curve $\mathcal{C} := \{\underline{x} \in (\mathbb{C}^*)^2 \mid F(\underline{x}) = 0\}$ is then smooth of genus $g := |\operatorname{int}(\Delta) \cap \mathbb{Z}^2|$. It admits a smooth compactification $\bar{\mathcal{C}}$ in \mathbb{P}_{Δ} , which denotes a minimal toric desingularization of the toric surface constructed from the normal fan of Δ . For instance, if Δ is reflexive with polar polygon Δ° , then g = 1 and \mathbb{P}_{Δ} is constructed from the fan with rays passing through each of the nonzero points of $\Delta^{\circ} \cap \mathbb{Z}^2$. Taking a maximal integral triangulation $\operatorname{tr}(\Delta)$, consider the fan Σ on $\{1\} \times \operatorname{tr}(\Delta) \subset \mathbb{R}^3$. The resulting toric variety $$(2.2) X := \mathbb{P}_{\Sigma}$$ is called a local CY 3-fold since $K_X \cong \mathcal{O}_X$. This will be our "A-model", on which we do enumerative geometry and run the Kähler moduli. Such noncompact CY 3-folds often arise from the crepant resolution of a finite quotient of \mathbb{C}^3 . For instance, if $1 \in \mathbb{Z}_{2k+1}$ acts on \mathbb{C}^3 by diag $\{\zeta_{2k+1}, \zeta_{2k+1}^k, \zeta_{2k+1}^k\}$, the resolution X is obtained by taking Δ to be the convex hull of (1,0), (0,1), and (-k,-k) (with g=k). Another set of examples (with g=1) arises when Δ is reflexive: in this case, X is just the total space of $K_{\mathbb{P}_{\Delta^\circ}}$. There is some overlap with the quotient construction: for instance, $K_{\mathbb{P}^2}$ [resp. $K_{\mathbb{F}_2}$, $K_{\mathrm{dP}_6'}$] arises from a quotient of \mathbb{C}^3 by \mathbb{Z}_3 [resp. \mathbb{Z}_4 , \mathbb{Z}_6]. Local mirror symmetry connects the genus-zero enumerative invariants of X to periods of the "B-model" $$(2.3) Y := \{(\underline{x}, u, v) \in (\mathbb{C}^*)^2 \times \mathbb{C}^2 \mid F(x_1, x_2) + uv = 0\},$$ an open CY 3-fold with K_Y trivialized by the form (2.4) $$\eta := \frac{1}{(2\pi \mathbf{i})^2} \operatorname{Res}_Y \left(\frac{dx_1/x_1 \wedge dx_2/x_2 \wedge du \wedge dv}{F(\underline{x}) + uv} \right) \in \Omega^3(Y).$$ We shall will say more about this in due course. It has been proposed by Mariño and collaborators [GHM, Ma, CGM] that one can capture the higher-genus enumerative invariants of X as well by quantizing the curve \mathcal{C} —that is, turning the Laurent polynomial F into an operator and considering its spectral theory. The idea is to write $x_1 = e^{\mathsf{x}}$, $x_2 = e^{\mathsf{y}}$, and promote x, y to noncommuting operators $\hat{\mathsf{x}}, \hat{\mathsf{y}}$ on $L^2(\mathbb{R})$ with $[\hat{\mathsf{x}}, \hat{\mathsf{y}}] = \mathbf{i}\hbar$ ($\hbar \in \mathbb{R}$). More explictly, writing r for the coordinate on \mathbb{R} , we take $\hat{\mathsf{x}} = \mu_r$ (multiplication by r) and $\hat{\mathsf{y}} = -\mathbf{i}\hbar\partial_r$; and then we set $\hat{x}_1 = e^{\hat{\mathsf{x}}}, \hat{x}_2 = e^{\hat{\mathsf{y}}}$. Notice that if $f \in L^2(\mathbb{R})$ is the restriction of an entire function, then \hat{x}_2 is a shift operator, viz. $(e^{-\mathbf{i}\hbar\partial_r}f)(r) = f(r - \mathbf{i}\hbar)$. The promotion of F to \hat{F} is highly nonunique: for instance, $e^{\hat{x}}e^{\hat{y}}$ and $e^{\hat{x}+\hat{y}}$ [resp. $e^{\hat{y}}e^{\hat{x}}$] differ by a multiplicative factor of $e^{i\hbar/2}$ [resp. $e^{i\hbar}$] by the Campbell-Baker-Hausdorff formula. The standard way to fix this (before [CGM]) was to employ a perturbative approach called WKB approximation, which works modulo successive powers of \hbar . In this context a connection between quantization and $K_2(\mathbb{C}(\mathcal{C}))$ was pointed out in [GS], which we briefly review in the next paragraph, if only ²To see this, note that $-c_1(K_X) = c_1(X)$ is the sum of the irreducible divisors corresponding to the elements of $\Delta \cap \mathbb{Z}^2$, which is the divisor of the first toric coordinate w_0 on X hence rationally equivalent to zero. ³We shall use the notation dP'_6 to refer to the generalized del Pezzo of degree 6 defined by the self-dual polygon with vertices (1,0), (0,1), and (-3,-2). (This is called the " E_8 del Pezzo" in [GKMR]. to highlight that it is *completely different* from the link (in the non-perturbative setting) we conjecture in §2.3 and establish in §3. So suppose that we want a function ψ on \mathcal{C} (rather than \mathbb{R}) and a choice of \hat{F} given by $\hat{F}_0 := F(\hat{x}_1, \hat{x}_2) := F(\mu_{x_1}, e^{-i\hbar\delta_{x_1}}) \mod O(\hbar)$, for which $\hat{F}\psi = 0$. (In this case, we will say \mathcal{C} is quantizable.) Begin with formal asymptotic expansions $\hat{F} = \sum_{i \geq 0} \hbar^i \hat{F}_i$, and $\psi = e^{\frac{i}{\hbar} \sum_{j \geq 0} \hbar^j S_j}$. Choosing a base point $p_0 \in \mathcal{C}_F$ with $x_1(p_0) = 1$, we take $S_0(p) = \int_{p_0}^p \log(x_2) \frac{dx_1}{x_1}$ (integral on \mathcal{C}), which locally satisfies $\delta_{x_1} S_0 = \log(x_2)$ hence $(\hat{F}\psi)(p) = [F(x_1(p), x_2(p)) + O(\hbar)]\psi(p) = O(\hbar)\psi(p)$. Of course, $e^{\frac{i}{\hbar}S_0}$ only gives a well-defined function on \mathcal{C} if the integral is pathindependent mod $2\pi\hbar\mathbb{Z}$. When this happens, one then solves for the higher-order corrections S_i , by postulating their form in terms of "topological recursion", and finally solves for the \hat{F}_i . We remark that for $\hbar = 2\pi$, the well-definedness condition on S_0 is precisely the statement that the regulator class $R\{x_1,x_2\} \in H^1(\mathcal{C},\mathbb{C}/\mathbb{Z}(2))$ of the coordinate symbol $\{x_1, x_2\} \in K_2(\mathbb{C}(\mathcal{C}))$ is trivial. More generally, if the regulator class is torsion (which is the quantizability criterion proposed by [GS]), then the well-definedness condition is satisfied for $\hbar = \frac{2\pi}{M}$ for some $M \in \mathbb{Z}$. This is a very different condition on the regulator class than the one appearing in RHS(2.32) below, even in the g=1 case (see the discussion leading up to Lemma 3.11). For the rest of this paper we consider only the non-perturbative (exact) approach pioneered in [GHM]. Namely, we fix the single choice $$\hat{F} = \sum_{m \in \Delta \cap \mathbb{Z}^2} a_m e^{m_1 \hat{\mathbf{x}} + m_2 \hat{\mathbf{y}}}$$ and try to describe its spectrum as an operator on $L^2(\mathbb{R})$. A little more precisely, if $\operatorname{int}(\Delta) \cap \mathbb{Z}^2 = \{\underline{m}^{(j)}\}_{j=1,\dots,g}$, then writing $a_j := a_{\underline{m}^{(j)}}$, $P_j = \underline{x}^{\underline{m}^{(j)}}$, $F_j^{(0)} = P_j^{-1}F|_{a_1=\dots=a_g=0}$ and $F_j = P_j^{-1}F|_{a_j=0}$, we are interested in determining the eigenvalues $\{e^{E_n^{(j)}(a_1,\dots,\widehat{a_j},\dots,a_g)}\}_{n\in\mathbb{N}}$ of \hat{F}_j for $j=1,\dots,g$. We should note here that as long as the $\{a_{\underline{m}}\}$ are all real, the \hat{F}_j , $\hat{F}_j^{(0)}$ are obviously Hermitian; even better, their inverses ρ_j , $\rho_j^{(0)}$ are expected to be bounded self-adjoint and of trace class, with a discrete positive spectrum. These properties, which justify indexing the eigenvalues by \mathbb{N} and make the Fredholm determinants (2.6) $$\det(1 + a_j \rho_j) = \prod_{n \ge 0} (1 + a_j e^{-E_n^{(j)}(a_1, \dots, \widehat{a_j}, \dots, a_g)})$$ ⁴For the time being, one should think of the non-interior parameters $a_{\underline{m}}$ as being fixed. For the assertion that the spectrum is positive and discrete, further restrictions (such as those we impose for temperedness later) should be made. well-defined, are proved in [KM] and [LST] for all the specific operators we will discuss below. **Definition 2.1** ([CGM]). The generalized spectral determinant is (2.7) $$\Xi_{\mathcal{C}}(\underline{a}; \hbar) := \det(1 + \sum_{j=1}^{g} a_j \hat{P}_j^{-\frac{1}{2}} \rho_j^{(0)} \hat{P}_j^{\frac{1}{2}}).$$ This function contains all the information we are after. For any fixed $\{a_k\}_{k\neq j}$, we may recover (2.6) as $\Xi_{\mathcal{C}}(\underline{a};\hbar)/(\Xi_{\mathcal{C}}(\underline{a};\hbar)|_{a_j=0})$, since their zeroes (in a_j) are the same and both sides are 1 at $a_j=0$ [CGM, (2.74)]. So the spectra of $\hat{F}_1,\ldots,\hat{F}_g$ are simply slices of the zero-locus of (2.7), a union of hypersurfaces in \mathbb{R}^g indexed by \mathbb{N} . Note that in the genus one case, (2.7) is just $\det(1+a_1\rho_1)$. 2.2. Local mirror symmetry and the CGM conjecture. Let $r:=|\partial\Delta\cap\mathbb{Z}^2|$, so that $|\Delta\cap\mathbb{Z}^2|=g+r$; and denote by $\mathbb{L}\subset\mathbb{Z}^{g+r}$ the rank-(g+r-3) lattice of relations vectors $\{\ell_m\}_{m\in\Delta\cap\mathbb{Z}^2}$ with $\sum_m \ell_m(1,\underline{m})=\underline{0}$. Each $\underline{m}\in\Delta\cap\mathbb{Z}$ corresponds to a toric divisor $D_{\underline{m}}\subset X$, amongst which we have the g compact $D_j:=D_{\underline{m}^{(j)}}$. If $C\subset X$ is any compact toric curve (corresponding to any edge of $\mathrm{tr}(\Delta)$), its intersection numbers with the divisors of the toric coordinates w_0,w_1,w_2 are zero, leading to a relations vector $\ell_{\underline{m}}=(C\cdot
D_{\underline{m}})_X$. Such relations integrally span \mathbb{L} , although the (Mori) cone generated by effective curves may not be smooth or even simplicial. We will ignore such "finite data" issues here, as we will eventually pass to a slice of the complex-structure moduli space where this is not an issue. So write $\{C_i\}_{i=1,\dots,g+r-3}$ for independent generators of this cone (i.e. $H_2(X,\mathbb{Z})_{\text{eff}}$), with corresponding relations $\underline{\ell}^{(i)}$, and define complex structure parameters (2.8) $$z_i = z_i(\underline{a}) := \prod_{m \in \Delta \cap \mathbb{Z}^2} a_m^{\ell_m^{(i)}}$$ for \mathcal{C} and Y. It is convenient at this stage to fix three vertices of Δ and set the corresponding $a_{\underline{m}}$'s equal to 1. We shall mainly work in a neighborhood of the large complex structure limit (LCSL) point $\underline{z} = \underline{0}$, though at times will also be concerned with the maximal conifold point \hat{z} — the unique point (if it exists) on the "boundary" of that neighborhood⁵ where \mathcal{C} develops g nodes (while remaining irreducible) hence has geometric genus zero. ⁵i.e., the region of convergence for certain power series representing the periods of C; see §4. What are the periods parametrized by (2.8)? We summarize some results from [BKV].⁶ One may construct 3-cycles $\mathcal{T}, \mathcal{A}_1, \ldots, \mathcal{A}_{g+r-3}$ on Y such that near the LCSL (2.9) $$\int_{\mathcal{T}} \eta = 2\pi \mathbf{i}, \quad -t_i := \int_{\mathcal{A}_i} \eta \sim \log(z_i).$$ The mirror map $\underline{z} \mapsto e^{\underline{t}}$, which we usually express as $\underline{t}(\underline{z})$ (or $\underline{t}(\underline{a}) := \underline{t}(\underline{z}(\underline{a}))$) then induces a biholomorphism between neighborhoods of the LCSL and the large volume point (in Kähler moduli space⁷ of X). Next write (2.10) $$\mathcal{F}_0(\underline{t}) := \frac{1}{6} \sum_i c_{i_1 i_2 i_3} t_{i_1} t_{i_2} t_{i_3} + \sum_{d \in H_2(X, \mathbb{Z})_{\text{eff}}} N_{0,\underline{d}} e^{-\underline{d} \cdot \underline{t}}$$ for the genus-zero free energy of X, in which the $c_{\underline{i}} \in \mathbb{Q}$ are certain triple intersection numbers⁸ and the $N_{0,\underline{d}} \in \mathbb{Q}$ are genus-zero local Gromov-Witten numbers. The basic Hodge-theoretic assertion of local mirror symmetry is that there are 3-cycles $\mathcal{B}_1, \ldots, \mathcal{B}_g$ on Y for which⁹ (2.11) $$\int_{\mathcal{B}_j} \eta = \frac{1}{2\pi \mathbf{i}} \sum_{i=1}^{g+r-3} C_{ij} \partial_{t_i} \mathcal{F}_0(\underline{t}) - \frac{1}{2} \sum_{i=1}^{g+r-3} A_{ij} t_i + 2\pi \mathbf{i} T_j$$ under the mirror map, where $-C_{ij} = (\ell_{\underline{m}^{(j)}}^{(i)} =) C_i \cdot D_j$, $A_{ij} \equiv \text{the coefficient of } C_i \text{ in } D_j^2$, and $T_j \in \mathbb{Q}$. The 3-cycles are constructed by describing $Y \to (\mathbb{C}^*)^2$ as a conic bundle, with fibers isomorphic to \mathbb{C}^* over $(\mathbb{C}^*)^2 \setminus \mathcal{C}$, and to $\mathbb{C} \cup_0 \mathbb{C}$ (pair of complex lines crossing once) over \mathcal{C} . This yields (cf. [DK, §5.1]) an exact sequence of MHS $$(2.12) 0 \to \mathbb{Q}(3) \stackrel{\mathtt{A}}{\to} H_3(Y) \stackrel{\mathtt{B}}{\to} \ker\{H_1(\mathcal{C}) \to H_1((\mathbb{C}^*)^2)\}(1) \to 0$$ in which $\operatorname{im}(A) = \langle \mathcal{T} \rangle$ and the right-hand term has basis $(2\pi \mathbf{i} \text{ times})$ $\alpha_1, \ldots, \alpha_{g+r-3}, \beta_1, \ldots, \beta_g$. On the level of \mathbb{Q} -vector spaces, B has a section \mathcal{M} sending this basis to the $\mathcal{A}_i = \mathcal{M}(\alpha_i)$ and $\mathcal{B}_j = \mathcal{M}(\beta_j)$. It ⁶While stated there for g=1, the proof — by "limiting" results of [Ir] for compact CY 3-folds to the local setting — works for any Δ that makes the BKV polytope $\Delta := \{ \text{the convex hull of } (-1,1,0,0), (2,-1,0,0), \text{ and } (-1,-1) \times \Delta \text{ in } \mathbb{R}^4 \}$ reflexive. (For instance, take Δ to be the convex hull of (1,0), (0,1), and (-g,-g) [resp. (-n,-1)] for $g \mid 6$ [resp. $n \mid 12$]). We also expect these results to hold more generally. A minor difference in formulation here is that instead of applying the BKV limit to derivatives of the prepotential Φ of a compact CY, we can directly take derivatives of F_0 . ⁷If $\{\mathcal{J}_i\} \subset H^2(X)$ is a basis dual to $\{C_i\}$, then the Kähler parameter is $\sum_i \frac{-t_i}{2\pi i} \mathcal{J}_i$. 8by interpreting X as a (decompactifying) limit of a compact CY and computing intersections $-\mathcal{J}_{i_1}\mathcal{J}_{i_2}\mathcal{J}_{i_3}$ there; see §3 for details in the genus one case. ⁹The 2nd and 3rd terms are required in order for integrality of the periods, and arise from applying the procedure described in [BKV]; the second term arises from the fact that $\operatorname{ch}(\mathcal{O}_{D_i}) \equiv [D_j] - \frac{1}{2}[D_i^2] \mod \mathbb{Q}[p]$, where [p] is the class of a point. is constructed by sending $\varphi \in \ker\{H_1(\mathcal{C}, \mathbb{Q}) \to H_1((\mathbb{C}^*)^2, \mathbb{Q})\}$ first to its bounding \mathbb{Q} -chain Γ_{φ} in $(\mathbb{C}^*)^2$ (with $\partial \Gamma_{\varphi} = \varphi$), over which $\mathcal{M}(\varphi)$ is a 3-cycle with S^1 fibers (shrinking to points over φ). Writing $R\{f,g\} := \log(f)\frac{dg}{g} - 2\pi \mathbf{i}\log(g)\delta_{T_f}$ for the standard regulator current for Milnor K_2 -symbols $(T_f := f^{-1}(\mathbb{R}_{<0})$ the cut in branch of log), we have on $(\mathbb{C}^*)^2$ the relation $d[R\{-x,-y\}] = \frac{dx}{x} \wedge \frac{dy}{y} - (2\pi \mathbf{i})^2 \delta_{(\mathbb{R}_{>0})^2}$. This leads at once to (2.13) $$2\pi \mathbf{i} \int_{\mathcal{M}(\varphi)} \eta = \int_{\Gamma_{\varphi}} \frac{dx}{x} \wedge \frac{dy}{y} = \int_{\varphi} R\{-x, -y\} =: R_{\varphi},$$ which is to say that $R_{\alpha_i} = -2\pi \mathbf{i} t_i$ and $R_{\beta_j} \equiv \sum_i C_{ij} \partial_{t_i} \mathcal{F}_0 - \pi \mathbf{i} \sum_i A_{ij} t_i$ mod $\mathbb{Q}(2)$. In the physics literature, the nontrivial $a_{\underline{m}}$ on the boundary are called $mass\ parameters$; if we write these as a'_1,\ldots,a'_{r-3} , then our complex structure parameters take the form $z_i=\prod_{j=1}^g a_j^{-C_{ij}}\times\prod_{k=1}^{r-3}a'_k{}^{C'_{ik}}$. Taking the $a_j\gg 0$ large but keeping the a'_k bounded, so that $t_i\sim\sum_{j=1}^g C_{ij}\log(a_j)$, the subleading terms (constant in \underline{a}) can be shown 10 to be \mathbb{Q} -linear combinations of logarithms of the negative roots $\{q_k\}_{k=1,\ldots,r}$ of the edge polynomials of F. (The latter are defined as follows: if \mathbf{e} is an edge of Δ , with vertex $\underline{\nu}$, and $\underline{m}^{\mathbf{e}}\in\mathbb{Z}^2$ is a primitive lattice vector along \mathbf{e} , then put $P_{\mathbf{e}}(w):=\sum_{\underline{m}\in\mathbf{e}\cap\mathbb{Z}^2}a_{\underline{m}}w^{(\underline{m}-\underline{\nu})/\underline{m}^{\mathbf{e}}}$.) The key observation is that each q_k is the Tame symbol of $\{-x,-y\}\in K_2(\mathcal{C})$ at a point $p_k\in\bar{\mathcal{C}}\cap(\mathbb{P}_\Delta\setminus(\mathbb{C}^*)^2)$, so that a loop $\varepsilon_k\subset\mathcal{C}$ around p_k has $\int_{\varepsilon_k}R\{-x,-y\}=2\pi\mathbf{i}\log(q_k)$. The physicists have a grand potential function $J_X(\underline{t};\hbar)$ which says The physicists have a grand potential function $J_X(\underline{t}; \hbar)$ which says "everything they know how to say" about enumerative geometry of X, and includes (refinements of) higher-genus GW-invariants. We refer the reader to [CGM] for details, as we shall only discuss two special cases in which those invariants (mostly) drop out. First, in the maximally supersymmetric case $\hbar = 2\pi$, we have¹¹ (2.14) $$J_X(\underline{t}; 2\pi) = \frac{1}{8\pi^2} \left\{ \sum_{i_1, i_2} \delta_{t_{i_1}} \delta_{t_{i_2}} - 3 \sum_i \delta_{t_i} + 2 \right\} \hat{\mathcal{F}}_0(\underline{t}) + \hat{\mathcal{F}}_1(\underline{t}) + \hat{\mathcal{F}}_1^{NS}(\underline{t}) + A(\underline{q}, 2\pi),$$ ¹⁰Done from a physics perspective in [GKMR], and from a regulator perspective in Appendix A. Here "negative roots" means the roots of $P_{\mathbf{e}}(-w)$. In particular, if edge polynomials are powers of (1+w), the q_k are all 1. ¹¹Remark that \underline{q} is an abuse of notation since the q_k are B-model coordinates; one would ideally replace them by monomials in the e^{t_i} which equal q_k under the mirror map. (Similar remarks apply to $\underline{\mathbf{m}}$ in (2.15).) But we don't need to be more precise here as these terms quickly become irrelevant. where $\hat{\mathcal{F}}_0, \hat{\mathcal{F}}_1, \hat{\mathcal{F}}_1^{\text{NS}}$ are free energies in which the instanton part is twisted by a "B-field" $\underline{\mathbb{B}} \in \mathbb{Z}^{g+r-3}$:12 - $\hat{\mathcal{F}}_0(\underline{t}) = \frac{1}{6} \sum_i c_i t_{i_1} t_{i_2} t_{i_3} + \sum_d N_{0,\underline{d}} e^{-\underline{d} \cdot (\underline{t} \pi i \underline{\mathbb{B}})};$ - $\hat{\mathcal{F}}_1(\underline{t}) = \sum_i b_i t_i + F_1^{\text{inst}}(\underline{t} \pi \mathbf{i}\underline{\mathbb{B}});$ and $\hat{\mathcal{F}}_1^{\text{NS}}(\underline{t}) = \sum_i b_i^{\text{NS}} t_i + F_1^{\text{NS, inst}}(\underline{t} \pi \mathbf{i}\underline{\mathbb{B}}).$ In the 't Hooft limit, where $\hbar \to \infty$ (and $a_i \to \infty$) while $\mathsf{m}_k :=$ $e^{-\frac{2\pi}{\hbar}\log(q_k)}$, $\zeta_j := \frac{\log(a_j)}{\hbar}$, and $\tau_i := \frac{2\pi t_i}{\hbar}$ remain finite, one finds that (2.15) $$\hbar^{-2} J_X(\underline{t}; \hbar) = \underbrace{\left\{ \frac{1}{16\pi^4} \hat{\mathcal{F}}_0(\underline{\tau}) + \frac{1}{4\pi^2} \sum_i b_i^{\text{NS}} \tau_i + A_0(\underline{\mathbf{m}}) \right\}}_{=:J_0^X(\zeta,\underline{\mathbf{m}})} + O(\hbar^{-2}).$$ We may disregard the unknown functions $A_0(\underline{\mathbf{m}}), A(q,
2\pi)$ of the mass parameters. To state the main physics conjecture, we need two more ingredients. First is the quantum theta function (2.16) $$\Theta_X(\underline{t};\hbar) := \sum_{n \in \mathbb{Z}^g} \exp \left\{ J_X(\underline{t} + 2\pi \mathbf{i} | C|\underline{n}; \hbar) - J_X(\underline{t}; \hbar) \right\},\,$$ where [C] is the matrix C_{ij} (and so $[C]\underline{n}$ is a (g+r-3)-vector with entries $\sum_{i=1}^{g} C_{ij} n_j$). Terms in J_X which are $2\pi \mathbf{i}$ -periodic in the $\{t_i\}$, including all but $\sum_{i}(b_{i}+b_{i}^{NS})t_{i}$ in the second line of (2.14), drop out. The second is a "quantum deformation" $\underline{t}^{\hbar}(\underline{z}) = \underline{t}(\underline{z}) + O(\hbar)$ of the mirror map. (We shall also write $\underline{\mathfrak{t}}^{\hbar}(\underline{a}) := \underline{\mathfrak{t}}^{\hbar}(\underline{z}(\underline{a}))$ where convenient.) Again, we describe this where we need it: at $\hbar = 2\pi$ it is given by (2.17) $$\mathbf{t}_i(\underline{z}) := \mathbf{t}_i^{2\pi}(\underline{z}) = t_i((-1)^{\underline{\mathbb{B}}}\underline{z}) + \pi \mathbf{i}\mathbb{B}_i;$$ like $t_i(z)$, this is asymptotic to $-\log(z_i)$, but the signs are (in general) different in the power-series part. In the 't Hooft limit, the previous asymptotic relation $t_i \sim \sum_j C_{ij} \log(a_j) + \sum_k D_{ik} \log(q_k)$ becomes exact in the sense that (2.18) $$\tau_i = 2\pi \sum_j C_{ij} \zeta_j - \sum_k D_{ik} \log(\mathsf{m}_k).$$ Conjecture 2.2 ([GHM],[CGM]). Under the quantum mirror map, the generalized spectral determinant of C is given (up to a nonvanishing factor) by the quantum theta function of its mirror: $$(2.19) \Xi_{\mathcal{C}}(\underline{a}; \hbar) = e^{J_X(\underline{t}^{\hbar}(\underline{a}); \hbar)} \Theta_X(\underline{t}^{\hbar}(\underline{a}); \hbar).$$ This postulates a fundamental and very general relation between spectral theory (of the B-model) and enumerative geometry (of the Amodel). Since local mirror symmetry relates the latter to Hodge theory of the B-model, it should imply relationships between Hodge/K-theory ¹²In the g = 1 case, $\underline{\mathbb{B}}_i$ is just C_{i1} ; see §2.3 below and [SWH] for g > 1. We will give Hodge-theoretic interpretations of $\underline{b}, \underline{b}^{\text{NS}}$ when g = 1 in §3. and spectral theory of our curves with no reference to mirror symmetry. We now derive these in our two special cases, under the assumption that F is integrally tempered: all $q_k = 1 = \mathsf{m}_k$; equivalently, all edge polynomials of F are powers of w+1. Accordingly, by \underline{a} (resp. $\underline{z}(\underline{a})$) we henceforth shall mean just (a_1, \ldots, a_g) , with the remaining $\{a_{\underline{m}}\}$ determined uniquely by this constraint. 2.3. Consequences in the "maximal SUSY" case. Of course, the use of local mirror symmetry suggested in the last paragraph requires elaboration, since the classical and quantum mirror maps are not the same. One should rather expect a relation between Hodge theory of $C_{\underline{z}}$ and spectral theory of a "partner" $C_{\underline{z}'}$ given by $\underline{z} = \underline{t}^{-1}(\underline{t}^{\hbar}(\underline{z}'))$ or some variant thereof. (In fact this is still insufficiently precise, since the spectral theory and the regulator class really depend on \underline{a} .) We now work this out at $\hbar = 2\pi$. First we address the nature and significance of $\underline{\mathbb{B}}$. Because the monomials $\underline{x}^{\underline{m}}$ in \hat{F} were quantized as $e^{m_1\hat{\mathbf{x}}+m_2\hat{\mathbf{y}}}=e^{\frac{i\hbar}{2}m_1m_2}\hat{x}_1^{m_1}\hat{x}_2^{m_2}$, at $\hbar=2\pi$ we have $\hat{F}=\sum_{\underline{m}}(-1)^{m_1m_2}a_{\underline{m}}\hat{x}^{\underline{m}}$. The B-field is determined mod 2 by the effect on the signs of the z_i were we to replace $a_{\underline{m}}$ by $(-1)^{m_1m_2}a_{\underline{m}}$: namely, $\mathbb{B}_i \equiv \sum_{\underline{m}} m_1 m_2 \ell_{\underline{m}}^{(i)}$. Under the assumption that $$(2.20) \partial \Delta \cap (2\mathbb{Z} \times 2\mathbb{Z}) = \emptyset,$$ this is compatible with taking $\underline{\mathbb{B}}$ to be in the \mathbb{Z} -span of the columns of [C], which we write $\mathbb{B}_i = \sum_{j=1}^g \mathbb{A}_j C_{ij}$. Notice that then $\underline{t}((-1)^{\underline{\mathbb{A}}}\underline{a}) = (-1)^{\underline{\mathbb{B}}}\underline{t}(\underline{a})$, so that by (2.17) we have $\underline{t}^{2\pi}((-1)^{\underline{\mathbb{A}}}\underline{a}) = \underline{t}(\underline{a}) + \pi \mathbf{i}\underline{\mathbb{B}}$ and the conjectured equality (2.19) becomes $$(2.21) \qquad \Xi_{\mathcal{C}}((-1)^{\underline{\underline{A}}}\underline{a}; 2\pi) = e^{J_X(\underline{t}(\underline{a}) + \pi i \underline{\mathbb{B}}; 2\pi)} \Theta_X(\underline{t}(\underline{a}) + \pi i \underline{\mathbb{B}}; 2\pi).$$ That is, after absorbing the " $+\pi i\underline{\mathbb{B}}$ " twist into Θ_X and J_X , our Hodge/spectral "partners" are related by at most a change of sign in the complex structure parameters. The main question is what the quantization condition looks like: which values of \underline{a} make $\Theta_X(\underline{t}(\underline{a}) + \pi i\underline{\mathbb{B}}; 2\pi)$, hence the spectral determinant, zero? This is where the local mirror symmetry enters. Under our assumption (2.20), its previous incarnation in (2.11) can (by a tedious intersection theory argument) be expressed as¹⁴ $$(2.22) R_{\beta_i}(\underline{a}) = \sum_i C_{ij} \partial_{t_i} \hat{\mathcal{F}}_0 \left(\underline{t}(\underline{a}) + \pi \mathbf{i} \underline{\mathbb{B}} \right) + (2\pi \mathbf{i})^2 B_i^{\circ} (B_i^{\circ} \in \mathbb{Q}).$$ ¹³mod 2, $\underline{\mathbb{A}}$ is just the characteristic function of $\Delta \cap (2\mathbb{Z} \times 2\mathbb{Z})$. ¹⁴Although the regulator periods R_{φ} [resp. periods $\Omega_{j_1j_2}$ in (2.26) below] are infinitely multivalued, they are periods of a class \mathcal{R} [resp. classes $\{\omega_j\}$] which are single-valued in \underline{a} [resp. \underline{z}]; so we shall loosely write them as functions thereof. Next, since our temperedness assumption has eliminated the Tame symbols, the $\{R_{\alpha_i}\}_{i=1}^{g+r-3}$ are no longer independent (unless r=3). More precisely, there are g cycles $\gamma_j \in H_1(\bar{\mathcal{C}}, \mathbb{Z})$ with regulator periods $R_{\gamma_j} \sim -2\pi \mathbf{i} \log(a_j)$ (cf. Appendix A), whence $$(2.23) R_{\alpha_i} = \sum_{j} C_{ij} R_{\gamma_j};$$ and the \mathbb{A}_j can be chosen so that $\{\gamma_j, \beta_j\}_{j=1}^g$ is a symplectic basis.¹⁵ The regulator class $\mathcal{R} = R\{-x_1, -x_2\} \in H^1(\bar{\mathcal{C}}, \mathbb{C}/\mathbb{Z}(2))$ then has a local lift to $H^1(\bar{\mathcal{C}}, \mathbb{C})$ given by (2.24) $$\tilde{\mathcal{R}} = \sum_{\ell=1}^{g} \left(R_{\gamma_{\ell}} \gamma_{\ell}^* + R_{\beta_{\ell}} \beta_{\ell}^* \right),$$ whose Gauss-Manin derivatives (2.25) $$\omega_j := \nabla_{\partial/\partial R_{\gamma_j}} \tilde{\mathcal{R}} = \gamma_j^* + \sum_{\ell=1}^g \frac{\partial R_{\beta_\ell}}{\partial R_{\gamma_i}} \beta_\ell^*$$ are classes of holomorphic 1-forms by Griffiths transversality. Evidently these are normalized so that the symmetric $g \times g$ matrix (2.26) $$\Omega_{j_1j_2}(\underline{z}) := -\frac{1}{2\pi \mathbf{i}} \sum_{i_1,i_2} C_{i_1j_1} C_{i_2j_2} \partial_{t_{i_1}} \partial_{t_{i_2}} \hat{\mathcal{F}}_0(\underline{t}(\underline{z}) + \pi \mathbf{i}\underline{\mathbb{B}})$$ $$= -\frac{1}{2\pi \mathbf{i}} \sum_{i_1} C_{i_1j_1} \partial_{t_{i_1}} R_{\beta_{j_2}} = \sum_{i_1} C_{i_1j_1} \frac{\partial R_{\beta_{j_2}}}{\partial R_{\alpha_{i_1}}}$$ $$= \frac{\partial R_{\beta_{j_2}}}{\partial R_{\gamma_{j_1}}} = \int_{\gamma_{j_1}} \omega_{j_2}$$ is the standard period matrix of $\bar{\mathcal{C}}$. We have already observed that the isomorphism class of $\bar{\mathcal{C}}$ depends only on \underline{z} , which parametrizes the standard coarse moduli space for toric hypersurfaces; and we are restricting to a "tempered slice" of this space. However, \mathcal{R} only becomes single-valued in \underline{a} , forcing us to work on the finite cover $\mathcal{M} := \{\underline{a} \in (\mathbb{C}^*)^g \mid \mathcal{C}_{\underline{z}(\underline{a})} \text{ is smooth}\}$ of this slice. Let $\bar{\mathcal{C}} \xrightarrow{\pi} \mathcal{M}$ be the universal (compactified) curve, and set $\mathcal{H} := R^1\pi_*\mathbb{C} \otimes \mathcal{O}_{\mathcal{M}}$, $\mathbb{H} := R^1\pi_*\mathbb{Z}$, and $\mathcal{J} := \mathcal{H}/\{\mathbb{H}+\mathcal{F}^1\mathcal{H}\}$. Then \mathcal{J} is the sheaf of sections of the Jacobian bundle $\mathcal{J} \xrightarrow{\rho} \mathcal{M}$, and \mathcal{H}/\mathbb{H} is the sheaf of sections of the \mathbb{C}/\mathbb{Z} cohomology bundle $\mathcal{H}^1_{\mathbb{C}/\mathbb{Z}} \to \mathcal{M}$, which factors through the obvious \mathbb{C}^g -torsor $\mathcal{H}^1_{\mathbb{C}/\mathbb{Z}} \xrightarrow{\varpi} \mathcal{J}$. By temperedness, the symbol $\{-x_1, -x_2\} \in K_2(\mathbb{C}(\mathcal{C}))$ lifts to a motivic cohomology class $\mathcal{Z} \in H^2_{\mathcal{M}}(\bar{\mathcal{C}}, \mathbb{Z}(2))$, and we make the key ¹⁵This is again by local mirror symmetry: the R_{γ_j} [resp. R_{α_i}] are the A-model periods of flat sections arising from curves dual to the D_j [resp. \mathcal{J}_i]; while the R_{β_j} are those arising from $\operatorname{ch}(\mathcal{O}_{D_j}(-E_j)) \cup \hat{\Gamma}(X)$ for suitable curves E_j . ¹⁶For our purposes, this can be regarded as living on an open neighborhood (in \underline{z} -space \mathbb{C}^g) of $(0, \epsilon)^g$ for some $\epsilon > 0$. **Definition 2.3.** By the higher normal function associated to \mathbb{Z} , we shall mean the well-defined section $\frac{1}{(2\pi \mathbf{i})^2}\mathcal{R}$ of $\mathcal{H}^1_{\mathbb{C}/\mathbb{Z}}$, or its projection
$\boldsymbol{\nu} := \boldsymbol{\varpi}(\frac{1}{(2\pi \mathbf{i})^2}\mathcal{R})$ to a section of \mathcal{J} . The latter is computed by evaluating \mathcal{R} as a functional on holomorphic 1-forms (modulo periods), i.e. by the column vector (2.27) $$\nu_{j} := \frac{1}{(2\pi \mathbf{i})^{2}} \langle \mathcal{R}, \omega_{j} \rangle \quad (j = 1, \dots, g)$$ $$= \frac{-1}{4\pi^{2}} \sum_{\ell=1}^{g} \langle R_{\gamma_{\ell}} \gamma_{\ell}^{*} + R_{\beta_{\ell}} \beta_{\ell}^{*}, \gamma_{j}^{*} + \sum_{\ell'} \Omega_{j\ell'} \beta_{\ell'}^{*} \rangle$$ $$= \frac{1}{4\pi^{2}} (\sum_{\ell=1}^{g} R_{\gamma_{\ell}} \Omega_{j\ell} - R_{\beta_{j}})$$ modulo the \mathbb{Z} -span of columns of $(\mathbb{I}_q \mid \Omega)$. To use mirror symmetry to compute $\underline{\nu}$, put $\tilde{R}_{\beta_j} := R_{\beta_j} - (2\pi \mathbf{i})^2 T_j$, and observe that by (2.22) thru (2.26) (together with $\Omega_{jj'} = \Omega_{j'j}$) (2.28) $$\xi_{j}(\underline{a}) := \frac{1}{4\pi^{2}} \sum_{i_{1}} C_{i_{1}j} \left(\sum_{i_{2}} \delta_{t_{i_{2}}} - 1 \right) \partial_{t_{i_{1}}} \hat{\mathcal{F}}_{0}(\underline{t}(\underline{a}) + \pi \mathbf{i}\underline{\mathbb{B}}) \\ = \frac{1}{4\pi^{2}} \left(\sum_{i} \delta_{t_{i}} - 1 \right) \tilde{R}_{\beta_{j}} = \frac{1}{4\pi^{2}} \left(\frac{-1}{2\pi \mathbf{i}} \sum_{i} R_{\alpha_{i}} \partial_{t_{i}} R_{\beta_{j}} - \tilde{R}_{\beta_{j}} \right) \\ = \frac{1}{4\pi^{2}} \left(\frac{-1}{2\pi \mathbf{i}} \sum_{i,\ell} C_{i\ell} R_{\gamma_{j}} \partial_{t_{i}} R_{\beta_{j}} - \tilde{R}_{\beta_{j}} \right) \\ = \frac{1}{4\pi^{2}} \left(\sum_{\ell} R_{\gamma_{\ell}} \Omega_{j\ell} - \tilde{R}_{\beta_{j}} \right) = \nu_{j} - \mathbb{B}_{j}^{\circ}.$$ Returning to the quantization condition, the exponent in (2.16) is $$(2.29) \quad J_X(\underline{t} + 2\pi \mathbf{i}[C]\underline{n}; 2\pi) - J_X(\underline{t}; 2\pi)$$ $$= \pi \mathbf{i}^t \underline{n}[\hat{\Omega}]\underline{n} + 2\pi \mathbf{i}\underline{n} \cdot \hat{\xi} - \frac{\pi \mathbf{i}}{3} \sum_{\underline{i},\underline{j}} c_{\underline{i}} \prod_{\ell=1}^3 C_{i_\ell j_\ell} n_{j_\ell},$$ where • $$\hat{\Omega}_{j_1j_2} := \frac{-1}{2\pi \mathbf{i}} \sum_{i_1,i_2} C_{i_1j_1} C_{i_2j_2} \partial_{t_{i_1}} \partial_{t_{i_2}} \hat{\mathcal{F}}_0(\underline{t})$$ and • $$\hat{\xi}_j := \frac{1}{4\pi^2} \sum_{i_1} C_{i_1 j} (\sum_{i_2} \delta_{t_{i_2}} - 1) \partial_{t_{i_1}} \hat{\mathcal{F}}_0(\underline{t}) + \sum_i C_{ij} (b_i + b_i^{NS})$$ by a straightforward computation, cf. [CGM, (3.28)]. Substituting in $\underline{t} = \underline{t}(\underline{a}) + \pi \mathbf{i} \underline{\mathbb{B}}$, the first two terms of (2.29) become (2.30) $$\pi \mathbf{i}^{t} \underline{n} [\Omega(\underline{a})] \underline{n} + 2\pi \mathbf{i} \underline{n} \cdot (\underline{\nu}(\underline{a}) + \underline{\mathbf{B}} + \frac{1}{2} [\Omega(\underline{a})] \underline{\mathbb{A}})$$ (for $\underline{\mathtt{B}} \in \mathbb{Q}^g$) by (2.26)-(2.28). By an intersection theory argument and the identity $n^3 \equiv n$, the cubic third term becomes $-\frac{\pi \mathbf{i}}{3} \sum_j n_j D_j^3 \mod \mathbb{Z}(1)$, which may be absorbed into $\underline{\mathtt{B}}$. Therefore, writing $\underline{\mathtt{A}} := \frac{1}{2}\underline{\mathtt{A}}$ and θ for the usual Jacobi theta function, (2.31) $$\Theta_X(\underline{t}(\underline{a}) + \pi \mathbf{i}\underline{\mathbb{B}}; 2\pi) = \theta(\underline{\nu}(\underline{a}) + \underline{\mathbb{B}} + [\Omega(\underline{a})]\underline{\mathbb{A}}, [\Omega(\underline{a})]).$$ We have thus deduced from Conjecture 2.2 a striking relationship between the quantization condition and the higher normal function. Let $\mathcal{D}_{\theta} \subset \mathcal{J}$ be the theta divisor and $\mathcal{D}_{\theta}[\frac{\underline{A}}{\underline{B}}]$ its translate by (minus) the torsion section $\underline{B} + [\Omega]\underline{A}$. Conjecture 2.4. For Δ satisfying (2.20) and F integrally tempered, the zero-locus of the twisted spectral determinant $\Xi_{\mathcal{C}}((-1)^{\underline{\mathbb{A}}}\underline{a};2\pi)$ is exactly the locus where the normal function meets this torsion shift of the theta divisor: as subsets of \mathcal{M} , we have (2.32) $$\operatorname{ZL}\left(\Xi_{\mathcal{C}}((-1)^{\underline{\mathbb{A}}}\underline{a};2\pi)\right) = \boldsymbol{\rho}\left(\boldsymbol{\nu}(\mathcal{M}) \cap \mathcal{D}_{\theta}\left[\frac{\underline{\mathsf{A}}}{\underline{\mathsf{B}}}\right]\right).$$ In genus g=1, there are 15 reflexive polygons (up to unimodular transformation) which can be presented inside $\mathbb{R} \times [-1,1]$. After making the torsion shifts completely explicit in §3.1, we prove the " \supseteq " direction of (2.32) for these cases in §3.2. 2.4. Consequences in the 't Hooft limit. Our spectral determinant $\Xi_{\mathcal{C}}$ has fermionic spectral traces which generalize, from the (g=1) case of a single operator, the traces of $\rho_1^{\otimes N}$ acting on $\bigwedge^N L^2(\mathbb{R})$, cf. [CGM, §3.3]. Defined by (2.33) $$\Xi_{\mathcal{C}}(\underline{a};\hbar) =: \sum_{N_1,\dots,N_g \ge 0} Z_{\mathcal{C}}(\underline{N},\hbar)\underline{a}^{\underline{N}},$$ these can clearly also be expressed in terms of loop integrals about 0: $$(2.34) Z_{\mathcal{C}}(\underline{N}, \hbar) = \frac{1}{(2\pi \mathbf{i})^g} \oint \cdots \oint \Xi_{\mathcal{C}}(\underline{a}; \hbar) \frac{da_1}{a_1^{N_1+1}} \wedge \cdots \wedge \frac{da_g}{a_g^{N_g+1}}.$$ Applying Conjecture 2.2 replaces $\Xi_{\mathcal{C}}(\underline{a}; \hbar)$ by $\sum_{\underline{n} \in \mathbb{Z}^g} e^{J_X(\underline{\mathfrak{t}}^{\hbar}(\underline{a}) + 2\pi \mathbf{i}[C]\underline{n}; \hbar)}$, where the $2\pi \mathbf{i}[C]\underline{n}$ simply accounts for the change in $\underline{\mathfrak{t}}^{\hbar}(\underline{a})$ as the a_j go n_j times around 0 — or equivalently, as $\mu_j := \log(a_j)$ increases by $2\pi \mathbf{i} n_j$ (for each j). Accordingly, (2.34) becomes $$(2.35) \qquad \frac{1}{(2\pi \mathbf{i})^g} \int_{-\mathbf{i}\infty}^{\mathbf{i}\infty} \cdots \int_{-\mathbf{i}\infty}^{\mathbf{i}\infty} e^{J_X(\underline{\mathfrak{t}}^{\hbar}(\underline{a});\hbar) - \sum_{j=1}^g N_j \mu_j} d\mu_1 \wedge \cdots \wedge d\mu_g,$$ Recall from §2.2 that the 't Hooft limit takes $\hbar \to \infty$ while essentially fixing $\zeta_j = \frac{\mu_j}{\hbar}$ and $\tau_i = \frac{2\pi t_i}{\hbar}$, which we will also impose on $\lambda_j := \frac{N_j}{\hbar}$. As temperedness makes the $q_k = 1$ hence $\mathbf{m}_k = 1$, we write $J_0^X(\underline{\zeta}) := J_0^X(\zeta,\underline{1})$, and note that (2.18) reduces to $\tau_i = 2\pi \sum_j C_{ij}\zeta_j$. Remark 2.5. In fact, even if we don't assume temperedness, but fix the edge polynomials hence the $\{q_k\}$, the effect is the same since $\mathbf{m}_k (=e^{-\frac{2\pi}{\hbar}\log(q_k)})=1$ in the limit. Now by (2.15), for $\hbar \gg 0$ (2.35) becomes $$(2.36) \qquad \frac{\hbar^g}{(2\pi \mathbf{i})^g} \int_{-\mathbf{i}\infty}^{\mathbf{i}\infty} \cdots \int_{-\mathbf{i}\infty}^{\mathbf{i}\infty} e^{\hbar^2 \{J_0^X(\underline{\zeta}) - \sum_j \lambda_j \zeta_j + O(\hbar^{-2})\}} d\zeta_1 \wedge \cdots \wedge d\zeta_g;$$ and we write $\hat{\underline{\zeta}}(\underline{\lambda})$ for the stationary point of (the leading part of) the exponential, where $0 = \partial_{\zeta_i}(J_0^X(\underline{\zeta}) - \sum_j \lambda_j \zeta_j)$, or equivalently $\lambda_j =$ $\partial_{\zeta_j} J_0^X(\underline{\zeta})$, for each j. By the saddle-point method, we can write (2.36) as $\exp(\hbar^2 \{ J_0^X(\hat{\zeta}(\underline{\lambda})) - \sum_i \lambda_i \hat{\zeta}_i(\underline{\lambda}) + O(\hbar^{-2}) \})$, which is to say that (2.37) $$\lim_{\hbar \to \infty} (\partial_{\lambda_j} \hbar^{-2} \log Z_{\mathcal{C}}(\hbar \underline{\lambda}, \hbar))|_{\underline{\lambda} = \underline{0}} = -\hat{\zeta}_j(\underline{0}).$$ Moreover, according to [CGM, §2.3], $\hat{\tau}_i(\underline{\lambda}) = 2\pi \sum_j C_{ij} \hat{\zeta}_j(\underline{\lambda})$ is nothing but the classical mirror map in the "conifold frame", with $\underline{\lambda}$ a parameter which vanishes at the maximal conifold point $\underline{\hat{z}}$.¹⁷ In other words, if $\underline{\hat{a}}$ is any preimage of $\underline{\hat{z}}$ in $\overline{\mathcal{M}}$, then we have $R_{\alpha_i}(\underline{\hat{a}}) \equiv -2\pi \mathbf{i} \hat{\tau}_i(\underline{0})$ and (2.38) $$R_{\gamma_i}(\hat{\underline{a}}) \equiv -4\pi^2 \mathbf{i}\hat{\zeta}_j(\underline{0}) \mod \mathbb{Q}(2).$$ On the other hand, if we set $N_j = 0$ for j > 1, then the asymptotic expansion of $Z_{\mathcal{C}}(N_1, 0, \dots, 0; \hbar) = \operatorname{tr}_{\wedge^{N_1}L^2(\mathbb{R})}((\rho_1^{(0)})^{\otimes N_1})$ can be computed via operator theory and asymptotic properties of the quantum dilogarithm. This is worked out in [KM, MZ] for the three-term operators $(\rho_1^{(0)})^{-1} = e^{\hat{x}} + e^{\hat{y}} + e^{-m\hat{x}-n\hat{y}}$, corresponding to the Laurent polynomials $$(2.39) F_{m,n}^{\circ}(\underline{x}) := x_1 + x_2 + x_1^{-m} x_2^{-n} + \sum_{j=1}^g a_j x_1^{m_1^{(j)} m_2^{(j)}}.$$ (Here we recall that the $\{\underline{m}^{(j)}\}$ index the interior integral points of Δ ; for instance, if m=n=g, then $\underline{m}^{(j)}=(1-j,1-j)$.) Note that by Remark 2.5, $\hat{\underline{\tau}}(\underline{\lambda})$ will actually compute the mirror map/regulator periods in the conifold frame for the families defined by the integrally tempered polynomials¹⁸ $$(2.40) F_{m,n}(\underline{x}) := x_1 + x_2 + x_1^{-m} x_2^{-n} + \sum_{j=1}^g a_j x_1^{m_1^{(j)}} x_2^{(j)} + \sum_{\ell=1}^{g_1-1} {g_1 \choose \ell} x_1^{1-\ell \frac{m+1}{g_1}} x_2^{-\ell \frac{n}{g_1}} + \sum_{\ell=1}^{g_2-1} {g_2 \choose \ell} x_1^{-\ell \frac{m}{g_2}} x_2^{1-\ell \frac{n+1}{g_2}},$$ where $g_1 := \gcd(m+1, n)$ and $g_2 = \gcd(m, n+1)$. Anyway, the result of [op. cit.] (see also [Ma, §4.3]) is that (2.41) $$\lim_{\hbar \to
\infty} (\partial_{\lambda_1} \hbar^{-2} \log Z_{\mathcal{C}}(\hbar \lambda_1, 0, \dots, 0; \hbar))|_{\lambda_1 = 0}$$ $$= \frac{m + n + 1}{2\pi^2} D_2(-\mathfrak{z}_{m,n}^{m+1} \mathfrak{w}_{m,n}),$$ where D_2 is the Bloch-Wigner function, $\mathfrak{z}_{m,n} := e^{\frac{\pi \mathbf{i}}{m+n+1}}$, and $\mathfrak{w}_{m,n} := \frac{\mathfrak{z}_{m,n}^m - \mathfrak{z}_{m,n}^{-m}}{\mathfrak{z}_{m,n}^m - \mathfrak{z}_{m,n}^{-n}}$. Since LHS(2.41) must agree with LHS(2.37) (with j = 1), in view of (2.38) we arrive at ¹⁷We are not aware of a proof of this statement, but there is strong computational evidence; it is also consistent with the observation, in view of (2.22), that the vanishing of $\partial_{\zeta_j} J_0^X(\underline{\zeta})$ at $\hat{\underline{\zeta}}(\underline{0})$ is equivalent to that of a $\mathbb{Q}(2)$ -translate of $R_{\beta_j}(\underline{a})$ at $\underline{a} \in \underline{t}^{-1}(\hat{\underline{\tau}}(\underline{0}) - \pi \mathbf{i}\underline{\mathbb{B}})$. This is exactly what should happen at a g-nodal fiber. ¹⁸Of course, there is no distinction between (2.39) and (2.40) if $g_1 = 1 = g_2$. Conjecture 2.6. For the families $C_{m,n}$ arising from (2.40), the regulator period R_{γ_1} asymptotic to $-2\pi \mathbf{i} \log(a_1)$ at the origin has value (2.42) $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_1}(\underline{\hat{a}}) \equiv \frac{m+n+1}{\pi} D_2(-\mathfrak{z}_{m,n}^{m+1} \mathfrak{w}_{m,n}) =: \mathcal{D}_{m,n} \mod \mathbb{Q}(1)$$ at the maximal conifold point. **Example 2.7.** A toric coordinate change brings $F_{2,2}$ into the form $F_{3,1}$, but with a_1 and a_2 swapped. So Conjecture 2.6 actually yields predictions for both nontrivial regulator periods at $\underline{\hat{a}} = (5, -5)$, namely $\frac{1}{2\pi \mathbf{i}}R_{\gamma_1}(\underline{\hat{a}}) \equiv \mathcal{D}_{2,2} = \frac{5}{\pi}\mathcal{D}_2(e^{\frac{2\pi \mathbf{i}}{5}}\mathbf{w})$ and $\frac{1}{2\pi \mathbf{i}}R_{\gamma_2}(\underline{\hat{a}}) \equiv \mathcal{D}_{3,1} = \frac{5}{\pi}\mathcal{D}_2(e^{\frac{\pi \mathbf{i}}{5}}\mathbf{w})$ mod $\mathbb{Q}(1)$, where $\mathbf{w} := \frac{1+\sqrt{5}}{2}$. This assertion was checked in [7K] by a computation we will generalize (and make more rigorous) in §4. ### 3. From higher normal functions to eigenfunctions In this section we state and prove a precise version of Conjecture 2.4 in the genus 1 case. 3.1. Integral mirror symmetry and quantization conditions. The condition g=1 is equivalent to reflexivity of Δ , whereupon X becomes simply the total space of $K_{\mathbb{P}_{\Delta^{\circ}}}$. There is a unique compact toric divisor $D=D_1\cong\mathbb{P}_{\Delta^{\circ}}\subset X$, corresponding to the ray through (1,0,0), which amounts to the zero-section of $\rho\colon X\twoheadrightarrow D$. Denoting by $E^{\circ}\subset D$ a general anticanonical (elliptic) curve, we remark that $D^2=-E^{\circ}$ in $H_c^*(X)$. Let φ be the unique integrally tempered Laurent polynomial with Newton polygon Δ , constant term 0, and coefficients 1 at the vertices, and (writing $a=a_1$) take $F=a+\varphi$. After compactifying fibers in \mathbb{P}_{Δ} and birationally modifying the total space, this produces a relatively minimal elliptic fibration $\mathcal{E} \to \mathbb{P}^1_a$ with rational total space, fibers E_a , and discriminant locus $\Sigma \cup \{\infty\}$. Writing $r:=|\partial \Delta \cap \mathbb{Z}^2|$ and $r^\circ:=|\partial \Delta^\circ \cap \mathbb{Z}^2|$, E_∞ has type I_{r° , and Σ is cut out by a polynomial P_Σ of degree $12-r^\circ=r.^{19}$ A section of the relative dualizing sheaf for our family is given by (3.1) $$\omega(a) := \frac{1}{2\pi \mathbf{i}} \operatorname{Res}_{E_a} \left(\frac{dx_1/x_1 \wedge dx_2/x_2}{1 + a^{-1}\varphi(\underline{x})} \right),$$ with $period^{20}$ (3.2) $$\omega_{\gamma}(a) := \int_{\gamma} \omega(a) = 1 + \sum_{k>0} (-1)^k [\varphi^k]_{\underline{0}} a^{-k}$$ ¹⁹For a generic choice of φ , the remaining singular fibers of \mathcal{E} are I₁'s. Since \mathcal{E} is rational (as a blowup of \mathbb{P}_{Δ}), the degree of the relative dualizing sheaf must be 1; and as each I_k contributes $\frac{k}{12}$ to this degree, there must be $12 - r^{\circ}$ I₁'s. Each of these contributes 1 to deg(P_{Σ}), and this degree is invariant as we specialize φ . $^{^{20}[\}cdot]_{\underline{0}}$ takes the constant term; γ is γ_1 from §2.3. in a neighborhood of the large complex structure point ∞ . More precisely, this series converges on $\mathbb{D}^* := \{a \mid |a| > |\hat{a}|\} \subset U := \mathbb{P}^1 \setminus (\Sigma \cup \{\infty\})$, where the *conifold point* \hat{a} can be described by $-\hat{a} := \min(\varphi(\mathbb{R}_+ \times \mathbb{R}_+))$ since the coefficients of φ are all positive [Ga]. By assumption, all the tame symbols of $\{-x_1, -x_2\}$ are trivial, and so the R_{α_i} $(i=1,\ldots,r-2)$ must be integer multiples of $R_{\gamma} \sim -2\pi \mathbf{i} \log(a)$. More precisely, we have $\frac{-1}{2\pi \mathbf{i}}R_{\alpha_i} = t_i = C_{i1}t = -(C_i \cdot D)t = d_it$, where $d_i \in [0,4] \cap \mathbb{Z}$ is the lattice-length of the edge of $\partial \Delta$ corresponding to C_i . From Appendix A, we have on the cut disk $\mathbb{D}^- := \mathbb{D}^* \setminus (\mathbb{D}^* \cap \mathbb{R}_-)$ (3.3) $$t = t(a) := \frac{-1}{2\pi i} R_{\gamma}(a) = \log(a) + \sum_{k>0} \frac{(-1)^{k-1}}{k} [\varphi^k]_{\underline{0}} a^{-k},$$ which gives $\omega = \frac{-1}{2\pi i} \nabla_{\delta_a} \mathcal{R}$ hence (in the notation of §2.3) $\omega_1 = \omega/\omega_{\gamma}$ globally on U. We also see that $e^{-t} \sim a^{-1}$ makes sense as a coordinate on $\mathbb{D} = \mathbb{D}^* \cup \{\infty\}$. The local mirror symmetry results in [BKV] can be made very explicit:²¹ **Lemma 3.1.** On \mathbb{D}^- we have the following identifications: (a) $$R_{\beta}(a) = \frac{r^{\circ}}{2}t(a)^{2} + \pi \mathbf{i} r^{\circ} t(a) + (2\pi \mathbf{i})^{2}(\frac{1}{2} + \frac{r^{\circ}}{12}) - \sum_{k>0} k \mathfrak{N}_{k} e^{-kt(a)},$$ (b) $$\Omega(a) \left(= \frac{\omega_{\beta}(a)}{\omega_{\gamma}(a)} \right) = \frac{\mathbf{i}r^{\circ}}{2\pi} t(a) - \frac{r^{\circ}}{2} - \frac{1}{2\pi \mathbf{i}} \sum_{k>0} k^{2} \mathfrak{N}_{k} e^{-kt(a)}, \text{ and}$$ (c) $$\nu(a) = \frac{\kappa}{8\pi^2} t(a)^2 + (\frac{1}{2} + \frac{r^{\circ}}{12}) + \frac{1}{4\pi^2} \sum_{k>0} k(1 + kt(a)) \mathfrak{N}_k e^{-kt(a)},$$ where \mathfrak{N}_k is the local GW-invariant for D counting rational curves whose classes $C \in H_2(D)$ satisfy $(C \cdot E^{\circ})_D = k$. Proof. X is described in [BKV, §6] as the large-fiber-volume limit of an elliptically-fibered compact CY 3-fold $W \to \mathbb{P}_{\Delta^{\circ}}$ with section D. Let C_1, \ldots, C_r be the components of $\mathbb{P}_{\Delta^{\circ}} \setminus (\mathbb{C}^*)^2$ (and their images in X), $D_i' := \rho^{-1}(C_i)$, and $C_0 := \rho^{-1}(\operatorname{pt})$. Then $\{C_0, C_1, \ldots, C_{r-2}\}$ span $H^4(W, \mathbb{Q})$, $\{D, D_1', \ldots, D_{r-2}'\}$ span $H^2(W, \mathbb{Q})$, and we can write $-D^2 = E^{\circ} = \sum_{i=1}^r C_i = \sum_{i=1}^{r-2} e_i C_i$ for unique $e_i \in \mathbb{Q}$, whereupon $D^3 = \sum_{i=1}^{r-2} d_i e_i = r^{\circ}$. Let J_0, \ldots, J_{r-2} denote a basis of $H^2(W, \mathbb{Q})$ dual to C_0, \ldots, C_{r-2} , and define $\mathcal{J}_1, \ldots, \mathcal{J}_{r-2}$ by $\mathcal{J}_i := J_i - \frac{e_i}{r^{\circ}} J_0$. Then the c_i in (2.10) are given by $c_{i_1 i_2 i_3} = -\mathcal{J}_{i_1} \mathcal{J}_{i_2} \mathcal{J}_{i_3}$. The integral periods of the A-model VHS given by [BKV, (6.13-15)] lead (in the LMHS as $t_0 \to 0$) to the following periods for our A-model VMHS. First, the limit of the Gamma class for W yields $\hat{\Gamma}(X) := 1 - \frac{1}{2}D^2 + (\frac{11r^\circ + r}{24})C_0 = 1 + \sum_{i=1}^{r-2} e_i C_i + (\frac{1}{2} + \frac{5}{12}r^\circ)C_0 \in$ ²¹Here as above $\beta = \beta_1$, $\Omega = \Omega_{11}$, $\nu = \nu_1$. ²²The results of [loc. cit.] are stated in terms of derivatives of the prepotential $\Phi(t_0,\underline{t})$ of W in the limit as $t_0 \to \infty$. One can obtain the free energy $\mathcal{F}_0(\underline{t})$ for X by substituting $t_0 = -\sum_{i=1}^{r-2} \frac{e_i}{r^\circ} t_i$ into Φ^{cl} and taking $t_0 \to \infty$ in Φ^{inst} ; we then have $\frac{1}{(2\pi \mathbf{i})^3} \partial_D \Phi = \frac{1}{(2\pi \mathbf{i})^2} (-\partial_0 + \sum_i d_i \partial_i) \Phi = \frac{1}{(2\pi \mathbf{i})^2} \sum_i d_i \partial_i \mathcal{F}_0$, hence the version of the A-model periods given here. $H^*(X,\mathbb{Q})$. Next, for integral periods we need to compose $\mathrm{ch}(\cdot) \cup$ $\hat{\Gamma}(X) \colon K_0^{c,\mathrm{num}}(X) \to H_c^*(X,\mathbb{Q})$ with the following assignment of periods to cohomology classes: pt \mapsto 1; $C_i \mapsto \frac{1}{2\pi \mathbf{i}} t_i = \frac{-1}{(2\pi \mathbf{i})^2} R_{\alpha_i}$; and $D \mapsto \frac{1}{(2\pi \mathbf{i})^2} \sum_{i=1}^{r-2} d_i \partial_{t_i} \mathcal{F}_0(\underline{t})$. Applying this to \mathcal{O}_D , we have $\operatorname{ch}(\mathcal{O}_D) =$ $D - \frac{1}{2}D^2 + \frac{1}{6}D^3$, whence $\operatorname{ch}(\mathcal{O}_D) \cup \hat{\Gamma}(X) = D + \frac{1}{2}\sum_i e_i C_i + (\frac{1}{2} + \frac{r^{\circ}}{12})$, and finally (after multiplying the resulting integral period by $(2\pi \mathbf{i})^2$) (3.4) $$R_{\beta} = \sum_{i} d_{i} \partial_{t_{i}} \mathcal{F}_{0}(\underline{t}) + \pi \mathbf{i} \sum_{i} e_{i} t_{i} + (2\pi \mathbf{i})^{2} (\frac{1}{2} + \frac{r^{\circ}}{12}).$$ We also recall from (2.26) that the period ratio is given by Ω $\frac{-1}{2\pi \mathbf{i}} \sum_i d_i \partial_{t_i} R_{\beta}$, and the normal function by $\nu = \frac{1}{4\pi^2} (R_{\gamma} \Omega - R_{\beta})$. The last step is to substitute $t_i = d_i t$, which gives (3.5)
$$\mathcal{F}_{0}(t) = -\frac{1}{6} (\sum_{i} \mathcal{J}_{i} t_{i})^{3} + \sum_{c} N_{0,c} e^{-(c \cdot E^{\circ})_{D} t} = \frac{r^{\circ}}{6} t^{3} + \sum_{k>0} \mathfrak{N}_{k} e^{-kt}$$ since $\sum_{i} \mathcal{J}_{i} d_{i} = \sum_{i} d_{i} J_{i} - \sum_{i} \frac{e_{i} d_{i}}{r^{\circ}} J_{0} = (J_{0} - D) - J_{0} = -D$ [BKV, (6.5)]. Using $d_{i} \partial_{t_{i}} = \partial_{t}$ in (3.4)ff now gives (a)-(c). Remark 3.2. We point out two immediate consequences of Lemma 3.1. First, along with (3.3), (c) makes it clear that $\nu(a)$ as well as (3.6) $$V(a) := \omega_{\gamma}(a)\nu(a) = \frac{1}{4\pi^2}(R_{\gamma}\omega_{\beta} - R_{\beta}\omega_{\gamma})$$ are real-valued on $\mathbb{D}^* \cap \mathbb{R}_+$. Second, notice that $\frac{1}{(2\pi \mathbf{i})^2} \partial_t^2 R_\beta = \partial_{R_\gamma}^2 R_\beta =$ $\partial_{R_{\gamma}} \frac{\delta_a R_{\beta}}{\delta_a R_{\gamma}} = \partial_{R_{\gamma}} \frac{\omega_{\beta}}{\omega_{\gamma}} = \frac{\mathcal{Y}(a)}{\omega_{\gamma}^3}$, where the Yukawa coupling $\mathcal{Y}(a) = \omega_{\gamma} \delta_a \omega_{\beta} - \omega_{\gamma} \delta_a \omega_{\beta}$ $\omega_{\beta}\delta_{a}\omega_{\gamma}$ blows up at \hat{a} . Differentiating (a) twice expresses this as a power series in e^{-t} , from which one deduces that (3.7) $$\lim \sup_{k \to \infty} \sqrt[k]{|\mathfrak{N}_k|} = \exp(\Re(t(\hat{a}))).$$ as in [DK, §5.4] (though this result in now unconditional). We may now identify all of the torsion constants in §§2.2-2.3:²³ **Lemma 3.3.** In \mathbb{Q}/\mathbb{Z} the following equalities hold: $$\begin{array}{l} \text{(i)} \ b := \sum_i d_i b_i = \frac{r^\circ}{12} - \frac{1}{2} \ and \ b^{\mathrm{NS}} := \sum_i d_i b_i^{\mathrm{NS}} = \frac{r^\circ}{24} - \frac{1}{2}. \\ \text{(ii)} \ \ \mathbf{T} = \frac{1}{2} + \frac{r^\circ}{12} \ and \ \mathbf{B}^\circ = \frac{1}{2} - \frac{r^\circ}{24}. \\ \text{(iii)} \ \ \mathbf{A} = \frac{1}{2} = \mathbf{B}, \ where \ \mathbf{B} \ is \ as \ in \ (2.31) - (2.32).^{24} \end{array}$$ (ii) $$T = \frac{1}{2} + \frac{r^{\circ}}{12}$$ and $B^{\circ} = \frac{1}{2} - \frac{r^{\circ}}{24}$. (iii) $$A = \frac{1}{2} = B$$, where B is as in (2.31)-(2.32).²⁴ *Proof.* (i) These are the coefficients of t in \mathcal{F}_1 and \mathcal{F}_1^{NS} (after substituting $t_i = d_i t$), which can be derived from [GKMR, (4.18) and (4.21)]. Namely, we have $b_i = \frac{1}{24}c_2(X) \cdot \mathcal{J}_i$ [GKMR, (4.18)] and ²³Again, for simplicity writing $T = T_1$, $B^{\circ} = B_1^{\circ}$, $B = B_1$, and $A = A_1$. $^{^{24}}$ and not as in (2.30), where B does not yet incorporate the correction from the ²⁵We should point out here that our "r" is not the "r" in [GKMR], where it means $gcd\{d_i\}$. (Moreover, their "t" is r_{GKMR} times our t.) $\begin{array}{l} c_2(X) \,=\, (11r^\circ + r)C_0 + 12 \sum_i e_i C_i \,=\, (10r^\circ + 12)C_0 - 12D^2 \,\, [\text{BKV}, \\ \S 6.2] \text{ hence } b = \frac{1}{24}c_2(X) \cdot \sum_i d_i \mathcal{J}_i = -\frac{1}{24}c_2(X) \cdot D = -\frac{10r^\circ + 12}{24} + \frac{12r^\circ}{24} = \\ \frac{r^\circ}{12} - \frac{1}{2}. \text{ According to [GKMR, (4.21)], we have } \mathcal{F}_1^{\text{NS}} \sim -\frac{1}{24}\log(P_\Sigma(a)) \sim \\ -\frac{\deg(P_\Sigma)}{24}\log(a) \sim -\frac{r}{24}t \sim (\frac{r^\circ}{24} - \frac{1}{2})t. \,\, (\text{So of course, (i) holds in } \mathbb{Q}, \, \text{but we'll only need it mod } \mathbb{Z}.) \end{array}$ (ii) The value of T is immediate from Lemma 3.1(a). To compute $\mathbb{B}^{\circ} = \nu(a) - \xi(a)$, we need to revisit ξ from (2.28). The B-field is given by $\mathbb{B}_i = d_i$ (cf. §2.3 above or [GKMR, §3.2]), and $\mathbb{A} = \mathbb{A}_1 = 1$, which means that replacing \underline{t} by $\underline{t} + \pi \mathbf{i} \mathbb{B}$ is equivalent to replacing t by $t + \pi \mathbf{i}$. Together with $\sum_i \delta_{t_i} = t \sum_i d_i \partial_{t_i} = t \partial_t = \delta_t$ and (3.5), this gives (3.8) $$\xi(a) = \frac{1}{4\pi^2} (\delta_t - 1) \partial_t \hat{\mathcal{F}}_0(t(a) + \pi \mathbf{i}) \\ = \frac{r^{\circ}}{8\pi^2} t(a)^2 + \frac{r^{\circ}}{8} + \frac{1}{4\pi^2} \sum_{k>0} k(1 + kt(a)) \mathfrak{N}_k e^{-kt(a)}$$ and, together with Lemma 3.1(c), the claimed value of B°. (iii) We already have $A = \frac{1}{2}A = \frac{1}{2}$. For B, we compute (3.9) $$\hat{\xi}(t(a) + \pi \mathbf{i}) = \frac{1}{4\pi^2} \left((t + \pi \mathbf{i}) \partial_t - 1 \right) \partial_t \hat{\mathcal{F}}_0(t(a) + \pi \mathbf{i}) + (b + b^{\text{NS}})$$ $$= \xi(a) + \frac{\pi \mathbf{i}}{4\pi^2} \partial_t^2 \hat{\mathcal{F}}_0(t(a) + \pi \mathbf{i}) + (b + b^{\text{NS}})$$ $$= \nu(a) + \frac{1}{2} \Omega(a) + (b + b^{\text{NS}} - \mathsf{B}^\circ)$$ and note that the cubic term in (2.29) becomes $-\frac{\pi \mathbf{i}}{3}D^3n^3 = -\frac{r^{\circ}}{3}\pi\mathbf{i}n^3 \equiv -\frac{r^{\circ}}{6}2\pi\mathbf{i}n \mod \mathbb{Z}(1)$. Together with (i)-(ii), this results in the apparently miraculous cancellation (3.10) $$\mathsf{B} = b + b^{\mathrm{NS}} - \mathsf{B}^{\circ} - \frac{r^{\circ}}{6} = -\frac{3}{2} \equiv \frac{1}{2}$$ modulo \mathbb{Z} . \square Finally, we turn to the quantization conditions, i.e. to the spectrum (as an operator on $L^2(\mathbb{R})$) of L^{26} $$\hat{\varphi} = \sum_{\underline{m} \in \partial \Delta \cap \mathbb{Z}^2} (-1)^{m_1 m_2} a_{\underline{m}} \hat{x}_1^{m_1} \hat{x}_2^{m_2}$$ $$= \sum_{\underline{m} \in \partial \Delta \cap \mathbb{Z}^2} (-1)^{m_1 + m_2 + 1} a_{\underline{m}} \hat{x}_1^{m_1} \hat{x}_2^{m_2} = -\varphi(-\hat{x}_1, -\hat{x}_2)$$ or $\rho := \hat{\varphi}^{-1}$. Writing $\sigma(\cdot)$ for spectrum and $\Lambda(a) := \mathbb{Z}\langle \omega_{\gamma}(a), \omega_{\beta}(a) \rangle$ for the period lattice, we have the **Proposition 3.4.** In the genus-1 case, Conjecture 2.4 is equivalent to (3.12) $$\sigma(\hat{\varphi}) = \{ a \in U \mid V(a) \in \Lambda(a) \}.$$ ²⁶Remark that $\varphi = F_1$ and $\rho = \rho_1$ in the notation of §2.1. We have $m_1 m_2 \equiv m_1 + m_2 + 1$ because (2.20) always holds for reflexive polygons. Proof. Noting that $\mathcal{M} = U$, in the LHS of (2.32) we are taking the zero-locus of $\Xi(-a; 2\pi) = \det(1 - a\rho)$, which is precisely the spectrum of $\hat{\varphi}$. The RHS of (2.32) is the locus in U where $\nu(a)$ meets the theta divisor (which is $\frac{1+\Omega(a)}{2} \mod \mathbb{Z}\langle 1, \Omega(a)\rangle$) shifted by $A\Omega(a) + B = \frac{1+\Omega(a)}{2}$, which is to say where $\nu(a)$ is zero mod $\mathbb{Z}\langle 1, \Omega(a)\rangle$. Outside of \mathbb{D}^- , this condition is only well-defined in the sense of analytic continuation; to fix this, we multiply by ω_{γ} to get the form displayed in RHS(3.12). \square Remark 3.5. (i) The condition $V(a) \in \Lambda(a)$, which is well-defined on U, reduces to $\nu(a) \in \mathbb{Z}\langle 1, \Omega(a) \rangle$ for $a \in \mathbb{D}^-$. Moreover, the argument in [LST, §3.1] using the coherent state representation shows more generally (for any φ considered here) that $\sigma(\hat{\varphi})$ belongs to \mathbb{R}_+ , and is countable with eigenvalues λ_j limiting to ∞ (so that ρ is bounded). In fact, we expect that $\sigma(\hat{\varphi}) \subset (|\hat{a}|, \infty)$, as is clear for $\varphi = x_1 + x_1^{-1} + x_2 + x_2^{-1}$ or $x_1 + x_1^{-1} + x_2 + x_2^{-1} + x_1 x_2^{-1} + x_1^{-1} x_2$ and experimentally observed in other cases. This would mean that the quantization condition " $V \in \Lambda$ " reduces not just to $\nu \in \mathbb{Z}\langle 1, \Omega \rangle$, but to $$(3.13) \nu(a) \in \mathbb{Z},$$ as ν is real by Remark 3.2. We'll have more to say about this in §3.2. - (ii) The most crucial "torsion" invariant in Lemma 3.3, leading to the cancellation in (3.10) and the simple form of (3.12), is surely the constant term T of the regulator period R_{β} . As an independent check, one can directly compute this constant term without using mirror symmetry and the Gamma class; see Appendix A for examples. Another check on our quantization condition is that it should coincide with that in [GKMR, §3.3.2] when all $Q_{m_k} = 1$ ($\Longrightarrow D_0(\underline{m}) = 0$ and $B(\underline{m}, 2\pi) = b + b^{\text{NS}} = \frac{r^{\circ}}{8} 1$). Since $\text{vol}_0(E)$ in [GKMR, (3.24)] is just R_{β} , we may also identify "C" there as $\frac{r^{\circ}}{2}$. Taking $E = \log(a)$ and $E_{\text{eff}} = t(a)$, [GKMR, (3.105)] collapses to $\xi(a) \frac{r^{\circ}}{24} \in \mathbb{Z} + \frac{1}{2}$, hence to $\nu(a) \in \mathbb{Z}$. - (iii) There is an interesting sign discrepancy in (3.12): quantizability of $\hat{\varphi} a$ is being linked to a regulator class on the curve $E_a \subset \mathbb{P}_{\Delta}$ compactifying solutions to $\varphi(\underline{x}) + a = 0$. Blame it on the B-field! Or better yet, proceed to the next section for a more basic reason why it has to be this way. - 3.2. Construction of eigenfunctions for difference operators. In this section we assume that Δ is a reflexive polygon satisfying $$(3.14) \Delta \subset \mathbb{R} \times [-1, 1],$$ and φ is as in §3.1, so that (3.15) $$\varphi(\underline{x}) = x_1^{m_u} (x_1 + 1)^{d_u} x_2 + \varphi_0(x_1) + x_1^{m_\ell} (x_1 + 1)^{d_\ell} x_2^{-1}.$$ Remark 3.6. Regarding unimodular change of coordinates $(x_1, x_2 \mapsto x_1^{\mathtt{a}} x_2^{\mathtt{b}}, x_1^{\mathtt{c}} x_2^{\mathtt{d}})$ with $\mathtt{ad} - \mathtt{bc} = 1$ as an equivalence relation on reflexive polygons, there are 16 equivalence classes. All but one²⁷ of these has representatives satisfying (3.14). For each $a \in U$, $E_a \subset \mathbb{P}_{\Delta}$ denotes as before the Zariski closure of $E_a^* := \{\underline{x} \in (\mathbb{C}^*)^2 \mid \varphi(\underline{x}) + a = 0\}$. Forgetting x_2 produces a 2:1 map $\pi: E_a \to \mathbb{P}^1$ with corresponding involution $\iota: E_a \to E_a$ and discriminant $$(3.16) \qquad (\varphi_0(x_1) + a)^2 -
4x_1^{m_u + m_\ell} (x_1 + 1)^{d_u + d_\ell} =: \mathscr{D}(x_1).$$ The latter is a Laurent polynomial (in x_1) with "Newton polytope" an interval $[-c_-, c_+]$ containing [-1, 1] (and contained in [-2, 2]), whose length is the number of ramification points of $\pi^{-1}(\mathbb{C}^*) =: E_a^{\times} \xrightarrow{\pi^{\times}} \mathbb{C}^*$; denote the set of these by $\mathfrak{B} \subset E_a^{\times}$, and let $p_0 \in \mathfrak{B}$ be one of them. The holomorphic function (3.17) $$\delta(p) := x_1(p)^{m_u} (x_1(p) + 1)^{d_u} (x_2(p) - x_2(\iota(p))),$$ on E_a^{\times} satisfies $\delta^2 = (\pi^{\times})^* \mathscr{D}$, thereby providing a well-defined lift of $\sqrt{\mathscr{D}}$ to E_a^{\times} . Writing \tilde{E}_a^{\times} for the fiber product of π^{\times} and $(-\exp): \mathbb{C} \to \mathbb{C}^*$ yields a diagram with vertical maps of degree 2, and points in \tilde{E}_a^{\times} [resp. \mathbb{C}] denoted by \tilde{z} [resp. $z = \Pi(\tilde{z})$]. We also write $\mathcal{P}(\tilde{z}) =: (x_1(\tilde{z}), x_2(\tilde{z}))$, where $x_1(\tilde{z}) = x_1(z) = -e^z$, and $\tilde{z}_0 \in \tilde{E}_a^{\times}$ for the point with $\mathcal{P}(\tilde{z}_0) = p_0$ and $\Im(z_0) \in (-\pi, \pi]$. For later reference put $\tilde{E}_a^* := \mathcal{P}^{-1}(E_a^*)$, which is either all of \tilde{E}_a^{\times} or the complement of $\Pi^{-1}(\mathbb{Z}(1))$. Now suppose $V(a) \in \Lambda(a)$. If $a \in \mathbb{D}^-$, then $\gamma, \beta, \omega_{\gamma}, \omega_{\beta}, \Omega, R_{\gamma}, R_{\beta}$, and ν are well-defined; if not, we take them to be analytic continuations (along the same path) to a of those objects from \mathbb{D}^- . (We will not write $\omega(a)$ etc., just ω , since a is fixed and understood.) Then we have (3.19) $$\nu = \frac{1}{4\pi^2} (R_{\gamma} \Omega - R_{\beta}) = n_1 + n_2 \Omega$$ ²⁷represented by $\Delta=$ convex hull of $\{(-1,-1), (2,-1), (-1,2)\}$, with $\mathbb{P}_{\Delta}=\mathbb{P}^2$ ²⁸There are 4 equivalence classes of ploygons for which $\tilde{E}^*_a=\tilde{E}^\times_a$, corresponding to $X=\mathbb{P}^2$, $\mathbb{P}^1\times\mathbb{P}^1$, \mathbb{F}_1 , and \mathbb{F}_2 . Otherwise, for $\tilde{z}\in \tilde{E}^\times_a\setminus \tilde{E}^*_a$, in view of (3.15) we have $-1=x_1(\tilde{z})=x_1(z)=-e^z\implies z\in\mathbb{Z}(1)$. for some $n_1, n_2 \in \mathbb{Z}$. Notice that the regulator class \mathcal{R} is only well-defined in $H^1(E_a, \mathbb{C}/\mathbb{Z}(2))$, so its value on γ is still represented by $\mathfrak{R}_{\gamma} := R_{\gamma} - 4\pi^2 n_2$. This replaces (3.19) by (3.20) $$R_{\beta} - \mathfrak{R}_{\gamma} \frac{\omega_{\beta}}{\omega_{\gamma}} = -4\pi^{2} n_{1} \in \mathbb{Z}(2),$$ and we claim this allows us to define a holomorphic function on \tilde{E}_a^* by (3.21) $$\chi(\tilde{z}) := \exp\left(\frac{\mathbf{i}}{2\pi} \left\{ \int_{\mathscr{P}_{\tilde{z}_0}}^{\tilde{z}} z \frac{dx_2(\tilde{z})}{x_2(\tilde{z})} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\mathscr{P}_{\tilde{z}_0}}^{\tilde{z}} \mathcal{P}^* \omega \right\} \right),$$ where ω is as in (3.1), and $\mathscr{P}_{\tilde{z}_0}^{\tilde{z}}$ is any path from \tilde{z}_0 to \tilde{z} . The issue here is well-definedness, since nothing in the braces blows up on \tilde{E}_a^* . To check this, we remind the reader that for a loop \mathscr{L} on E_a^* based at p_0 , the value of \mathcal{R} on its homology class is computed by²⁹ $$(3.22) \quad R_{\mathscr{L}} \underset{\mathbb{Z}(2)}{\equiv} \int_{\mathscr{L}} \log(-x_1) \operatorname{dlog}(-x_2) - \log(-x_2(p_0)) \int_{\mathscr{L}} \operatorname{dlog}(-x_1),$$ where $\log(-x_1)$ is analytically continued along \mathscr{L} [Ke1]. If \mathscr{L} lifts to a loop $\tilde{\mathscr{L}}$ on \tilde{E}_a^* , then clearly $\int_{\mathscr{L}} \operatorname{dlog}(x_1) = 0$, and (3.22) pulls back to $\int_{\tilde{\mathscr{L}}} z \frac{dx_2(\tilde{z})}{x_2(\tilde{z})}$. Now given two paths \mathscr{P} , \mathscr{P}' from \tilde{z}_0 to \tilde{z} on \tilde{E}_a^* , take $\tilde{\mathscr{L}}$ to be the loop obtained by composing \mathscr{P} with the "reverse" of \mathscr{P}' , and write $\mathscr{L} = k_1 \gamma + k_2 \beta$ in $H_1(E_a, \mathbb{Z})$. (By integral temperedness of $\{-x_1, -x_2\}$, this determines $R_{\mathscr{L}}$ mod $\mathbb{Z}(2)$.) The difference between the braced expression in (3.21) for these two paths is then (3.23) $$\int_{\tilde{\mathscr{Z}}} z \frac{dx_2(\tilde{z})}{x_2(\tilde{z})} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\tilde{\mathscr{Z}}} \mathcal{P}^* \omega = \int_{\mathscr{L}} \log(-x_1) \operatorname{dlog}(x_2) - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\mathscr{L}} \omega \\ = k_1 R_{\gamma} + k_2 R_{\beta} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} (k_1 \omega_{\gamma} + k_2 \omega_{\beta}) \\ = k_1 (R_{\gamma} - \mathfrak{R}_{\gamma}) + k_2 (R_{\beta} - \mathfrak{R}_{\gamma} \Omega) \\ = 4\pi^2 (k_1 n_2 - k_2 n_1) \underset{\mathbb{Z}(2)}{\equiv} 0,$$ using (3.20). After multiplying by $\frac{\mathbf{i}}{2\pi}$, this discrepancy is killed by the exp and the claim is verified. In fact, $\chi(\tilde{z})$ extends to a meromorphic function on \tilde{E}_a^{\times} which is holomorphic at $\Pi^{-1}(0)$. Of course, ω has no poles on E_a , and so $\mathcal{P}^*\omega$ has none on \tilde{E}_a^{\times} ; the potential culprit is $\frac{dx_2}{x_2}$, when d_u, d_ℓ are not both zero. Writing $z = 2\pi \mathbf{i} n + w + O(w^2)$, $x_2 = w^d$ (for $d = -d_u$ or d_ℓ), we find $\int z \frac{dx_2}{x_2} \sim 2\pi \mathbf{i} dn \log(w)$ hence $\exp(\frac{\mathbf{i}}{2\pi} \int z \frac{dx_2}{x_2}) \sim w^{-nd}$, as desired. $^{^{29}}$ Of course, $dlog(-x) = dlog(x) = \frac{dx}{x}$. Note that (3.22), which is due to Beilinson [Be] and Deligne [unpublished], is different from the regulator formula using the current $R\{-x_1, -x_2\}$ (in which the function "log" is not analytically continued but has a branch cut), but is easily shown to give the same integral regulator. Finally, writing $\tilde{\iota} \colon \tilde{E}_a^{\times} \to \tilde{E}_a^{\times}$ for the involution over \mathbb{C} , we put (3.24) $$\tilde{\Psi}(\tilde{z}) := \frac{\chi(\tilde{z}) - \chi(\tilde{\iota}(\tilde{z}))}{\delta(\mathcal{P}(\tilde{z}))}.$$ The denominator has zeroes at $\mathcal{P}^{-1}(\mathfrak{B})$, which does not intersect any of the poles of the numerator.³⁰ Moreover, these are simple zeroes, and the numerator also has zeroes at these points (which are just the fixed points of $\tilde{\iota}$). So $\tilde{\Psi}$ is holomorphic on $\tilde{E}_a^{\times} \setminus \Pi^{-1}(\mathbb{Z}(1) \setminus \{0\})$. Notice also that applying $\tilde{\iota}$ to \tilde{z} changes the sign in the numerator and denominator of (3.24) (since $\mathcal{P} \circ \tilde{\iota} = \iota \circ \mathcal{P}$). We conclude that there exists a meromorphic function Ψ on \mathbb{C} , with (at worst) poles on $2\pi \mathbf{i}(\mathbb{Z} \setminus \{0\})$, such that $\tilde{\Psi} = \Pi^* \Psi$; we write this loosely as (3.25) $$\Psi(z) := \frac{\chi(\tilde{z}) - \chi(\tilde{\iota}(\tilde{z}))}{\delta(\mathcal{P}(\tilde{z}))},$$ and denote its restriction to the real line by $\psi(r)$. We are now ready to prove the **Theorem 3.7.** For Δ satisfying (3.14), the " \supseteq " direction of (3.12) holds. That is, if $V(a) \in \Lambda(a)$, then $a \in \sigma(\hat{\varphi})$. Proof. First note that $\hat{x}_1 = \text{multiplication by } e^r \ (not - e^r), \ \hat{x}_2 = e^{-2\pi \mathbf{i}\partial_r},$ and $\hat{\varphi} = -\varphi(-\hat{x}_1, -\hat{x}_2)$ are unbounded operators on $L^2(\mathbb{R})$, whose domains are roughly the proper linear subspaces on which each operator preserves square integrability. (See [LST] for details.) In particular, it is possible in this sense to be in the domain of $\hat{\varphi}$ while failing to be in that of $\hat{x}_1^{\pm 1}$ and $\hat{x}_2^{\pm 1}$, which is just what happens for $\psi(r)$. Indeed, assuming $V(a) \in \Lambda(a)$, we claim that $\psi \in L^2(\mathbb{R}) \setminus \{0\}$ and $$\hat{\varphi}\psi = a\psi,$$ which will obviously prove the theorem. As Ψ is holomorphic on $\{z \in \mathbb{C} \mid -2\pi \mathbf{i} < \Im(z) < 2\pi \mathbf{i}\}$, with meromorphic extension to a neighborhood of its closure, we have (3.27) $$e^{\pm 2\pi \mathbf{i}\partial_r}\psi(r) = e^{\pm 2\pi \mathbf{i}\partial_z}\Psi(r) = \Psi(r \pm 2\pi \mathbf{i})$$ $$=: \Psi(\tau_{\pm}(r)) =: (\mathscr{S}_{\pm}\Psi)(r) =: (\mathscr{S}_{\pm}\psi)(r).$$ Furthermore, τ_{\pm} has a unique lift $\tilde{\tau}_{\pm} \colon \tilde{E}_{a}^{\times} \to \tilde{E}_{a}^{\times}$ with the property that $\mathcal{P} \circ \tilde{\tau}_{\pm} = \mathcal{P}$; and so the difference operator \mathscr{S}_{\pm} lifts to $(\tilde{\mathscr{S}}_{\pm}\chi)(\tilde{z}) := \chi(\tilde{\tau}_{\pm}(\tilde{z}))$. By the independence of path in (3.21), we can take our path ³⁰The only way ι has a fixed point at $x_1 = -1$ is if $d_u = d_\ell = 0$. from \tilde{z}_0 to $\tilde{\tau}_{\pm}(\tilde{z})$ to be the composition of $\tilde{\tau}_{\pm}(\mathscr{P}_{\tilde{z}_0}^{\tilde{z}})$ with a fixed path \mathscr{P}_0^{\pm} from \tilde{z}_0 to $\tilde{\tau}_{\pm}(\tilde{z}_0)$. That is, writing $\mathcal{P}(\mathscr{P}_0^{\pm}) =: \mathscr{L}_0^{\pm}$, we have (3.28) $$\chi(\tilde{\tau}_{\pm}(\tilde{z})) = \exp\left(\frac{\mathbf{i}}{2\pi} \left\{ \int_{\tilde{\tau}_{\pm}(\mathscr{P}_{\tilde{z}_{0}}^{\tilde{z}}) + \mathscr{P}_{0}^{\pm}} z \frac{dx_{2}(\tilde{z})}{x_{2}(\tilde{z})} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\tilde{\tau}_{\pm}(\mathscr{P}_{\tilde{z}_{0}}^{\tilde{z}}) + \mathscr{P}_{0}^{\pm}} \mathcal{P}^{*}\omega \right\} \right)$$ $$= \exp\left(\frac{\mathbf{i}}{2\pi} \left\{ \int_{\mathscr{P}_{\tilde{z}_{0}}^{\tilde{z}}} (z \pm 2\pi \mathbf{i})
\frac{dx_{2}(\tilde{z})}{x_{2}(\tilde{z})} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\mathscr{P}_{\tilde{z}_{0}}^{\tilde{z}}} \mathcal{P}^{*}\omega \right\} \right)$$ $$\times \exp\left(\frac{\mathbf{i}}{2\pi} \left\{ \int_{\mathscr{L}_{0}^{\pm}} \log(-x_{1}) \frac{dx_{2}}{x_{2}} - \frac{\mathfrak{R}_{\gamma}}{\omega_{\gamma}} \int_{\mathscr{L}_{0}^{\pm}} \omega \right\} \right).$$ Adding and subtracting $-\log(-x_2(\tilde{z}_0))\int_{\mathcal{L}_0^{\pm}} \frac{dx_1}{x_1} (= \mp 2\pi \mathbf{i} \log(-x_2(\tilde{z}_0)))$ in the last braced expression, (3.28) becomes $$(3.29) \quad \chi(\tilde{z})e^{\mp\{\log(-x_2(\tilde{z}))-\log(-x_2(\tilde{z}_0))\}} \times e^{\frac{i}{2\pi}\{R_{\mathcal{L}_0^{\pm}} - \frac{\Re\gamma}{\omega\gamma}\omega_{\mathcal{L}_0^{\pm}}\}}e^{\mp\log(-x_2(\tilde{z}_0))}.$$ By the same calculation as in (3.23), we have $R_{\mathcal{L}_0^{\pm}} - \frac{\Re_{\gamma}}{\omega_{\gamma}} \omega_{\mathcal{L}_0^{\pm}} \in \mathbb{Z}(2)$, and so after cancelling $\log(-x_2(p_0))$'s, we arrive at $$(3.30) \qquad (\tilde{\mathscr{S}}_{\pm}\chi)(\tilde{z}) = -x_2(\tilde{z})^{\pm 1} \cdot \chi(\tilde{z}).$$ Since $-\hat{x}_1 = -\mu_{e^r} = \mu_{-e^r} = \mu_{x_1(r)}$, $\hat{\varphi}$ acts on ψ as $-\varphi(\mu_{x_1(r)}, -\mathscr{S}_-)$, which lifts to $-\varphi(\mu_{x_1(r)}, -\tilde{\mathscr{S}}_-)$ for functions on \tilde{E}_a^{\times} . Applying this to $\chi(\tilde{z})$ gives $-\varphi(x_1(z), x_2(\tilde{z})) \cdot \chi(\tilde{z}) = a\chi(\tilde{z})$, and applying it to $\chi(\tilde{\iota}(\tilde{z}))$ yields $-\varphi(x_1(z), x_2(\tilde{\iota}(\tilde{z}))) \cdot \chi(\tilde{\iota}(\tilde{z})) = a\chi(\tilde{\iota}(\tilde{z}))$. (Here we are just using the equation of the curve, $\varphi(x_1(z), x_2(\tilde{z})) + a = 0$; and we can ignore $\delta(\mathcal{P}(\tilde{z}))$ in the denominator of $\tilde{\Psi}$ since $\tilde{\mathscr{S}}_{\pm}$ doesn't affect it.) So the overall effect on $\tilde{\Psi}$, hence ψ , is multiplication by a. This proves (3.26). We still need to check is that ψ is indeed square-integrable. Clearly $\int \mathcal{P}^* \omega$ has a finite limit as $r \to \pm \infty$, so we consider the behavior of (3.31) $$\int r \frac{dz_2(\tilde{r})}{z_2(\tilde{r})} = \int \log(-x_1(r)) \operatorname{dlog}(-x_2(\tilde{r})).$$ Let $q \in E_a \setminus E_a^{\times}$, and set $o_j := \operatorname{ord}_q(x_j)$; then $(-1)^{o_1o_2} \lim_{p \to q} \frac{x_1(p)^{o_2}}{x_2(p)^{o_1}} = 1$ by integral temperedness. Hence there is a local holomorphic coordinate w on E_a vanishing at q, with $-x_1 = w^{o_1}$ and $-x_2 = \pm w^{o_2}(1 + O(w))$, and $(3.31) = \frac{o_1o_2}{2} \log^2 w + O(w \log w)$ is just $\frac{o_2}{2o_1} r^2$ (with $o_1 \neq 0$) plus terms limiting to zero. Since this is multiplied by $\frac{\mathbf{i}}{2\pi}$ before taking exp, we conclude that $\chi(\tilde{z})$ is bounded on $\Pi^{-1}(\mathbb{R})$. On the other hand, in the denominator $\delta(\mathcal{P}(\tilde{r})) = \sqrt{\mathcal{D}(-e^r)}$ of ψ , $\mathcal{D}(-e^r) = \sum_{j=-c_-}^{c_+} \mathbf{a}_j e^{jr}$ ($\mathbf{a}_{-c_-}, \mathbf{a}_{c_+} \neq 0$) is dominated by the e^{c_+r} term as $r \to +\infty$ and the e^{-c_-r} term as $r \to -\infty$. That is, $|\psi(r)| \leq Ce^{-|r/2|}$ for some constant C, hence ψ belongs to $L^2(\mathbb{R})$. Finally, we must show that ψ is not identically zero. If it were, then by basic complex analysis Ψ would be zero; so it suffices to check that (say) $\Psi(z_0 + 2\pi \mathbf{i}n) \neq 0$ for some $n \in \mathbb{Z}$. We may choose a local holomorphic coordinate u on \tilde{E}_a^{\times} about \tilde{z}_0 , such that (locally) $\tilde{\iota}$ sends $u \mapsto -u$ and $z = z_0 + u^2$. Clearly $x_2(\tilde{z}) = x_2(p_0)(1 + c_1u + O(u^2))$ and $\mathcal{P}^*\omega = (c_2 + O(u))du$ for constants $c_1, c_2 \in \mathbb{C}^*$. The expression in braces in (3.21) (integrating on a path from \tilde{z}_0 to $\tilde{z}(u)$) takes the form $(c_1z_0 - \frac{\Re_{\gamma}}{\omega_{\gamma}}c_2)u + O(u^2)$, and we can ensure the coefficient of u is nonzero by replacing z_0 by $z_0 + 2\pi \mathbf{i}n$ if necessary (since this affects nothing else). So the numerator of (3.24) becomes $e^{c_0u + O(u^2)} - e^{-c_0u + O(u^2)} \sim 2c_0u$, and since the denominator also has a simple zero at u = 0 we are done. \square Remark 3.8. Returning to the "sign flip" between curve and operator highlighted in Remark 3.5(iii), we remind the reader that it is $\{-x_1, -x_2\}$, not $\{x_1, x_2\}$, which is integrally tempered for the simplest choices of Laurent polynomial φ .³¹ So it is the regulator integral for this symbol which produces a well-defined $\tilde{\Psi}(\tilde{z})$. But the signs in the symbol force the shift operator \hat{x}_2 to act on $\chi(\tilde{z})$ through multiplication by $-x_2(\tilde{z})$ rather than $x_2(\tilde{z})$, which in turn forced us to use $(-\exp)$ (not exp) in (3.18) so that \hat{x}_1 acts through multiplication by $-x_1(z)$, resulting in the action of $\hat{\varphi} = -\varphi(-\hat{x}_1, -\hat{x}_2)$ through multiplication by $-\varphi(x_1(z), x_2(\tilde{z}))$. The upshot is that the signs in the symbol³² are ultimately responsible for the presence of the B-field. Remark 3.9. A result of Kashaev and Sergeev [KS, Theorem 7], while expressed in very different terms, can be shown to be equivalent the special case $\varphi = x_1 + x_1^{-1} + x_2 + x_2^{-1}$ of Theorem 3.7. (The conditions in [loc. cit.] on a pair $(\lambda, \varepsilon) \in \mathbb{C} \times \mathbb{R}_{>4}$ they require for their construction of eigenfunctions of $\hat{\varphi}$ amount to taking $\nu(\varepsilon) \in \mathbb{Z}$ and $\lambda = -\frac{i\varepsilon}{8\pi^2} \frac{\Re_{\gamma}(\varepsilon)}{\omega_{\gamma}(\varepsilon)}$.) However, they do not relate their result to the relevant conjecture of [GHM] or prove a partial converse as in Theorem 3.10 below. Without stating any results formally, we want to briefly address the higher genus hyperelliptic case, where $F_1 = \varphi$ still takes the form in (3.14)-(3.15) but Δ is no longer reflexive. (Note that φ_0 will have a_2, \ldots, a_g as coefficients.) One easily checks that the construction of ψ and the proof of Theorem 3.7 still go through after modifying $\chi(\tilde{z})$, provided we impose a stronger quantization condition than that in RHS(2.32). Namely, referring to (2.27), suppose that (3.32) the normal function vector $\underline{\nu}(\underline{a})$ belongs to $(\mathbb{I}_g \mid \Omega)\mathbb{Z}^g$. $^{^{31}{\}rm e.g.}~x_1+x_2+x_1^{-1}x_2^{-1},$ and including the examples studied in [GKMR] with trivial mass invariants $Q_{m_k}=1.$ ³²along with those in (3.11) arising from Weyl quantization and the CBH formula. Then replacing the expression in braces in (3.21) by (3.33) $$\int_{\mathscr{P}_{\tilde{z}_0}^{\tilde{z}}} z^{\frac{dx_2(\tilde{z})}{x_2(\tilde{z})}} - \sum_{j=1}^g \mathfrak{R}_{\gamma_j} \int_{\mathscr{P}_{\tilde{z}_0}^{\tilde{z}}} \mathcal{P}^* \omega_j$$ for appropriate determinations of \mathfrak{R}_{γ_j} , the obvious generalization of (3.23) goes through, ensuring that the generalized $\chi(\tilde{z})$ is well-defined. Under an additional assumption like (2.20), and changing the signs in $\hat{\varphi}$ of those a_j 's attached to even powers of \hat{x}_1 , one finds as before that $\hat{\varphi}\psi = a_1\psi$. The criterion (3.32), which we expect corresponds to the exact NS quantization conditions of [SWH], will only hold at countably many points in moduli. On the other hand, Conjecture 2.4 predicts the existence of eigenfunctions for \underline{a} in a codimension-1 subset of moduli. So it stands to reason that there should be something special about the eigenfunctions ψ , which we can only construct for \underline{a} in the smaller locus. In the genus-2 example worked out explicitly in [Za, §4.3], whose "fully on-shell" quantization conditions (cf. [loc. cit., (4.45)]) should agree with (3.32), Zakany highlights the enhanced decay of his explicit eigenfunctions. Indeed, in our construction, for g > 1 the discriminant \mathcal{D} will involve higher powers of both x_1 and x_1^{-1} than for g = 1, which leads to decay better than $e^{-|r/2|}$ at infinity for $\psi(r)$; this perhaps begins to explain the discrepancy. 3.3. Remarks on the spectrum of $\hat{\varphi}$. Notably absent from the last section is any discussion of the "converse question", as to whether every eigenfunction of $\hat{\varphi}$ arises from the construction described there. We will prove a fairly strong result in this direction, to the effect that "almost every" eigenvalue λ satisfies $V(\lambda) \in \Lambda(\lambda)$. As already mentioned in Remark 3.5, 33 the spectrum $\sigma(\hat{\varphi})$ is a countable subset of $[c, \infty)$ for some c > 0, whose elements can be arranged in an increasing sequence $\{\lambda_j\}_{j\geq 1}$ with $\lambda_j \to 0$. We may replace $\hat{\varphi}$ by its self-adjoint Friedrichs extension to $L^2(\mathbb{R})$ without affecting these statements, cf. [LST]. Suppose **P** is a proposition (that can be true or false) about elements of $\sigma(\hat{\varphi})$. Write $N(\lambda) := |\{j \in \mathbb{N} \mid \lambda_j \leq \lambda\}|$ and $$N_{\mathbf{P}}(\lambda) := |\{j \in \mathbb{N} \mid \lambda_j \le \lambda \text{ and } \mathbf{P}(\lambda_j) \text{ holds}\}|.$$ We will say that \mathbf{P} holds asymptotically if (3.34) $$\lim_{\lambda \to \infty} \frac{N_{\mathbf{P}}(\lambda)}{N(\lambda)} = 1.$$ $^{^{33}}$ The point is that the proof of [LST, Prop. 3.4] trivially generalizes to all φ we consider here, because Δ always contains a reflexive triangle (or square). The proof of Theorem 3.10 involves, in contrast, a rather nontrivial generalization of [op. cit., §3.2]. **Theorem 3.10.** In the setting of Theorem 3.7, the " \subseteq " direction of
(3.12) holds asymptotically. *Proof.* The statement $\mathbf{P}(\lambda_j)$ about eigenvalues here is, of course, that $\nu(\lambda_j) \in \mathbb{Z}$.³⁴ From Lemma 3.1(c), we know that $\nu(a) = \frac{r^{\circ}}{8\pi^2} \log^2 a + O(\log a)$, whence $$(3.35) N(\lambda) \ge N_{\mathbf{P}}(\lambda) \ge \lfloor \nu(\lambda) - \nu(|\hat{a}|) \rfloor \ge \frac{r^{\circ}}{8\pi^2} \log^2 \lambda + O(\log \lambda).$$ Now given $f, g \in L^2(\mathbb{R})$, write $\langle f, g \rangle := \int_{\mathbb{R}} f(r) \overline{g(r)} dr$, and (3.36) $$\tilde{f}(y_1, y_2) := 2^{-5/4} \pi^{-3/2} \int_{\mathbb{R}} e^{-\frac{1}{4\pi} \{(r-y_1)^2 + 2iy_2r\}} f(r) dr$$ for the coherent state transform of f. Adapting the calculations of [LST, §3.1] to our setting gives (3.37) $$\langle \hat{\varphi}f, f \rangle = \iint_{\mathbb{R}^2} \Phi(y_1, y_2) |\tilde{f}(y_1, y_2)|^2 dy_1 dy_2$$ where (3.38) $$\Phi(y_1, y_2) := \sum_{\underline{m} \in \partial \Delta \cap \mathbb{Z}^2} \underbrace{a_{\underline{m}} e^{-\frac{\pi}{2}(m_1^2 + m_2^2)}}_{=: \tilde{a}_{\underline{m}}} e^{m_1 y_1 + m_2 y_2}.$$ This implies, for instance, the semi-boundedness of $\hat{\varphi}$, as $\Phi \geq c := \min_{y \in \mathbb{R}^2} \Phi(y) > 0 \implies \hat{\varphi} \geq c \cdot \mathrm{Id} \implies \sigma(\hat{\varphi}) \subset [c, \infty).$ Let $(\cdot)_+$ be the function on \mathbb{R} defined by $(s)_+ = s$ for $s \geq 0$ and $(s)_+ = 0$ for $s \leq 0$, and note that (3.39) $$\int_0^\lambda N(s) ds = \sum_{j \ge 1} (\lambda - \lambda_j)_+.$$ Reasoning with Jensen's inequality as in [op. cit., §2.2], we have $$(3.40) \qquad \sum_{j\geq 1} (\lambda - \lambda_j)_+ \leq \frac{1}{4\pi^2} \iint_{\mathbb{R}^2} (\lambda - \Phi(y_1, y_2))_+ dy_1 dy_2.$$ Choose M > 0 so that $M\tilde{a}_{\underline{m}} \geq a_{\underline{m}}$ ($\forall \underline{m} \in \partial \Delta \cap \mathbb{Z}^2$). Writing $Y_j := e^{y_j}$ and $\Gamma_L := \{\underline{Y} \in \mathbb{R}^2_+ \mid L \geq \varphi(Y_1, Y_2)\}$, note that the boundary $\partial \Gamma_L$ is the cycle β on E_{-L} . Together with Lemma 3.1(a) and (2.13), this gives (3.40) $$\leq \frac{1}{4\pi^2 M} \iint_{\mathbb{R}^2} (M\lambda - \varphi(Y_1, Y_2))_{+} \frac{dY_1}{Y_1} \frac{dY_2}{Y_2}$$ $\leq \frac{\lambda}{4\pi^2} \iint_{\Gamma_{M\lambda}} \frac{dY_1}{Y_1} \frac{dY_2}{Y_2} = \frac{\lambda}{4\pi^2} R_{\beta} (-M\lambda)$ $= \frac{r^{\circ}}{8\pi^2} \lambda \log^2 \lambda + O(\log \lambda).$ Putting the last three equations together, we get (3.42) $$\frac{r^{\circ}}{8\pi^{2}}\log^{2}\lambda + O(\log\lambda) \ge N(\lambda),$$ which combined with (3.35) gives the result. ³⁴We can always throw out a finite set of eigenvalues less than $|\hat{a}|$, if they exist (cf. Remark 3.5). The constraints imposed on the zero locus of $\rho \circ \nu$ by its interpretation as eigenvalues of $\hat{\varphi}$ (Theorem 3.7), and vice versa (Theorem 3.10), seem worth exploring further. For instance, per Remark 3.5, we expect (and know in some cases) that $c > |\hat{a}|$; together with the following Lemma, this essentially rules out points $a \in U$ at which $V(a) \in \Lambda(a)$ (the exact quantization condition) and $\mathcal{R}(a)$ is torsion (the perturbative quantization condition proposed in [GS]). **Lemma 3.11.** For $a \in (|\hat{a}|, \infty)$, $\mathcal{R}(a) \in H_1(E_a, \mathbb{C}/\mathbb{Z}(2))$ is a nontorsion class. Proof. From the known integrality of local instanton numbers of toric CY 3-folds [Ko], it follows that LHS(3.7) ≥ 1 , hence that $\Re(t(\hat{a})) \geq 0$. From (3.3) (and positivity of coefficients of φ , and negativity of \hat{a}), it is immediate that $t(|\hat{a}|) > \Re(t(\hat{a}))$, hence $t(a) \in \mathbb{R}_+$ for $a \in (|\hat{a}|, \infty)$. But if $\Re(a)$ is torsion, then $\Re(a) \in \Re(a) = \Im(a) \in \Re(a)$. \square More striking is a conditional transcendence result on the eigenvalues that arises from their asymptotic Hodge-theoretic interpretation in Theorem 3.10. A mixed version of the Grothendieck period conjecture (which we will simply call the GPC) says that the transcendence degree of a period point arising from a motive defined over \mathbb{Q} is equal to the dimension of the minimal mixed Mumford-Tate domain containing it. The (mixed) motive in question is the K_2 -cycle $\{-x_1, -x_2\}$ on E_a , with MHS the extension of $\mathbb{Z}(0)$ by $H^1(E_a, \mathbb{Z}(2))$ given by $\frac{1}{(2\pi \mathbf{i})^2}\mathcal{R}$. The possibillities for the M-T group are an extension of SL_2 or a 1-torus (depending on whether E_a is CM) by $\mathbb{G}_a^{\times 2}$ or $\{1\}$ (depending on whether \mathcal{R} is torsion); the corresponding domain is \mathfrak{H} , a CM point in it, or the product of either one with \mathbb{C}^2 . The coordinates of the period point are $\Omega(a)$ (in \mathfrak{H}) and $(\frac{R_{\gamma}(a)}{(2\pi \mathbf{i})^2}, \frac{R_{\beta}(a)}{(2\pi \mathbf{i})^2})$ (in \mathbb{C}^2).³⁵ Conjecture 3.12 (GPC). If $a \in \overline{\mathbb{Q}}$ and $\mathcal{R}(a)$ is nontorsion, then the transcendence degree of $\overline{\mathbb{Q}}(\Omega(a), \frac{R_{\gamma}(a)}{(2\pi \mathbf{i})^2}, \frac{R_{\beta}(a)}{(2\pi \mathbf{i})^2})/\overline{\mathbb{Q}}(\Omega(a))$ is 2. **Proposition 3.13.** Assuming the GPC, asymptotically $\sigma(\hat{\varphi})$ consists of transcendental numbers. Proof. Let $\lambda \in \sigma(\hat{\varphi})$ be an eigenvalue for which $\nu(\lambda) \in \mathbb{Z}$. (We may assume $\lambda \in (|\hat{a}|, \infty)$.) That is, we have an algebraic relation $\frac{1}{4\pi^2}(R_{\gamma}(\lambda)\Omega(\lambda_i) - R_{\beta}(\lambda)) = n$ on $\frac{R_{\gamma}(\lambda)}{(2\pi \mathbf{i})^2}$ and $\frac{R_{\beta}(\lambda)}{(2\pi \mathbf{i})^2}$ over $\bar{\mathbb{Q}}(\Omega(\lambda))$. By the GPC, either $\lambda \notin \bar{\mathbb{Q}}$ or $\mathcal{R}(\lambda)$ is torsion. But the latter possibility is ruled out by Lemma 3.11, and so we are done by Theorem 3.10. \square ³⁵We have to divide by $(2\pi \mathbf{i})^2$, of course, because a torsion class must have coordinates in \mathbb{Q} , not transcendental ones in $\mathbb{Q}(2)$. We conclude with somthing of a curiosity: in case $\varphi = x_1 + x_1^{-1} + x_2 + x_2^{-1} + x_1 x_2^{-1} + x_1^{-1} x_2$, our normal function is closely related to the Feynman integral \mathcal{I} associated to the sunset graph with equal masses [BKV]. This is written in [op. cit.] as a function of $s = \frac{1}{3-a} =$ the inverse norm of the external momentum, but written as a function of a we have $\mathcal{I}(a) = \frac{(2\pi \mathbf{i})^2}{a}V(a)$ (see [op. cit., (7.17)]). The condition that $V(a) \in \Lambda(a)$ means that V, or equivalently \mathcal{I} , belongs to its own lattice of ambiguities under monodromy. As we have seen, the values of a at which this happens correspond to eigenvalues of $\hat{\varphi}$. One wonders if there is any deeper physical relation here between Feynman amplitudes and quantum curves. #### 4. Regulator periods at the maximal conifold point In this section we prove Conjecture 2.6 in the cases (m, n) = (g, g) and (2g-1, 1), for every $g \ge 1$. A proof for (m, n) = (2g, 1) will appear in a forthcoming work by the third author. Because we have to enumerate multiple nodes on the maximal conifold curve, it is better in this section to replace (x_1, x_2) as toric coordinates by (x, y), which we do throughout. We also denote the zero-locus of a polynomial by $\mathbf{Z}(\cdot)$. 4.1. The main result and some preliminaries. Consider the families of genus-g curves cut out of $(\mathbb{C}^*)^2$ by the (integrally tempered) polynomials $F_{g,g}(x,y)$ and $F_{2g-1,1}(x,y)$ from (2.40). In contrast to §2, $C_{g,g}$ and $C_{2g-1,1}$ will denote their compactifications in \mathbb{P}_{Δ} . There are no mass parameters in either case, so r=3 and the equations take the simpler form (2.39). Moreover, $C_{g,g}$ is torically equivalent to $C_{2g-1,1}$ via the map $u=x^{-1}y^{-1}$, $v=x^gy^{g-1}$. The effect of this map is straightforward: for $n=1,\ldots,g$ it simply shifts $n\mapsto g-n+1$ on the level of indices; that is, if $F_{g,g}(x,y)$ is written with parameters a_n , then the image (under the above map) is precisely $F_{2g-1,g}(u,v)$ with parameters a_{g-n+1} . The upshot of this connection is that statements concerning regulator periods of $C_{2g-1,1}$ can be pulled back to those corresponding to $C_{g,g}$, provided we choose the correct cycles. For our purposes here, the important case is that the cycle γ_{g-n+1} of $C_{2g-1,1}$ giving rise to $R_{\gamma_{g-n+1}} \sim -2\pi \mathbf{i} \log(a_{g-n+1})$ pulls back to the cycle γ_n of $C_{g,g}$ corresponding to $R_{\gamma_n} \sim -2\pi \mathbf{i} \log(a_n)$. **Theorem 4.1.** Conjecture 2.6 holds for the families $C_{g,g}$ and $C_{2g-1,1}$; that is, (4.1) $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_1}(\underline{\hat{a}}) \underset{\mathbb{O}(1)}{\equiv} \mathcal{D}_{g,g} \text{ and}$$ $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_g}(\hat{\underline{a}}) \equiv \mathcal{D}_{2g-1,g}.$$ Remark 4.2. The predictions of [CGM] aligning with Conjecture 2.6 are written in terms of the complex structure/GKZ parameters $z_i := z_i(\underline{a})$. (In the (g,g) cases these are given by $z_1 = \frac{a_2}{a_1^3}$, $z_2 = \frac{a_1 a_3}{a_2^2}$, ..., $z_{g-1} = \frac{a_{g-2} a_g}{a_{g-1}^2}$, $z_g = \frac{a_{g-1}}{a_g^2}$.) Translated into statements about the corresponding regulator periods (cf. (2.23)), these essentially amount to³⁶ (4.3) $$\frac{1}{2\pi \mathbf{i}} \sum_{i=1}^{g} [C^{-1}]_{1j} R_{\alpha_i}(\hat{\underline{z}}) \underset{\mathbb{Q}(1)}{\equiv} \mathcal{D}_{m,n},$$ which of course is equivalent to (2.42). While z_i and R_{α_i} are more natural from the standpoint of GKZ systems, the $\{a_j\}$ and the corresponding regulator periods R_{γ_j} simplify the statement of the result, and are more natural to compute directly (cf. Appendix A).
As we will see, the $\{\gamma_j\}$ are also the cycles which limit to loops passing through individual nodes at the maximal conifold point \hat{a} . Remark 4.3. As $R\{-x, -y\} \equiv R\{x, y\} \mod \mathbb{Q}(2)$ we may work with the latter. Note also that (2.42) is stated in terms of the regulator period asymptotic to $-2\pi \mathbf{i} \log(a_n)$; it is convenient in this section to drop the negative sign and work with one asymptotic to $2\pi \mathbf{i} \log(a_n)$. Thus from now on $$R_{\gamma_n} \sim 2\pi \mathbf{i} \log(a_n)$$. Furthermore, since we intend to investigate different components of the discriminant locus throughout this section, it will be important to track the moduli; so henceforth we will rename $F_{g,g}$ and $F_{2g-1,1}$ to $F_{g,g}^{\underline{a}}$ and $F_{2g-1,1}^{\underline{a}}$. Let us outline a proof of Theorem 4.1. Denote by $\hat{C}_{g,g}$ the fiber of the family over the maximal conifold point $\hat{\underline{a}}$. It has g nodes $\{\hat{p}_j\}$, and the cycles $\{\hat{\gamma}_j\}_{j=1}^g$ passing through each node generate $H_1(\hat{C}_{g,g})$; we set $R_{\hat{\gamma}_j} := \int_{\hat{\gamma}_i} R\{x,y\}$. Writing $\kappa = \hat{\underline{\gamma}}[\mathrm{Id}]_{\underline{\gamma}(\hat{a})}$ for the change-of-basis matrix, we have Proposition 4.4. Let $$\kappa_j := \gcd(2j-1, 2g+1)$$. Then (4.4) $\kappa = \operatorname{diag}(\kappa_1, \dots, \kappa_g)$. ³⁶Here $[C^{-1}]$ is the inverse of the first $g \times g$ minor of the intersection matrix [C]. The R_{α_i} "correspond" to z_i in the sense of being asymptotic to $2\pi \mathbf{i} \log(z_i)$. It then follows from temperedness that (4.5) $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_j}(\hat{\underline{a}}) \underset{\mathbb{Q}(1)}{\equiv} \frac{\kappa_n}{2\pi \mathbf{i}} R_{\hat{\gamma}_j}.$$ In §4.2 we detect monodromies via power series representing classical periods, verifying Proposition 4.4 in the process. In §4.3 we use a key technique developed in [DK, §6] that allows us to connect conifold limits of regulator periods to special values of the Bloch-Wigner function; this method coupled with Proposition 4.4 settles Theorem 4.1. As a consequence g-many series identities are borne out in §4.4 — not just the two required for the Theorem. We conclude this subsection with two preliminary results. The first will help us to control certain power series asymptotics, and the second gives us information on nodal fibers of $C_{g,g}$. **Lemma 4.5.** If $a, b, c \in \mathbb{R}_{\gg 0}$ are such that a = 2b + c, then (4.6) $$\frac{\Gamma(1+a)}{\Gamma^2(1+b)\Gamma(1+c)} \sim \frac{1}{2\pi b} \sqrt{\frac{a}{c}} \left(\frac{a}{c} \left(\frac{c}{b}\right)^{2b/a}\right)^a.$$ *Proof.* Stirling's approximation yields $$\frac{\Gamma(1+a)}{\Gamma^{2}(1+b)\Gamma(1+c)} \sim \frac{1}{2\pi b} \sqrt{\frac{a}{c}} \frac{a^{a}}{b^{2b}c^{c}} e^{-a+2b+c} = \frac{1}{2\pi b} \sqrt{\frac{a}{c}} \frac{a^{a}}{b^{2b}c^{a-2b}}$$ $$= \frac{1}{2\pi b} \sqrt{\frac{a}{c}} \frac{a^{a}}{c^{a}} \frac{c^{2b}}{b^{2b}} = \frac{1}{2\pi b} \sqrt{\frac{a}{c}} \left(\frac{a}{c} \left(\frac{c}{b}\right)^{2b/a}\right)^{a}$$ for $$b, c \to \infty$$ (and $a = 2b + c$). **Lemma 4.6.** Suppose that the fiber over $\underline{\tilde{a}} = (\tilde{a}_1, \dots, \tilde{a}_g)$ has g-many singularities, say $\tilde{p}_j := (\tilde{x}_j, \tilde{y}_j), n = 1, \dots, g$. Then for each j, \tilde{p}_j is a node, and $\tilde{x}_j = \tilde{y}_j$. *Proof.* Since $x\partial_x F_{g,g}^a(x,y) - y\partial_y F_{g,g}^a(x,y) = x - y$, any singularity must have symmetric co-ordinates; that is, $\tilde{x}_j = \tilde{y}_j$. By toric equivalence we may replace $F_{g,g}^{\tilde{a}}(x,y)$ by (4.7) $$F_{2g-1,g}^{\underline{\tilde{a}}}(u,v) = u + v + \sum_{\ell=1}^{g} \tilde{a}_{\ell} u^{-\ell+1} + u^{-2g+1} v^{-1}$$ (reversing the order of the $\{a_\ell\}$); by abuse of notation we continue to label the singularities of $F_{2g-1,1}^{\tilde{a}}$ by \tilde{p}_j , but with coordinates $(\tilde{u}_j, \tilde{v}_j)$ satisfying $\tilde{u}_j^{-2g+1} = \tilde{v}_j^2$. Since the edge polynomials of (4.7) are all w+1, the curve intersects each component of the toric boundary with multiplicity 1, and so all $\tilde{p}_j \in \mathbb{C}^* \times \mathbb{C}^*$. Moreover, (4.7) is irreducible since it is quadratic in v, with discriminant $\mathcal{D}(u)$ of odd degree. As a consequence, the vanishing cycle sequence associated to the smoothing $F_{2g-1,1}^{\underline{a}} + s$ takes the form (4.8) $$0 \to H^1(\mathcal{C}_{2q-1,1}^{\underline{\tilde{a}}}) \to H^1_{\lim} \to H^1_{\text{van}} \to 0.$$ Since $\operatorname{rk}(F^1H^1_{\lim}) = g$ and the g singularities each contribute nontrivially to $\operatorname{rk}(F^1H^1_{\operatorname{van}})$, each contribution must be exactly 1. So the \tilde{p}_j are either nodes or cusps, and to show they are nodes it will suffice to show that the Hessians $H_{F^{\tilde{a}}_{2g-1,1}}$ is non-degenerate at \tilde{p}_j . To do this, define (4.9) $$\tilde{P}(u) := 2g + 1 + \sum_{i=1}^{g} (2g + 1 - 2j)\tilde{a}_i u^{-j},$$ and observe that (4.10) $$\tilde{P}(\tilde{u}_j) = \frac{2g-1}{\tilde{u}_j} F_{2g-1,1}^{\tilde{a}}(\tilde{p}_j) + 2\partial_u F_{2g-1,1}^{\tilde{a}}(\tilde{p}_j) = 0.$$ Thus $\mathbf{Z}(\tilde{P}) = \{\tilde{u}_1, \dots, \tilde{u}_g\}$. It follows that \tilde{P} has no repeated roots; that is, $\tilde{P}'(\tilde{u}_i) \neq 0 \ (\forall j)$. To compute the Hessians, write $$\partial_{uu} F_{2g-1,1}^{\tilde{a}}(\tilde{p}_j) = \sum_{\ell=1}^g \ell(\ell-1)\tilde{a}_{\ell}\tilde{u}_j^{-\ell-1} + 2g(2g-1)\tilde{u}_j^{-2g-1}\tilde{v}_n^{-1} = \sum_{\ell=1}^g \ell(\ell-1)\tilde{a}_{\ell}\tilde{u}_j^{-\ell-1} + \frac{2g(2g-1)\tilde{y}_j}{\tilde{u}_j^2},$$ (4.11) $$(4.12) \quad \partial_{uv} F_{2g-1,1}^{\tilde{\underline{a}}}(\tilde{p}_j) = (2g-1)\tilde{u}_j^{-2g} \tilde{v}_j^{-2} = \frac{2g-1}{\tilde{v}_j}, \text{ and }$$ (4.13) $$\partial_{vv} F_{2g-1,1}^{\underline{\tilde{a}}}(\tilde{p}_j) = 2\tilde{u}_j^{2g-1} \tilde{v}_j^{-3} = \frac{2}{\tilde{v}_i}.$$ At this point a few simplifications can be made. Differentiating the defining equation of \tilde{P} and plugging in $u = \tilde{u}_j$, we obtain, $$(4.14) \qquad \tilde{P}'(\tilde{u}_j) = 2\sum_{\ell=1}^g \ell(\ell-1)\tilde{a}_{\ell}\tilde{u}_i^{-\ell-1} - \sum_{\ell=1}^g (2g-1)\ell\tilde{a}_{\ell}\tilde{u}_i^{-\ell-1}$$ On the other hand $\partial_u(F_{2g-1,1}^{\tilde{a}}(u,v)/u)$ vanishes at \tilde{p}_j , which yields $$-\frac{\tilde{v}_{j}}{\tilde{u}_{j}^{2}} - \sum_{\ell=1}^{g} \ell \tilde{a}_{\ell} \tilde{u}_{j}^{-\ell-1} - 2g \tilde{u}_{j}^{-2g-1} \tilde{v}_{j}^{-1} = 0$$ $$\implies \sum_{\ell=1}^{g} (2g-1)j \tilde{a}_{\ell} \tilde{u}_{j}^{-\ell-1} = -\frac{(2g-1)(2g+1)\tilde{v}_{j}}{\tilde{u}_{j}^{2}}$$ Combining everything, we arrive at (4.16) $$\partial_{uu} F_{2g-1,1}^{\underline{a}}(\tilde{p}_j) = \frac{(2g-1)^2 \tilde{v}_j}{2\tilde{u}_j^2} + \frac{\tilde{P}'(\tilde{u}_j)}{2}$$ Therefore, $$\begin{split} H_{F_{2g-1,1}^{\tilde{\underline{a}}}}(\tilde{p}_{j}) &= \left(\partial_{uv}F_{2g-1,1}^{\tilde{\underline{a}}}(\tilde{p}_{j})\right)^{2} - \partial_{uu}F_{2g-1,1}^{\tilde{\underline{a}}}(\tilde{p}_{j})\partial_{vv}F_{2g-1,1}^{\tilde{\underline{a}}}(\tilde{p}_{j}) \\ &= \frac{(2g-1)^{2}}{\tilde{u}_{i}^{2}} - \frac{(2g-1)^{2}}{\tilde{u}_{i}^{2}} - \frac{\tilde{P}'(\tilde{u}_{j})}{\tilde{v}_{j}} = -\frac{\tilde{P}'(\tilde{u}_{j})}{\tilde{v}_{j}} \neq 0 \end{split}$$ as was to be shown. 4.2. Monodromy calculations via power series. Consider a 1-parameter family of curves $\mathcal{C} \to \mathbb{P}^1$ with coordinate t, endowed with a section ω of the relative dualizing sheaf; on smooth fibers \mathcal{C}_t , ω_1 is a holomorphic 1-form. Assume that \mathcal{C}_c has a single node p_c (i.e. is a "conifold fiber"), and let δ_0 be the "conifold" vanishing cycle pinched at p_c . Writing ε_0 for a cycle invariant about t=0, its monodromy about t=c is a multiple of δ_0 , say $k\delta_0$ for some $k\in\mathbb{Z}_{\geq 0}$. We would like to compute this *conifold multiple* k. Writing $\epsilon_0(t) = \sum_{m \geq 0} b_m t^m := \int_{\epsilon_0} \omega_t$, we have (4.17) $$\int_{k\delta_0} \omega_t = (T_c - I)\epsilon_0 = 2\pi \mathbf{i} C_0 + O(t - c)$$ for some $C_0 \in \mathbb{C}$. Observe that $$(4.18) \qquad \int_{\mathbf{k}\delta_0} \omega_c = \mathbf{k} \int_{\delta_0} \omega_c = \mathbf{k} \cdot 2\pi \mathbf{i} \cdot \operatorname{Res}_{p_c} \omega_c \implies C_0 = \mathbf{k} \cdot \operatorname{Res}_{p_c} \omega_c.$$ On the other hand, [Ke2, Lemma 6.4] (with $B(t) = \epsilon_0(t)$, $\lambda = 2\pi \mathbf{i} C_0$, and w = 1) yields $$(4.19) b_m \sim \frac{C_0}{c^m \cdot m}.$$ provided $C_0 \neq 0.37$ Therefore we have proven **Lemma 4.7.** The conifold multiple is computed by (4.20) $$\mathbf{k} = \frac{\lim_{m \to \infty} b_m \cdot c^m \cdot m}{\operatorname{Res}_{p_c} \omega_c}.$$ **Example 4.8.** Consider the Legendre family, $y^2 = x(x-1)(x-t)$. Setting c=1 gives rise to a node at (1,0). Taking $\omega_t = \frac{dx}{u}$, we have (4.21) $$\operatorname{Res}_{(1,0)} \omega_c = \operatorname{Res}_{x=1} \frac{dx}{(x-1)\sqrt{x}} = 1.$$ Moreover $b_m = 2\pi \binom{-1/2}{m}^2$, hence (4.20) implies (4.22) $$\mathbf{k} = \lim_{m \to \infty} 2\pi m \binom{-1/2}{m}^2 = 2.$$ **Example 4.9.** Now consider the family C_t defined by $f_t(x,y) = xy - t^{1/3}(x^3+y^3+1)$. In this case $c = \frac{1}{3^3}$ and $b_m = \frac{(3m)!}{m!^3}$, but $C_c = \mathbf{Z}(\prod_{\ell=1}^3 (1+\zeta_3^i x + \zeta_3^{2i} y))$ is a Néron 3-gon with three nodes p_i . But since $\varepsilon_0(c)$ will pass through each p_i the same number $\mathbf{k_0}$ of times, and ω_c must have ³⁷Otherwise, B_m has a smaller exponential growth-rate and RHS(4.20) is zero, which confirms the Lemma when $C_0 = 0$ as well. the same residue at each, (4.20) holds (taking say $p_c = p_1 := (1,1)$) provided we interpret k as $3k_0$. For the residue of (4.23)
$$2\pi \mathbf{i}\omega_c = \operatorname{Res}_{\mathcal{C}_c} \frac{dx \wedge dy}{f_c} = \frac{dx}{\partial_u f_c} = \frac{dx}{x - y^2}$$ at p_1 , we can restrict to the component $X_c := \mathbf{Z}(1 + \zeta_3 x + \zeta_3^2 y)$: $$\operatorname{Res}_{p_{1}}\omega_{c} = \frac{1}{2\pi \mathbf{i}} \operatorname{Res}_{(1,1)} \left(\frac{dx}{x - y^{2}} \Big|_{X_{c}} \right) = \frac{1}{2\pi \mathbf{i}} \operatorname{Res}_{y=1} \left(\frac{\zeta_{3} dy}{y^{2} + \zeta_{3} y + \zeta_{3}^{2}} \right)$$ $$(4.24) \qquad = \frac{1}{2\pi \mathbf{i}} \frac{\zeta_{3}}{1 - \zeta_{3}^{2}} = \frac{1}{2\pi \sqrt{3}}.$$ Since $b_m = \frac{(3m)!}{m!^3}$ we get (4.25) $$k = \lim_{m \to \infty} \frac{1}{3^{3m}} \cdot m \cdot \frac{(3m)!}{m!^3} \cdot 2\pi \sqrt{3} = 3,$$ which means that $\varepsilon_0(c)$ winds once around the Néron 3-gon. For the proof of Proposition 4.4, we need to compute the Picard-Lefschetz matrix κ , whose entries κ_{ij} tell how many times the specialization $\gamma_i(\hat{a})$ passes through \hat{p}_j . In order to invoke Lemma 4.7 for this purpose, we should reinterpret these numbers as (roughly speaking) conifold multiples for 1-parameter subfamilies of $\mathcal{C}_{\underline{a}}$ acquiring a *single* node. The idea is that \hat{a} is a normal-crossing point of the discriminant locus, whose g local-analytic irreducible components each parametrize fibers carrying a single node p_j . These are labeled in such a way that the j^{th} component can be followed out to where it meets the a_j -axis at $a_j = \hat{a}_j$. Call this fiber $\mathcal{C}_{g,g}^{\hat{a}_j}$, and $\mathring{p}_j = (\mathring{x}_j, \mathring{x}_j)$ for the limit of the node to it. From Appendix A we have the 1-forms (4.26) $$\varpi_j = \frac{1}{2\pi \mathbf{i}} \nabla_{\delta_{a_j}} R\{x, y\} = \frac{-a_j}{2\pi \mathbf{i}} \operatorname{Res}_{\mathcal{C}_{g,g}} \left(\frac{dx \wedge dy}{x^j y^j F_{q,g}(x, y)} \right)$$ and 1-cycles γ_j $(j=1,\ldots,g)$. The computation that follows will consider periods $\Pi_{jj} = \int_{\gamma_j} \varpi_j$ on the 1-parameter families over the a_j -axes (acquiring a single node at $a_j = \mathring{a}_j$), which will suffice to determine the diagonal terms κ_{jj} . That the remaining, off-diagonal terms are actually zero follows from the fact (cf. Appendix A) that each γ_j is well-defined on a tubular neighborhood of the hyperplane in (compactified) moduli defined by $z_j = 0$, which is cut by the conifold components carrying p_i for every $i \neq j$. Now $C_{g,g}^{\underline{a}_j}$ is defined by (4.27) $$f_{g,g}^{(j)} := F_{g,g}^{\underline{a}_j}(x,y) = x + y + \underline{a}_j x^{1-j} y^{1-j} + x^{-g} y^{-g},$$ and to find the node \mathring{p}_i we solve (4.28) $$|\dot{x}_{j}^{2g} f_{g,g}^{(j)}|_{x=y=\dot{x}_{j}} = 2\dot{x}_{j}^{2g+1} + 1 + \dot{a}_{j}\dot{x}_{j}^{2g-2j+2} = 0,$$ to obtain (4.30) $$\mathring{x}_{j} = \sqrt[2g+1]{\frac{g-j+1}{2j-1}},$$ (4.31) $$\dot{a}_j = -\frac{2g+1}{2j-1} \left(\frac{2g+1}{g-j+1} \right)^{\frac{2(g-j+1)}{2g+1}}.$$ In particular, we have the relation (4.32) $$\mathring{a}_j \mathring{x}_j^{2(g-j+1)} = -\frac{2g+1}{2j-1}.$$ In order to calculate the residue of ϖ_j at \mathring{p}_j , recall that for any $f(x,y) = Ax^2 + Bxy + Cy^2 + \text{higher order terms} \in \mathbb{C}[x,y]$, we have $$(4.33) \qquad \operatorname{Res}_{\underline{0}}^{2} \frac{dx \wedge dy}{f} := \operatorname{Res}_{\underline{0}} \left(\operatorname{Res}_{\mathbf{Z}(f)} \frac{dx \wedge dy}{f} \right) = \frac{1}{\sqrt{B^{2} - 4AC}}.$$ Changing variables to $X := x - \mathring{x}_j$, $Y := y - \mathring{x}_j$ in $f_{g,g}^{(j)}(x,y)$ leads to the equation $$\begin{split} x^g y^g f_{g,g}^{(j)} &= \frac{\mathring{x}_j^{2g-1} (2g^2 + 2g + 1 - (g - j + 1)(2g + 1))}{2} X^2 + \mathring{x}_j^{2g-1} \big(2g^2 + 2g - (g - j + 1)(2g + 1) \big) XY \\ (4.34) &+ \frac{\mathring{x}_j^{2g-1} (2g^2 + 2g + 1 - (g - j + 1)(2g + 1))}{2} Y^2 + \text{ higher order terms.} \end{split}$$ Therefore $$\operatorname{Res}_{\mathring{p}_{j}}^{2} \frac{dx \wedge dy}{x^{g} y^{g} f_{g,g}^{(j)}} = \frac{1}{\mathring{x}_{j}^{2g-1} \sqrt{(2g^{2}+2g-(g-j+1)(2g+1))^{2}-(2g^{2}+2g+1-(g-j+1)(2g+1))^{2}}}$$ $$= \frac{1}{\mathring{x}_{j}^{2g-1} \sqrt{(2g-2g-1)(4g^{2}+4g+1-2(g-j+1)(2g+1))}}$$ $$= \frac{1}{\mathring{x}_{j}^{2g-1} \sqrt{-(2g+1)(2g+1-2g+2j-2)}}$$ $$= \frac{\mathbf{i}}{\mathring{x}_{j}^{2g-1} \sqrt{(2g+1)(2j-1)}}.$$ Consequently the residue of ϖ_i may now be found: (4.36) $$\operatorname{Res}_{\mathring{p}_{j}}^{2}\varpi_{j} = \frac{-\mathring{a}_{j}}{2\pi\mathbf{i}}\operatorname{Res}_{\mathring{p}_{j}}^{2}\frac{dx\wedge dy}{x^{j}y^{j}f_{g,g}^{(j)}}$$ $$= \frac{-\mathring{a}_{j}}{2\pi\mathbf{i}}\cdot\mathring{x}_{j}^{2(g-j)}\cdot\operatorname{Res}_{\mathring{p}_{j}}^{2}\frac{dx\wedge dy}{x^{g}y^{g}f_{g,g}^{(j)}}$$ $$= \frac{-1}{2\pi}\cdot(\mathring{a}_{j}\mathring{x}_{j}^{2(g-j+1)})\cdot\frac{1}{\mathring{x}_{j}^{2g+1}\sqrt{(2g+1)(2j-1)}}$$ $$= \frac{\sqrt{2g+1}}{2\pi(g-j+1)\sqrt{(2j-1)}}.$$ For the periods of ϖ_j , we start as in Appendix A with those of the regulator class. Writing $\varphi_j := x^{j-1}y^{j-1}F_{g,g}^a(x,y) - a_j$, (A.3) (with the sign flip from our choice of γ_j) yields $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_j}(\underline{a}) \underset{\mathbb{Q}(1)}{\equiv} \log(a_j) - \sum_{m>0} \frac{(-a_j)^{-m}}{m} [\varphi_j^m]_{\underline{0}}$$ $$= \log(a_j) - \sum_{m>0} \frac{(-a_j)^{-m}}{m} \times \left[\underbrace{(\underline{x}^j y^{j-1} + \underline{x}^{j-1} y^j + \sum_{\substack{k=1 \ k \neq j}}^g a_k \underline{x}^{j-k} y^{j-k} + \underline{x}^{j-g-1} y^{j-g-1} \right]^m}_{\underline{0}} \right]_{\underline{0}}$$ where $[L]_{\underline{0}}$ stands for the constant term (in x, y) appearing in the Laurent polynomial L. Now, given $l_1, l_2, \dots, l_g \in \mathbb{Z}$, we define (4.38) $$l_j := \frac{1}{2j-1} \left((2g+1)l_j + \sum_{\substack{k=1\\k\neq j}}^g (2k-1)l_k \right)$$ (4.39) $$l'_j := \frac{1}{2j-1} \left((g-j+1)l_j + \sum_{\substack{k=1\\k\neq j}}^g (k-j)l_k \right), \text{ and put}$$ (4.40) $$\mathcal{L}_j := \{(l_1, l_2, \cdots, l_g) \in \mathbb{Z}_{\geq 0}^g \mid \mathfrak{l}_j' \in \mathbb{Z}_{\geq 0}\} \setminus \{(0, \cdots, 0)\}$$ Note that $\mathfrak{l}'_j \in \mathbb{Z}_{\geq 0} \implies \mathfrak{l}_j \in \mathbb{Z}_{\geq 0}$. The upshot of this construction is if $L_j, L'_j \in \mathbb{Z}_{\geq 0}$ are such that (4.41) $$A_j^{L_j} B_j^{L_j'} \prod_{\substack{k=1\\k\neq j}}^{g-1} (C_j^k)^{l_k} D_j^{l_j} = 1 \text{ and }$$ (4.42) $$L_j + L'_j + \sum_{k=1}^g l_k = m$$ then $L_j = \mathcal{L}'_j = \mathfrak{l}'_j$ (by symmetry) and $m = \mathfrak{l}_j$. Thus the lattice $\mathcal{L}_j \subset \mathbb{Z}^g$ encodes all possible constant terms appearing in (4.37), giving (4.43) $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_j}(\underline{a}) \underset{\mathbb{Q}(1)}{\equiv} \log(a_j) - \sum_{\mathcal{L}_j} \frac{\Gamma(\mathfrak{l}_j)}{\Gamma^2(1+\mathfrak{l}'_j) \prod_{k=1}^g \Gamma(1+l_k)} (-a_j)^{-\mathfrak{l}_j} \prod_{\substack{k=1\\k\neq j}}^g a_k^{l_k}.$$ For the classical periods $\Pi_{j\ell} = \int_{\gamma_j} \varpi_{\ell} = \frac{1}{2\pi \mathbf{i}} \delta_{a_{\ell}} R_{\gamma_j}$, it is clear from (4.43) that $\Pi_{j\ell}$ vanishes on the a_j -axis for $\ell \neq j$. Focusing then on (4.44) $$\Pi_{jj}(\underline{a}) = \int_{\gamma_j} \varpi_j = 1 + \sum_{\mathcal{L}_j} \frac{\Gamma(1 + \mathfrak{l}_j)}{\Gamma^2(1 + \mathfrak{l}'_j) \prod_{k=1}^g \Gamma(1 + l_k)} (-a_j)^{-\mathfrak{l}_j} \prod_{\substack{k=1 \ k \neq j}}^g a_k^{l_k},$$ we set $\underline{a}_i = 0$ for $i \neq j$ to obtain $$(4.45) \quad \mathcal{S} := 1 + \sum_{\substack{g-j+1\\2j-1}l_j \in \mathbb{Z}_{>0}} \frac{\Gamma(1 + \frac{2g+1}{2j-1}l_j)}{\Gamma^2(1 + \frac{g-j+1}{2j-1}l_j)\Gamma(1 + l_j)} (-a_j)^{-\frac{2g+1}{2j-1}l_j}.$$ Recall that $\kappa_j := \gcd(2j-1, 2g+1)$, and set (4.46) $$n_{j} := \frac{2j-1}{\kappa_{j}}, \qquad m_{j} := \frac{2g+1}{\kappa_{j}} = \frac{(2g+1)n_{j}}{2j-1},$$ $$r_{j} := \frac{l_{j}}{n_{j}}, \qquad \text{and} \qquad s_{j} := a_{j}^{-m_{j}}.$$ Clearly $n_j, m_j, r_j \in \mathbb{Z}_{>0}$. Now we have a power series of the form (4.47) $$\mathcal{S} = 1 + \sum_{r_i \in \mathbb{N}} \frac{(-1)^{m_j r_j} \Gamma(1 + m_j r_j)}{\Gamma^2 (1 + \frac{m_j - n_j}{2} r_j) \Gamma(1 + n_j r_j)} s_j^{r_j} =: \sum_{r_i} b_{r_j} s_j^{r_j}.$$ Let $\mathring{s}_j := \mathring{a}_j^{-m_j}$. Applying Lemma 4.5, (4.48) $$\frac{\Gamma(1+m_{j}r_{j})}{\Gamma^{2}(1+\frac{m_{j}-n_{j}}{2}r_{j})\Gamma(1+n_{j}r_{j})} \approx \frac{(-1)^{m_{j}r_{j}}2\sqrt{m_{j}}}{2\pi r_{j}(m_{j}-n_{j})\sqrt{n_{j}}}\mathring{s}_{j}^{r_{j}}$$ from which we may conclude that (4.49) $$\lim_{r_j \to \infty} b_{r_j} \cdot r_j \cdot \mathring{s}_j^{r_j} = \frac{2\sqrt{m_j}}{2\pi(m_j - n_j)\sqrt{n_j}}.$$ Observing that $$\operatorname{Res}_{\hat{p}_{j}} \varpi_{j} = \frac{\sqrt{2g+1}}{2\pi(g-j+1)\sqrt{(2j-1)}} = \frac{\sqrt{n_{j}}}{2\pi n_{j}(g-j+1)} \cdot \sqrt{\frac{(2g+1)n_{j}}{2j-1}}$$ $$= \frac{2\sqrt{m_{j}n_{j}}}{2\pi(m_{j}-n_{j})(2j-1)}.$$ (4.50) we apply (4.20) to obtain (4.51) $$\boldsymbol{\kappa}_{jj} = \frac{\lim_{r_j \to \infty} b_{r_j} \cdot r_j \cdot \mathring{s}_j^{r_j}}{\operatorname{Res}_{\mathring{p}_i} \varpi_j} = \frac{2j-1}{n_j} = \kappa_j.$$ This concludes the proof of Theorem 4.4. Remark 4.10. Notice that $\kappa_1 = \kappa_g = 1$. We document $\underline{\kappa} := (\kappa_1, \ldots, \kappa_n)$ for $g = 1, \ldots, 10$ in Table 1. The lack of symmetry for $g \geq 4$ should not be surprising given the shape of the Newton polygon. | g | $\underline{\kappa}$ | |----|-----------------------| | 1 | 1 | | 2 | (1,1) | | 3 | (1,1,1) | | 4 | (1,3,1,1) | | 5 | (1,1,1,1,1) | | 6 | (1,1,1,1,1,1) | | 7 | (1,3,5,1,3,1,1) | | 8 | (1,1,1,1,1,1,1,1) | | 9 | (1,1,1,1,1,1,1,1,1) | | 10 | (1,3,1,7,3,1,1,3,1,1) | Table 1. Conifold multiples for small genera 4.3. Normalization of the conifold fibers. For the family $C_{m,n}$ determined
by the $\{F_{m,n}^{\underline{a}}\}$, the maximal conifold point $\underline{\hat{a}} \in (\mathbb{C}^*)^g$ is defined to be the unique point (if it exists) on the boundary of the region of convergence of the g power series (A.3) where $C_{m,n}^{\underline{\hat{a}}}$ (given by $F_{m,n}^{\underline{\hat{a}}} = 0$) acquires g nodes (labeled by $\hat{p}_j := (\hat{x}_j, \hat{y}_j)$). In this subsection we determine \hat{a} in the (q, q) cases (where r = 0). Remark 4.11. In this case it is not necessary to impose a convergence requirement to get uniqueness of a g-nodal rational curve in moduli. This comes along for the ride as we shall see in Remark 4.15. However, one should add right away that it is only \hat{z} which is unique (with or without this requirement), not \hat{a} . In fact, \mathcal{M} is a (2g+1)-to-1 étale cover of $\mathcal{M}_{\underline{z}}$, the GKZ moduli space (cf. Remark 4.2). Precisely one of the 2g+1 preimages of $\underline{\hat{z}}$ has real coordinates; it is *this one* we shall call $\underline{\hat{a}}$. Given existence of $\underline{\hat{a}}$, established in Prop. 4.13 below, a result of Tyomkin [Ty, Prop. 7] guarantees uniqueness of $\underline{\hat{z}}$. The idea is to begin with the moduli space of all curves on \mathbb{P}_{Δ} in the linear system $|\mathcal{O}_{\Delta}(1)|$ avoiding the singularities. (That is, we consider essentially all Laurent polynomials on $\Delta = \text{conv}\{(1,0),(0,1),(-g,-g)\}$, not just the tempered ones.) This has dimension g+2, and contains a variety V parametrizing all irreducible nodal rational curves. By [loc. cit.], V is irreducible and isomorphic to an open subset of $(\mathbb{C}^*)^2 \times (\mathbb{P}^1)^3$ modulo $\mathrm{PGL}_2(\mathbb{C})$ viewed as automorphisms of the mormalizing \mathbb{P}^1 , hence of dimension 2. Quotienting out by toric automorphisms (i.e. $(\mathbb{C}^*)^2$) maps each curve to its \underline{z} -coordinate. The action of $(\mathbb{C}^*)^2$ on V has no fixed points, so the image of V in $\mathcal{M}_{\underline{z}}$ is zero-dimensional and irreducible, i.e. a single point. Now the most straightforward way to find $\hat{\underline{a}}$ would be via the discriminant locus: one should look for transverse intersections amongst its local analytic branches. This is a viable strategy in particular cases; however, it requires careful analysis even in genus 2. **Example 4.12.** The family $C_{2,2}$ arising as the mirror of the resolution of $\mathbb{C}^3/\mathbb{Z}_5$ orbifold was extensively studied in [CGM, §4.1]. Its discriminant locus is described by the equation $$(4.52) \quad 3125z_1^2z_2^3 + 500z_1z_2^2 + 16z_2^2 - 225z_1z_2 - 8z_2 + 27z_1 + 1 = 0,$$ where $$(4.53) z_1 = \frac{a_2}{a_1^3}, \quad z_2 = \frac{a_1}{a_2^2}.$$ Figure 4.1 illustrates the intersection that gives rise to the maximal conifold point $\hat{\underline{z}} = (-\frac{1}{25}, \frac{1}{5})$, which lifts to $\hat{\underline{a}} = (5, -5)$. It is clear that for the family $C_{g,g}$, the discriminant locus is described by a degree 2g+1 polynomial in g variables; so that approach quickly becomes untenable. However, a close study of the g=1 and g=2 cases suggested a "constructive" approach to producing g-nodal fibers, which generalized well and leads to the following: **Proposition 4.13.** Let \mathcal{T}_m denote the m^{th} Chebyshev polynomial of the first kind; this is a degree-m polynomial characterized by $\mathcal{T}_m(\cos \theta) = \cos m\theta$. Then we have (4.54) $$F_{q,q}^{\hat{a}}(x,x) = 2x(\mathcal{T}_{2g+1}(\frac{1}{2x}) + 1).$$ FIGURE 4.1. Discriminant locus of $C_{2,2}$; axes are z_i 's. It follows that (4.55) $$\hat{a}_j = (-1)^{g-j+1} \frac{2g+1}{2j-1} \binom{g+j-1}{g-j+1} \quad and$$ (4.56) $$\hat{x}_j = \hat{y}_j = \frac{(-1)^{g-j}}{2} \sec\left(\frac{g-j+1}{2g+1}\pi\right)$$ for j = 1, ..., g. In particular, $\hat{\underline{a}} \in \mathbb{Z}^g$. Proof. That $\hat{x}_j \in \mathbf{Z}(\mathrm{RHS}(4.54))$ is immediate from the defining property of \mathcal{T}_{2g+1} , and the \hat{x}_j are distinct and different from $-\frac{1}{2}$. Moreover, writing \mathcal{U}_m for the m^{th} Chebyshev polynomial of the second kind, the relation $(\mathcal{T}_{2g+1}(w)-1)(\mathcal{T}_{2g+1}(w)+1)=(w^2-1)(U_{2g}(w))^2$ guarantees that all roots other than $-\frac{1}{2}$ of $(\mathcal{T}_{2g+1}(\frac{1}{2x})+1)$ have even multiplicity. So they all have multiplicity 2 and are precisely the $\{\hat{x}_j\}$. The polynomial $\hat{F}(x,y) := x + y + \sum_{j=1}^g \hat{a}_j x^{1-j} y^{1-j} + x^{-g} y^{-g}$, with \hat{a}_j as in (4.55), satisfies $\hat{F}(x,x) = \text{RHS}(4.54)$ by standard results on coefficients of \mathcal{T}_m . Clearly $\hat{F}(\hat{p}_j) = 0$, and the $\{\hat{p}_j\}$ are in fact singularities of $\mathbf{Z}(\hat{F})$ since $\frac{\partial \hat{F}}{\partial x}(x,x) = \frac{1}{2}\frac{d}{dx}(\hat{F}(x,x))$ and they are double roots of $\hat{F}(x,x)$. Therefore, by Proposition 4.6, they are all nodes. Since one can also check that (4.43) converges at \hat{p}_j , $\mathbf{Z}(\hat{F})$ is the maximal conifold curve. Remark 4.14. Of course, Proposition 4.13 recovers the known maximal conifold points for the families $C_{1,1}$, $C_{2,2}$ ($\hat{a}_1 = -3$ for g = 1 and $\hat{a}_1 = -3$ $5, \hat{a}_2 = -5$ for g = 2). Table 2 gathers \mathcal{T}_{2g+1} and $\hat{\underline{a}}$ for a few low genus cases. | g | $\mathcal{T}_{2g+1}(x)$ | $\hat{\underline{a}}$ | |---|---|-------------------------| | 1 | $4x^3 - 3x$ | -3 | | 2 | $16x^5 - 20x^3 + 5x$ | (5,-5) | | 3 | $64x^7 - 112x^5 + 56x^3 - 7x$ | (-7,14,-7) | | 4 | $256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$ | (9,-30,27,-9) | | 5 | $1024x^{11} - 2916x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x$ | (-11, 55, -77, 44, -11) | Table 2. Maximal conifold points for low genera. Being of geometric genus zero, the maximal conifold fiber $\hat{\mathcal{C}}_{g,g}$ admits uniformizations by \mathbb{P}^1 . In particular, we have the g distinct parametrizations $z \mapsto (\hat{X}_j(z), \hat{Y}_j(z))$, with (4.57) $$\hat{X}_{j}(z) = \frac{\hat{x}_{j} \left(1 - \frac{1}{z}\right)^{g+1}}{\left(1 - \frac{\zeta_{2g+1}^{g-j+1}}{z}\right) \left(1 - \frac{\zeta_{2g+1}^{2(g-j+1)}}{z}\right)^{g}} \quad \text{and}$$ (4.58) $$\hat{Y}_{j}(z) = \frac{\hat{y}_{j} \left(1 - \frac{z}{\zeta_{2g+1}^{2(g-j+1)}}\right)^{g+1}}{\left(1 - \frac{z}{\zeta_{2g+1}^{g-j+1}}\right) (1-z)^{g}},$$ having the property that $z=0,\infty$ are mapped to \hat{p}_j . (We defer the proof to the end of this subsection.) Hence the image of the path from z=0 to $z=\infty$ on \mathbb{P}^1 is sent (by the j^{th} map) to $\hat{\gamma}_j$. As dictated by [DK, §6.2], we assign a formal divisor $\hat{\mathcal{N}}_j$ on $\mathbb{P}^1\setminus\{0,\infty\}$ to each uniformization: for $X(z)=c_1\prod_j(1-\frac{\alpha_j}{z})^{d_j}$ and $Y(z)=c_2\prod_k(1-\frac{z}{\beta_k})^{e_k}$, this divisor is $\mathcal{N}:=\sum_{j,k}d_je_k[\frac{\alpha_j}{\beta_k}]$. According to [loc. cit.], the imaginary part of $\int_0^\infty R\{X(z),Y(z)\}$ is then given by $D_2(\mathcal{N}):=\sum_{j,k}d_je_kD_2(\frac{\alpha_j}{\beta_k})$. In our present situation, $$\hat{\mathcal{N}}_{j} = g^{2} [\zeta_{2g+1}^{2(g-j+1)}] + 2g[\zeta_{2g+1}^{g-j+1}] - (2g^{2} + 2g - 1)[1]$$ $$- 2(g+1)[\zeta_{2g+1}^{-(g-j+1)}] + (g+1)^{2} [\zeta_{2g+1}^{-2(g-j+1)}]$$ $$= 2(2g+1)[\zeta_{2g+1}^{g-j+1}] - (2g+1)[\zeta_{2g+1}^{2(g-j+1)}]$$ $$= 2(2g+1)[1 + \zeta_{2g+1}^{g-j+1}],$$ where we are working modulo the scissors congruence relations $$(4.60) [\xi] + [\frac{1}{\xi}] = 0, \ [\xi] + [\overline{\xi}] = 0, \ [\xi] + [1 - \xi] = 0 \text{ and}$$ $$(4.61) [\xi_1] + [\xi_2] + \left[\frac{1-\xi_1}{1-\xi_1\xi_2}\right] + \left[\frac{1-\xi_2}{1-\xi_1\xi_2}\right] + [1-\xi_1\xi_2] = 0$$ of the Bloch group $\mathcal{B}_2(\mathbb{C})$. Consequently we have the identity (4.62) $$D_2(\hat{\mathcal{N}}_j) = 2(2g+1)D_2(1+\zeta_{2g+1}^{g-j+1}),$$ of which two particular cases are of note: we claim that $$(4.63) D_2(\hat{\mathcal{N}}_1) = -2\pi \mathcal{D}_{g,g} \text{ and}$$ (4.64) $$D_2(\hat{\mathcal{N}}_g) = -2\pi \mathcal{D}_{2g-1,1}.$$ (See §2.4 for notation.) In fact, we can say something even more general. Given $m \in \mathbb{Z}_{>0}$, we have $$-\mathfrak{z}^{m+1}\mathfrak{w}_{m,1} = -\mathfrak{z}^{m+1} \frac{\mathfrak{z}_{m,1}^{m} - \mathfrak{z}_{m,1}^{-m}}{\mathfrak{z}_{m,1}^{m} - \mathfrak{z}_{m,1}^{-m}} = -\zeta_{2(m+2)}^{m+1} \sum_{k=0}^{m-1} \zeta_{2(m+2)}^{k} \zeta_{2(m+2)}^{-(m-1-k)}$$ $$(4.65) \qquad = -\frac{\zeta_{2(m+2)}^{m+1}}{\zeta_{2(m+2)}^{m-1}} \sum_{k=0}^{m-1} \zeta_{2(m+2)}^{2k} = -\zeta_{2(m+2)}^{2} \sum_{k=0}^{m-1} \zeta_{m+2}^{k}$$ $$= \zeta_{m+2} \left(\zeta_{m+2}^{m} + \zeta_{m+2}^{m+1} \right) = 1 + \zeta_{m+2}^{m+1}.$$ Therefore, taking conjugates, $$2(m+2)D_2(1+\zeta_{m+2}) = -2(m+2)D_2(1+\zeta_{m+2}^{m+1})$$ $$= -2\pi \mathcal{D}_{m,1}$$ (4.66) which implies (4.64) upon setting m = 2g - 1. Similarly one can see that $$\mathfrak{w}_{g,g} = \zeta_{2(2g+1)}^{1-g} \sum_{k=0}^{g-1} \zeta_{2g+1}^k$$ and thus $$2(2g+1)D_2(1+\zeta_{2g+1}^g) = -2(2g+1)D_2\left(-\sum_{k=1}^g \zeta_{2g+1}^k\right)$$ $$= -2(2g+1)D_2\left(-\zeta_{2(2g+1)}^2 \sum_{k=0}^{g-1} \zeta_{2g+1}^k\right)$$ $$= -2\pi \mathcal{D}_{g,g},$$ as was to be shown. We are now ready to prove Theorem 4.1. By the previously mentioned result of [DK, §6.2], we know that $\Im(R_{\hat{\gamma}_j}) = D_2(\hat{\mathcal{N}}_j)$ or $$\Re(\frac{1}{2\pi \mathbf{i}}R_{\hat{\gamma}_j}) = \frac{1}{2\pi}D_2(\hat{\mathcal{N}}_j).$$ Next, Proposition 4.4 tells us that $R_{\gamma_j}(\underline{\hat{a}}) = \kappa_j R_{\hat{\gamma}_j}$, while (4.55) and (4.43) ensure that (mod $\mathbb{Q}(1)$) $\frac{1}{2\pi \mathbf{i}} R_{\gamma_j}(\underline{\hat{a}})$ hence $\frac{1}{2\pi \mathbf{i}} R_{\hat{\gamma}_j}$ is real. Combining this with (4.62) gives $$(4.70) \qquad \frac{1}{2\pi \mathbf{i}}
R_{\gamma_j}(\underline{\hat{a}}) = \frac{1}{2\pi \mathbf{i}} \kappa_j R_{\hat{\gamma}_j} \underset{\mathbb{Q}(1)}{\equiv} \frac{(2g+1)\kappa_j}{\pi} D_2(1+\zeta_{2g+1}^{g-j+1}),$$ whence (4.1) [resp. (4.2)] follows from (4.63) [resp. (4.64)] by setting j = 1 [resp. j = g] in (4.70). To tie up the remaining loose end, we conclude with the Proof of the parametrizations (4.57)-(4.58). Consider the map $$\eta_i \colon \mathbb{P}^1 \to \mathbb{P}_\Delta$$ given by (4.57)-(4.58) and $\eta_j(z) := (\hat{X}_j(z), \hat{Y}_j(z))$. Obviously $\eta_j(0) = (\hat{x}_j, \hat{y}_j) = \eta_j(\infty)$. We must show that η_j is of degree 1 onto its image, and that this image is precisely $\mathcal{C}_{q,q}^{\hat{a}}$. The first part is easy. Here (only) we take \mathbb{P}_{Δ} to be the singular toric variety given by the normal fan of Δ (and not a refinement). Write D_1, D_2, D_3 for the boundary divisors, ordered so that the divisors of the torus coordinates read $$(x) = (g+1)D_1 - gD_2 - D_3$$ and $(y) = (g+1)D_2 - gD_1 - D_3$. Now on \mathbb{P}^1 , write $\xi_j := \zeta_{2g+1}^{g-j+1}$, and also p_1, p_2, p_3 for $1, \xi_j^2, \xi_j$ respectively. Clearly we have $(\hat{X}_j(z)) = (g+1)[p_1] - g[p_2] - [p_3]$ and $(\hat{Y}_j(z)) = (g+1)[p_2] - g[p_1] - [p_3]$. This shows that $\eta_j^* D_i = [p_i]$ for i = 1, 2, 3, so the map has degree 1 and the image meets all three boundary components transversely. The next step is to check that it meets each boundary component where the edge coordinate is -1, which is where $C_{g,g}^{\underline{a}}$ hits them for any \underline{a} . That is, we must show that the limits $$\lim_{z \to p_1} \hat{X}_j(z)^g \hat{Y}_j(z)^{g+1}, \quad \lim_{z \to p_2} \hat{X}_j(z)^{g+1} \hat{Y}_j(z)^g, \text{ and } \lim_{z \to p_3} \frac{\hat{X}_j(z)}{\hat{Y}_j(z)}$$ are all -1. For the third, since $\hat{x}_j = \hat{y}_j$ we get $\frac{\hat{X}_j(z)}{\hat{Y}_j(z)} = (\frac{z-1}{z-\xi_j^2})^{2g+1}$ which obviously gives -1 after substituting $z = \xi_j$. For the first, we have $\hat{X}_j(z)^g \hat{Y}_j(z)^{g+1} = \hat{x}_j^{2g+1} (\frac{z-\xi_j^2}{z-\xi_j})^{2g+1}$; substituting z = 1 yields $(\hat{x}_j(1+\xi_j))^{2g+1}$. Writing $\xi_j^{1/2} := \zeta_{4g+2}^{g-j+1}$, (4.56) gives $\hat{x}_j = \frac{(-1)^{g-j}}{\xi_j^{1/2} + \bar{\xi}_j^{1/2}}$ hence $\hat{x}_j(1+\xi_j) = (-1)^{g-j}\xi_j^{1/2}$, which has $(2g+1)^{\text{st}}$ power $(-1)^{g-j}(-1)^{g-j+1} = -1$. The second limit is very similar to the first. Now suppose $\eta_j(\mathbb{P}^1) \neq \mathcal{C}_{g,g}^{\hat{a}}$, and consider the divisor $(F_{g,g}^{\hat{a}}) = \mathcal{C}_{g,g}^{\hat{a}} - gD_1 - gD_2 - D_3$. The results of the last 3 paragraphs give $(\eta_j^* F_{g,g}^{\hat{a}}) = \eta_j^* \mathcal{C}_{g,g}^{\hat{a}} - g[p_1] - g[p_2] - [p_3] \geq 2[0] + 2[\infty] - (g-1)[p_1] - (g-1)[p_2]$. If g = 1 or 2, $(\eta_j^* F_{g,g}^{\hat{a}})$ already has positive degree, which is absurd; and the contradiction means that $\eta_j(\mathbb{P}^1) = \mathcal{C}_{g,g}^{\hat{a}}$. If g > 2, we have to work a bit harder to reach this contradiction. It will suffice to verify that $\eta_j(\mathbb{P}^1)$ also passes through the nodes (\hat{x}_i, \hat{y}_i) for $i \neq j$. To do this, write $\xi_i := \zeta_{4g+2}^{g-i+1}$ and $\mu_i := \zeta_{2g+1}^{g-i+1} = \xi_i^2$, and note that $\hat{x}_i = (-1)^{g-i}(\xi_i + \bar{\xi}_i)^{-1} = -\mu_i^{g+1}(1 + \mu_i)^{-1}$. We claim that $$\theta_{ij} := \mu_j (\mu_j \bar{\mu}_i - 1)(\bar{\mu}_i - \mu_j)^{-1}$$ (and ξ_j^2/θ_{ij} , too, but we won't need that) are sent to (\hat{x}_i, \hat{x}_i) by η_j . For the x-coordinate, we have $$\hat{X}_{j}(\theta_{ij}) = \hat{x}_{j} \frac{(\theta_{ij} - 1)^{g+1}}{(\theta_{ij} - \mu_{j})(\theta_{ij} - \mu_{j}^{2})^{g}}$$ $$= \frac{-\mu_{j}^{g+1}}{1 + \mu_{j}} \frac{\mu_{j}^{g+1} (\frac{\mu_{j}\bar{\mu}_{i} - 1}{\bar{\mu}_{i} - \mu_{j}} - \bar{\mu}_{j})^{g+1}}{\mu_{j}^{g+1} (\frac{\mu_{j}\bar{\mu}_{i} - 1}{\bar{\mu}_{i} - \mu_{j}} - 1)(\frac{\mu_{j}\bar{\mu}_{i} - 1}{\bar{\mu}_{i} - \mu_{j}} - \mu_{j})^{g}}$$ $$= \frac{-\mu_{j}^{g+1}}{1 + \mu_{j}} \frac{\bar{\mu}_{i}^{g+1} \bar{\mu}_{j}^{g+1} (\mu_{j}^{2} - 1)^{g+1}}{(\mu_{j} - 1)(\bar{\mu}_{i} + 1)(\mu_{j}^{2} - 1)^{g}} = \frac{-\bar{\mu}_{i}^{g}}{1 + \mu_{i}} = \hat{x}_{i},$$ and the y-coordinate calculation is similar. 4.4. Explicit series identities. Spelling out (4.70) in light of (4.43) kills any torsion modulo $\mathbb{Q}(1)$ as both sides are real,³⁸ and yields the relationship $$\frac{(2g+1) \cdot \gcd(2j-1, 2g+1)}{\pi} D_2(1 + \zeta_{2g+1}^{g-j+1}) = \log(|\hat{a}_j|) - \sum_{\mathcal{L}_j} \frac{\Gamma(\mathfrak{l}_j)}{\Gamma^2(1 + \mathfrak{l}'_j) \prod_{k=1}^g \Gamma(1 + l_k)} (-\hat{a}_j)^{-\mathfrak{l}_j} \prod_{\substack{k=1\\k \neq j}}^g \hat{a}_k^{l_k}$$ valid for j = 1, ..., g. The LHS can be shifted to a different avatar via the formula (4.72) $$D_2(1+\zeta_{2g+1}^{g-j}) = D_2\left(2\cos(\frac{\pi}{2g+1})e^{\pi i(g-j)/(2g+1)}\right).$$ Let us consider some applications of (4.71). For the family $C_{2,2}$ Table 1 and Table 2 say that $\underline{\kappa} = (1,1)$ and $\underline{\hat{a}} = (5,-5)$. Recalling that $\mathbf{w} := \frac{1+\sqrt{5}}{2} = 2\cos(\pi/5)$ and plugging in j = 1 in (4.71) gives $$\frac{5}{\pi} D_2(\mathbf{w}e^{2\pi \mathbf{i}/5}) = \log 5 - \sum_{l_1, l_2 \in \mathbb{Z}_{\geq 0}} \frac{\Gamma(5l_1 + 3l_2)(-5)^{-5l_1 - 3l_2}(-5)^{l_2}}{\Gamma^2(1 + 2l_1 + l_2)\Gamma(1 + l_1)\Gamma(1 + l_2)}$$ $$= \log 5 - \sum_{m, r \in \mathbb{Z}_{> 0}} \frac{(-1)^m \Gamma(5m + 3r) 5^{-5m - 2r}}{\Gamma^2(1 + 2m + r)\Gamma(1 + m)\Gamma(1 + r)}.$$ ³⁸after changing $\log(\hat{a}_i)$ to $\log(|\hat{a}_i|)$ On the other hand for j = 2, $$(4.73) \quad \frac{5}{\pi} D_2(\mathfrak{w}e^{\pi \mathbf{i}/5}) = \log 5 - \sum_{l_1, l_2 \in \mathbb{Z}} \frac{\Gamma(\frac{5l_2 + l_1}{3}) 5^{-\frac{5l_2 + l_1}{3}} 5^{l_1}}{\Gamma^2(1 + \frac{l_2 - l_1}{3}) \Gamma(1 + l_1) \Gamma(1 + l_2)}.$$ Defining $r := l_1, m := (l_2 - l_1)/3$, (4.74) $$\frac{5}{\pi} D_2(\mathfrak{w}e^{\pi i/5}) = \log 5 - \sum_{m,r \in \mathbb{Z}_{>0}} \frac{\Gamma(5m+2r)5^{-5m-r}}{\Gamma^2(1+m)\Gamma(1+r)\Gamma(1+3m+r)}.$$ These identities, conjectured in [CGM, A.10], match the identities [7K, (6.13)-(6.14)].³⁹ Likewise, for $\mathcal{C}_{3,3}$ we have $\hat{\underline{a}} = (-7, 14, -7)$ and $\underline{k} = (1, 1, 1)$, and thus (4.75) $$\frac{7}{\pi}D_2(1+\zeta_7^3) = \log 7 - \sum_{m,r,p \in \mathbb{Z} \setminus \mathbb{Z}} \frac{(-1)^r \Gamma(7m+5r+3p) 7^{-7m-4r-2p} 2^p}{\Gamma^2(1+3m+2r+p)\Gamma(1+m)\Gamma(1+r)\Gamma(1+p)}$$ (4.76) $$\frac{7}{\pi}D_2(1+\zeta_7^2) = \log 7 - \sum_{m,r,p \in \mathbb{Z}_{>0}} \frac{(-1)^r \Gamma(7m+5r+p)7^{-4m-5r+2p}2^{-7m-5r-p}}{\Gamma^2(1+2m+r-p)\Gamma(1+3m)\Gamma(1+3r)\Gamma(1+3p)}$$ (4.77) $$\frac{7}{\pi}D_2(1+\zeta_7) = \log 7 - \sum_{m,r,p\in\mathbb{Z}_{\geq 0}} \frac{(-1)^m \Gamma(7m+3r+p)7^{-7m+2p}2^{3r}}{\Gamma^2(1+m-r-2p)\Gamma(1+3m)\Gamma(1+3r)\Gamma(1+3p)}.$$ More generally, for the family $C_{g,g}$, \mathcal{L}_1 becomes the lattice $\mathbb{Z}^g_{\geq 0} \setminus \{0, \dots, 0\}$ and we end up with a tidy expression, (4.78) $$\begin{split} \frac{(2g+1)}{\pi} D_2 (1+\zeta_{2g+1}^g) &= \log(|\hat{a}_1|) - \\ \sum_{\substack{l_k \in \mathbb{Z}_{\geq 0} \\ 1 \leq k \leq g}} {}'(-1)^{\sum_{k=1}^g l_k} \frac{\Gamma\left((2g+1)l_1 + \sum_{k=2}^g (2k-1)l_k\right)}{\Gamma^2 \left(1+gl_1 + \sum_{k=2}^g (k-1)l_k\right) \prod\limits_{k=1}^g \Gamma(1+l_k)} \hat{a}_1^{-(2g+1)l_1 - \sum\limits_{k=2}^g (2k-1)l_k} \prod\limits_{k=2}^g \hat{a}_k^{l_k}, \end{split}$$ where \sum_{l_k}' means that we omit the term corresponding to $\{0,\ldots,0\}$. Remark 4.15. We briefly address convergence of the power series part of RHS(4.78), to $\tilde{R}(\underline{a}) := \frac{1}{2\pi i} R_{\gamma_1}(\underline{a}) + \log(a_1)$ evaluated at $\underline{a} = \underline{\hat{a}}$. Replacing \hat{a}_i with a_i , then substituting the GKZ variables z_i (cf. Remark 4.2), it becomes a power series of the form $$\sum_{\underline{\ell} \ge \underline{0}}' c_{\underline{\ell}} z_1^{g\ell_1 + \sum_{k=2}^g (k-1)\ell_k} z_2^{(g-1)\ell_1 + \sum_{k=3}^g (k-2)\ell_k} \cdots z_g^{\ell_1}$$ $^{^{39} \}text{The proof there was incomplete as it did not address } \kappa.$ which represents $\tilde{R}(\underline{a}(\underline{z}))$ for sufficiently small \underline{z} . Moreover, we claim that $\tilde{R}(\underline{a}(uz))$ has no monodromy for $\underline{z} = \underline{z}(t) := (t^m, t, \ldots, t)$ if $m \gg 0$ and |t| < 1. It is enough to check that there is no monodromy on $z_1 = 0$ (obvious, as the power series is identically zero there) or when $|z_1| < 1$ and $z_i = \hat{z}_i$ ($i \geq 2$). For the latter, note that (4.54) becomes $2x\{z_1^{-1/2}\mathcal{T}_{2g+1}(\frac{1}{2x}z_1^{1/(4g+2)})+1\}$, whose discriminant is a power of $z_1 - 1$. (Roots of $\mathcal{T}'_{2g+1} = (2g+1)U_{2g}$ are $\cos(\frac{k\pi}{2g+1})$ for $k = 1, \ldots, 2g$, and $\mathcal{T}_{2g+1}(\cos(\frac{k\pi}{2g+1})) + z_1^{1/2} = (-1)^k + z_1^{1/2}$ is 0 iff $z_1 = 1$.) So $B(t) := \tilde{R}(\underline{a}(\underline{z}(t)))$ is represented by a power series $\sum_m B_m t^m$ on the unit disk, is bounded on $\{|t| < 1 + \epsilon\} \setminus [1, 1 + \epsilon)$ (as the K_2 symbol is nonsingular at t = 1), and has monodromy about t = 1 ($T_1 - I$) $B \sim \text{cst.} \times (t - 1)$ (since $(T_1 - I)\gamma_1$ is a vanishing cycle with trivial regulator). We are now in the situation of [Ke2, Lemma 6.4] with w = 2, so that $B_m \sim \text{cst.} \times m^{-2}$. The power series thus converges at t = 1, and must evaluate to B(1) by Tauber's theorem. ## APPENDIX A. SOME REGULATOR CALCULATIONS Here we demonstrate the existence of integral 1-cycles $\{\gamma_j\}_{j=1}^g$ on \mathcal{C} with regulator periods behaving as $R_{\gamma_j} \sim -2\pi \mathbf{i} \log(a_j)$ for large a_j , as claimed in §2.3. In the genus 1 case, we also indicate how one can check the constant term in R_{β} (cf.
Lemma 3.1) without using mirror symmetry, and relate the constant term to the limit of a variation of MHS. We refer the reader to [DK] or [KLi] for background on regulator currents. We start by defining the 1-cycles in distinct regions of moduli. We will need some notation. Set $\mathbb{T}:=\{\underline{x}\in(\mathbb{C}^*)^2\big||x_1|=1=|x_2|\}$ (with the standard orientation as a 2-cycle) and let $\Gamma\subset\mathbb{P}_\Delta$ be a 3-chain bounding on \mathbb{T} (but avoiding $\bar{\mathcal{C}}\backslash\mathcal{C}$). Write $x^{\mathbf{e}}:=\underline{x}^{\underline{m}^{\mathbf{e}}}$ for the toric coordinate along the boundary component $\mathbb{D}_{\mathbf{e}}\subset\mathbb{P}_\Delta$ corresponding to an edge $\mathbf{e}\subset\partial\Delta$, and $\{q_{\mathbf{e},\ell}\}$ for the roots of $P(-x_{\mathbf{e}})$ (amongst the $\{q_k\}$), repeated with multiplicity; we have $P_{\mathbf{e}}(x_{\mathbf{e}})=\prod_{\ell}(1+\frac{x_{\mathbf{e}}}{q_{\mathbf{e},\ell}})$, with $\prod_{\ell}q_{\mathbf{e},\ell}=1$. Also, $\log_{\mathbf{e}}(\xi)$ will mean $\log(\xi)$ for ξ enclosed (counterclockwise on $\mathbb{D}_{\mathbf{e}}$) by $\Gamma\cap\mathbb{D}_{\mathbf{e}}$ and 0 otherwise. Now, fixing $j \in \{1, ..., g\}$, take $\mathbf{i}a_j \in \mathfrak{H}$ and $|a_j| \gg \max_{i \neq j} |a_i|$; and note that then $F(\mathbb{T}) \cap \mathbb{R}_- = \emptyset$. In this region, define $\gamma_j := \Gamma \cap \mathcal{C}$, and use the current coboundary (A.1) $$\frac{1}{2\pi \mathbf{i}} d[R\{F(\underline{x}), -x_1, -x_2\}] = \sum_{\mathbf{e}} R\{P_{\mathbf{e}}(x_{\mathbf{e}}), -x_{\mathbf{e}}\} \cdot \delta_{\mathbb{D}_{\mathbf{e}}} - R\{-x_1, -x_2\} \cdot \delta_{\bar{\mathcal{C}}}$$ together with the Tame symbols of $R\{P(x_e), -x_e\}$ (which are just the $\{q_{e,\ell}^{-1}\}$) and the Cauchy integral formula to compute (A.2) $$\begin{split} R_{\gamma_j} &= \int_{\gamma_j} R\{-x_1, -x_2\} = \int_{\Gamma} R\{-x_1, -x_2\} \cdot \delta_{\bar{\mathcal{C}}} \\ &= \frac{-1}{2\pi \mathbf{i}} \int_{\mathbb{T}} R\{F(\underline{x}), -x_1, -x_2\} + \sum_{\mathbf{e}} \int_{\Gamma \cap \mathbb{D}_{\mathbf{e}}} R\{P_{\mathbf{e}}(x_{\mathbf{e}}), -x_{\mathbf{e}}\} \\ &= \frac{-1}{2\pi \mathbf{i}} \int_{\mathbb{T}} \log(a_j(1 + a_j^{-1}F_j(\underline{x}))) \frac{dx_1}{x_1} \wedge \frac{dx_2}{x_2} + \sum_{\mathbf{e}} \int_{\Gamma \cap \mathbb{D}_{\mathbf{e}}} R\{P_{\mathbf{e}}(x_{\mathbf{e}}), -x_{\mathbf{e}}\} \\ &= 2\pi \mathbf{i} \left(-\log(a_j) + \sum_k \frac{(-1)^k}{k} [(F_j(\underline{x}))^k]_{\underline{0}} a_j^{-k} - \sum_{\mathbf{e}, \ell} \log_{\mathbf{e}}(q_{\mathbf{e}, \ell}) \right). \end{split}$$ In the tempered case, the $\{q_k\}$ are of course all 1, and the last term vanishes. We are then left with⁴⁰ (A.3) $$\frac{1}{2\pi \mathbf{i}} R_{\gamma_j}(\underline{a}) = -\log(a_j) + \sum_{k>0} \frac{(-1)^k}{k} [F_j^k]_{\underline{0}} a_j^{-k},$$ in which (by virtue of the GKZ theory) the sum can always be written as a power series in z_1, \ldots, z_g . This gives a common region of convergence for the series for all j (where the z-coordinates are small), to which the γ_j admit well-defined continuation from the regions on which they were originally defined: namely, they are the cycles with these regulator periods. Moreover, they are clearly independent due to the asymptotic behaviors of these periods in the $\{a_j\}$. In addition, (A.2)-(A.3) lead to formulas for periods of 1-forms. Noting that $d[R\{F(\underline{x}), -x_1, -x_2\}] = \frac{dF}{F} \wedge \frac{dx_1}{x_1} \wedge \frac{dx_2}{x_2}$, one introduces (A.4) $$\varpi_{\ell} := \frac{1}{2\pi \mathbf{i}} \nabla_{\delta_{a_{\ell}}} \mathcal{R} = \frac{-1}{2\pi \mathbf{i}} \operatorname{Res}_{\mathcal{C}} \left(\frac{\delta_{a_{\ell}} F}{F} \frac{dx_{1}}{x_{1}} \wedge \frac{dx_{2}}{x_{2}} \right)$$ and computes (A.5) $$-\Pi_{j\ell} := -\int_{\gamma_i} \varpi_{\ell} = \frac{-1}{2\pi \mathbf{i}} \delta_{a_{\ell}} R_{\gamma_j} = \boldsymbol{\delta}_{\ell j} + \sum_{k>0} (-1)^k [F_j^k]_{\underline{0}} a_j^{-k},$$ where $\boldsymbol{\delta}_{\ell j}$ is the Kronecker delta. This formula proves useful in §4.2 where we change the sign of γ_i . Turning to the g=1 case and the computation of R_{β} , it is more convenient to work with $u=-a\gg 0$. In this coordinate, (3.3) becomes $t=\log(u)-\pi\mathbf{i}+O(u^{-1})$. Substituting this in Lemma 3.1(a) and using $12-r^{\circ}=r$ yields (A.6) $$R_{\beta} = \frac{r^{\circ}}{2} \log^2 u - \frac{r}{6} \pi^2 + O(u^{-1} \log u).$$ ⁴⁰Note that the version of this formula in [KLi, Prop. 6.2] is missing a $\pm \pi \mathbf{i}$ ("2-torsion") term: the λ_j parameter there is $-a_j$, so the leading term should have read $-\log(-\lambda_j)$ or $-\log(\lambda_j) + \pi \mathbf{i}$. ⁴¹Essentially, this is just because in order to contribute to the constant term in $(F_j(\underline{x}))^k$, a product of monomials must correspond to a sum of relations on points of $\Delta \cap \mathbb{Z}^2$, and the relations are how we defined the $\{z_i\}$. Consider the Laurent polynomial $\varphi = x_1 + x_1^{-1} + x_2 + x_2^{-1}$, which corresponds to local $(\mathbb{P}_{\Delta^{\circ}} =) \mathbb{P}^1 \times \mathbb{P}^1$. The discriminant (over the x_1 -axis) of the equation $x_2 + (x_1 + x_1^{-1} - u) + x_2^{-1} = 0$ has roots $\xi_1 \sim \frac{1}{u+2}$, $\xi_2 \sim \frac{1}{u-2}$, $\xi_3 \sim u-2$, and $\xi_4 \sim u+2$ (in increasing order). Introduce $2x_{2,\pm}(x_1) := u - x_1 - x_1^{-1} \pm \sqrt{(x_1 + x_1^{-1} - u)^2 - 4}$ and $w(x_1) := \frac{4}{(u-x_1-x_1^{-1})^2}$. For $x_1 \in (\xi_2, \xi_3)$, w lies in (0,1), and we write $\log(\frac{4}{w} \cdot \frac{1-\sqrt{1-w}}{1+\sqrt{1-w}}) =: \sum_{m\geq 1} \theta_m w^m = \frac{1}{2}w + \frac{3}{16}w^2 + \cdots$. Now we compute (A.7) $$\begin{split} R_{\beta} &= -\int_{\beta} R\{-x_2, -x_1\} = \int_{\xi_2}^{\xi_3} \log(\frac{x_{2,+}}{x_{2,-}}) \frac{dx_1}{x_1} = \int_{\xi_2}^{\xi_3} \log(\frac{1+\sqrt{1-w}}{1-\sqrt{1-w}}) \frac{dx_1}{x_1} \\ &= -\int_{\xi_2}^{\xi_3} \log(\frac{w}{4}) \frac{dx_1}{x_1} - \sum_{m \geq 1} \theta_m \int_{\xi_2}^{\xi_3} w^m \frac{dx_1}{x_1} \\ &= 2\log(u) \int_{\xi_2}^{\xi_3} \frac{dx_1}{x_1} + 2 \int_{\xi_2}^{\xi_3} \log(1 - u^{-1}(x_1 + x_1^{-1})) \frac{dx_1}{x_1} + O(u^{-1}\log u) \\ &= 4\log^2 u - 2 \sum_{k>0} \frac{u^{-k}}{k} \int_{\xi_2}^{\xi_3} (x_1 + x_1^{-1})^k \frac{dx_1}{x_1} + O(u^{-1}\log u) \\ &= 4\log^2 u - \frac{2\pi^2}{3} + O(u^{-1}\log u), \end{split}$$ at the end using the approximations $\int_{\xi_2}^{\xi_3} (x_1 + x_1^{-1})^k \frac{dx_1}{x_1} \sim \frac{2\xi_3^k}{k} \sim \frac{2u^k}{k}$ to rewrite the sum as $-4\sum \frac{1}{k^2} = -\frac{2}{3}\pi^2$ up to $O(u^{-1}\log u)$. The point is that since r=4, this agrees with the result (A.6) from integral local mirror symmetry. A similar computation in [KLi, §6] for $\varphi = x_1 + x_2 + x_1^{-1}x_2^{-1}$ (mirror to local \mathbb{P}^2) gives $R_\beta = \frac{9}{2}\log^2 u - \frac{\pi^2}{2} + O(u^{-1}\log u)$, where the $-\frac{\pi^2}{2}$ arises as $-2\text{Li}_2(\frac{1}{2}) - 2\text{Li}_2(1) - \log^2 2$. Since r=3, this agrees once more with (A.6) (as it must). The crucial constant term in R_{β} has a nice interpretation via the LMHS at $a = \infty$ of the VMHS \mathcal{V} attached to $\mathcal{R} \in H^1(E_a, \mathbb{C}/\mathbb{Z}(2))$, the regulator class of $\{-x_1, -x_2\} \in H^2_{\mathrm{M}}(E_a, \mathbb{Z}(2))$. (Note that the LMHS depends on a choice of a local coordinate, which we take to be a^{-1} or equivalently $Q := e^{-t} = a^{-1}(1 + O(a^{-1}))$.) We can present \mathcal{V} and its dual as extensions (A.8) $$H^1(E, \mathbb{Z}(2)) \to \mathcal{V}_{\mathbb{Z}} \to \mathbb{Z}(0)$$ and $\mathbb{Z}(0) \to \mathcal{V}_{\mathbb{Z}}^{\vee} \to H_1(E, \mathbb{Z}(-2))$. On the left, a unique class $\mathfrak{R} \in F^0 \mathcal{V}_{\mathbb{C}}$ maps to $1 \in \mathbb{Z}(0)$; on the right, let $\tau \in \mathcal{V}_{\mathbb{Z}}^{\vee}$ be the image of 1, and $\tilde{\gamma}, \tilde{\beta} \in \mathcal{V}_{\mathbb{Z}}^{\vee}$ classes mapping to $\frac{1}{(2\pi \mathbf{i})^2} \gamma, \frac{1}{(2\pi \mathbf{i})^2} \beta$. Writing $\ell(Q) := \frac{\log(Q)}{2\pi \mathbf{i}}$, we have (A.9) $$\tilde{R}_{\beta} := \langle \mathfrak{R}, \tilde{\beta} \rangle = \frac{1}{(2\pi \mathrm{i})^2} R_{\beta} = \frac{r^{\circ}}{2} \ell(Q)^2 - \frac{r^{\circ}}{2} \ell(Q) + \mathrm{T} + O(Q),$$ where $T = \frac{1}{2} + \frac{r^{\circ}}{12}$ (cf. Lemma 3.1(a)), as well as $\tilde{R}_{\gamma} := \langle \mathfrak{R}, \tilde{\gamma} \rangle = \frac{1}{(2\pi \mathbf{i})^2} R_{\gamma} = \ell(Q)$ and $\langle \mathfrak{R}, \tau \rangle = 1$. To obtain a period matrix for \mathcal{V} , we compare Hodge and Betti bases as follows. Writing ∇ for $\nabla_{\partial_{\ell(Q)}}$, the change-of-basis matrix from $\{\mathfrak{R}, \nabla\mathfrak{R}, \frac{1}{r^{\circ}}\nabla^{2}\mathfrak{R}\}$ to $\{\tau^{\vee}, \tilde{\gamma}^{\vee}, \tilde{\beta}^{\vee}\}$ is $$(\mathrm{A}.10) \ \Omega := \begin{pmatrix} \frac{1}{\tilde{R}_{\gamma}} & 1 \\ \tilde{R}_{\beta} \ \partial_{\ell(Q)}\tilde{R}_{\beta} & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\ell(Q)} & 1 \\ \frac{r^{\circ}}{2}\ell(Q)^{2} - \frac{r^{\circ}}{2}\ell(Q) + \mathbf{T} & r^{\circ}\ell(Q) - \frac{r^{\circ}}{2} & 1 \end{pmatrix} + O(Q).$$ From (A.10) one easily deduces the monodromies $T \in \operatorname{Aut}(\mathcal{V})$ and $T^{\vee} \in \operatorname{Aut}(\mathcal{V}^{\vee})$ about Q = 0: $$(\mathrm{A.11}) \quad [T^{\vee}]_{\{\tilde{\beta},\tilde{\gamma},\tau\}} = \begin{pmatrix} 1 \\ r^{\circ} & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \Longrightarrow \quad \boldsymbol{T} := [T]_{\{\tau^{\vee},\tilde{\gamma}^{\vee},\tilde{\beta}^{\vee}\}} = \begin{pmatrix} 1 \\ 1 & 1 \\ 0 & r^{\circ} & 1 \end{pmatrix}.$$ Consequently the *limiting* period matrix is (A.12) $$\Omega_{\lim,Q} := \lim_{Q \to 0} e^{-\ell(Q)\log(T)} \Omega = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ T & -\frac{r^{\circ}}{2} & 1
\end{pmatrix}.$$ The LMHS with respect to a^{-1} , as mentioned above, gives the same result; but if we change local coordinate to -Q or (equivalently) u^{-1} , we get $$(A.13) \qquad \qquad \Omega_{\lim,-Q} := \lim_{Q \to 0} e^{-\ell(-Q)\log(T)} \mathbf{\Omega} = \begin{pmatrix} 1 & \\ \frac{1}{2} & 1 \\ \mathbf{B}^{\circ} & 0 & 1 \end{pmatrix},$$ where $B^{\circ} = \frac{1}{2} - \frac{r^{\circ}}{24} = T - \frac{r^{\circ}}{8}$. So we see that both of the constants appearing in Lemma 3.3(ii) have a standard asymptotic Hodge-theoretic meaning, in terms of (torsion) extension classes in the LMHS of $\mathcal V$ in the large complex structure limit. ## REFERENCES - [Be] A. Beilinson, *Higher regulators and values of L-functions of curves*, Funct. Anal. Appl. 14 (1980), 116-118. - [BKV] S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions, Compos. Math. 151 (2015), 2329-2375. - [CGM] S. Codesido, A. Grassi, and M. Mariño, Spectral theory and mirror curves of higher genus, Ann. Henri Poincaré 18 (2017), no. 2, 559-622. - [7K] P. del Angel, C. Doran, J. Iyer, M. Kerr, J. Lewis, S. Müller-Stach, and D. Patel, *Specialization of cycles and the K-theory elevator*, Commun. Number Theory Phys. 13 (2019), no. 2, 299-349. - [Ga] S. Galkin, The conifold point, arXiv:1404.7388, 2014. - [DK] C. Doran and M. Kerr, *Algebraic K-theory of toric hypersurfaces*, Commun. Number Theory Phys. 5 (2011), no. 2, 397-600. - [GHM] A. Grassi, Y. Hatsuda, and M. Mariño, Topological strings from quantum mechanics, Ann. Henri Poncaré 17 (2016), no. 11, 3177-3235. - [GKMR] J. Gu, A. Klemm, M. Mariño, and J. Reuter, Exact solutions to quantum spectral curves by topological string theory, J. High Energy Phys. 2015, no. 10, 025. - [GS] S. Gukov and P. Sulkowski, A-polynomial, B-model, and quantization, J. High Energy Phys. 2012, no. 2, 070. - [Ir] H. Iritani, Quantum cohomology and periods, Ann. Inst. Fourier 61 (2011), no. 7, 2909-2958. - [KM] R. Kashaev and M. Mariño, Operators from mirror curves and the quantum dilogarithm, Commun. Math. Phys. 346 (2016), no. 3, 967-994. - [KS] R. Kashaev and S. Sergeev, Spectral equations for the modular oscillator, Rev. Math. Phys. 30 (2018), no. 7, 1840009, 28 pp. - [Ke1] M. Kerr, An elementary proof of Suslin reciprocity, Canad. Math. Bull. 48 (2005), 175-210. - [Ke2] ——, Unipotent extensions and differential equations (after Bloch-Vlasenko), arXiv:2008.03618, preprint, 2020. - [KLe] M. Kerr and J. Lewis, *The Abel-Jacobi map for higher Chow groups*, *II*, Invent. Math. 170 (2007), 355-420. - [KLM] M. Kerr, J. Lewis, and S. Müller-Stach, *The Abel-Jacobi map for higher Chow groups*, Compos. Math. 142 (2006), 374-396. - [KLi] M. Kerr and M. Li, Two applications of the integral regulator, Pacific J. Math. 306 (2020), no. 2, 539-556. - [Ko] Y. Konishi, Integrality of Gopakumar-Vafa invariants of toric Calabi-Yau threefolds, Publ. Res. Inst. Math. Sci. 42 (2006), no. 2, 605-648. - [LST] A. Laptev, L. Schimmer, and L. Takhtajan, Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves, Geom. Funct. Anal. 26 (2016), 288-305. - [Li] M. Li, Integral regulators on higher Chow complexes, SIGMA 14 (2018), 118, 12 pages. - [Ma] M. Mariño, Spectral theory and mirror symmetry, in "String Math 2016", 259-294, Proc. Symp. Pure Math. 98, AMS, Providence, RI, 2018. - [MZ] M. Mariño and S. Zakany, *Matrix models from operators and topological strings*, Ann. Henri Poincaré 17 (2016), no. 5, 1075-1108. - [SWH] K. Sun, X. Wang, and M.-x. Huang, Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string, J. High Energy Phys. 2017, no. 1, 061. - [Ty] I. Tyomkin, On Severi varieties on Hirzebruch surfaces, IMRN, 2007, no. 23, Art. ID rnm09. - [Za] S. Zakany, Quantized mirror curves and resummed WKB, J. High Energy Phys. 2019, no. 5, 114. University of Alberta, Edmonton, Canada, Center for Mathematical Sciences and Applications, Cambridge, MA Email address: charles.doran@ualberta.ca WASHINGTON UNIVERSITY IN ST. LOUIS, DEPARTMENT OF MATHEMATICS AND STATISTICS, ST. LOUIS, MO Email address: matkerr@wustl.edu Washington University in St. Louis, Department of Mathematics and Statistics, St. Louis, MO *Email address*: soumya@wustl.edu