• Home
  • Videos
  • Calabi-Yau Manifolds
  • Modular Forms
  • String Duality
  • Picard-Fuchs Equations
  • K-Theory
  • Supersymmetry
  • Hodge Theory
  • Toric Geometry
CHARLES DORAN

K-THEORY

  • Specialization of Cycles and the K-Theory Elevator. Charles Doran, Matt Kerr, James Lewis, Jaya Iyer, Pedro Luis del Angel, Stefan Müller-Stach, Deepam Patel. 43 pages.
  • K3 Orientifolds. Charles Doran, Andreas Malmendier, Stefan Méndez-Diez, Jonathan Rosenberg. 18 pages.
  • String-Math 2014, Vincent Bouchard, Charles Doran, Stefan Méndez-Diez, Callum Quigley, Eds.; 2016; American Mathematical Society, Proceedings of Symposia in Pure Mathematics 93, 396 pages.
  • String Theory on Elliptic Curve Orientifolds and KR-Theory; Charles Doran, Stefan Méndez-Diez, Jonathan Rosenberg; 2015; Communications in Mathematical Physics, April 2015, Volume 335, Issue 2, pp. 955-1001.
  • Algebraic Cycles and Local Quantum Cohomology; Charles Doran, Matt Kerr; 2014; Communications in Number Theory and Physics, Volume 8 (2014), Number 4, pp. 703-727.
  • Normal Functions, Picard-Fuchs Equations, and Elliptic Fibrations on K3 Surfaces; Xi Chen, Charles Doran, Matthew Kerr, James Lewis; 2014; Journal für die reine und angewandte Mathematik (Crelles Journal), DOI: 10.1515/crelle-2014-0085, November 2014.
  • T-Duality for Orientifolds and Twisted KR-Theory; Charles Doran, Stefan Méndez-Diez, Jonathan Rosenberg; 2014; Letters in Mathematical Physics, November 2014, Volume 104, Issue 11, pp. 1333-1364.
  • Algebraic K-Theory of Toric Hypersurfaces; Charles Doran, Matthew Kerr; 2011; Communications in Number Theory and Physics, Vol. 5, No. 2, pp. 397-600.
  • On Stokes Matrices of Calabi-Yau Hypersurfaces; Charles Doran, Shinobu Hosono; 2007; Advances in Theoretical and Mathematical Physics, 11, Issue 1, 147-174.
  • Algebraic Topology of Calabi-Yau Threefolds in Toric Varieties; Charles Doran, John Morgan; 2007; Geometry and Topology, 11, 597-642.
  • Crosscaps in Gepner Models and the Moduli Space of T2 Orientifolds; Brandon Bates, Charles Doran, Koenraad Schalm; 2007; Advances in Theoretical and Mathematical Physics, Volume 11, Number 5, 839-912.
  • Mirror Symmetry and Integral Variations of Hodge Structure Underlying One Parameter Families of Calabi-Yau Threefolds. Charles Doran, John Morgan; 2006; In Mirror Symmetry V, AMS/IP Studies in Advanced Mathematics, 38, 517-537.
​Professor of Mathematics, University of Alberta 
Associate Member, Center of Mathematical Sciences and Applications, Harvard University
  • Home
  • Videos
  • Calabi-Yau Manifolds
  • Modular Forms
  • String Duality
  • Picard-Fuchs Equations
  • K-Theory
  • Supersymmetry
  • Hodge Theory
  • Toric Geometry